
The Journal of Symbolic Logic

Volume 81, Number 1, March 2016

CATEGORICITY IN QUASIMINIMAL PREGEOMETRY CLASSES

LEVONHAYKAZYAN

Abstract. Quasiminimal pregeometry classeswere introduced by [6] to isolate themodel theoretical core
of several interesting examples. He proves that a quasiminimal pregeometry class satisfying an additional
axiom, called excellence, is categorical in all uncountable cardinalities. Recently, [2] showed that the
excellence axiom follows from the rest of the axioms. In this paper we present a direct proof of the
categoricity result without using excellence.

§1. Introduction. A quasiminimal pregeometry class is a nonelementary class
of structures satisfying certain axioms. The notion was introduced by [6] to give
canonical axiomatisations of pseudo-exponential fields (in [7]) and other related
analytic structures. The original definition of [6] had an additional axiom called
excellence, which played a central role in establishing categoricity in cardinalities
above ℵ1. (And hence the original terminology of a quasiminimal excellent class.)
The notion has evolved through the works of [1] and [4]. In practice checking that
the excellence holds has been the most technically difficult part in applications of
the categoricity theorem. Some of the original proofs of excellence had gaps, which
have only recently been fixed.
Later [2] showed that the excellence axiom is redundant in that it follows from
the rest of the axioms. In this paper we present a direct proof of the categoricity
result that bypasses excellence altogether. The main new idea is to look at (partial)
embeddings that preserve all L�1,� formulas possibly using infinitely many param-
eters. We call them �-embeddings. Constructing �-embeddings by a transfinite
recursion presents additional challenges. Given an increasing chain 〈f� : � < α〉 of
�-embeddings, their union f =

⋃
�<α f� need not be a �-embedding. The problem

is thatf needs to preserve formulas over infinitely (countably)many parameters and
if cf(α) = � we cannot guarantee that these parameters all occur at an earlier stage.
In case of quasiminimal pregeometry classes the axiom of ℵ0-homogeneity over
countable closed models provides a way around this problem in certain situations.
The rest of the paper is organised as follows. The next section fixes the notation
and gives the basic definitions. Section 3 establishes infinitary analogues of some
well-known elementary properties in first order model theory. Then we prove the
categoricity theorem and finish with some concluding remarks.
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§2. Background. LetL be a finitary language, that is,L has constant, functional,
and relation symbols of finite arity. For an infinite cardinal κ the formulas of Lκ,�
are inductively defined as follows.

• Atomic L-formulas are Lκ,�-formulas.
• If Φ is a set of Lκ,�-formulas and |Φ| < κ, then ∧

φ∈Φ φ and
∨
φ∈Φ φ are

Lκ,�-formulas.
• If φ is an Lκ,�-formula and v is a variable, then ¬φ, ∀vφ and ∃vφ are
Lκ,�-formulas.

In this notation the ordinary first-order language coincides with L�,� . Note that
we do not require Lκ,�-formulas to have finitely many free variables. However,
every subformula of an Lκ,�-sentence has finitely many free variables. If M is an
L-structure, φ is an Lκ,�-formula and � is a variable assignment, thenM |=� φ is
defined as usual. In particular

M |=�
∧

φ∈Φ
φ if and only ifM |=� φ for all φ ∈ Φ

and
M |=�

∨

φ∈Φ
φ if and only ifM |=� φ for some φ ∈ Φ.

Two structures M and N are called equivalent in Lκ,� (in symbols M ≡κ,� N) if
they satisfy the same Lκ,�-sentences.
A formula of L∞,� is a formula of Lκ,� for some κ. The notation M ≡∞,� N
means thatM and N satisfy the same L∞,�-sentences.
LetM,N beL-structures andf be a (partial) function fromM toN . (We use the
notationf :M⇀ N for partial functions). Thenf is called a (partial) embedding if
it preserves quantifier-free formulas. Note that in particularf preserves the formula
x = x and hence f is injective. A bijective embedding is an isomorphism between
M and N . The function f is called a (partial) elementary embedding if it preserves
first-order formulas and a (partial) �-embedding if it preserves all L�1 ,�-formulas
(in general using infinitely many parameters from the dom(f)). In other words
f is a �-embedding if 〈M,m〉m∈dom(f) ≡�1,� 〈N,f(m)〉m∈dom(f).
A back-and-forth system between L-structuresM andN is a nonempty collection
F of partial embeddings such that the following two conditions are satisfied:

• for all f ∈ F and a ∈M there is g ∈ F such that f ⊆ g and a ∈ dom(g);
• for all f ∈ F and b ∈ N there is g ∈ F such that f ⊆ g and b ∈ img(g).
The following characterisation of L∞,�-equivalence is due to [3].

Theorem 2.1. LetM andN be L-structures. ThenM ≡∞,� N if and only if there
is a back and forth system between them.

Now we introduce the notion of a quasiminimal pregeometry class from [6].
Our definition follows closely that of [4] . For the definition of pregeometry the
reader can consult [5].

Definition 2.2. Let L be a language. A quasiminimal pregeometry class is a class
C of pairs 〈H, clH 〉whereH is anL-structure and clH : P(H )→ P(H ) is a function
satisfying the following conditions.
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58 LEVONHAYKAZYAN

• Closure under isomorphisms
If 〈H, clH 〉 ∈ C, H ′ is an L-structure and f : H → H ′ is an isomorphism,
then 〈H ′, clH ′〉 ∈ C, where clH ′ is defined as clH ′(X ′) = f(clH (f−1(X ′))) for
X ′ ⊆ H ′.

• Quantifier free theory
If 〈H, clH 〉, 〈H ′, cl′H 〉 ∈ C, then H and H ′ satisfy the same quantifier free
sentences. In other words the empty function is a partial embedding between
any two structures.

• Pregeometry
– For each 〈H, clH 〉 ∈ C the function clH is a pregeometry on H and the
closure of any finite set is countable.
– If 〈H, clH 〉 ∈ C and X ⊆ H , then clH (X ) is a substructure of H and
together with the restriction of clH it is in C.
– If 〈H, clH 〉, 〈H ′, clH ′〉 ∈ C, X ⊆ H , y ∈ H and f : H ⇀ H ′ is a
partial embedding defined on X ∪ {y}, then y ∈ clH (X ) if and only if
f(y) ∈ clH ′(f(X )).

• Uniqueness of the generic type over countable closed models
Let 〈H, clH 〉, 〈H ′, clH ′〉 ∈ C, subsets G ⊆ H,G ′ ⊆ H ′ be countable closed or
empty and g : G → G ′ be an isomorphism. If x ∈ H,x′ ∈ H ′ are independent
from G and G ′, respectively, then g ∪ {〈x, x′〉} is a partial embedding.

• ℵ0-homogeneity over countable closed models
Let 〈H, clH 〉, 〈H ′, clH ′〉 ∈ C, subsets G ⊆ H,G ′ ⊆ H ′ be countable closed or
empty and g : G → G ′ be an isomorphism. If g ∪ f : H ⇀ H ′ is a partial
embedding, X = dom(f) is finite and y ∈ clH (X ∪ G), then there is y′ ∈ H ′

such that g ∪ f ∪ {〈y, y′〉} is a partial embedding.
To illustrate the definition we give some examples of quasiminimal pregeometry
classes.

Example 2.3. The class of models of a strongly minimal first order theory
together with algebraic closure is a quasiminimal pregeometry class, provided that
the closure of the empty set is infinite. The latter condition is needed to ensure that
the closure of any subset of a given model is a model of the theory itself. This can
be readily checked by Tarski-Vaught test, using the strong minimality of the theory.
Let the language L contain just one binary relation E. Consider the class of

L-structures, where E is an equivalence relation and each equivalence class is
countable. Define the closure of X to be the set of elements equivalent to some
x ∈ X . This class is a quasiminimal pregeometry class. It can be realised as the class
of models of an L(Q)-sentence.
Finally, wemention mathematically interesting nonelementary classes of pseudo-
exponential fields of [7] and group covers of [8].

A class satisfying the above conditions and an additional condition referred to as
excellence, is called a quasiminimal excellent class in [1,4,6]. It is shown in theseworks
that any two structures in a quasiminimal excellent class of the same uncountable
cardinality are isomorphic. As mentioned above [2] showed that excellence fol-
lows from other conditions. The terminology of a quasiminimal pregeometry class
comes from [2], where the countable dimensional structure is called a quasiminimal
pregeometry structure. Thus combining the results of [6] and [2] we get that two
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structures in a quasiminimal pregeometry class of the same uncountable cardinality
are isomorphic. In this paper we present a direct proof of this result.

§3. Properties of Structures in Quasiminimal Pregeometry Classes. Fix a quasi-
minimal pregeometry class C. The closure operator is often understood, so we will
simply refer to C as a class of structures instead of a class of pairs. Given a structure
H ∈ C and a substructure G ⊆ H also in C, we denote G � H the fact that G is
closed in H .

Proposition 3.1. LetH,H ′ ∈ C,H � H ′ and X ⊆ H . Then clH (X ) = clH ′(X ).

Proof. Consider the identity embedding from H to H ′. For y ∈ H we have
y ∈ clH (X ) if and only if y ∈ clH ′(X ). Hence clH (X ) = clH ′(X ) ∩ H . But
clH ′(X ) ⊆ clH ′(H ) = H . Hence clH (X ) = clH ′(X ). �
In view of this, we will drop the subscript from the closure operator whenever no
confusion arises. Let us prove some direct consequences of ℵ0-homogeneity and the
uniqueness of the generic type.

Proposition 3.2. Let H,H ′ ∈ C, subsets G ⊆ H,G ′ ⊆ H ′ be countable closed or
empty, g : G → G ′ be an isomorphism and g ∪ f : H ⇀ H ′ be a partial embedding
with X = dom(f), X ′ = img(f) finite.
• The mapping g ∪ f extends to an isomorphism ĝ : cl(X ∪ G)→ cl(X ′ ∪G ′).
• If y ∈ H \ cl(X ∪ G) and y′ ∈ H ′ \ cl(X ′ ∪ G ′), then g ∪ f ∪ {〈y, y′〉} is a
partial embedding.

Proof. For the first assertion note that by the countable closure property both
cl(X ∪ G) and cl(X ′ ∪ G ′) are countable. Let 〈an : n < �〉 and 〈bn : n < �〉
enumerate cl(X ∪ G) and cl(X ′ ∪ G ′), respectively. Construct an increasing family
〈fn : n < �〉 of finite mappings such that g ∪ fn is a partial embedding as follows.
Let f0 = f. For an odd n pick the least m such that am is not in the domain of
fn−1. By ℵ0-homogeneity there is b ∈ cl(X ′ ∪ G ′) such that g ∪ fn−1 ∪ {〈am, b〉}
is a partial embedding. Put fn = fn−1 ∪ {〈am, b〉}. For an even n do the other way
around. Then ĝ =

⋃
n<� fn is an isomorphism between cl(X ∪G) and cl(X ′ ∪G ′).

For the second assertion extend g ∪ f to an isomorphism ĝ : cl(X ∪ G) →
cl(X ′ ∪ G ′). Now ĝ ∪ {〈y, y′〉} is a partial embedding by the uniqueness of the
generic type. Hence g ∪ f ∪ {〈y, y′〉} is also a partial embedding. �
Next we introduce �-types and prove �-saturation of uncountable structures in C.
Definition 3.3. LetH ∈ C, A ⊆ H and v̄ be a finite tuple of variables. A �-type
p (in H ) over A in variables v̄ is a set of L�1,�-formulas with parameters from A
and free variables among v̄ such that every countable subset is consistent with H .
That is for every countable Φ ⊆ p we haveH |= ∃v̄∧φ∈Φ φ(v̄).
If the length of the tuple v̄ is n, then we call p an n-type.We can think semantically
of a �-type as a family ofL�1 ,�-definable subsets such that each countable subfamily
has a nonempty intersection. A �-type p is complete if for every L�1 ,�-formula φ(v̄)
we have either φ ∈ p of ¬φ ∈ p. This corresponds to a �-complete ultrafilter on
the �-algebra of L�1,�-definable subsets. A �-type p is called isolated if there is a
consistent L�1,�-formula 
(x̄) such that H |= ∀x̄(
(x̄) → φ(x̄)) for all φ ∈ p.
A �-type p is realised in H if

⋂
φ∈p φ(H

n) �= ∅. Clearly, each isolated �-type
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is realised. Since L�1 ,�-definable sets are closed under countable intersections, we
have the following
Proposition 3.4. If a �-type contains a formula defining a countable set, then it is
isolated and hence realised.
Now let us study �-types in quasiminimal pregeometry structures.
Proposition 3.5. Let H ∈ C and X ⊆ H be countable. Let a, b ∈ H \ cl(X ).
Then a and b realise the same �-type over X .
Proof. Let G = cl(X ) and g0 = idG ∪{〈a, b〉}. By the uniqueness of the generic
type, g0 is an embedding. Now consider the collection F of finite extensions of g0
that are embeddings. It is not empty as g0 ∈ F . We claim that F is a back-and-forth
system. Indeed if g ∈ F and y ∈ H , then g = idG ∪f, where f has finite domain.
If y ∈ cl(dom(g)), then use ℵ0-homogeneity to extend g to y. Otherwise there is
y′ ∈ H \ cl(img(g)). By Proposition 3.2 the map g ∪ {〈y, y′〉} is an embedding.
Similarly, we can extend g to an embedding with y in the image.
Now expand the language by adding constant symbols cg for each g ∈ G and
an additional constant c. Let H1 be an expansion of H by interpreting cg by g
and c by a. Similarly, let H2 be an expansion of H by interpreting cg by g and
c by b. By the above there is a back-and-forth system between H1 and H2. Hence
H1 ≡∞,� H2. In particular H1 ≡�1,� H2. It follows that every formula using
parameters from G that is true on a is also true on b. Hence a and b realise the
same �-type over G . Since X ⊆ G , elements a and b also realise the same �-type
over X . �
The next corollary establishes the analogy between quasiminimal pregeometry
structures and minimality in first-order context. It is also the motivation behind the
term quasiminimality.
Corollary 3.6. Let H ∈ C and φ(v) be an L�1,� formula (possibly using
parameters). Then φ(H ) is either countable or cocountable.
Proof. Suppose otherwise. Let c̄ be the parameters used inφ. Then c̄ is countable.
Since both φ(H ) and ¬φ(H ) are uncountable, there are a ∈ φ(H ) \ cl(c̄) and
b ∈ ¬φ(H ) \ cl(c̄). This contradicts the fact that a and b realise the same �-type
over c̄. �
And now we establish the analogy between the closure in quasiminimal pregeo-
metry classes and the algebraic closure.
Corollary 3.7. Let H ∈ C be uncountable, and X ⊆ H be a countable subset.
Then y ∈ cl(X ) if and only if it satisfies an L�1 ,�-formula that has countably
many solutions.
Proof. Assume that y satisfies φ(v) that has countably many solutions. Since
cl(X ) is countable, there is y′ ∈ ¬φ(H ) \ cl(X ). Now y and y′ do not satisfy the
same �-type over X . Hence y ∈ cl(X ).
Conversely, assume that y ∈ cl(X ). Pick y′ ∈ H \ cl(X ). Since the closure is
determined by the language, the map idX ∪{〈y, y′〉} is not an embedding. Hence
there is a quantifier-free formula φ(v) overX satisfied by y but not y′. Now ¬φ(H )
cannot by countable (as it implies that y′ ∈ cl(X )). Hence φ(H ) is countable. �
Next we introduce the infinitary analogue of saturation and prove this property
for uncountable structures in quasiminimal pregeometry classes.

https://doi.org/10.1017/jsl.2014.36 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.36


CATEGORICITY IN QUASIMINIMAL PREGEOMETRY CLASSES 61

Definition 3.8. A structure H is called �-saturated if for every X ⊂ H with
|X | < |H | every �-type over X is realised in H .
Proposition 3.9. Let H ∈ C be uncountable. Then H is �-saturated.
Proof. Let X ⊂ H be a subset with |X | < |H | and let p be a �-type over X in n
variables. We prove by induction on n that p is realised in H .
Let n = 1. PutG = cl(X ). Then |G | = |X |+ℵ0 < |H |. So there is y ∈ H \G . If y
realises p, then we are done. So assume the opposite. Then there is a formula φ(v) ∈
p such thatH |= ¬φ(y). Now since y �∈ cl(X ), we have that ¬φ(H ) is uncountable.
Hence φ(H ) is countable. But then p is isolated and hence realised in H .
Assume the hypothesis for n. Let p be an n + 1-type. As before let G = cl(X ).
We claim that there is x ∈ H such that qx = {φ(v̄, x) : φ(v̄, w) ∈ p} is a �-type.
Assume the opposite. Then for every x there is a countable subset px ⊂ p such that

H |= ¬∃v̄
∧

φ∈px
φ(v̄, x).

Pick y ∈ H \ G and let Y be the set of parameters used in formulas of py . Then
Y ⊆ X is countable and y �∈ cl(Y ). But since any two elements outside cl(Y ) realise
the same type over Y , for every z ∈ H \ cl(Y ) we have

H |= ¬∃v̄
∧

φ∈py
φ(v̄, z).

Now letW = py ∪
⋃
x∈cl(Y ) px . ThenW is countable and we have that

H |= ¬∃w∃v̄
∧

φ∈W
φ(v̄, w).

This contradicts the fact that p is a �-type. Thus for some x ∈ H we have that
qx = {φ(v̄, x) : φ(v̄, w) ∈ p} is a �-type. By induction hypothesis qx is realised in
H and hence p is also realised in H . �

§4. The Categoricity Theorem. In this section we prove that any two structures
of the same uncountable cardinality in a quasiminimal pregeometry class are
isomorphic. Let H,H ′ ∈ C be of the same uncountable cardinality. Since we can
construct a back-and-forth system between H and H ′, we have that H ≡�1,� H ′.
In other words the empty embedding is a �-embedding. In analogy with first-
order case we would like to extend a partial �-embedding to map H onto H ′. By
�-saturation we can extend any �-embedding to any one element (and recursively
to any finite number of elements). At limit stages however, we need to take unions.
But the union of �-embeddings may not be a �-embedding. However, the union
of �-embeddings is always an embedding and in some cases this is sufficient to
get a �-embedding.

Proposition 4.1. Let H,H ′ ∈ C be uncountable, subsets G ⊂ H,G ′ ⊂ H ′

be countable closed and let g : G → G ′ be an isomorphism. Then g is a partial
�-embedding betweenH andH ′.

Proof. By ℵ0-homogeneity and Proposition 3.2 the set of embeddings between
H and H ′ that are finite extensions of g is a back-and-forth system. Hence if we
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add constant symbols for G in H and for G ′ in H ′ the resulting structures will be
L�1 ,�-equivalent. Therefore g is a �-embedding. �
We can use this result to extend a �-embeddings to the closure of its domain
provided the latter is countable.

Proposition 4.2. Let H,H ′ ∈ C be uncountable and let g : H ⇀ H ′ be a
partial �-embedding with X = dom(g), X ′ = img(g) countable. Then g extends to a
�-embedding ĝ : H ⇀ H ′ with dom(ĝ) = cl(X ) and img(ĝ) = cl(X ′).

Proof. Let cl(X ) = {an : n < �} and cl(X ′) = {a′n : n < �}. Construct an
increasing sequence f0 ⊆ f1 ⊆ f2 ⊆ · · · of �-embeddings as follows. Let f0 = g.
For an odd n, pick the least m not in the domain of fn. Let p be the �-type of am
over dom(fn). Consider the �-type p′ = {φ(x,fn(b̄)) : φ(x, b̄) ∈ p}. The set p′ is
a �-type as fn is a �-embedding. By �-saturation of H ′, the type p′ is realised by
some c ∈ H ′. Let fn+1 = fn ∪ {〈am, c〉}. For an even n go the other direction.
Now take ĝ =

⋃
n<� fn. Then ĝ is an embedding between the countable closed

sets cl(X ) and cl(X ′). By Proposition 4.1 the embedding ĝ is a �-embedding. �
In particular every countable embedding that extends to the closure of its domain
must be a �-embedding.

Corollary 4.3. Let H,H ′ ∈ C be uncountable, G ⊂ H , G ′ ⊂ H ′ be countable
closed or empty, g : G → G ′ an isomorphism, a ∈ H \ G and a′ ∈ H ′ \ G ′. Then
g ∪ {〈a, a′〉} is a �-embedding.
Let us nowprove a technical lemma.The argumentweuse is a direct generalisation
of an argument given in [1], [4].

Lemma 4.4. Let H,H ′ ∈ C be uncountable, B ⊆ H be countable and independent
and f : cl(B)→ H ′ be a closed embedding. Let X ⊂ H be finite independent over B.
Assume that for every Y � X , we have fY : cl(BY )→ H compatible �-embeddings
extending f = f∅ (i.e., if Y1 ⊆ Y2, then fY1 ⊆ fY2). Define g =

⋃
Y�X fY . Then

there is a cofinite subset B ′ ⊆ B such that g|cl(B′X ) is a �-embedding.

Proof. If |X | ≤ 1 the assertion is trivial, so assume thatX = {x1, . . . , xn} where
n > 1. Note that ifY1, Y2 � X and x ∈ cl(BY1)∩cl(BY2), then x ∈ cl(B(Y1∩Y2)).
Hence by the compatibility condition g =

⋃
Y�X fY is a well defined function.

Let Yi = X \ {xi} and hk =
⋃k
i=1 fYi . So that g = hn. Thus hk is a mapping

from
⋃k
i=1 cl(BYi). We prove by induction on k that there is a cofinite subset Bk

of B such that the restriction hk|⋃k
i=1 cl(BkYi )

is a �-embedding. For k = 1, we have
hk = fY1 so we can simply take B1 = B.
Assume that we have constructed Bk−1. Pick b ∈ Bk−1 arbitrary and let Bk =
Bk−1 \ {b}. Let Ck =

⋃k−1
i=1 cl(BkYi). We should show that hk|Ck∪cl(BkYk) is a

�-embedding.
Let � be an automorphism of cl(Bk−1X ) that fixes cl(Bk−1Yk) and swaps xk
with b. Let e be a�-embedding fromcl(Bk−1X ) intoH ′ extending hk−1|⋃k−1

i=1 cl(Bk−1Yi )
that agrees with fYk on Yk . If k ≥ 3 then e is simply an extension of
hk−1|⋃k−1

i=1 cl(Bk−1Yi )
to the closure of its domain (provided by Proposition 4.2). For

k = 2 we have X = Y1 ∪ {x1} and e is an extension of h1 ∪ {〈x1, fY2 (x1)〉} to the
closure of its domain. Finally, consider � = e�−1e−1fYk�. The automorphism �
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takesCk−1∪cl(BkYk) to cl(Bk−1Yk) andfYk is defined on it. Hence � is well-defined
on Ck−1 ∪ cl(BkYk). Since all these maps preserve L�1,�-formulas, so does �.
We claim that on Ck−1 ∪ cl(BkYk) the mappings � and hk agree (and therefore
hk preserves L�1,�-formulas). Let a ∈ Ck−1. Denote Yik = Yi ∩Yk = X \ {xi , xk}.
We have

�(a) ∈
k−1⋃

i=1

cl(Bk−1Yik).

Since fYk agrees with fYi on cl(Bk−1Yik), it agrees with hk−1 on
⋃k−1
i=1 cl(Bk−1Yik).

Also e agrees with hk−1 on
⋃k−1
i=1 cl(Bk−1Yi) and hk agrees with hk−1 onCk−1. Thus

�(a) = e�−1e−1fYk�(a) = hk−1�
−1h−1k−1hk−1�(a) = hk−1(a) = hk(a).

Now let a ∈ cl(BkYk). Then it is fixed by �. Also e and fYk preserve the closure
and agree on BkYk . Hence e−1fYk (a) ∈ cl(BkYk) is fixed by �. Hence

�(a) = e�−1e−1fYk�(a) = ee
−1fYk (a) = fYk (a) = hk(a).

This completes the proof. �
We can now prove the main result of this paper. The main difference between
our approach and the existing literature is the focus on �-embeddings. The exist-
ing proofs of categoricity start with an ordinary embedding (i.e., a function that
preserves quantifier free formulas) and extend it to an isomorphism between two
structures of the same cardinality. At certain stages of the construction one needs
to extend an embedding with domain of a special form to its closure. The condition
of excellence is precisely the statement that this is possible. However, if we have a
�-embedding at hand, then we can always extend it to the closure of its domain by
Proposition 4.2 (provided the domain is countable). This is where we bypass the
need for excellence.

Theorem 4.5. Let H,H ′ ∈ C be uncountable, let B,B ′ be bases of H,H ′, respec-
tively and let g : B → B ′ be a bijection. Then g extends to an isomorphism
ĝ : H → H ′.

Proof. Let B = {bα : α < κ}, B ′ = {b′α : α < κ} and g(bα) = b′α .
For n < �, let Gn = cl({bm : n ≤ m < �}) and G ′

n = cl({b′m : n ≤ m < �}).
By ℵ0-homogeneity there is an isomorphism f0 : G0 → G ′

0 extending g. By
Proposition 4.1 the embedding f0 is a �-embedding.
For each finite subset X ⊂ B we construct a number nX and a surjective
�-embeddingfX : cl(GnXX )→ cl(G ′

nX X
′) that extends g and satisfies the following

condition: whenever X ⊆ Y , we have nX ≤ nY and fX |cl(GnY X ) = fY |cl(GnY X ).
Assume that we have constructed such embeddings. Define ĝ : H → H ′ as
follows. For every x ∈ H , we have x ∈ cl(X ) for some finite X ⊂ B. Define
ĝ(x) = fX (x). By the assumption on the embeddings, the result does not depend
on the choice ofX . Now ĝ is surjective. Indeed for x′ ∈ H ′ pick finiteX ′ ⊂ B ′ such
that x′ ∈ cl(X ′). Let X = g−1(X ′). Then x′ ∈ img(fX ). Since fX is an embedding
f−1
X (x

′) ∈ cl(X ). Hence ĝ(f−1
X (x

′)) = x′. Also if x̄ ∈ H is a finite tuple, choose
X ⊂ B a finite set such that x̄ ∈ cl(X ). Then ĝ(x̄) = fX (x̄), preserves quantifier
free formulas. Thus ĝ is an isomorphism.
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We now proceed to the construction of �-embeddings fX by a well-founded
induction on the partial order of subsets of B. Take n∅ = 0 and f∅ = f0.
If X = {bα} is a singleton do the following. If α < �, then take nX = α +1, other-
wise take nX = 0. Then f0|GnX : GnX → G ′

nX is an isomorphism. By Corollary 4.3,
the map f0 ∪ {〈bα, b′α〉} is a �-embedding. So by Proposition 4.1 it extends to an
isomorphism fX : cl(GnXX )→ cl(G ′

nX X
′).

Assume that |X | > 1 and we have already constructed nY and fY for every
Y � X . Let n = max{nY : Y � X}. Then each gY = fY |cl(GnY ) is a �-embedding
of cl(GnY ) onto cl(G ′

nY
′), whereY ′ = g(Y ). Now if x ∈ dom(gY1 )∩dom(gY2 ) for

Y1, Y2 � X , then x ∈ dom(gY1∩Y2 ). Thus if we define gX =
⋃
Y�X gY , then gX is

a well defined function. By the previous Lemma there is some number m ≥ n such
that gX |⋃

Y�X cl(GmY )
is a �-embedding. Let fX be its extension to the closure of the

domain cl(
⋃
Y�X cl(GmY )) = cl(GmX ) and nX = m. �

§5. Concluding Remarks. Ever since its introduction by Shelah, excellence has
been the key notion for categoricity in nonelementary classes. What our methods
show is that in some very natural mathematical examples one can use infinitary
logic instead. The fact that �-embeddings and associated infinitary notions occur
in natural mathematical contexts is remarkable in itself. This opens up a possibility
of a broader use of infinitary logic both in elementary and nonelementary setting.
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