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We prove the following theorem: if w is a quasi-conformal mapping of the unit disc
onto itself satisfying elliptic partial differential inequality |L[w]| � B|∇w|2 + Γ , then
w is Lipschitz continuous. This result extends some recent results where, instead of
an elliptic differential operator, only the Laplace operator is considered.

1. Introduction and notation

1.1. Quasi-conformal mappings

Let

A =
(

a11 a12

a21 a22

)
.

We will consider the matrix norm

|A| = max{|Az| : z ∈ R
2, |z| = 1}

and the matrix function

l(A) = min{|Az| : z ∈ R
2, |z| = 1}.

Let D and Ω be subdomains of the complex plane C and let w = u + iv : D → Ω
be a function that has both partial derivatives at a point z ∈ D. By ∇w(z), we
denote the matrix (

ux uy

vx vy

)
.

For the matrix ∇w, we have that

|∇w| = |∂w| + |∂̄w| (1.1)

and

l(∇w) = ||∂w| − |∂̄w||, (1.2)

where

∂w = wz :=
1
2

(
wx +

1
i
wy

)
and ∂̄w = wz̄ :=

1
2

(
wx − 1

i
wy

)
.
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We say that a function u : D → R is absolutely continuous on lines (ACL) in the
region D if, for every closed rectangle R ⊂ D with sides parallel to the x- and
y-axes, u is absolutely continuous on almost every (a.e.) horizontal and a.e. vertical
line in R. Such a function has, of course, partial derivatives ux, uy a.e. in D.

A sense-preserving homeomorphism w : D → Ω, where D and Ω are subdomains
of the complex plane C, is said to be K-quasi-conformal (K-q.c.), with K � 1, if
w is ACL in D in the sense that the real and imaginary parts are ACL in D and

|∇w| � Kl(∇w) a.e. on D (1.3)

(see [1, pp. 23–24]). Note that (1.3) can be written as

|wz̄| � k|wz| a.e. on D, where k =
K − 1
K + 1

, i.e. K =
1 + k

1 − k
.

If, in the previous definition, we replace the condition ‘w is a sense-preserving
homeomorphism’ by the condition ‘w is continuous’, then we obtain the definition
of a quasi-regular mapping.

1.2. Elliptic operator

Let A(z) = {aij(z)}2
i,j=1 be a symmetric matrix function defined in a domain

D ⊂ C (aij = aji). Assume that

Λ−1 � 〈A(z)h, h〉 � Λ for |h| = 1, (1.4)

where Λ is a constant � 1 or, written in coordinates,

Λ−1 �
2∑

i,j=1

aij(z)hihj � Λ for
2∑

i=1

h2
i = 1. (1.5)

In addition, for a certain L � 0, we suppose that

|A(z) − A(ζ)| � L|ζ − z| for any z, ζ ∈ D. (1.6)

For

L[u] :=
2∑

i,j=1

aij(z)Diju(z), (1.7)

subjected to (1.5) and (1.6), we consider the differential inequality

|L[u]| � B|∇u|2 + Γ, (1.8)

with given B, Γ � 0, or, by using the Einstein convention,

|aij(z)Diju| � B|∇u|2 + Γ, (1.9)

and call it the elliptic partial differential inequality. Observe that, if A is the iden-
tity matrix, then L is the Laplace operator ∆. A C2 solution u : D → R(C) of the
equation ∆u = 0 is called a harmonic function (mapping) and the corresponding
inequality (1.7) is called the Poisson differential inequality. This class of harmonic
quasi-conformal mappings (HQC) has been subject to recent investigation by sev-
eral authors; see the subsection below. For the connection between quasi-conformal
mappings and PDEs, refer to [2]. See also [8, ch. 12] and [5, 32,38].
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1.3. Background and statement of the main result

Let γ be a Jordan curve. By the Riemann mapping theorem, there exists a Rie-
mann conformal mapping of the unit disc onto a Jordan domain Ω = int γ. By
Carathéodory’s theorem, it has a continuous extension to the boundary. Moreover,
if γ ∈ C1,α, 0 < α < 1, then the Riemann conformal mapping has C1,α exten-
sion to the boundary (this result is known as Kellogg’s theorem). We refer the
reader to [9] for the proof of the previous result and [22, 25, 35–37] for related
results. In particular, a conformal mapping w of the unit disc onto a Jordan
domain Ω with C1,α boundary is Lipschitz continuous, i.e. it satisfies the inequality
|w(z) − w(z′)| � C|z − z′|, z, z′ ∈ U := {z ∈ C : |z| < 1}.

On the other hand, K quasi-conformal mappings between smooth domains are
Hölder continuous and the best Hölder constant is 1/K. So, they are not in general
Lipschitz mappings, except if K = 1. In this paper we are concerned with an
additional condition of a quasi-conformal mapping in order to guarantee its global
Lipschitz character.

One ‘additional condition’ is to assume harmonicity of the mapping. This condi-
tion is natural since conformal mappings are quasi-conformal and harmonic. Hence,
harmonic quasi-conformal mappings are natural generalizations of conformal map-
pings. Martio [28] was the first to consider harmonic quasi-conformal mappings on
the complex plane.

Recently, there have been a number of authors working on this topic. We list
some of the related results below.

(1) If w is a harmonic quasi-conformal mapping of the unit disc onto itself, then
w is Lipschitz (Pavlovic theorem, proved in [34]). See also some refinements
of Partyka and Sakan [33].

(2) If w is a harmonic quasi-conformal mapping between two C1,α Jordan do-
mains, then w is Lipschitz (a result proved in [13]).

(3) If w is a quasi-conformal mapping between two C2,α Jordan domains satisfy-
ing the partial differential inequality |∆w| � C|fzfz̄|, then w is Lipschitz (a
result proved in [17]).

(4) If w is a quasi-conformal mapping of the unit disc onto itself satisfying the
PDE ∆w = g, then this mapping is Lipschitz (a result proved in [21]).

(5) If w is a quasi-conformal mapping between two C2,α Jordan domains satisfy-
ing the partial differential inequality |∆w| � B|∇w|2 +Γ , then w is Lipschitz
(a result proved in [19]).

Note that the proofs of (3)–(5) depend on a Heinz theorem; see [10].
Concerning the bi-Lipschitz character of the HQC class, we refer the reader to [3,

14,16,20,23,26,30]. Also, see [18,29] for some results concerning higher dimensional
cases.

For related results about quasi-conformal harmonic mappings with respect to the
hyperbolic metric refer to Wan [39] and Marković [27].

More recently, Iwaniec et al . [11] have shown that the class of quasi-conformal
harmonic mappings is also of interest when considering the modulus of annuli in
the complex plane.
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In this paper, we study Lipschitz continuity of the class of K-q.c. self-mappings
of the unit disc satisfying the elliptic differential inequality |Lw| � B|∇w|2 + Γ .
This class contains conformal mappings and quasi-conformal harmonic mappings.

The main result of this paper is the following theorem, which is an extension of
results (1)–(5) mentioned above.

Theorem 1.1. If a ∈ U and w : U → U, w(a) = 0 and w(U) = U is a K-q.c.
solution of the elliptic partial differential inequality

|L[w]| � B|∇w|2 + Γ, (1.10)

then ∇w is bounded by a constant C(K, B, Γ, Λ, L, a) and w is Lipschitz continuous.

Remark 1.2. In [7, pp. 179–180], (1.10) is referred to as the natural growth condi-
tion. The result is new even for B = Γ = 0, i.e. for quasi-conformal (q.c.) solutions
to elliptic PDEs with Lipschitz coefficients.

The proof of theorem 1.1 is given in § 3. The methods of the proof differ from
the methods of the proof of corresponding results for the HQC class. In § 2, we
make some estimates concerning the Green function of the disc, and some estimates
concerning the gradient of a solution to the elliptic partial differential inequality,
satisfying certain boundary conditions similar to those of Nagumo [31]. We first
prove interior estimates for the gradient of a solution u of the elliptic PDE in
terms of constants of the elliptic operator and the modulus of continuity of u (the-
orem 2.5). Then, we recall a theorem of Nagumo [31], which shows that if u is
a solution of the elliptic PDE, with vanishing boundary conditions defined in a
domain D whose boundary has a bounded curvature from above by a constant κ,
then |∇u(z)| � γ, z ∈ D, where γ is a constant not depending on u, provided that
64BΓ‖u‖∞ < π (theorem 2.8). In order to prove theorem 1.1, we first show that the
function u = |w| satisfies a certain elliptic differential inequality near the boundary
of the unit disc. In order to show an a priori bound, we make use of Mori’s theorem,
which implies that the modulus of continuity of a K-q.c. self-mapping of the unit
disc depends only on K. Using theorem 2.5, we show that the gradient is a priori
bounded on compacts of the unit disc, while theorem 2.8 serves to demonstrate the
a priori bound of the gradient of u in some ‘neighbourhood’ of the boundary of the
unit disc. By using the quasi-conformality, we prove that ∇w is a priori bounded
as well.

2. Auxiliary results

2.1. Green’s function

If h(z, w) is a real function, then we denote the gradient (hx, hy) by ∇zh.

Lemma 2.1. If

h(z, w) = log
(

|1 − zw̄|
|z − w|

)
,

then

∇zh(z, w) =
1 − |w|2

(z̄ − w̄)(wz̄ − 1)
(2.1)
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and

∂w∇zh(z, w) = − 1
(1 − wz̄)2

, ∂w̄∇zh(z, w) = − 1
(w̄ − z̄)2

. (2.2)

Proof. First of all, let
∇zh = (hx, hy) = hx + ihy.

Since
hz̄ = 1

2 (hx + ihy),

it follows that
∇zh = 2hz̄.

Since

2h(z) = log
(

1 − zw̄

z − w

1 − z̄w

z̄ − w̄

)
,

by differentiating we obtain

2hz̄(z) = log
(

1 − z̄w

z̄ − w̄

)
z̄

=
|w|2 − 1
(z̄ − w̄)2

z̄ − w̄

1 − z̄w
.

This implies (2.1). Then, (2.2) follows from

1 − |w|2
(z̄ − w̄)(wz̄ − 1)

=
w

wz̄ − 1
+

1
w̄ − z̄

.

Corollary 2.2. Let G(ζ, ω) be the Green function of the disc {ζ : |ζ − ζ0| � R},
defined by

G(ζ, ω) := log
(

|ϕ(ζ) − ϕ(ω)|
|1 − ϕ(ζ)ϕ(ω)|

)
,

where
ϕ(ζ) =

1
R

(ζ − ζ0).

Then,

|∇ζG(ζ, ω)| � 2
|ζ − ω| (2.3)

and

|∂ωj ∇ζG(ζ, ω)| � 2
|ζ − ω|2 , j = 1, 2, (2.4)

where ω = ω1 + iω2, ω1, ω2 ∈ R.

Proof. Let

ϕ(ζ) =
1
R

(ζ − z0).
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Then

ϕ′(ζ) =
1
R

.

Take z = ϕ(ζ) and w = ϕ(ω) and define h(z, w) = G(ζ, ω). It follows that

∇ζG(ζ, ω) = ∇zh(z, w) · ϕ′(ζ) =
1
R

∇zh(z, w). (2.5)

Thus,

|∇ζG(ζ, ω)| =
1
R

|∇zh(z, w)|. (2.6)

Furthermore,
1 − |w|2
|1 − z̄w| � 1 − |w|2

1 − |w| � 2. (2.7)

Combining (2.7), (2.6) with (2.1), we obtain (2.3). To get (2.4), first observe that
for ω = ω1 + iω2

∂ω1 = ∂ω + ∂ω̄ (2.8)

and

∂ω2 = i(∂ω − ∂ω̄). (2.9)

On the other hand, for |z| � 1 and |w| � 1 we have that∣∣∣∣ 1
(1 − wz̄)2

∣∣∣∣ �
∣∣∣∣ 1
(w − z)2

∣∣∣∣.
From (2.8), (2.9), (2.2), (2.5) we deduce (2.4).

2.2. Interior estimates of gradient

Lemma 2.3. Let u : Ū → C be a continuous mapping. Then, there exists a positive
function � = �u(t), t ∈ (0, 2), such that limt→0 �u(t) = 0 and

|u(z) − u(w)| � �(|z − w|), z, w ∈ U.

The function � is called the modulus of continuity of u.

Lemma 2.4. Let Y : D → U be a C2 mapping of a domain D ⊂ U. Define

U(z0, ρ) := {z ∈ C : |z − z0| < ρ}

and assume that the closure of U(z0, ρ) is contained in D and let Z ∈ C be any
complex number. Then, we have the estimate

|∇h(z0)| � 2
ρ2

∫
|y−z0|=ρ

|Y (y) − Z| dH1(y), (2.10)

where h(z), z ∈ U(z0, ρ), is the Poisson integral of Y |z0+ρT and T is the unit
circle. Moreover, dH1 is the Hausdorff probability measure (i.e. normalized arc
length measure).
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Proof. Assume that v ∈ C2(Ū) and define

H(z) =
∫

T

P (z, η)v(η) dH1(η), (2.11)

where

P (z, η) =
1 − |z|2
|z − η|2 , |η| = 1, |z| < 1. (2.12)

Then, H is a harmonic function. It follows that

〈∇H(z), e〉 =
∫

T

〈∇zP (z, η), e〉v(η) dH1(η), e ∈ R
2. (2.13)

By differentiating (2.12), we obtain

∇zP (z, η) =
−2z

|z − η|2 − 2(1 − |z|2)(z − η)
|z − η|2+2 .

Hence,

∇zP (0, η) =
2η

|η|4 = 2η.

Therefore,
|〈∇zP (0, η), e〉| � |∇zP (0, η)‖e| = 2|e|. (2.14)

Using (2.13), (2.14) we obtain

|〈∇H(0), e〉| �
∫

T

|∇zP (0, η)‖e‖v(η)| dH1(η) = 2|e|
∫

T

|v(η)| dH1(η).

Hence, we have that

|∇H(0)| � 2
∫

T

|v(η)| dH1(η). (2.15)

Let v(z) = Y (z0 + ρz) − Z and let H(z) = P [v|T ](z). Then, H(z) = h(z0 + ρz) − Z
and ∇H(0) = ρ∇h(z0). Inserting this into (2.15), we obtain

ρ|∇h(z0)| = |∇H(0)| � 2
∫

T

|Y (z0 + ρη) − Z| dH1(η). (2.16)

Introducing the change of variables ζ = z0 + ρη to (2.16), we obtain

|∇h(z0)| � 2
ρ2

∫
|ζ−z0|=ρ

|Y (ζ) − Z| dH1(ζ), (2.17)

which is identical to (2.10).

Theorem 2.5. Let D be a bounded domain, whose diameter is d. Let A(z) =
{aij(z)}2

i,j=1 be a symmetric matrix function defined in a domain Ω ⊂ C (aij = aji)
satisfying (1.5) and (1.6). Let u(z) be any C2 solution of (1.8) such that

|u(z)| � M in D. (2.18)
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Then, there exist constants C(0) and C(1), depending on the modulus of continuity
of u, Λ, L, B, Γ , M and d, such that

|∇u(z)| < C(0)ρ(z)−1 max
|ζ−z|�ρ(z)

{|u(ζ)|} + C(1), (2.19)

where ρ(z) = dist(z, ∂D).

Proof. Fix a point a ∈ D and let Bp, 0 < p < 1, be a closed disc defined by

Bp = {z; |z − a| � p dist(a, ∂D)},

with radius
Rp = p dist(a, ∂D).

Define the function µp as
µp = max

z∈Bp

{|∇u|rp(z)}, (2.20)

where rp(z) = dist(z, ∂Bp) = Rp − |z − a|. Then, there exists a point zp ∈ Bp such
that

|∇u(zp)|rp(zp) = µp, zp ∈ Bp. (2.21)

We need the following result to proceed.

Lemma 2.6. The function µp is continuous on (0, 1) and has a continuous extension
at 0: µ0 = 0.

Proof of lemma 2.6. Let pn be a sequence converging to a number p, let

µpn = |∇u(zn)|rpn(zn)

and assume it converges to µ′
p. Prove that µ′

p = µp. Passing to a subsequence, we
can assume that zn → z′

p. Then, z′
p ∈ Bp. Thus, µ′

p � µp. On the other hand,
µpn � |∇u((1 − εn)zp)|rpn((1 − εn)zp), where εn is a positive sequence converging
to zero. It follows that

µ′
p � lim

n→∞
|∇u((1 − εn)zp)|rpn((1 − εn)zp) = µp.

Furthermore, since rp � Rp = p dist(a, ∂D), we obtain

lim
p→0+

µp � |∇u(0)| lim
p→0+

Rp = 0.

Now, let Tz = ζ be a linear transformation of coordinates such that

2∑
i,j=1

aij(zp)Diju = ∆v, (2.22)

where v(ζ) = u(z). By [12, lemma 11.2.1], the transformation T can be chosen such
that

T =

(
λ

−1/2
1 0
0 λ

−1/2
2

)
· R, (2.23)
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where λ1 and λ2 are eigenvalues of the matrix A(zp) and R is some orthogonal
matrix. Then,

1
Λ

� λ1, λ2 � Λ.

Let

∇2u =
(

D11u D12u

D21u D22u

)

denote the Hessian matrix of u.
Since

∇2u = TT∇2vT,

we obtain

tr(AT∇2u) = tr(ATTT∇2vT )

= tr((TA)T∇2vT )

= tr(∇2vT (TA)T)

= tr(∇2vTATTT)

= tr(BT∇2v),

where

B(ζ) = TA(z)TT. (2.24)

Then,

B(ζp) = I,

bij(ζ)Dijv(ζ) = aij(z)Diju(z), (2.25)

where B(ζ) = {bij}2
i,j=1 and

∆v = (δij − bij(ζ))Dijv + bij(ζ)Dijv. (2.26)

Furthermore,
T (U(zp, rp)) ⊂ T (Bp) ⊂ T (D) =: D′.

From (2.23), we see that T (D(zp, rp)) is an ellipse with axes equal to λ
−1/2
1 · rp and

λ
−1/2
2 · rp and with the centre at ζp = T (zp). Then, Dλ := {ζ : |ζ − ζp| � λrp} is a

closed disc in T (Bp), provided that

0 < λ <
1

2
√

Λ
. (2.27)

Let G(ζ, ω) be the Green function of the disc Dλ, so that, from (2.26),

v = − 1
π

∫
Dλ

G(ζ, ω)(δij − bij(ω))Dijv(ω) dL2(ω)

− 1
π

∫
Dλ

G(ζ, ω)bij(ω)Dijv(ω) dL2(ω) + h(ζ),
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where dL2(z) = dxdy is the Lebesgue two-dimensional measure in the complex
plane and h(ζ) is the harmonic function which takes the same values as v(ζ) for
ζ ∈ ∂Dλ. Then,

|∇v(ζp)| � P + Q + R, (2.28)

where

P =
∣∣∣∣ 1
π

∫
Dλ

∇ζG(ζp, ω)bij(ω)Dijv(ω) dL2(ω)
∣∣∣∣,

Q =
∣∣∣∣ 1
π

∫
Dλ

∇ζG(ζp, ω)(δij − bij(ω))Dijv(ω) dL2(ω)
∣∣∣∣,

R = |∇ζh(ζp)|.

Furthermore, it follows by (1.6) that A is differentiable almost everywhere. From
(2.24), we obtain

DB(ζ) · T = T · DA(z) · T t for a.e. z.

Here DA(z) is the differential operator defined by

A(z + h) = A(z) + DA(z)h + o(|h|).

Note that DA(z)h is a matrix. Since Λ−1/2|z| � |Tz| � Λ1/2|z|, and bearing in
mind (1.6), we obtain

‖DB(ζ)| � |T |3‖DA(z)‖ � Λ3/2
L. (2.29)

In the previous formula we mean the following norms: the norm of a matrix L
is defined by |L| = max{|Lh| : |h| = 1}, and the norm of an operator DX(z) by
‖DX(z)‖ = max{|DA(z)h| : |h| = 1} (X = A, B). Thus,

|B(ζ) − B(ζp)| = |B(ζ) − I| � Λ3/2
L|ζ − ζp|. (2.30)

As
|T (z) − T (zp)| � λrp(zp),

by using the inequalities

rp(zp) � d(z, zp) + rp(z),

d(z, zp) � Λ1/2|T (z) − T (zp)|

and, by (2.20),
|∇u(z)|rp(z) � µp,

we obtain

|∇u(z)| � (1 − λΛ1/2)−1rp(zp)
−1

µp for z ∈ T−1(Dλ)(⊂ Bp).

From (2.27), we obtain
(1 − λΛ1/2)−2 < 4. (2.31)

Bearing in mind that ∇u(z) = ∇v(ζ) · T , we obtain

|∇v(ζ)| � 2Λ1/2rp(zp)−1µp (2.32)

for ζ ∈ Dλ.
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Since

|aij(z)Diju| � B|∇u|2 + Γ,

|bij(ζ)Dijv(ζ)| = |aij(z)Diju(z)|,

it follows that

|bij(ζ)Dijv(ζ)| � B|T |2|∇v|2 + Γ = BΛ|∇v|2 + Γ (2.33)

and, therefore, from (2.32), we find that

|bij(ζ)Dijv(ζ)| � 4Λ2Brp(zp)−2µ2
p + Γ. (2.34)

Now, we divide the proof into four steps.

Step 1 (estimation of P). From (2.3) and (2.34), we have that∣∣∣∣ 1
π

∫
Dλ

∇ζG(ζp, ω)bij(ω)Dijv(ω) dL2(ω)
∣∣∣∣

� 2
π

∫
|ω−ζp|�λrp(zp)

1
|ω − ζp|

|bij(ω)Dijv(ω)| dL2(ω)

� 2
π

∫
|ω−ζp|�λrp(zp)

1
|ω − ζp|

(4Λ2Brp(zp)−2µ2
p + Γ ) dL2(ω).

Therefore,

P �
16Λ2Bλµ2

p

rp
+ 4Γrpλ. (2.35)

Step 2 (estimation of Q). Let nω = (cos α1, cos α2) be the unit inner vector of
∂Dλ at ω. Then, from Green’s formula

∫
∂Dλ

2∑
i=1

ui(ω) cos αi dH1(ω) =
∫

Dλ

(∂ω1u1 + ∂ω2u2) dL2(ω),

proceeding as in [31, Theorem 2], we obtain

Q �
∣∣∣∣ 1
π

∫
|ω−ζp|=λrp(zp)

∇ζG(ζp, ω)(δij − bij(ω))∂iv(ω) cos αj dH1(ω)
∣∣∣∣

+
∣∣∣∣ 1
π

∫
|ω−ζp|�λrp(zp)

∇ζG(ζp, ω)∂ωj
bij(ω)∂iv(ω) dL2(ω)

∣∣∣∣
+

∣∣∣∣ 1
π

∫
|ω−ζp|�λrp(zp)

∂ωj ∇ζG(ζp, ω)(δij − bij(ω))∂iv(ω) dL2(ω)
∣∣∣∣. (2.36)

By using the Cauchy–Schwarz inequality, (2.3), (2.4), (2.29), (2.30), (2.32), we
obtain

Q � 8Λ2
Lλµp + 4Λ2

Lλµp + 4Λ2
Lλµp,

i.e.
Q � 16Λ2

Lλµp. (2.37)
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Step 3 (estimation of R). Let �(t) = �v(t) be the modulus of continuity of v as
in lemma 2.3. From (2.10), for Z = v(ζp) (Z = 0), Y (ζ) = v(ζ) and ρ = λrp(zp),
by using lemmata 2.3 and 2.4, we obtain

R � |∇h(zp)| � 2
λ2rp(zp)2

∫
|ω−ζp|=λrp(zp)

|v(ω) − Z| dH1(ω)

� 2
λrp(zp)

max{|v(ζ) − Z| : |ζ − ζp| = λrp(zp)}

� min{2�(λrp(zp)), 2K}
λrp(zp)

, (2.38)

where
K = sup

|z−a|�ρ(a)
|u(z)|. (2.39)

Step 4 (completing the proof). As

|∇v(ζp)| � Λ−1/2|∇u(zp)| = Λ−1/2rp(zp)−1µp

and rp(zp) < 2ρ(a) � d, from (2.28), (2.35), (2.37) and (2.38), we get that

A0µ
2
p + B0µp + C0 � 0, (2.40)

where

A0 = 16BΛ2λ,

B0 = 16Λ2
Lλrp(zp) − Λ−1/2

and

C0 = 4Γr2
p(zp)λ +

2 min{�(λrp(zp)), K}
λ

.

We can take λ > 0 depending on �, Λ, L, B, Γ and d so small that

B2
0 > 4A0C0 (2.41)

and

16Λ2
Lλrp(zp)λ � 1/2Λ−1/2. (2.42)

Let µ1 and µ2 (µ1 < µ2) be the distinct real roots of the equation

A0µ
2 + B0µ + C0 = 0. (2.43)

Then, from (2.40), we have that

µp � µ1 or µp � µ2.

Lemma 2.6 asserts that µp depends on p continuously for 0 < p < 1 and limp→0 µp =
0. Then, we have only µp � µ1. And, letting p tend to 1, by the definition of µp,

|∇u(a)| � µ1ρ(a)−1. (2.44)
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As µ1 is the smaller root of (2.43),

µ1 =
−B0 −

√
B2

0 − 4A0C0

2A0

=
2C0

−B0 +
√

B2
0 − 4A0C0

� −2C0

B0
.

From (2.44) and (2.39), we get that

|∇u(a)| � C(0)ρ(a)−1 sup
|z−a|�ρ(a)

|u(z)| + C(1), (2.45)

where C(0) and C(1) depend on Λ, L, B, M , Γ , d and on the modulus of continuity
of u.

2.3. Boundedness of gradient

Definition 2.7. We say that a domain D satisfies the exterior sphere condition
for some κ > 0 if to any point p of ∂D there corresponds a ball Bp ⊂ C with radius
κ such that D̄ ∩ Bp = {p}.

Theorem 2.8 (A priori bound, see [31, lemma 2]). Let D be a complex domain
with diameter d satisfying the exterior sphere condition for some κ > 0. Let u(z)
be a twice differentiable mapping satisfying (1.8) in D satisfying the boundary con-
dition u = 0 (z ∈ G). Assume, in addition, that |u(z)| � M , z ∈ D,

4
π

· 16BΓM < 1 (2.46)

and u ∈ C(D̄). Then,
|∇u| � γ, z ∈ D, (2.47)

where γ is a constant depending only on κ, M , B, Γ , L, Λ and d.

Remark 2.9. See [8, theorem 15.9] for a related result.
In the statement of [31, lemma 2], instead of (2.46),

16BΓM < 1

appears. However, a related proof relies on [31, theorem 2], which, it seems, only
works under the condition (2.46). Indeed, the right-hand side of the inequality in
the first line of [31, p. 214] should be multiplied by

2Γ (1 + m/2)√
πΓ ((m + 1)/2)

,

where m is the dimension of the space (in our case m = 2) and

2Γ (1 + 2/2)√
πΓ ((2 + 1)/2)

=
4
π

.
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3. Proof of the main theorem

We need the following lemmas.

Lemma 3.1 (Kalaj [15]). Every K-q.c. mapping w(z) = ρ(z)S(z) : D → Ω, D, Ω ⊂
C, ρ = |w|, S(z) = eis(z), s(z) ∈ [0, 2π), satisfies the inequalities

ρ|∇S| � K|∇ρ| (3.1)

and

|∇ρ| � Kρ|∇S| (3.2)

almost everywhere on D. Inequalities (3.1) and (3.2) are sharp; the equality

ρ|∇S| = |∇ρ| (3.3)

holds if w is a 1-quasi-regular mapping. We also have that

K−1|∇w| � |∇ρ| � |∇w|. (3.4)

Lemma 3.2. If w = ρS : U → U, ρ = |w|, is twice differentiable, then

L[ρ] = ρ(a11|p|2 + 2a12〈p, q〉 + a22|q|2) + 〈L[w], S〉, (3.5)

where p = D1S and q = D2S.
If, in addition, w is K-q.c. and satisfies

|L[w]| =
∣∣∣∣

2∑
i,j=1

aij(z)Dijw

∣∣∣∣ � B|∇w|2 + Γ, (3.6)

then there exists a constant Θ depending on K, B and Γ , such that

|L[ρ]| � Θ

ρ
|∇ρ|2 + Γ. (3.7)

Proof. Let w = (w1, w2) (here wi are real), S = (S1, S2) and let f = (f1, f2). For
real differentiable functions a and b, define the bilinear operator by

D[a, b] =
2∑

k,l=1

akl(z)Dka(z)Dlb(z).

Since wi = ρSi, i ∈ {1, 2}, and

ρ =
2∑

i=1

Siwi,

we obtain

L[wi] = SiL[ρ] + ρL[Si] + 2D[ρ, Si], i ∈ {1, 2}, (3.8)

and

L[ρ] =
2∑

i=1

wiL[Si] +
2∑

i=1

SiL[wi] + 2
2∑

i=1

D[Si, wi]. (3.9)
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From (3.8), we obtain

L[ρ] = L[ρ]|S|2

=
2∑

i=1

Si · SiL[ρ]

=
2∑

i=1

SiL[wi] − ρ

2∑
i=1

SiL[Si] − 2
2∑

i=1

SiD[ρ, Si]. (3.10)

By adding (3.9) and (3.10), we obtain

L[ρ] =
2∑

i=1

(D[Si, wi] − SiD[ρ, Si]) + 〈L[w], S〉.

On the other hand,

D[Si, wi] − SiD[Si, ρ] =
2∑

k,l=1

akl(z)DkSiDlwi − Si

2∑
k,l=1

akl(z)DkSiDlρ

=
2∑

k,l=1

akl(z)DkSi(ρDlSi + SiDlρ) − Si

2∑
k,l=1

akl(z)DkSiDlρ

= ρ

2∑
k,l=1

akl(z)DkSiDlSi, i = 1, 2.

Thus,

L[ρ] = ρ
2∑

i,k,l=1

akl(z)DkSiDlSi + 〈L[w], S〉

= ρ(a11|p|2 + 2a12〈p, q〉 + a22|q|2) + 〈L[w], S〉,

where p = (D1S1, D1S2) and q = (D2S1, D2S2). Therefore,

|L[ρ]| � Λρ(|p|2 + |q|2) + (B|∇w|2 + Γ )

= Λρ‖∇S‖2 + (B|∇w|2 + Γ ),

provided (3.6) holds. Here, ‖ · ‖ is the Hilbert–Schmidt norm, which satisfies the
inequality ‖P‖ �

√
2|P |. If w is K-q.c., then, according to (3.1) and (3.3), we have

that
|L[ρ]| � 2KΛ|∇ρ|2ρ−1 + (BK|∇ρ|2 + Γ ).

Taking Θ = 2KΛ + BK, we obtain (3.7).

Lemma 3.3. If f = u + iv is a K-q.c. mapping satisfying the elliptic differential
inequality, then u and v satisfy the elliptic differential inequality.

Proof. Let

A := |∇u|2 = 2(|uz|2 + |uz̄|2) = 1
2 (|fz + f̄z̄|2 + |fz̄ + f̄z|2)
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and

B := |∇v|2 = 2(|vz|2 + |vz̄|2) = 1
2 (|fz − f̄z̄|2 + |fz̄ − f̄z|2).

Then,
A

B
=

|1 + µ|2
|1 − µ|2 ,

where µ = f̄z̄/fz. Since |µ| � k = (K − 1)/(K + 1),

(1 − k)2

(1 + k)2
� A

B
� (1 + k)2

(1 − k)2
. (3.11)

As
|L[f ]| = |L[u] + iL[v]| � B|∇f |2 + Γ � B(|∇u|2 + |∇v|2) + Γ,

the relation (3.11) yields

|L[u]| � B
(

1 +
(1 + k)2

(1 − k)2

)
|∇u|2 + Γ

and

|L[v]| � B
(

1 +
(1 + k)2

(1 − k)2

)
|∇v|2 + Γ.

Before proving the main results of this paper, let us recall one of the most fun-
damental results concerning quasi-conformal mappings.

Proposition 3.4 (Mori). If w : U → U, w(0) = 0, is a K-q.c. harmonic mapping
of the unit disc onto itself, then

|w(z1) − w(z2)| � 16|z1 − z2|1/K , z1, z2 ∈ U.

Mori’s theorem for q.c. self-mappings of the unit disc has been generalized in
various directions in the plane and in the space. See, for example, [4, 6, 24].

Proof of theorem 1.1. The main thrust of the proof is to estimate the gradient of w
in some ‘neighbourhood’ of the boundary together with some interior estimate in the
rest of the unit disc. Set α, β ∈ R such that 1

2 (1 + |a|) � α < 1 and β = 1
2 (α + 1).

Define Dα = {z : |z| � β} and Aα = {z : α � |z| < 1}.
Let w = (w1, w2). According to theorem 2.5 and lemma 3.3, there exists a con-

stant Ci depending only on the modulus of continuity of wi, B, Γ , K, Λ, L and α,
such that

|∇wi(z)| � Ci, z ∈ Dα, i = 1, 2. (3.12)

By Mori’s theorem, the modulus of continuity of wi depends only on K and a.
Thus,

|∇w(z)| � |∇w1| + |∇w2| � C1 + C2 = C3(K, B, Γ, Λ, L, α), z ∈ Dα. (3.13)
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As w is a K-q.c. self-mapping of the unit disc, by Mori’s theorem [40], it satisfies
the inequality

41−K

∣∣∣∣ a − z

1 − zā

∣∣∣∣
K

� |w(z)|, |z| < 1, (3.14)

where a = w−1(0). Let u = |w|. From lemma 3.2 and (3.14), we find that

|L[u]| � 23K−2
(

1 + |a|
1 − |a|

)K

Θ|∇u|2 + Γ, (1 + |a|)/2 < |z| < 1. (3.15)

Let g be a function
g : Aα → R

defined as

g(z) =

⎧⎪⎨
⎪⎩

1 if β < |z| � 1,

1 + (u(z) − 1)
exp(1/(|z|2 − β2))
exp(1/(α2 − β2))

if α � |z| � β.

Define

φ(z) :=
exp(1/(|z|2 − β2))
exp(1/(α2 − β2))

.

Then,

L[g] =

{
0 if β < |z| � 1,

(u(z) − 1)L[φ] + φL[u] + D[u, φ] if α � |z| � β.

Therefore,

|L[g]| �
{

0 if β < |z| � 1,

B1|∇u|2 + Γ1 if α � |z| � β,
(3.16)

where

B1 = 23K−2
(

1 + |a|
1 − |a|

)K

(2KΛ + BK)

and Γ1 is a constant depending only on K, B, Γ , Λ, L and α. By (3.4), (3.13)
and (3.16), we have that

|L[g]| � C4(K, B, Γ, Λ, L, α), z ∈ Aα, (3.17)

and

|∇g| � C5(K, B, Γ, Λ, L, α), z ∈ Aα. (3.18)

Furthermore, by (3.15), (3.17), (3.18) and |a + b|2 � 2(|a|2 + |b|2), we have that

|L[u − g]| � |L[u]| + |L[g]|
� B1|∇u|2 + C7(K, B, Γ, Λ, L, α)

� 2B1|∇u − ∇g|2 + C8(K, B, Γ, Λ, L, α), z ∈ Aα.

By Mori’s theorem, there exists a constant α = α(K, a) < 1, such that

M = max{|u(z) − g(z)| : z ∈ Aα}
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is small enough, satisfying the inequality

64
π

· 2B1MΛ < 1. (3.19)

Thus, ũ = u− g satisfies the conditions of theorem 2.8 in the domain D = Aα. The
conclusion is that ∇u is bounded in β < |z| < 1 by a constant depending only on K,
B, Γ , Λ, L and a and on the modulus of continuity of ũ. From Mori’s theorem, the
modulus of continuity of u depends only on K and a. Combining (3.18) with (3.4),
we obtain

|∇w| � C0(K, B, Γ, Λ, L, a), β < |z| < 1. (3.20)

From (3.13) and (3.20), we obtain the desired conclusion.
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