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Through foreign function interfaces (FFIs), software components in different programming

languages interact with each other in the same address space. Recent years have witnessed a

number of systems that analyse FFIs for safety and reliability. However, lack of formal

specifications of FFIs hampers progress in this endeavour. We present a formal operational

model, Java Native Interface (JNI) light (JNIL), for a subset of a widely used FFI – the

Java Native Interface (JNI). JNIL focuses on the core issues when a high-level

garbage-collected language interacts with a low-level language. It proposes abstractions for

handling a shared heap, cross-language method calls, cross-language exception handling,

and garbage collection. JNIL can directly serve as a formal basis for JNI tools and systems.

We demonstrate its utility by proving soundness of a system that checks native code in JNI

programs for type-unsafe use of JNI functions. The abstractions in JNIL are also useful

when modelling other FFIs, such as the Python/C interface and the OCaml/C interface.

1. Motivation

Most modern programming languages support foreign function interfaces (FFIs) for

interoperating with program modules developed in other programming languages. Recent

years have witnessed a string of systems that analyse and improve FFIs for safety and

reliability (Furr and Foster 2006; Hirzel and Grimm 2007; Kondoh and Onodera 2008;

Lee et al. 2010; Li and Tan 2009; Tan and Croft 2008; Tan and Morrisett 2007; Tan

et al. 2006). However, lack of formal semantics of FFIs hampers progress in this domain.

The available specifications of FFIs are in prose. Relying on prose specifications has at

least two unpleasant consequences. First, prose specifications are often ambiguous and

sometimes incomplete. The situation is especially acute for an FFI, whose two sides

involve different programming models and language features. For instance, Lee et al.

reported that Sun’s HotSpot and IBM’s J9 behave differently for four out of ten Java

Native Interface (JNI) test cases (Lee et al. 2010, Table 1). In such situations, the best an

FFI user can do is to perform experiments on particular implementations and make an

educated guess. This may cause inconsistencies and unsoundness. Second, without formal

semantics, tools and analysers cannot provide rigorous claims about their strength. As

a result, previous systems that target FFIs have to argue their hypotheses and claims

informally. This leaves their strength in doubt.

While there have been many efforts in formalizing the semantics of programming

languages, almost all have ignored the FFI aspect. The work by Matthews and Findler

(2007) formalizes the interoperation between two high-level functional languages, one
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typed and the other untyped. While this formalism represents significant progress in

modelling language interoperation, it does not apply to FFIs. Most FFIs are about the

interaction between a high-level language and a low-level language (assembly languages,

C, and C++) in a shared memory.

This paper presents the first formal operational model, named Java Native Interface

light (JNIL), for a subset of a shared-memory FFI – the JNI interface. The major

challenge for the modelling effort is to have the right abstractions to accommodate

differences between the programming models of Java and native code, without unduly

complicating the model. This is challenging because Java is a high-level OO language

with a managed runtime and provides automatic garbage collection (GC) and exception

handling. Native code, on the other hand, operates at a much lower level. It manually

manages the heap and has no built-in exception-handling mechanism. JNIL proposes a

set of abstractions to handle these differences. The abstractions make the JNIL model

concise and largely straightforward.

We proceed as follows. We highlight key issues and abstractions in JNIL in Section 2.

The formal semantics of JNIL is presented in Section 3. Java bytecode checking and Java

safety theorems are in Section 4. In Section 5, we discuss applications of the JNIL model;

we also present and prove soundness of a system that performs extended safety checking

of native code. We sketch extensions of JNIL in Section 6 and future work in Section 7.

We present related work in Section 8 and conclude in Section 9.

A preliminary version of this article was published in the Proceedings of the Eighth

Asian Symposium on Programming Languages and Systems (APLAS 2010) (Tan 2010).

The differences between the conference version and this article are described as follows.

First, to demonstrate how JNIL can be used as a foundation to provide rigorous claims

of JNI tools and systems, we have added the formalization and proof of soundness of a

system that performs extended static checking of native code to catch errors of incorrect

JNI function calls (in Section 5). Second, due to space limitation, the conference version

does not include the full semantics and proofs of the safety theorems. In this version, we

have added the full semantics and major lemmas used in the proofs.

2. Informal discussion of JNIL

In this section, we informally discuss major challenges of modelling the JNI and highlight

JNIL’s solutions; formal treatment is left to Section 3. We also present examples that help

understand the key aspects.

2.1. Background

The JNI (Liang 1999) is Java’s mechanism for interfacing with native code. A native

method is declared in a Java class by adding the native modifier. Figure 1 presents an

Item class that contains a native double method, which doubles the quantity field and

returns the old value. Once declared, native methods are invoked in Java in the same way

as how Java methods are invoked. In the example, the quadruple Java method invokes

the double method.
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Java code

class Item {

private int quantity = 17;

private native int double();

public int quadruple() {int old = double(); double(); return old;}

static {System.loadLibrary("Item");}

}

Native code

// a reference to an Item object is at the top of the operand stack

SLd r1, sp[0] // load the reference to r1

GetField “Item”, “quantity”, Int // Get the value of the quantity field

Pop r2 // pop the quantity value to r2

Add r3, r2, r2

Push r1

Push r3 // set up the stack for SetField

SetField “Item”, “quantity”, Int

Push r2

Ret

Fig. 1. A Java class with a native method and an implementation of the native method in JNIL; it

assumes arguments and results are passed on the stack.

A native method is implemented in a low-level language such as C, C++, or an

assembly language. Native code can use all the features provided by the native language.

In addition, native code can interact with Java through a set of JNI interface functions

(called JNI functions hereafter). For instance, the implementation of double can invoke

GetField to get the value of the quantity field, and SetField to set the field to double

the old value. Through JNI functions, native methods can inspect, modify, and create

Java objects, invoke Java methods, catch and throw Java exceptions, and so on.

2.2. Two sides of JNIL

A model of the JNI needs both a Java-side language and a native-side language.

The Java-side language of JNIL is a subset of the Java virtual machine language

(bytecode (Lindholm and Yellin 1999)). The native-side language is a RISC-style assembly

language augmented with a set of JNI functions (such as GetField/SetField). We choose

to model an assembly language because native methods in C or C++ are compiled before

loaded and linked into the JVM. Furthermore, there is less modelling overhead for an

assembly language, allowing JNIL to concentrate on the interaction between Java and

native code.

Many bytecode and JNI functions in JNIL work with field IDs and method IDs. For

example, ‘GetField fd ’ gets the value of the field represented by fd . A field ID identifies a

field by specifying three elements: a class name that the field belongs to, a field name, and

its type. For example, the ID for the quantity field is 〈‘Item’, ‘quantity’, Int〉. A method

ID has similar information as a field ID. A method ID may identify either a Java method

(implemented in bytecode) or a native method (implemented in native code).
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Figure 1 presents an implementation of the native double method in the example Item

class, where both GetField and SetField use the field ID of quantity to access the

field.

2.3. Heap model

In the JNI, Java and native code reside in the same address space to avoid costly context

switches. Consequently, JNIL needs to model a shared heap. However, modelling the

shared heap poses challenges because Java’s and native code’s views of the heap are at

different levels.

Being a high-level language, Java takes a high-level view: a heap is mathematically a

map from labels to objects. The use of abstract labels hides many complexities of memory

management. If a heap is rearranged and labels are renamed, the new heap is considered

to be equivalent to the old one as long as the ‘graph’ of the heap is preserved. Furthermore,

in the high-level view, objects are storable values. There is no need to consider how objects

are represented in memory. Previous Java models (Drossopoulou and Eisenbach 1999;

Flatt et al. 1999; Freund and Mitchell 2003; Klein and Nipkow 2006) adopt the high-level

view. By contrast, native code takes a low level view: a heap is mathematically a map

from addresses to primitive values. An object is represented in memory as a sequence of

primitive values according to an object-layout strategy. Native code can perform address

arithmetic, for example, to access elements of a Java array.

JNIL adopts an unusual block model : (1) a heap is a map from labels to blocks; (2) a

block is a map from addresses (natural numbers) to primitive values. A block may hold

the representation of a Java object, or may be a memory region allocated and owned by

native code.

Heap ::= Label ⇀
〈
blk : Block , own : Owner

〉
Block ::= N ⇀ Value

A reference value, written as �[i], identifies a location in block � with offset i.

There are two major benefits of the block model. First, using abstract labels instead

of addresses in the heap preserves the major benefit of the high-level heap model. It

simplifies the specification of GC. In particular, there is no need to worry about whether

GC moves objects because the resulting heap after moving is equivalent to the previous

heap†. The second benefit of the block model is that it also accommodates the low-level

view of native code. Values stored in blocks are primitive values. Address arithmetic is

allowed within one block. Suppose a block with label � holds the representation of a Java

integer array, then Java may pass to native code a reference �[i] that identifies where

array elements are stored. Adding an offset n to �[i] results in a new reference �[i + n],

which native code can use to access the n-th element of the array.

† We can imagine that there is a flatten function that maps a heap in the block model to a flat heap. A flat

heap is just a map from addresses to values. Then a moving GC will change only the flatten function.
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Fig. 2. An example of ping-pong behaviour.

2.4. Object representation and ownership

Since JNIL’s heap holds only primitive values, it is necessary to represent Java objects

in the heap. JNIL is parametrized by a representation function, Rep : Object → Block ,

for the desire of not committing to any particular object-representation strategy. The

representation function maps a Java object to a block. For instance, one representation

can represent Java class instances and arrays in the following way:

Rep(〈〈fd1 = v1, . . . , fdn = vn〉〉φ) = {0 �→ TypeRep(φ), 1 �→ v1, . . . , n �→ vn}
Rep(�v0, . . . , vn−1�τ[n]) = {0 �→ TypeRep(τ), 1 �→ n, 2 �→ v0, . . . , n + 1 �→ vn−1}.

In the above, 〈〈fd1 = v1, . . . , fdn = vn〉〉φ is a Java instance of class φ with fields fd1 to fdn;

�v0, . . . , vn−1�τ[n] is a Java array of size n with element type τ; TypeRep(−) is a function

for representing types as primitive values.

Each block in the heap has an owner: ω ∈ {J,N}. A heap H is conceptually divided into

a subheap owned by Java (J), written as H |J, and a subheap owned by native code (N),

written as H |N. The reason for adding ownership is twofold. First, it helps specify Java’s

GC, which recollects locations only in the Java heap. Second, ownership information

could be used to define a safety policy. For instance, if the policy is that native code

should not access the Java heap, then the semantics of native load/store instructions

could have the ownership checking built-in.

2.5. Cross-language method calls

Java and native code may engage in the so-called ‘ping-pong’ behaviour. Figure 2 shows

a graphical depiction of a sequence of method calls: a Java method with ID md1 may

invoke a native method with ID md2, which in turn calls back another Java method with

ID md3. It is possible that md3 invokes a second native method (not shown in the figure)

and therefore the control can bounce back and forth between the Java and native sides.

To model cross-language method calls, we introduce in JNIL a multi-language method-

call stack whose frames are either Java frames or native frames:

F ∈ Frame ::= 〈md , pc, s , a〉J | 〈md , pc, s , vx, L〉N.

A Java frame holds information for a Java-method execution, and a native frame for

a native-method execution. Both kinds of frames include a method ID (md ), a program

counter (pc), and an operand stack (s). The operand stack is used for storing intermediate

results and possibly for passing arguments and results of function calls. A Java frame
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also includes a local variable map (a), which holds values of local variables. A native

frame also includes an exception reference (vx) and a root set (L); we will discuss their

uses shortly.

For the example in Figure 2, the shape of the method-call stack when the control is in

md3 is represented as follows (only method IDs are shown).

〈md3, . . .〉J · 〈md2, . . .〉N · 〈md1, . . .〉J · ε (1)

The top of the stack is on the left. We treat a stack as a list of frames and use ‘F · S ’ for

the concatenation of frame F and stack S and ε for the empty stack.

2.6. Cross-language exception handling

The JVM has a built-in mechanism for exception handling. We define Java exceptions to

be those that are pending in a Java method. For a Java exception, the JVM checks if

there is an enclosing try/catch statement that matches the exception type in the method.

If not, it pops the method off the method-call stack and checks the next method.

An exception may also be pending on the native side; we call such exceptions JNI

exceptions. For example, if the Java method md3 in Figure 2 throws an exception that is

not handled by md3, then it is a JNI exception pending in native method md2. Native code

itself may also throw exceptions by calling JNI functions such as JNIThrow. Furthermore,

many JNI functions throw exceptions to indicate failures.

In contrast to how an exception is handled in a Java method, a JNI exception does not

immediately disrupt the native method execution. The exception is recorded in the JVM,

but the native method will keep executing. After the native method finishes execution and

returns to a Java method, the exception becomes pending in the Java method and then

the JVM mechanism for exceptions starts to take over.

Given this difference, the question is how to model the operational semantics when an

exception becomes pending in a method-call stack that contains mixed Java and native

frames. JNIL handles this issue by having different modes for indicating the presence

of Java and JNI exceptions. A Java exception is indicated by a special exception frame

〈�〉X at the top of the method-call stack, where � is a reference to a Throwable object.

A JNI exception is recorded in a native frame 〈md , pc, s , vx, L〉N: the value vx is null

when no exception is pending and is � with a pending JNI exception �. JNIL’s abstract

machine proceeds differently for the two modes. Briefly, JNIL unwinds the stack for a

Java exception and continues the execution of a native method for a JNI exception; we

will discuss the details in the next section.

2.7. Registration of references

Java’s GC is aware of only those references on the Java side. When native code retains

references to Java objects, it has to register those references so that the GC will not

collect the underlying objects. JNIL records the set of Java references available to a

native method in a root set L. A root set is associated with a native frame so that its
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references are automatically ‘freed’ when the native method finishes its execution. This

semantics effectively models the so-called local references in the JNI.†

3. Formal operational semantics of JNIL

We next present the core calculus of JNIL. A few simplifications are made to the model.

First, arrays are not included. Second, it assumes a calling convention where arguments

and results are passed on the operand stack when Java invokes native methods. Section 6

briefly discusses how to generalize the model to add arrays and to parametrize over

calling conventions. The bytecode language is also simplified. Following featherweight

Java (Igarashi et al. 2001), we avoid the object initialization problem by having a single

instruction for creating and initializing an object. There is also no modelling of interfaces,

subroutine calls and returns, and various other Java features. They are orthogonal to

the multilingual issues we are concerned with in FFIs. A notable missing feature in

JNIL is concurrency. We believe it should be straightforward to formulate an interleaving

semantics for multithreaded JNI programs based on a model of concurrent bytecode (e.g.,

Petri and Huisman (2008)).

3.1. Notation conventions

We write e for a list (or sequence) of elements e. The empty list is ε, and e · s is the

concatenation of e with list s. Appending two lists is written as s1 • s2. We write [e1, . . . , en]

for a finite list.

Given a function f, we write f[x �→ v] for an updated function that agrees with f except

that x is mapped to v. We write f[x �→ v] for a function after a sequence of updates from

x to v. We write ‘X Option ’ for an option domain of X (analogous to ML’s option types).

We write None for the none value, and �x	 for some x. We use 
 for an arbitrary value.

3.2. JNIL programs

A JNIL program is modelled as an environment that records information for classes and

methods (Figure 3). A program P includes maps from class names and method IDs to

their respective definitions. In particular, P (φ).super is the superclass of class φ, or None;

P (φ).fields is the list of fields declared in φ. We write Fields(P , φ) for the list of all fields

of φ, including the ones of its superclasses.

Java method and native method information are separated into two maps: PJM for Java

methods and PNM for native methods. We write JavaMD(P ) for the set of Java method

IDs in P , and NativeMD(P ) for the set of native method IDs. PJM(md ) contains a list of

† The JNI also provides global and weak-global references. Global references are valid across multiple

invocations of native methods and multiple threads. Weak global references are similar to global references

except that the underlying objects can be garbage collected. These references are straightforward to model.

Global references can be modelled as a global set of labels. Weak-global references have no impact on GC,

although a JNI function for testing the validity of references needs to be exposed to native code. We omit

their modelling in JNIL for brevity.
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P = PJC ∪ PJM ∪ PNM

PJC : ClassName super : ClassName Option, fields : FID List

PJM : MID
code : JInstr List , handlers : Handler List ,

stype :CodeAddr Type List , vtype :CodeAddr JVarID → Type

PNM : MID code : NInstr List

fd ∈ FID ::= φ, α, τ md ∈ MID ::= φ, α, [τ1, . . . , τn] → τr
τ ∈ Type ::= Int | Cls φ | Top η ∈ Handler ::= nb, ne, nt, φ

φ ∈ ClassName = String α ∈ String n ∈ CodeAddr = N d ∈ JVarID = N

Fig. 3. JNIL programs.

I ∈ JInstr ::= arith | cond n | push v | pop | localload d | localstore d | goto n

| getfield fd | putfield fd | new φ | invokevirtual md | returnval | throw

arith ∈ JArith ::= add | sub | mul | . . . cond ∈ JCond ::= ifeq | ifne | ifgt | . . .

ι ∈ NInstr ::= jfun | aop rd, rs, op | bop rs, rt, op | Mov rd, op | Jmp op

| Ld rd, rs[rt] | St rd[rt], rs | Alloc rd, n | Free rs[n]

| SLd rd, sp[n] | SSt sp[n], rs | SAlloc n | SFree n | Ret

jfun ∈ JNIFun ::= GetField fd | SetField fd | NewObject φ | CallMethod md

| IsInstanceOf τ | JNIThrow | ExnClear | ExnOccurred

aop ∈ NArith ::= Add | Sub | Mul | . . . bop ∈ NCond ::= Beq | Bneq | Bgt | . . .
op ∈ Operand ::= r | n r ∈ Register ::= r1 | r2 | . . . | r32

Fig. 4. Bytecode and native instruction sets.

Java instructions (the code field), a list of exception handlers, and also type information

(stype and vtype). The type information is used when type checking Java methods and is

irrelevant for operational semantics. PNM(md ) simply contains a list of native instructions.

We abbreviate P (md ).code[pc] to P (md )@pc, the instruction at pc in md .

Java types include Int type, class type (Cls φ), and Top type. For simplicity, JNIL omits

types such as void and float. Two special class names, object and throwable, are assumed.

We write Object and Throwable for ‘Cls object’ and ‘Cls throwable’, respectively. An

exception handler, 〈nb, ne, nt, φ〉, catches exceptions of class φ by transferring the control

to address nt, if the program counter is in the range [nb, ne − 1].

Figure 4 presents the syntax of bytecode and native instructions. The bytecode

instruction set is modelled after the Java virtual machine language (JVML (Lindholm

and Yellin 1999)); we refer readers to the specification for a detailed discussion. The native

instruction set includes instructions for manipulating the heap (load, store, allocation, and

deallocation), a set of instructions for manipulating the operand stack (those instructions

whose operators begin with S), a Ret instruction for returning, and a set of JNI functions.

We use r for a register and op for an operand, which is either a register or a constant.

Finally, we note that instructions for pushing to and popping from the operand stack can

be synthesized: ‘Push op’ is ‘SAlloc 1;SSt sp[0], op’ and ‘Pop r’ is ‘SLd r, sp[0]; SFree 1’.

Figure 4 also includes a set of common JNI functions. Note that GetField, SetField,

and CallMethod take field and method IDs as arguments. The JNI interface actually
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S ∈ Stack ::= F X · F
F ∈ Frame ::= md , pc, s, a J

md , pc, s, vx, L N

s ∈ OpStack ::= v

a ∈ JVarMap ::= {0 v0, 1 v1, . . .}
L ∈ RootSet ::= { 1 n}

H ∈ Heap ::= Label
blk : Block ,

own : Owner

b ∈ Block ::= N Value

v ∈ Value ::= n | null | [i]

ω ∈ Owner ::= J | N

o ∈ Object ::= fd1 = v1, . . . , fdn = vn φ

R ∈ RegFile ::= {r1 v1, . . . , r32 v32}

Fig. 5. JNIL runtime states (S ;H;R).

P (S;H;R)
J

(S ;H ;R )

P (S;H;R) (S ;H ;R )

P (S;H;R)
N

(S ;H ;R )

P (S;H;R) (S ;H ;R )

(S;H)
GC

(S ;H )

P (S;H;R) (S ;H ;R)

Fig. 6. JNIL’s top evaluation rules.

uses a two-step process to access a field (or call a method): first convert a string that

represents the field (or method) to a field (or method) ID; the resulting ID is then used

in operations such as GetField. JNIL omits the first step to avoid the need to axiomatize

the conversion from strings to IDs.

Both the bytecode and native instruction sets include arithmetic and conditional

branching instructions. Since their semantics is uninteresting, we will ignore those

instructions hereafter. But we will feel free to include them in examples.

3.3. Runtime states

A runtime state is a triple (S;H;R), where S is a method-call stack, H a shared heap,

and R a register file. Its format is shown in Figure 5. We have discussed the format of the

method-call stack and the heap in the previous section. Recall that the heap holds only

primitive values; objects are mapped to primitive values and stored in blocks. A value is

either an integer n, a null value, or a reference value �[i]. We abbreviate �[0] to �.

3.4. Operational semantics

We will discuss only a subset of the rules to highlight JNIL’s features; the full operational

semantics is included in Appendix A. Overall, the operational semantics is modelled as a

transition relation:

P � (S;H;R) �−→ (S ′;H ′;R′).

Figure 6 presents evaluation rules at the top level. A state steps forward because of a Java

step, a native step, or a GC step.

Figure 7 presents a few Java heap operations that are used in the operational semantics.

ReadFd, UpdFd, and AllocInst read a field, update a field, and allocate a new class

instance, respectively. Blank(P , φ) returns an instance of class φ with its fields initialized

to default values. Tag(H, �) returns the runtime tag of a Java object at � in H . If τ is a

reference type, IsRefType(τ) holds.
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ReadFd( fd) =

⎧⎪⎨
⎪⎩

o(fd) if H( ) = Rep(o), J ,

and o = . . . φ, and fd ∈ dom(o)

undefined otherwise

UpdFd( fd , v) =

⎧⎪⎨
⎪⎩

H[ Rep(o[fd v]), J ]

if H( ) = Rep(o), J , and o = . . . φ, and fd ∈ dom(o)

undefined otherwise

AllocInst(H,P, φ) = (H Rep(o), J )

where dom(H) and o = Blank(P, φ)

Blank(P, φ) = fd1 = Zero(τ1), . . . , fdn = Zero(τn) φ,

where Fields(P, φ) = [fd1, . . . , fdn], and fd i = φi, αi, τi , i ∈ [1..n]

Zero(Int) = 0 Zero(Cls φ) = null

Tag( ) =
φ if H( ) = Rep( . . . φ), J

undefined otherwise

IsRefType(τ) = ∃φ. τ = Cls φ

Fig. 7. Java heap operations.

P ( md , pc, s, a J · S;H;R)
J

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ;H =

getfield fd
fd = φ, α, τ s = · s1
ReadFd( fd) = v

md , pc + 1, v · s1, a J · S;H

P ( md , pc, s, vx, L N · S;H;R)
N

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ;H =

GetField fd
fd = φ, α, τ s = · s1
ReadFd( fd) = v vx = null

md , pc + 1, v · s1, null, L N · S;H,

where L = L ∪ Roots(v)

Fig. 8. Operational semantics of ‘getfield fd ’ and ‘GetField fd ’.

The semantics of all instructions are included in Appendix A. We reproduce some rules

in the main text to illustrate typical cases. Figure 8 reproduces the rules for ‘getfield fd ’

(a bytecode instruction) and its counterpart JNI function ‘GetField fd ’ (used in native

code). The semantics of ‘getfield fd ’ is deliberately partial. The abstract machine does not

have a next state (that is, ‘getting stuck’), if block � in H is not owned by Java, does not

hold an object representation, or field fd is not in the domain of the representation (in

these cases, ReadFd(H, �, fd ) is undefined). The bytecode type system ensures such cases

will not happen for well-typed bytecode programs when running in well-typed states.

The semantics of ‘GetField fd ’ is similar to ‘getfield fd ’, except for a couple of

differences. First, no JNI exceptions should be pending. Recall that in a native stack frame

〈md , pc, s , vx, L〉N the value vx records a pending JNI exception. The JNI manual specifies

that ‘calling most JNI functions with a pending exception may lead to unexpected results’.

Consequently, most JNI functions requires vx be null as a precondition. On this aspect,

JNIL follows the specification of the JNI standard. JVM implementations, however, may
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Fig. 9. Boundary-crossing instructions.

implement different semantics. The experiments by Lee et al. (2010) showed that in such

cases Sun’s HotSpot continues running, while IBM’s J9 crashes.

Second, some JNI functions may give native code extra references to Java objects. Since

these references need to be registered with Java’s GC, they are recorded in the root set

of a native frame. The semantics of ‘GetField fd ’ adds the value of the field into the root

set L, if that value is a reference value.

3.4.1. Cross-language method calls. The ‘invokevirtual md ’ instruction may invoke a Java

or a native method, depending on what kind of method md represents. If it invokes a

native method, the execution context switches to the native side. returnval may return to

a Java, or a native method. JNI function ‘CallMethod md ’ and native Ret are analogous,

except they appear in native code. Figure 9 presents a diagram depicting how contexts

may switch as a result of method call and return instructions.

Figure 10 includes rules related to method calls and returns. If ‘invokevirtual md ’

invokes a Java method, a new Java frame is constructed and parameters are copied to the

local variable map of the new frame (following the JVML specification). If it invokes a

native method, a native frame is constructed and arguments are put in its operand stack

(recall the calling convention). The auxiliary function NewFrame constructs either a Java

frame or a native frame:

NewFrame(P ,md , [v1, . . . , vn]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈md , 1, ε, a
[0 �→ v1, . . . , n − 1 �→ vn]〉J,

if md ∈ JavaMD(P ),

〈md , 1, [vn, . . . , v1], null,Roots([v1, . . . , vn])〉N,

if md ∈ NativeMD(P ).

The semantics of returnval has two cases: returning to a Java method call or a native

method call. Similar to ‘invokevirtual md ’, ‘CallMethod md ’ may invoke either a Java

or a native method. The JNI manual does not make it clear whether a native method

is allowed to invoke another native method through ‘CallMethod md ’. Our experiments

confirmed that JVM implementations allow this behaviour. Both rules for Ret are for the

case of no pending exceptions; a different rule for Ret with a pending exception will be

presented.
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P ( md , pc, s, a J · S;H;R)
J

(S ;H ;R), if

P (md)@pc = and cond. hold, then S ,H =

invokevirtual

md1

md1 = φ, α, [τ1, . . . , τn] → τr
s = vn · . . . · v1 · · s1 Tag( ) = φ

md = φ , α, [τ1, . . . , τn] → τr

NewFrame(P,md , [ 1, . . . , vn])·
md , pc, s, a J · S;H

returnval

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · · s , a J · S1

|vp| = n s = vr · s1
md , pc + 1, vr · s , a J · S1;H

returnval

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , vx, L N · S1

|vp| = n s = vr · s1

md , pc + 1, vr · s , vx, L N · S1;

H, where L = L ∪ Roots(vr)

P ( md , pc, s, vx, L N · S;H;R)
N

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ,H =

CallMethod

md1

md1 = φ, α, [τ1, . . . , τn] → τr
s = vn · . . . v1 · · s1
Tag( ) = φ vx = null

md = φ , α, [τ1, . . . , τn] → τr

NewFrame(P,md , [ 1, . . . , vn])·
md , pc, s, vx, L N · S;H

Ret

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , a J · S1

|vp| = n s = vr · s1 vx = null

md , pc + 1, vr · s , a J · S1;H

Ret

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , vx, L N · S1

|vp| = n s = vr · s1 vx = null

md , pc + 1, vr · s , vx, L N · S1;H,

where L = L ∪ Roots(vr)

Fig. 10. Operational semantics of method calls and returns.

3.4.2. Exception handling. Figure 11 shows rules that are related to exceptions. The

throw instruction pushes an exception frame onto the method-call stack. Other bytecode

instructions may also generate a Java exception. For instance, ‘getfield fd ’ generates

an exception when the object reference on the operand stack is null. When such cases

happen, a Throwable object is allocated and an exception frame is placed onto the

stack. The formal definition of these cases are listed in Figure A 4 of the appendix. Real

implementations create Throwable objects of different classes to indicate different kinds

of exceptions. Our model simplifies this aspect by always allocating a Throwable object;

this does not fundamentally affect program behaviour.

When a Java exception is pending, JNIL unwinds the stack as shown in the second

table of Figure 11. There are three cases. If the next frame is a Java frame and there is

no matched handler for the exception, the Java frame is removed. If the Java frame has

a matched handler, then the control transfers to the handler. If the next frame is a native

frame, the Java exception is recorded in the native frame (i.e., conceptually converted
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P ( md , pc, s, a J · S;H;R)
J

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ;H =

throw s = · s1 X md , pc, s, a J · S;H

P S;H;R
J

S ;H ;R, if

S= and conditions hold, then S ,H =

X md , pc, s, a J · S1
Tag( ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = None
X · S1;H

X md , pc, s, a J · S1
Tag( ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = nt
md , nt · J · S1;H

X md , pc, s, vx, L N ·
S1

md , pc + 1, s N·S1;H

CorrectHandler( pc, φ) = None

CorrectHandler( nb, ne, nt, φ η, P, pc, φ) =

nt if nb ≤ pc < ne and P Cls φ <: Cls φ

CorrectHandler(η, P, pc, φ) otherwise

P ( md , pc, s, vx, L N · S;H;R)
N

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ,H =

JNIThrow s = · s1 vx = null md , pc + 1, s1 N · S;H

ExnClear md , pc + 1, s, null, L N · S;H

ExnOccurred

md , pc + 1, v · s, vx, L N · S;H

where v = 0 if vx = null,

or 1 if vx =

Ret vx = X · S;H

Fig. 11. Raising exceptions and exception handling in JNIL.

into a JNI exception) and the execution continues as normal from the next instruction in

native code.

The last table in Figure 11 shows how JNI exceptions are generated and handled. A

JNI exception thrown by JNIThrow is recorded in the current native frame. Other JNI

functions may also generate JNI exceptions and these cases are in Figure A 4 of the

appendix. Native code can either clear the exception by ExnClear or return with the

exception pending, in which case an exception frame is pushed onto the stack.

We present an example below showing how the method-call stack unwinds assuming 1)

Java method md1 calls native method md2, which calls Java method md3; 2) md3 throws

an exception; 3) md3 and md2 do not handle the exception, but md1 handles the exception.
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Notice how md3 and md2 treat the exception differently.

〈�〉X · 〈md 3, . . .〉J · 〈md 2, . . . , null, . . .〉N · 〈md 1, . . .〉J · ε //md 3 throws an exception

→ 〈�〉X · 〈md 2, . . . , null, . . .〉N · 〈md 1, . . .〉J · ε //md 3 does not handle the exception

→ 〈md 2, . . . , �, . . .〉N · 〈md 1, . . .〉J · ε //md 2 records � and continues execution

→ 〈�〉X · 〈md 1, . . .〉J · ε //md 2 returns with a pending exception

→ 〈md 1, . . .〉J · ε //md 1 handles the exception

3.4.3. GC Step. The GC rule is presented below. A set of blocks can be removed from

the heap if they are part of the Java heap, their labels are disjoint from the roots of the

stack, and they are unreachable from the rest of the Java heap.

L ⊆ dom(H |J) L ∩ Roots(S) = � L ∩ Reachable((H |J) \ L) = � .

(S;H)
GC�−→ (S;H \ L)

Definition 1. The reachable set of labels from H is defined as all labels stored in the heap:

Reachable(H) = {� | ∃�1, i, j. H(�1).blk(i) = �[j]}.

Definition 2 (computing roots).

Roots(S) =

⎧⎨
⎩

� if S = ε

{�} ∪ Roots(S ′) if S = 〈�〉X · S ′

Roots(F) ∪ Roots(S ′) if S = F · S ′

Roots(〈md , pc, s , a〉J) = (
⋃
v∈s

Roots(v)) ∪ (
⋃
d

Roots(a(d)))

Roots(〈md , pc, s , vx, L〉N) = Roots(vx) ∪ L

Roots(v) =

{
� if v = n or null

{�} if v = �[i]

Notice that when computing the roots of a native frame the set of labels registered with

GC (i.e., L) is included in the set. This is to ensure that GC will not recollect references

registered by native code.

Note that the rule is nondeterministic and L can be as small as the empty set. It is

also abstract and hides the implementation details of GCs. In fact, it accommodates all

garbage collectors that are based on tracing, reference counting, or combinations of both;

any such garbage collector computes a set of unreachable locations (Bacon et al. 2004).

Finally, recall that JNIL’s heap model allows the rule to ignore the moving aspect of GC.

4. Bytecode safety and GC safety

The JVM always performs bytecode verification before running a bytecode program.

Therefore, type checking of bytecode can be considered an essential part of the JNI.

The JNIL model also performs type checking of bytecode. The process largely follows
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P prog P is a well-typed JNIL program

P φ class φ is a well-typed Java class

P md jmethod md is a well-typed Java method

P md nmethod md is a well-typed native method

P,md , Ts , Ta I@i The i-th instruction in I is well typed under typing anno-

tation Ts and Ta

P τ1 <: τ2 τ1 is a subtype of τ2

P,H v : τ v has type τ

P fd fid fd is a well-formed field ID

P md mid md is a well-formed method ID

P, Ts , Ta η handles I η is a valid handler in I

P τ ty τ is a valid type that can appear in a JNIL program

(excluding the top type)

Fig. 12. Judgments used in type checking JNIL programs.

a previous JVML model by Freund and Mitchell (2003); we will highlight its main

judgments and the safety theorems, but leave details to Appendix B.

4.1. Type checking JNIL programs

Judgment � P prog checks if a JNIL program P is well typed. It ensures all classes and

methods in P are well typed. Figure 12 lists all judgments that are used in checking the

well-typedness of programs (their rules are in Figures B 1 and B 2 of the appendix).

We abuse the notation for subtyping and type checking values and will write P � τ1 <:

τ2 for the subtyping between sequences of types, and P ,H � v : τ for checking sequences

of values. Their rules are straightforward and therefore omitted.

The judgment for checking a Java method, ‘P � md jmethod’, utilizes the type

information associated with the method; recall a Java method is associated with type

information for the operand stack and local variables (see the fields stype and vtype in

Figure 3). We note that bytecode type checking does not infer these type information, but

use them to check type consistency.

Suppose PJM(md ) = 〈I, η, Ts , Ta〉. Then Ts (i) is the operand-stack type at address i and

Ta(i) is the type information for local variables at i. An operand-stack type is a list of

types for values in the current operand stack. A local-variable type is a map from local

variable IDs to types.

A well-typed Java method requires each bytecode instruction in the method to be well

typed; this is checked through the judgment ‘P ,md , Ts , Ta � I@i’. The following rule for

getfield 〈φ, α, τ1〉 is a typical case. It requires a reference of type Cls φ at the top of the

stack; after the instruction, the top of the stack is replaced by a value of the field’s type.

Types of local variables remain unchanged.
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if I[i] = Conditions on Ts Conditions on Ta Other conditions

getfield

〈φ, α, τ1〉
P � Ts (i) <: Cls φ · τ
P � τ1 · τ <: Ts (i + 1)

P � Ta(i) <: Ta(i + 1)
i + 1 ∈ dom(I)

〈φ, α, τ1〉 ∈ Fields(P , φ)

4.2. Type checking a runtime state

Judgment ‘P � (S;H;R) state’ checks if runtime state (S;H;R) is well typed. It checks if

(1) H |J is a well-typed Java heap, and (2) S is a well-typed stack under P and the Java

heap. The following table lists all judgments that are used to check the well-typedness of

a runtime state (their rules are in Figure B 3 of the appendix). Checking well-typed Java

heaps requires each heap object be well typed according to its runtime tag, as customary

in such kind of type systems. Checking well-typed stacks not only requires every frame be

well typed, but also requires the chain of frames be a well-typed call chain – each frame

is the result of a call instruction in the caller method.

P � (S;H;R) state (S;H;R) is a well-typed state

P � H jheap H is a well-typed Java heap

P ,H � o : g Object o in H is consistent with runtime tag g

P ,HJ, S � (R;HN) nstate (R;HN) is a well-formed native state

P ,H � S stack S is a well-typed method-call stack

P ,H � F frame F is a well-typed frame

P � S callchain S is a stack with a valid call chain

4.3. Safety theorems

Type soundness of bytecode is expressed in the standard form of progress and preservation

theorems.

Definition 3. (S;H;R) is a terminal state if

1. either S = 〈md , pc, vr · s , a〉J · ε and P (md )@pc = returnval,

2. or S = 〈md , pc, vr · s , null, L〉N · ε and P (md )@pc = Ret,

3. or S = 〈�〉X · ε.

Theorem 1 (Java progress). If � P prog, and P � (S1;H1;R1) state, then

1. either (S1;H1;R1) is a terminal state,

2. or ∃S2, H2, R2. P � S1;H1;R1
J�−→ S2;H2;R2,

3. or S1 = 〈. . .〉N · S ′
1.
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Theorem 2 (Java preservation). If � P prog, and P � (S1;H1;R1) state, and P �
S1;H1;R1

J�−→ S2;H2;R2, then P � (S2;H2;R2) state.

By the progress theorem, a well-typed state will be either a terminal state, a state that

can take a Java step, or a state where native code is in control. It will never get stuck when

bytecode is in control. By the preservation theorem, a well-typed state steps to another

well-typed state when taking Java steps.

The proofs of Java progress and preservation are mostly standard. The first is by case

analysis over the derivation of P � (S1;H1;R1) state, and the second by case analysis over

the Java step relation. Appendix C lists the major lemmas used in the proofs.

A GC step does not affect the type safety of bytecode, as the following theorem asserts:

Theorem 3 (GC safety). If � P prog, P � (S;H;R) state, and (S;H)
GC�−→ (S ′;H ′), then

P � (S ′;H ′;R) state.

As a final note, these safety theorems make no guarantee when a state takes a native

step, reflecting the fact that native code is not checked by Java’s type system and can

cause havoc. Our formalization does include judgments for native code. However, their

rules are vacuous in the sense that they allow any native code. For instance, the rule for

‘P � md nmethod’ accepts any native method.

5. Applications of the JNIL model

The JNI specification does not mandate any checking of native methods. Native methods

are notoriously unsafe and a rich source of software errors. Recent studies have reported

hundreds of interface bugs in JNI programs (Furr and Foster 2006; Kondoh and Onodera

2008; Tan and Croft 2008). We list the most common kinds of pitfalls as follows:

— Violations of Java’s type safety. Native code may pass parameters of wrong types when

invoking JNI functions. For instance, GetField fd expects a Java object reference that

contains a field corresponding to fd ; but native code may pass in an incompatible

reference. Another case of violating Java’s type safety is that native code may perform

direct reads and writes on memory that is part of the Java heap, destroying its

invariants.

— Mishandling exceptions. When an exception is pending in native code, calling most

JNI functions may lead to unexpected results.

— Mishandling JNI resources. The JNI interface resorts to manual management of

certain resources (in the malloc/free style). One such example arises when managing

pointers to primitive arrays. The scheme of manual management of resources has

well-known problems such as double frees and using already released resources.

A number of systems have been designed and implemented to improve and find misuses

of the JNI interface. They have overall improved the JNI’s safety and security. We classify

them into three broad categories:

— New interface languages. Jeannie (Hirzel and Grimm 2007) is a language design that

allows programmers to mix Java with C code using quasi-quoting. A Jeannie program
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is then compiled into JNI code by the Jeannie compiler. Jeannie helps programmers

reduce errors. For instance, programmers can raise Java exceptions directly in Jeannie,

avoiding the error-prone process of exception handling in native code.

— Static checking. Several recent systems employ static analysis to identify specific classes

of errors in JNI code (Furr and Foster 2006; Kondoh and Onodera 2008; Li and Tan

2009; Tan and Morrisett 2007). These bug finders have found hundreds of errors in

real JNI programs.

— Dynamic checking. SafeJNI (Tan et al. 2006) combines Java with CCured (Necula

et al. 2002) and inserts dynamic tests that check for safety violations. Going one step

further, Jinn (Lee et al. 2010) automatically generates dynamic checks based on safety

specifications in terms of finite-state machines.

We argue that it would be valuable to formalize the claims of these systems in JNIL

and thus provide a rigorous foundation for their strength. We envision JNIL would be

useful in the following ways:

— Formal semantics of Jeannie. We discussed Jeannie, a language that mixes Java with C

code and is translated to JNI code. Jeannie does not come with formal semantics. An

interesting way of defining Jeannie’s semantics would be to map Jeannie programs to

JNIL programs.

— Soundness of JNI static checking. JNIL can serve as a basis for proving that a JNI bug

finder does not miss any errors of a certain kind. One way to show the soundness is

to structure the system into two components: inference and verification. The first part

infers annotations (e.g., in the form of types) and the second part performs verification

with annotations as hints. Then the soundness theorem is to show that programs (with

annotations) that pass the verification do not incur the kind of errors in question.

— Soundness of JNI dynamic checking. JNIL can also serve as a basis for showing the

soundness of systems that insert dynamic checks for safety (e.g., SafeJNI (Tan et al.

2006)). One way to proceed is to have an ‘instrumented’ semantics of JNIL in which

dynamic checks are embedded into its transition rules. If a dynamic check fails, the

system transits to an error state. The soundness theorem expresses that a state is

either a terminal state, an error state, or a state that can progress. A more ambitious

attempt to formalize dynamic checking is to treat the insertion of dynamic checks as a

source-to-source rewriting system. The safety theorem would then show the resulting

program is safe according to the vanilla semantics of JNIL.

In the above examples, JNIL alone would not be sufficient; we would also need formal

models of other parts (e.g., a model of static checking). But JNIL provides a common

foundation for such formal development to proceed. With additional constraints on the

native code, JNIL makes it possible to prove properties of a multilingual system.

5.1. Extended checking of native code

As a concrete example demonstrating JNIL’s utility, we next formalize a static checking

system in JNIL that checks native code for violations of Java’s type safety due to incorrect
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invocation of JNI functions. Also included is a soundness theorem showing that such

errors will not occur in JNIL programs that pass the extended checking.

As we have discussed, native code mainly interacts with Java through JNI functions.

These JNI functions require well-typed arguments for their correct functioning. For

instance, if native code calls back a Java method through CallMethod, then Java expects

the number of arguments and the types of arguments to match the method’s type signature.

A mismatch will likely crash the JVM and more severely result in security vulnerabilities;

previous work (McGraw and Felten 1999) demonstrated such kind of type confusion may

allow attackers to control the JVM completely.

To prevent type confusion due to incorrect JNI function calls, the extended-checking

system statically tracks Java types of object references in native code and ensures

arguments of JNI function calls are of correct types. The system starts by augmenting

native methods with extra type annotations:

PNM : MID ⇀

〈code : NInstr List ,

stype : CodeAddr ⇀ Type List ,

rtype : CodeAddr ⇀ Register → Type

〉
.

If PNM(md ) = 〈ι, Ts , TR〉, type Ts (i) is the type of the operand stack at address i and TR(i)

is the type of registers at i. Similar to bytecode checking, the extended checking of native

code takes type annotations as input to check type consistency, but does not perform

type inference. Other systems such as J-Saffire (Furr and Foster 2006) can perform type

inference in native code.

Before presenting the checking rules, we use an example to demonstrate how the

extended checking tracks Java types in native code’s operand stack and registers. Figure 13

presents type annotations for the example native method in Section 2. Recall that it is

an implementation of the native double method, which doubles the quantity field of

the Item class. At each address i, the figure includes both the stack type Ts (i) and the

register-file type TR(i) in the format of 〈Ts (i), TR(i)〉. Initially, the stack contains only one

item of type Cls ‘Item’. After loading from the stack (i.e., SLd r1, sp[0]), register r1 gets

type Cls ‘Item’. Next operation is a JNI function call (GetField); as a result, the top of

the stack type is removed and the type of the field is pushed onto the stack type. The

effects of other instructions on types are also straightforward.

5.1.1. Rules for checking native methods and states. In the extended checking system, we

change the rules of those judgments that are related to native methods and native states.

These judgments include:

1. P � md nmethod, which checks that md is a well-formed native method.

2. P ,HJ, S � (R;HN) nstate, which checks (R;HN) is a well-formed native state.

3. P ,H � 〈md , pc, s , vx, L〉N frame, which checks 〈md , pc, s , vx, L〉N is a well-formed native

frame.

The new rules are presented as follows. To distinguish between the system of extended

checking and the basic bytecode checking, all judgments in this section will use �∗ to

replace �.
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[Cls “Item”], {r1 : Top, r2 : Top, r3 : Top

SLd r1, sp[0]

[Cls “Item”], {r1 : Cls “Item”, r2 : Top, r3 : Top

GetField “Item”, “quantity”, Int

[Int], {r1 : Cls “Item”, r2 : Top, r3 : Top

Pop r2

[], {r1 : Cls “Item”, r2 : Int, r3 : Top

Add r3, r2, r2

[], {r1 : Cls “Item”, r2 : Int, r3 : Int

Push r1

[Cls “Item”], {r1 : Cls “Item”, r2 : Int, r3 : Int

Push r3

[Int,Cls “Item”], {r1 : Cls “Item”, r2 : Int, r3 : Int

SetField “Item”, “quantity”, Int

[], {r1 : Cls “Item”, r2 : Int, r3 : Int

Push r2

[Int], {r1 : Cls “Item”, r2 : Int, r3 : Int

Ret

Fig. 13. The native-method example in Figure 1 with type annotations.

md = 〈φ, α, [τ1, . . . , τn] → τn+1〉 P (md ) = 〈ι, Ts , TR〉
Ts (1) = [τn, . . . , τ1,Cls φ] TR(1) = {r1 �→ Top, . . . , r32 �→ Top}

∀i ∈ dom(ι). P ,md , Ts , TR �∗ ι@i

P �∗ md nmethod

TopFrame(S) = 〈md , pc, s , vx, L〉N

P (md ) = 〈ι, Ts , TR〉
P ,HJ � R : TR(pc)

P ,HJ, S �∗ (R;HN) nstate

TopFrame(S) = 〈md , pc, s , a〉J or 〈�〉X

P ,HJ, S �∗ (R;HN) nstate

md ∈ NativeMD(P ) pc ∈ dom(ι)

P (md ) = 〈ι, Ts , TR〉 P ,H � s : Ts (pc) P ,H � vx : Throwable

P ,H �∗ 〈md , pc, s , vx, L〉N frame

The rule for P �∗ md nmethod sets up the initial stack type according to the type

signature of the method, sets the types of all registers to be Top, and checks each

instruction (its rules will be presented shortly). The rules for P ,HJ, S �∗ (R;HN) nstate

check that registers are of the specified types in the current register-file type and the rule

for checking native frames ensures that the operand stack is of the specified stack type.

Figures 14 and 15 present rules for checking native instructions. These rules are

straightforward. For instance, the rule for ‘GetField fd ’ checks that there is a Java object

reference at the top of the stack and the class of the reference must be a subtype of the

one specified in the field ID. The new stack type after the instruction has the field’s type

at the top. The register-file type is unchanged as ‘GetField fd ’ does not modify registers.
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P,md , Ts , TR ∗ ι@i, if

ι[i] = and the following conditions hold

GetField fd
fd = φ, α, τ1 Fields(P, φ) i + 1 ∈ dom(ι)

P Ts(i) <: Cls φ · τ P τ1 · τ <: Ts(i + 1) P TR(i) <: TR(i + 1)

SetField fd
fd = φ, α, τ1 Fields(P, φ) i + 1 ∈ dom(ι)

P Ts(i) <: τ1 · Cls φ · Ts(i + 1) P TR(i) <: TR(i + 1)

NewObject φ

Fields(P, φ) = [ φ1, α1, τ1 , . . . , φn, αn, τn ] i + 1 ∈ dom(ι)

P Ts(i) <: τn · . . . · τ1 · τ P Cls φ · τ <: Ts(i + 1)

P TR(i) <: TR(i + 1)

CallMethod md1

md1 = φ, α, [τ1, . . . , τn] → τr i + 1 ∈ dom(ι)

P Ts(i) <: τn · . . . · τ1 · Cls φ · τ P τr · τ <: Ts(i + 1)

TR(i + 1) = {r1 Top, . . . , r32 Top}

IsInstanceOf τ
IsRefType(τ) i + 1 ∈ dom(ι) P Ts(i) <: τ1 · τ IsRefType(τ1)

P Int · τ <: Ts(i + 1) P TR(i) <: TR(i + 1)

JNIThrow
i + 1 ∈ dom(ι) P Ts(i) <: Throwable · Ts(i + 1)

P TR(i) <: TR(i + 1)

ExnClear i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1) P TR(i) <: TR(i + 1)

ExnOccurred i + 1 ∈ dom(ι) P Int · Ts(i) <: Ts(i + 1) P TR(i) <: TR(i + 1)

Fig. 14. Extended checking of JNI functions.

5.1.2. Native-code safety theorem. To characterize what kind of errors the extended

checking can capture, we add a distinguishing error state JTypeError (JNI type errors) to

JNIL’s operational semantics. We also add rules that specify when the abstract machine

steps to the error state; these rules are in Figure 16. For instance, GetField 〈φ, α, τ〉 steps

to the error state (1) when the operand stack is empty, (2) or when the top of the stack

is an integer value, (3) or when the Java reference at the top of the stack is not of the

class specified in the field ID, (4) or when the read-field operation fails (happens when,

e.g., the field is not in the object being accessed).

The safety theorem expresses that a JNIL program that passes the extended checking

will not result in a JNI type error. The proof of the theorem is by a straightforward case

analysis over the instruction at the current program counter.

Theorem 4. If �∗ P wf , and P �∗ (S1;H1;R1) state, then ¬(P � S1;H1;R1 �−→ JTypeError).

We stress that the extended checking is meant to demonstrate the utility of the JNIL

model and does not eliminate every possible JNI error. For instance, a native memory-

store instruction can still change the Java state and cause havoc. In the presence of native

code, a preservation theorem for well-typedness of the Java heap can only be proved

for a comprehensive protection system such as the Robusta JVM (Siefers et al. 2010);

formalization of such systems is left for future work.
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P,md , Ts , TR ∗ ι@i

when ι[i] = and the following conditions hold

Mov rd, op
i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1) P TR(i)[rd τ ] <: TR(i + 1)

where τ = Int if op = n, and τ = TR(i)(r) if op = r

Jmp n n ∈ dom(ι) P Ts(i) <: Ts(n) P TR(i) <: TR(n)

Ld rd, rs[rt]
i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1)

P TR(i)[rd Top] <: TR(i + 1)

St rd[rt], rs i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1) P TR(i) <: TR(i + 1)

Alloc rd, n
i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1)

P TR(i)[rd Top] <: TR(i + 1)

Free rs[n] i + 1 ∈ dom(ι) P Ts(i) <: Ts(i + 1) P TR(i) <: TR(i + 1)

SLd rd, sp[n]
i + 1 ∈ dom(ι) P Ts(i) <: τ0 · . . . · τn · τ P Ts(i) <: Ts(i + 1)

P TR(i)[rd τn] <: TR(i + 1)

SSt sp[n], rs
i + 1 ∈ dom(ι) P Ts(i) <: τ0 · . . . · τn · τ
P τ0 · . . . · (TR(i)(rs)) · τ <: Ts(i + 1) P TR(i) <: TR(i + 1)

SAlloc n

i + 1 ∈ dom(ι) P Top · . . . · Top

n

·Ts(i) <: Ts(i + 1)

P TR(i) <: TR(i + 1)

SFree n
i + 1 ∈ dom(ι) P Ts(i) <: τ1 · . . . · τn · Ts(i + 1)

P TR(i) <: TR(i + 1)

Ret md = φ, α, [τ1, . . . , τn] → τr P Ts(i) <: τr · τ

Fig. 15. Extended checking of native instructions.

6. Extensions

The extension of JNIL to support Java arrays is mostly standard and we omit its

formal presentation. The only complication in the extension is that the JNI treats

arrays with primitive types differently from arrays of reference types. For instance,

the GetIntArrayElements function returns a pointer to the first element of the array

and native code can then perform address arithmetic to access array elements. JNIL can

accommodate direct pointers to Java arrays since its heap model allows address arithmetic

within blocks.

Another simplification in JNIL is that it assumes a calling convention that passes

arguments and results through the operand stack when Java interfaces with native

code. However, the calling convention varies greatly in reality, depending on compilers

and architectures. We next sketch how to extend JNIL to parametrize over calling

conventions.

Data for native method calls are passed through machine resources, which are either

registers or slots on the operand stack.

rd ::= r | sp[n]

We use sp[n] for the stack slot with offset n from the top of the operand stack.
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P ( md , pc, s, vx, L N · S;H;R)
N

JTypeError, if

P (md)@pc = and the following holds

GetField

φ, α, τ

(1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n;

(3) or s = · s1 but P,H : Cls φ;

(4) or s = · s1 but ReadFd( φ, α, τ ) is undefined.

SetField

φ, α, τ

(1) either |s| < 2; (2) or s = v · v · s1 but v = n for some integer n;

(3) or s = v · · s1, but P,H v : τ ;

(4) or s = v · · s1, but P,H : Cls φ;

(5) or s = v · · s1, but UpdFd( φ, α, τ , v) is undefined.

NewObject φ

Fields(P, φ) = [ φ1, α1, τ1 , . . . , φn, αn, τn ]

(1) either |s| < n;

(2) or s = vn · . . . · v1 · s1, but P,H vi : τi for some i ∈ [1..n];

CallMethod

md1

md1 = φ, α, [τ1, . . . , τn] → τr and

(1) either |s| < n + 1;

(2) or s = vn · . . . · v1 · v · s1, but P,H vi : τi for some i ∈ [1..n];

(3) or s = vn · . . . · v1 · v · s1 but v = n for some integer n;

(4) or s = vn · . . . · v1 · · s1,Tag( ) = φ but P Cls φ <: Cls φ.

IsInstanceOf τ (1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n.

JNIThrow
(1) either |s| = 0; (2) or s = v · s1 but v = n for some integer n;

(3) or s = · s1, but P,H : Throwable

Ret

vx = null and md = φ, α, [τ1, . . . , τn] → τr
(1) either |s| = 0; (2) or s = v · s , but P,H v : τr;

(3) or S = md , pc , s , a J · S1 and |s | < n + 1;

(4) or S = md , pc , s , vx, L N · S1 and |s | < n + 1

Ret vx = and P,H : Throwable

Fig. 16. JNI type errors.

We write GetR(s , R, rd ) for a getter function that retrieves the value of resource rd

from (s , R). We write UpdR(s , R, rd , v) for the setter function; it returns the new state

(s ′, R′). We abuse the notation so that the getter and setter functions also work for a list

of resources.

A calling convention is specified by two functions: (1) Pa([τ1, . . . , τn]) tells what machine

resources are used to pass n arguments that are of types τ1 to τn; (2) Pr(τr) tells what

machine resources are used to pass a result of type τr . These functions take types as

arguments because some calling conventions use types to decide what resources to use in

function calls and returns.

Suppose Pa([τ1, . . . , τn]) = ([rd1, . . . , rdn], ka). Then it specifies a convention where the

i-th argument is passed in resource rd i; in addition, ka tells the size of the extra stack

frame for holding arguments. There are two validity requirements for this function. First,

the resources should be disjoint. Second, if rd i = sp[o], then 0 � o < ka. Function Pr(τr)

is similar. Suppose Pr(τr) = (rd r, kr). It specifies a convention where the result is in rd r

and the size of the extra stack frame for holding the result is kr .

https://doi.org/10.1017/S0960129513000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000042


G. Tan 828

Since JNIL passes all arguments and results on the stack in a left-to-right order, it

effectively uses the following calling convention:

Pa([τ1, . . . , τn]) = ([sp[n − 1], . . . , sp[0]], n)

Pr(τr) = (sp[0], 1).

As another example, the cdecl convention passes arguments on the stack in a right-to-left

order and the return value in r1. It can be specified by the following:

Pa([τ1, . . . , τn]) = ([sp[0], . . . , sp[n − 1]], n)

Pr(τr) = (r1, 0).

With this calling-convention specification, JNIL’s operational semantics can be modified

to parametrize over the calling convention. For instance, the following rule is for the case

when a native method is invoked through invokevirtual. The calling convention is used

to put the arguments at the appropriate places. Note the notation (
)sz stands for an

operand stack with sz number of uninitialized values.

P (md )@pc = invokevirtual md1 md1 = 〈φ, α, [τ1, . . . , τn] → τr〉 ∈ NativeMD(P )

s = vn · . . . · v1 · � · s1 Tag(H, �) = φ′ md ′ = 〈φ′, α, [τ1, . . . , τn] → τr〉
Pa([Cls φ′, τ1, . . . , τn]) = ([rd0, rd1, . . . , rdn], sz)

V = [�, v1, . . . , vn] UpdR((
)sz, R, [rd0, rd1, . . . , rdn], V ) = (s ′, R′)

P � (〈md , pc, s , a〉J · S;H;R)
J�−→ (〈md ′, 1, s ′, null,Roots(V )〉N · 〈md , pc, s , a〉J · S;H;R′)

7. Discussions and future work

JNIL is designed to be a minimal formalism to capture the core language-interoperation

issues in the JNI. The relationship between JNIL and the JNI is similar to that between

Featherweight Java (Igarashi et al. 2001) and Java. Consequently, JNIL’s design aims to

follow the JNI standard, not a specific implementation. For instance, representation of

Java objects is abstract in the semantics. In the same vein, Java’s GC is specified abstractly

using reachability. On the other hand, there are places where the JNI standard is unclear

or ambiguous. For instance, it is unclear what happens if a native method invokes another

native method through the JNI call-back functions. Such cases were resolved by a careful

consideration of the semantics and also experiments in real implementations.

To stay minimal, it is necessary for JNIL to make simplifications. We believe most

of these do not affect the claims that are made about the semantics. Nevertheless, it is

important to list the major simplifications:

— JNI uses specific functions to construct field and method IDs from strings and

class objects, while JNIL uses field and method IDs directly. Related is the issue of

class objects. JNI provides FindClass for converting a class name to an object that

represents the class. By contrast, JNIL uses class names directly in functions such as

IsInstanceOf.

— JNI provides different methods for processing data of different types. For instance,

GetIntField accesses an integer field and GetFloatField accesses a float field.
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This is the case for many other operations, including Java method invocation and

array processing. Therefore, one type of mistakes in JNI programming is calling

wrong methods; for instance, it is wrong to call GetFloatField with a field ID that

represents an integer field. JNIL hides this problem by using polymorphic operators;

for example, ‘GetField fd ’ takes a field ID of any type.

— There is only one exception class in JNIL, while real JNI implementations creates

objects of different classes to indicate different kinds of exceptions.

— JNIL models only local references. JNI also provides global and weak-global refer-

ences.

Another notable missing feature in JNIL is concurrency. There have been several

attempts at modelling Java concurrency at the bytecode level (see BicolanoMT (Petri

and Huisman 2008) for a recent attempt). Based on a model of concurrent bytecode,

it should be straightforward to formulate an interleaving semantics for multithreaded,

mixed bytecode and native code. A more ambitious attempt is to consider the effect of

memory models on the semantics. It is unclear how to reconcile differences between the

Java memory model (Manson et al. 2005) and the memory model of a native architecture.

Related to concurrency is the use of JNIEnv pointers. JNI functions are invoked indirectly

through a JNIEnv pointer, which is thread local. Since JNIL includes only sequential

semantics, it omits the JNIEnv pointer.

One future work is to develop methodology to evaluate JNIL. We plan to develop

machine-checked semantics of JNIL in Coq. The native-side language of JNIL will use

our recently built Coq model of the Intel x86-32 machine code (Morrisett et al. 2011). In

this model, the semantics of x86 instructions is defined by a translation to a small RTL

(register transfer list) intermediate language. It has an operational, small-step semantics

based on which we extracted an executable OCaml emulator. Using the emulator, we have

performed extensive model validation by comparing it against real x86 processors; over

10 million instruction instances have been tested and verified in about 60 hours. The same

methodology for model construction and validation will be used when constructing the

JNIL Coq model. Building on top of the high-fidelity native x86 language, it will need

to add machine-checked semantics of Java bytecode and JNI functions. Several projects

have developed machine-checked semantics of Java bytecode (Klein and Nipkow 2006;

Moore and Porter 2002; Pichardie 2006). We plan to build upon Bicolano (Pichardie

2006), a recent formalization of Java bytecode semantics in Coq. Bicolano builds on an

extensible framework (Czarnik and Schubert 2007), which will make our development of

JNIL modular by reusing much of the sequential semantics of bytecode. Same as our x86

model, the formalized JNIL model will be executable so that it will be possible to run

benchmark programs to compare against implementations. This will serve as an important

step to validate the JNIL model.

Although this paper targets the JNI, the abstractions in JNIL apply broadly when

modelling other FFIs, including the CLR, the Python/C interface, and the OCaml/C

interface. All these interfaces share the same core issues as the JNI: a shared heap,

cross-language method calls, cross-language exceptions, and others.
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8. Related work

The block heap model in JNIL takes inspiration from Leroy and Blazy’s block memory

model in the CompCert project (Leroy and Blazy 2008). They use the block memory

model to specify the semantics of C-like languages and verify correctness of program

transformations. We use the block model to reconcile differences between a high-level,

garbage-collected OO language and a low-level language. The bytecode language in JNIL

bears many similarities to the JVMLf model by Freund and Mitchell (2003); the native

language is similar to Morrisett et al.’s stack-based typed assembly language (Morrisett

et al. 2002). JNIL’s emphasis is on proposing abstractions for modelling language-

interoperation issues in FFIs.

Previous work proposed preliminary formalisms that capture certain aspects of the

JNI. Furr and Foster justified J-Saffire’s soundness on a formalization of a subset of

the JNI (Furr and Foster 2008). It models only the native side, and treats Java objects

opaquely. Jinn (Lee et al. 2010) describes safety constraints of the JNI using finite-state

machines. JNIL models both sides of the interface and proposes abstractions that address

issues including a shared heap, cross-language method calls, exception handling, and the

impact of GC; these issues have not been addressed by previous efforts.

There have been a few systems for modelling various aspects of the interoperation

of two safe high-level languages. Already mentioned in the introduction, the work by

Matthews and Findler (2007) formalizes the interoperation between simply typed lambda

calculus (as a stand-in for ML) and untyped lambda calculus (as a stand-in for Scheme).

Their formalization focuses on high-level interoperation issues such as value conversion

and abstracts away low-level details. The work by Trifonov and Shao (1999) presents a

type and effect system for reasoning about the interoperation of two safe languages when

they have different systems of computational effects. Compared to these models, JNIL is

at a much lower level and exposes details including stack frame layout and GC. These

low-level details cannot be ignored when modelling the interaction between high-level and

low-level languages.

More remotely related is the work of modelling general multi-language systems. This

includes the formalization of COM (Pucella 2002), a language-neutral binary standard

for the interaction of component-based software, and the formalization of a subset of the

intermediate language of .NET (Gordon and Syme 2001), which is specially designed to

be compatible with multiple languages.

9. Conclusions

Most real software systems are multilingual. A safe software system depends on its

building blocks and their interoperation. Even if each building block is safe in some

language model with respect to some safety policy, without safe interoperation between

languages there would be no safety guarantee on the whole system. Therefore, modelling

and reasoning about language interoperation is critical to the safety and security of

software systems. JNIL is a formal model that covers the core JNI. Its abstractions

elegantly reconcile the differences between a high-level OO language and a low-level

language. It can directly be used to provide a formal foundation for systems that analyse

the JNI. We believe its concepts can be generalized to model other FFIs.
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Appendix A. JNIL operational semantics

P (S;H;R)
J

(S ;H ;R )

P (S;H;R) (S ;H ;R )

P (S;H;R)
N

(S ;H ;R )

P (S;H;R) (S ;H ;R )

(S;H)
GC

(S ;H )

P (S;H;R) (S ;H ;R)

L ⊆ dom(H|J) L ∩ Roots(S) = ∅ L ∩ Reachable((H|J) \ L) = ∅

(S;H)
GC

(S;H \ L)

P ( md , pc, s, a J · S;H;R)
J

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ;H =

push v v = n or null md , pc + 1, v · s, a J · S;H

pop s = v · s1 md , pc + 1, s1, a J · S;H

localload d md , pc + 1, a(d) · s, a J · S;H

localstore d s = v · s1 md , pc + 1, s1, a[d v] J · S;H

goto n md , n, s, a J · S;H

getfield fd
fd = φ, α, τ s = · s1
ReadFd( fd) = v

md , pc + 1, v · s1, a J · S;H

putfield fd
fd = φ, α, τ s = v · · s1
UpdFd( fd , v) = H1

md , pc + 1, s1, a J · S;H1

new φ

Fields(P, φ) = [fd1, . . . , fdn]

s = vn · . . . · v1 · s1
AllocInst(H,P, φ) = (H1 )

UpdFd(H1 [fd1, . . . , fdn], [v1, . . . , vn])

= H2

md , pc + 1 · s1, a J · S;H2

invokevirtual

md1

md1 = φ, α, [τ1, . . . , τn] → τr
s = vn · . . . · v1 · · s1 Tag( ) = φ

md = φ , α, [τ1, . . . , τn] → τr

NewFrame(P,md , [ 1, . . . , vn])·
md , pc, s, a J · S;H

returnval

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · · s , a J · S1

|vp| = n s = vr · s1
md , pc + 1, vr · s , a J · S1;H

returnval

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , vx, L N · S1

|vp| = n s = vr · s1

md , pc + 1, vr · s , vx, L N · S1;

H, where L = L ∪ Roots(vr)

throw s = · s1 X md , pc, s, a J · S;H

Fig. A 1. JNIL operational semantics: GC and Java steps.
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P md , pc, s, vx, L N · S;H;R
N

md , pc , s, vx, L N · S;H ;R , if

P (md)@pc = then pc ;H ;R =

Mov rd, op pc + 1;H;R[rd R̂(op)]

Jmp op R̂(op);H;R

Ld rd, rs[rt] pc + 1;H;R[rd H( ).blk(n + n )], if R(rs) = [n], and R(rt) = n

St rd[rt], rs
pc + 1;H[ b , ω ];R

if R(rd) = [n], R(rt) = n ,H( ) = b, ω , and b = b[n + n R(rs)]

Alloc rd, n
pc + 1;H H ;R[rd ],where

b = {0 , . . . , n− 1 , and H = { b,N

Free rs[n] pc + 1;H \ [n + n];R, if R(rs) = [n ] and n + n ∈ dom(H( ).blk)

P md , pc, s, vx, L N · S;H;R
N

md , pc + 1, s , vx, L N · S;H;R , if

P (md)@pc = then s ;R =

SLd rd, sp[n] s;R[rd vn], if s = v0 · v1 · . . . · vn · s1
SSt sp[n], rs v1 · . . . ·R(rs) · s1;R, if s = v0 · v1 · . . . · vn · s1
SAlloc n . . .

n

·s;R

SFree n s1;R, if s = v0 · . . . · vn−1 · s1

where R̂(r) = R(r) and R̂(n) = n

Fig. A 2. JNIL operational semantics: native instructions (part 1).
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P ( md , pc, s, vx, L N · S;H;R)
N

(S ;H ;R), if

P (md)@pc = and conditions hold, then S ;H =

GetField fd
fd = φ, α, τ s = · s1
ReadFd( fd) = v vx = null

md , pc + 1, v · s1, null, L N · S;H,

where L = L ∪ Roots(v)

SetField fd
fd = φ, α, τ s = v · · s1
UpdFd( fd , v) = H1 vx = null

md , pc + 1, s1, null, L N · S;H1

NewObject φ

Fields(P, φ) = [fd1, . . . , fdn]

s = vn · . . . v1 · s1
AllocInst(H,P, φ) = (H1 )

UpdFd(H1 [fd1, . . . , fdn],

[v1, . . . , vn] = H2

vx = null

md , pc + 1 · s1, null, L ∪ { N ·
S;H2

CallMethod

md1

md1 = φ, α, [τ1, . . . , τn] → τr
s = vn · . . . v1 · · s1
Tag( ) = φ vx = null

md = φ , α, [τ1, . . . , τn] → τr

NewFrame(P,md , [ 1, . . . , vn])·
md , pc, s, vx, L N · S;H

IsInstanceOf

τ

s = · s1 Tag( ) = φ

vx = null

md , pc + 1, v · s1, null, L N · S;H,

where v = 1 if P Cls φ <: τ

or 0 otherwise.

JNIThrow s = · s1 vx = null md , pc + 1, s1 N · S;H

ExnClear md , pc + 1, s, null, L N · S;H

ExnOccurred
md , pc + 1, v · s, vx, L N · S;H

where v = 0 if vx = null or 1 if vx =

Ret

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , a J · S1

|vp| = n s = vr · s1 vx = null

md , pc + 1, vr · s , a J · S1;H

Ret

md = φ, α, [τ1, . . . , τn] → τr
S = md , pc , vp · v · s , vx, L N · S1

|vp| = n s = vr · s1 vx = null

md , pc + 1, vr · s , vx, L N · S1;H,

where L = L ∪ Roots(vr)

Ret vx = X · S;H

Fig. A 3. JNIL operational semantics: native instructions (part 2).

https://doi.org/10.1017/S0960129513000042 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000042


G. Tan 834

P md , pc, s, a J · S;H;R
J

X md , pc, s, a J · S;H ;R

if o = Blank(P, throwable), dom(H), H = H (o, J)}, and one of the following

holds:

— P (md)@pc = getfield fd , and s = null · s1;
— P (md)@pc = putfield fd , and s = v · null · s1;
— P (md)@pc = invokevirtual φ, α, [τ1, . . . , τn] → τr , and s = vn · . . . · v1 · null · s1;
— P (md)@pc = throw, and s = null · s1.

P md , pc, s, null, L N · S;H;R
N

md , pc + 1, s N · S;H ;R

if o = Blank(P, throwable), dom(H), H = H (o, J)}, and one of the following

holds:

— P (md)@pc = GetField fd , and s = null · s1.
— P (md)@pc = SetField fd , and s = v · null · s1.
— P (md)@pc = CallMethod φ, α, [τ1, . . . , τn] → τr , and s = vn · . . . · v1 · null · s1.
— P (md)@pc = IsInstanceOf τ , and s = null · s1.
— P (md)@pc = JNIThrow, and s = null · s1.

Fig. A 4. JNIL operational semantics: raising exceptions.

P S;H;R
J

S ;H ;R, if

S= and conditions hold, then S ,H =

X md , pc, s, a J · S1
Tag( ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = None
X · S1;H

X md , pc, s, a J · S1
Tag( ) = φ P (md).handlers = η

CorrectHandler(η, P, pc, φ) = nt
md , nt · J · S1;H

X md , pc, s, vx, L N ·
S1

md , pc + 1, s N·S1;H

CorrectHandler( pc, φ) = None

CorrectHandler( nb, ne, nt, φ η, P, pc, φ) =

nt if nb ≤ pc < ne and P Cls φ <: Cls φ

CorrectHandler(η, P, pc, φ) otherwise

Fig. A 5. JNIL operational semantics: exception handling.
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Appendix B. Bytecode type checking and safety

P prog object, throwable ∈ dom(P ) ∀φ ∈ dom(P ). P φ class
∀md ∈ JavaMD(P ) ∪ NativeMD(P ). P md mid

∀md ∈ JavaMD(P ). P md jmethod ∀md ∈ NativeMD(P ). P md nmethod

P prog

P φ class P (object) = None,

P object class

P (throwable) = object ,

P throwable class

P (φ) = φ , [ φ, α1, τ1 , . . . , φ, αn, τn ]
φ ∈ dom(P ) ¬(P Cls φ <: Cls φ) no cycles

∀j ∈ [1..n]. P φ, αj , τj fid
∀α, τ, τr. φ , α, τ → τr dom(P ) φ, α, τ → τr dom(P ) inherit/override all methods

P φ class

P md jmethod

md = φ, α, [τ1, . . . , τn] → τn+1 P (md) = I, η, Ts , Ta I| ≥ 1
Ts(1) = 0 Cls φ, 1 τ1, . . . , n τn, n + 1 Top, . . .} <: Ta(1)

∀i ∈ dom(I). P,md , Ts , Ta I@i ∀η ∈ η. P, Ts , Ta η handles I

P md jmethod

P md nmethod
P md nmethod

P τ1 <: τ2

P τ <: Top P Int <: Int P Cls φ <: Cls φ

P Cls φ1 <: Cls φ2

P (φ2).super = φ3

P Cls φ1 <: Cls φ3

P,H v : τ P,H v : τ P τ <: τ

P,H v : τ P,H v : Top

P,H n : Int

Tag( ) = φ

P,H : Cls φ P,H null : Cls φ

P fd fid

φ ∈ dom(P ) P τ ty

P φ, α, τ fid

P md mid

φ ∈ dom(P ) φ = object ∀i ∈ [1..n + 1]. P τi ty

P φ, α, [τ1, . . . , τn] → τn+1 mid

P, Ts , Ta η handles I

P Cls φ <: Throwable 1 ≤ nb < ne nb, ne − 1, nt ∈ dom(I)
P [Cls φ] <: Ts(nt) ∀i ∈ [nb, ne − 1]. P Ta(i) <: Ta(nt)

P, Ts , Ta nb, ne, nt, φ handles I

P τ ty

P Int ty

φ ∈ dom(P )

P (Cls φ) ty

Fig. B 1. Bytecode verification, part 1.
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P,md , Ts , Ta I@i

if I[i] = Conditions on Ts Conditions on Ta Other conditions

push n P Int · Ts(i) <: Ts(i + 1) P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

push null
P τ · Ts(i) <: Ts(i + 1)

IsRefType(τ)
P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

pop
Ts(i) = τ1 · τ
P τ <: Ts(i + 1)

P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

localload d P Ta(i)(d) · Ts(i) <: Ts(i + 1) P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

localstore d
Ts(i) = τ1 · τ
P τ <: Ts(i + 1)

P Ta(i)[d τ1] <:

Ta(i + 1)

i + 1 ∈ dom(I)

goto n P Ts(i) <: Ts(n) P Ta(i) <: Ta(n) n ∈ dom(I)

getfield

φ, α, τ1

P Ts(i) <: Cls φ · τ
P τ1 · τ <: Ts(i + 1)

P Ta(i) <: Ta(i + 1)
i + 1 ∈ dom(I)

φ, α, τ1 Fields(P, φ)

putfield

φ, α, τ1
P Ts(i) <: τ1 · Cls φ · Ts(i + 1) P Ta(i) <: Ta(i + 1)

i + 1 ∈ dom(I)

φ, α, τ1 Fields(P, φ)

new φ

Fields(P, φ) =

[ φ1, α1, τ1 , . . . , φn, αn, τn ]

P Ts(i) <: τ1 · . . . · τn · τ
P Cls φ · τ <: Ts(i + 1)

P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

invokevirtual

md1

md1 = φ, α, [τ1, . . . , τn] → τr
P Ts(i) <: τn · . . . · τ1 · Cls φ · τ
P τr · τ <: Ts(i + 1)

P Ta(i) <: Ta(i + 1) i + 1 ∈ dom(I)

returnval
md = φ, α, τ1 → τr
P Ts(i) <: τr · τ

throw P Ts(i) <: Throwable · τ

Fig. B 2. Bytecode verification, part 2: checking instructions.
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P (S;H;R) state

P (H|J) jheap P,H|J S stack P,H|J , S (R;H|N ) nstate

P (S;H;R) state

P H jheap ∀ ∈ dom(H). ∃o. H( ) = Rep(o), J P,H o : Tag( )

P H jheap

P,H o : g Fields(P, φ) = [fd1, . . . , fdn]

∀i ∈ [1..n]. fd i = ,−, τi P,H vi : τi

P,H fd1 = v1, . . . , fdn = vn φ : φ

P,HJ , S (R;HN ) nstate
P,HJ , S (R;HN ) nstate

P,H S stack

P,H : Throwable

P ( X · S) callchain P,H S stack

P,H ( X · S) stack

P,H F frame P,H S stack

P (F · S) callchain

P,H F · S stack

P,H F frame

md ∈ JavaMD(P ) P (md) = I, η, Ts , Ta

pc ∈ dom(I) P,H s : Ts(pc) P,H a : Ta(pc)

P,H md , pc, s, a J frame

md ∈ NativeMD(P )

P,H md , pc, s, vx, L N frame

P S callchain

F = . . . J or . . . N

P (F · ) callchain

TopFrame(S) = . . . J

P ( X · S) callchain

TopFrame(S) = md , pc ,−,−, N

P (md )@pc = CallMethod φ1, α, τ → τr

P ( X · S) callchain

F = md , pc,−, J md , pc,−,−, N md = φ, α, [τ1, . . . , τn] → τr
P (md )@pc = invokevirtual φ1, α, [τ1, . . . , τn] → τr P Cls φ <: Cls φ1

P (F md , pc , s , a J · S) callchain

F = md , pc,−, J md , pc,−,−, N md = φ, α, [τ1, . . . , τn] → τr
|s | ≥ n + 1 P (md )@pc = CallMethod φ1, α, [τ1, . . . , τn] → τr P Cls φ <: Cls φ1

P (F md , pc , s , vx, L N · S) callchain

Fig. B 3. Well-typed Java states.

Appendix C. Lemmas Used in Proofs of Safety Theorems

Lemma 1 (canonical forms).

1. If P ,H � v : Int, then v = n.

2. If P ,H � v : Cls φ, then one of the following cases is true:

i. v = null;

ii. ∃�, φ′. so that v = �, Tag(H, �) = φ′, and P � Cls φ′ <: Cls φ.
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Lemma 2 (laws of subtyping).

1. P � τ <: τ.

2. If P � τ1 <: τ2, and P � τ2 <: τ3, then P � τ1 <: τ3.

The first is proved by induction over τ, and the second by induction over P � τ2 <: τ3.

Lemma 3. If P ,H � v : τ, then P ,H |J � v : τ.

A necessary notion when proving Java preservation is a definition of Java heap

extensions.

Definition 4 (Java heap extensions).

H � H ′ � ∀� ∈ dom(H). � ∈ dom(H ′) ∧ Tag(H, �) = Tag(H ′, �)

Note that the above definition concerns only runtime tags; H can be extended to H ′ even

if there is some mutation to heap objects.

The following lemmas show that typings are not affected when extending heaps:

Lemma 4 (monotonicity). Assume H � H ′.

1. If P ,H � v : τ, then P ,H ′ � v : τ.

2. If P ,H � o : g, then P ,H ′ � o : g.

3. If P ,H � F frame, then P ,H ′ � F frame.

4. If P ,H � S stack, then P ,H ′ � S stack.

The proof of the GC-safety theorem uses the following lemma.

Lemma 5. Assume H ′ = H \ L.

1. If P ,H � v : τ, and L ∩ Roots(v) = �, then P ,H ′ � v : τ.

2. If P ,H � F frame, and L ∩ Roots(F) = �, then P ,H ′ � F frame.

3. If P ,H � S stack, and L ∩ Roots(S) = �, then P ,H ′ � S stack.
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