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We study the possibility of having resonant interactions between three Rossby modes on
a coast or channel of arbitrary orientation. A Rossby mode comprises two propagating
Rossby waves (RWs) to satisfy the no normal flow through the boundary(ies). In each
geometry, we state the conditions, degrees of freedom and RWs of the primary two
modes that could force a third mode. We discuss differences between zonal and non-zonal
orientations. Resonant interactions are only possible if all RWs participate in the zonal
case, while only three RWs participate in the non-zonal case. The non-zonality reduces
the degrees of freedom of the resonance conditions, and the solutions are more restrictive
for more meridional orientations. In particular, there are no solutions if the coast or channel
is meridional. For the non-zonal coast, we find a family of solutions for given periods T1
and T2 of the primary modes. Using multiple scales, we obtain a uniformly valid solution
of the quasi-geostrophic potential vorticity equation (QGPVE), with the resonant modes
exchanging energy in space. There are no degrees of freedom for the non-zonal channel,
and we develop a graphical method to seek resonant solutions, finding some. We provide a
bounded solution of the QGPVE in case the primary modes excite one RW, not a channel
mode, and the modes do not exchange energy either in time or space. Regarding possible
oceanographic applications, we show solutions for the Hawaiian Ridge and inquire if there
are solutions in the Mozambique Channel, Tasman Sea, Denmark Strait and the English
Channel.
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1. Introduction

The interaction of a triad of dispersive waves is a fundamental process in the dynamics
of fluid flows; in particular, for geophysical flows, its significance is well established
(Craik 1988). In weakly nonlinear wave theories, there is considerable interest in studying
resonant interactions because they produce the largest amplitudes when compared with
all non-resonant interactions (Pedlosky 2013; Graef 1993; García & Graef 1998). In
forced problems, out of all the modes that are excited with an imposed forcing, the
dominant mode, i.e. the one that exhibits the largest response, is the resonant mode (Graef
2016).

Our general interest is to investigate whether or not there is resonance in the weakly
nonlinear interaction of Rossby normal modes in different geometries on a β-plane.
That is, we are interested in bounded domains. Specifically, in this article, we study the
possibility of finding resonant triads of Rossby modes in two domains whose orientation
is arbitrary:

(i) a straight coast, i.e. a domain that is infinite in one horizontal direction and
semi-infinite in the other horizontal direction;

(ii) a rectilinear channel, i.e. a domain this is infinite in one horizontal direction and
bounded in the other horizontal direction.

The key question to answer here is: Does the nonlinear interaction between two Rossby
modes can excite a third mode? In other words, is it possible to find resonant triads of
Rossby modes in these geometries?

It is essential to distinguish between the self-interaction of a Rossby mode and the
interaction between Rossby modes. For instance, in the classical reflection problem of
Rossby waves at a straight coast (Pedlosky 2013), a mode is defined as an incident
plus the reflected wave, i.e. a mode is composed of two propagating Rossby waves. The
self-interaction of a mode is the nonlinear interaction between an incoming and outgoing
wave (as in Graef 1993; Graef & Magaard 1994). In contrast, the interaction between
modes would be, in the simplest case, the nonlinear interaction between two modes, i.e.
between four propagating waves (two of each mode). In a channel, a Rossby mode is also
composed of two propagating Rossby waves (RWs), whereas in a gulf or closed basin, four
propagating RWs comprise a mode. Therefore, if the weakly nonlinear interaction between
two Rossby modes excites a third mode, i.e. there is resonance among the three modes,
two RWs must be excited in the coast or channel, and four RWs in the gulf or closed basin.
The work of Longuet-Higgins & Gill (1967) on resonant interactions between RWs on the
infinite β-plane set the tone for studying this type of interaction between planetary or RWs.
Although in previous works Stern (1961) and Kenyon (1964) discussed some special cases
of resonant interactions between these waves, Longuet-Higgins & Gill (1967) were the first
to establish the general conditions for three waves to resonantly interact. The study of these
interactions in an infinite ocean or open regions of the ocean is valid if the wave scales are
small compared with the size of the domain, and the waves can travel for a long time before
finding a boundary. One could also think that the waves in an open region were generated
elsewhere or may be the product of reflection at one or several boundaries. However,
when one or more boundaries limit the flow domain, new restrictions on the motion must
be imposed to satisfy the boundary conditions. The boundaries restrict the degrees of
freedom in the search for solutions to the resonant conditions. An essential aspect of these
problems that has received little attention in the literature is the geometry orientation.
Graef (1993) and García & Graef (1998) dealt with resonance in the self-interaction of a
single Rossby mode in the reflection problem at a straight wall and a channel, respectively.
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Resonant interactions of Rossby modes

In these studies, the boundary’s orientation plays a crucial role: resonance is possible
only if 0 < | sinα| ≤ 1/3, where α is the angle that the coast or channel makes with
the circles of latitude (positive clockwise). In the case of a rectangular basin with coasts
oriented east–west and north–south, Serrano, Graef & Pares-Sierra (1995) showed that
the self-interaction of a Rossby normal basin mode could not produce resonant forcing,
whereas LaCasce & Pedlosky (2004) demonstrated that these modes are vulnerable to
baroclinic instability.

As far as we know, the study of resonant interactions between free Rossby modes, which
are solutions of the linear problem of reflection at a straight coast or wall, has not been
reported. If there are two primary Rossby modes nonlinearly interacting, we could ask the
following two questions regarding resonance (aside from their self-interaction). What if
the nonlinear interaction between the RWs of modes 1 and 2 produces (A) a free RW? Or
(B) a third Rossby mode? It should be evident that problem (A) is less restrictive than (B)
and even the self-interaction problem. Indeed, in principle, it is always possible to excite
a free RW when considering the interaction between two Rossby modes, regardless of the
coastal orientation. However, the Fourier space of the resonance conditions’ solutions does
vary with α (one could find a few cases, for certain ambient parameters and vertical mode
numbers, for which there are no solutions). On the other hand, for problem (B), which is
the one we study in this paper, we may anticipate that there will be constraints on the RWs’
parameters of the primary modes and α.

The occurrence of resonance between barotropic Rossby modes in a zonal channel
was studied by Plumb (1977), while Mysak (1978) studied resonant interactions between
topographic planetary waves in a continuously stratified fluid in a channel of arbitrary
orientation. The first-order linear solution in Mysak’s study does not consider the planetary
vorticity gradient (the β-effect is zero) and so the solution to this order is valid on the
f -plane. Therefore, to our knowledge, the question of whether or not there are resonant
interactions between Rossby modes in a channel of arbitrary orientation on the β-plane is
still open. To this end, we must first establish the resonance conditions, and after that, we
need to investigate if there are solutions.

Furthermore, there have been no studies analysing the occurrence of resonance between
Rossby modes in a gulf or in a rectangular basin arbitrarily oriented on the β-plane.
Actually, in their seminal paper, Longuet-Higgins & Gill (1967) said as a final conclusion:
‘For application to the ocean it is generally desirable to consider planetary waves in closed
basins. We know . . . in a rectangular basin on a β-plane . . . construct solutions which
consist of the sum of four progressive planetary waves . . . . The possibility exists that for
basins of certain size and orientation there may be resonance between three modes of
low order. An investigation of this possibility is in progress’. It is remarkable that after
more than 50 years, the problem of finding resonant modes in a rectangular basin has not
been tackled, or at least reported in the literature. The results of this article will hopefully
contribute or shed some light on it.

In table 1, we summarize all results regarding the existence of resonance in either the
nonlinear self-interaction of a Rossby mode or in the nonlinear interaction among Rossby
modes in different geometries. It includes those cases reported in the literature (providing
at least one reference), those not done to our knowledge, indicated by a question mark (?)
and, finally, the cases that we have done in this article. This exercise, hopefully, serves to
place our work in a more general context.

For the coast or channel, a Rossby mode is the superposition of two propagating RWs.
Thus, the nonlinear interaction between two Rossby modes in each geometry produces
12 forcing terms, which come about as follows. There are 4 RWs, so 6 interactions since
each one’s self-interaction is null, and each interaction produces two terms, one with the
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Geometry Orientation One mode Among modes

Unbounded — No Yes, Longuet-Higgins & Gill (1967)
Coast Zonal No Yes

Non-zonal Yes, Graef (1993) Yes, this work
Channel Zonal No Yes, Plumb (1977)

Non-zonal Yes, García & Graef (1998) Yes, this work
Gulf Zonal No, García & Graef (1998) ?

Non-zonal Yes, García & Graef (1998) ?
Basin Zonal No, Serrano et al. (1995) ?

Non-zonal ? ?

Table 1. Resonant interactions of Rossby modes in different geometries and their orientation. There is no
reference for the zonal coast among modes because the problem is exactly as in Longuet-Higgins & Gill (1967),
but this fact was overlooked.

sum and the other with the difference of the wave phases. For the rectangular gulf or
basin, a Rossby mode is the superposition of four propagating RWs. Therefore, two modes’
nonlinear interaction involves 8 RWs, so there will be 28 interactions and 56 forcing terms.
Of course, if the orientation is zonal, many forcings will vanish. One question is: Which
of the forcing terms should we consider to form a third Rossby mode? This question is
non-trivial because we will need to analyse, among all possible interactions, those that
could excite two RWs (or four in the case of a gulf or basin) that precisely form a free
Rossby mode for each one of the geometries.

We organize the paper as follows. In the next section, we present general considerations
of the problem that apply equally to the straight coast and the channel. In § 3, we analyse
which of the forcing terms could produce a third mode for both geometries, pointing out
the differences between zonal and non-zonal orientations. The solution of the resonance
conditions between three Rossby modes in a non-zonal straight coast is presented in § 4,
both analytically and graphically. Section 5 is devoted to finding solutions to the resonance
conditions between three Rossby modes in a non-zonal channel. In these last two sections,
we inquire if there are restrictions on the coast(s)’ orientation α and comment on possible
oceanographic applications. In § 6, we show the quasi-geostrophic potential vorticity
equation (QGPVE) solution for the resonant forcing terms in the coast, where we need
to use multiple scales to obtain bounded solutions. In the channel, we could only find a
solution in the case of problem (A), in which a coastal mode is excited. Finally, the last
section provides a discussion and conclusions.

2. General considerations

Consider a β-plane with a coordinate system (x, y, z) in which x is parallel and y is
perpendicular to the coast or channel and z is vertically upwards (figure 1). For the
coast, there is a vertical wall at the plane y = 0 and for the channel, of width W, there
is another vertical wall at the plane y = W. The origin is somewhere in a mid-latitude
region. The governing equation is the QGPVE, which in this coordinate system
reads {

[∂t + J(ψ, ·)]
[
∇2 + ∂z(Γ

2∂z)
]

+ β(cosα ∂x + sinα ∂y)
}
ψ = 0, (2.1)
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North

East

x

α

y

Figure 1. Coordinate system. The rotated coordinate system has x parallel and y perpendicular to the coast;
α is measured positive clockwise. For the channel of width W, there is another coast at y = W.

where α is the angle that the coast makes with the circles of latitude (positive clockwise),
J(a, b) ≡ ∂xa ∂yb − ∂xb ∂ya the Jacobian operator, ∇2 = ∂x∂x + ∂y∂y, t is the time,ψ is the
quasi-geostrophic streamfunction, β is the northward gradient of the planetary vorticity
and Γ 2(z) ≡ f 2

0 /N
2(z), where f0 is the Coriolis parameter and N(z) is the Brunt–Väisälä

frequency.
For the coast, the kinematic boundary condition of no normal flow is ∂xψ = 0 at

y = 0; and for the channel it is ∂xψ = 0 at y = 0,W. Since the domain is partially open,
an explicit mass conservation constraint or time-independent circulation is not required
(Pinardi & Milliff 1989). Besides, for the type of solutions we will be considering (a sum
of Rossby modes), the coasts’ condition implies ψ = 0 there. The boundary conditions
in z are those for a flat bottom and a rigid lid, i.e. [∂t + J(ψ, ·)]∂zψ = 0 at z = −H, 0,
where H is the constant water depth. These conditions will be automatically satisfied,
since the z-dependence of the Rossby modes is given in terms of eigenfunctions ϕnj(z) of
the familiar vertical Sturm–Liouville problem (Pedlosky 2013).

Without going into the details, the general approach to studying the weakly nonlinear
interaction between two Rossby modes of a coast or a channel is as follows. One first
obtains the non-dimensional version of the QGPVE (2.1) by choosing suitable scaling
parameters. There appears a parameter ε = Uβ−1L−2 multiplying the nonlinear terms,
which is the β-Rossby number, where U and L are the scales for the horizontal velocity
and length. One then assumes ε � 1 and writes the solution as a perturbation expansion
ψ = ψ(0) + εψ(1) + . . . .

Therefore, mathematically, the problem is to solve the (dimensional) equation

Lψ(1) = −J
(
ψ(0),∇2ψ(0) + ∂z

[
Γ 2∂zψ

(0)
])
, (2.2)

where

L ≡ ∂t

(
∇2 + ∂z

[
Γ 2∂z

])
+ β

(
cosα∂x + sinα∂y

)
, (2.3)
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and ψ(0) is the leading-order solution, chosen to be the superposition of any two free
Rossby modes for a straight coast or a channel

ψ(0) = ψ
(0)
1 + ψ

(0)
2

=
2∑

j=1

Ajϕnj(z)
[
cos

(
θ1j
)− cos

(
θ2j
)]

≡ ψ
(0)
11 − ψ

(0)
21 + ψ

(0)
12 − ψ

(0)
22 . (2.4)

In the last expression, we have defined the streamfunctions of the four RWs, two of each
mode, given by

ψ
(0)
ij = Ajϕnj(z) cos

(
θij
)

≡ Ajϕnj(z) cos
(
kjx + lijy − ωjt + ϑj

)
, j = 1, 2; i = 1, 2, (2.5)

where for the jth mode, Aj and ϑj are the (real) amplitude and phase, respectively, kj is
the wavenumber parallel to the coast or channel and ωj is the frequency; and lij is the
wavenumber perpendicular to the coast or channel of the ith RW of the jth mode.

Our interest is in studying the possibility of having resonant interactions between three
Rossby modes on a coast or channel of arbitrary orientation. Therefore, we ask whether
the forcing of (2.2), i.e. its right-hand side, with ψ(0) given by (2.4), could produce a third
mode, namely,

ψ
(1)
3 = A3ϕn3(z) [cos (θ13)− cos (θ23)] , (2.6)

which is a solution (or free Rossby mode) in the geometry considered.
Of course, each Rossby mode, including the forced mode, must satisfy the relationships

2ωjl0j + β sinα = 0, (2.7)

ωj

(
k2

j + l20j +Δ2
j + â−2

nj

)
+ β

(
kj cosα + l0j sinα

) = 0, (2.8)

or, in compact form, the relation

Δ2
j = fnj

(
kj, ωj

) ≡ β2

4ω2
j

− â−2
nj

−
(

kj + β cosα
2ωj

)2

, (2.9)

for j = 1, 2, 3, where ânj is the baroclinic Rossby radius of the nj vertical mode. We know
that the component of the wavenumber vector perpendicular to the wall(s) that form each
of the modes, is determined by

l1j,2j = l0j ±Δj, j = 1, 2, 3, (2.10)

with l0j given by (2.7). In what follows, we will call l1j the incident wave and l2j the
reflected wave of the jth mode (this holds true for all orientations of the straight coast
if Δj > 0 – see Graef & Magaard 1994). Obviously, in the case of a channel, the terms
incident and reflected make no sense; however, this denomination helps us not to introduce
new terms and clearly does not lead to confusion.
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Resonant interactions of Rossby modes

Finally, we note that, upon using some trigonometric identities, the streamfunction of
the jth mode (see (2.4)) can be written as

ψ
(0)
j = −2Ajϕnj(z) sin

(
kjx + l0jy − ωjt + ϑj

)
sin(Δjy), (2.11)

i.e. the mode is ‘sort of’ a standing wave in the direction perpendicular to the coast or
channel (y-direction), but still propagating in the (kj, l0j) horizontal direction. Also, for a
channel, it is Δj = mjπ/W, where mj = 1, 2, 3, . . . and it is easy to see from (2.11) that
ψ
(0)
j satisfies the boundary condition at y = 0 for the coast, or at y = 0,W for the channel.

3. Which forcings could produce a third mode?

We know that the nonlinear interaction between two waves produces forcing terms with
the sum and difference of the wave phases, and that to form a mode we need to have
two RWs, of equal wavenumber in the x-direction, with the same frequency and identical
vertical structures. We will now see which of the forcings (produced by the interaction of
the waves of the ‘initial’ or primary modes) we should consider to form a third Rossby
mode. For both problems (coast and channel), we will point out the difference between the
zonal and non-zonal orientations.

3.1. Forcings produced by the self-interaction of one or both modes
This case only applies when the geometries are not zonally oriented. First, we analyse
the forcings produced by the self-interaction of both primary modes. As the forced mode
must be the sum of two RWs of equal frequency and equal wavenumber component in the
x-direction, we obtain that ω3 = 2ω1 = 2ω2, and k3 = 2k1 = 2k2. Therefore, the modes
‘initially’ considered or primary modes are equal, and this has already been studied by
Graef (1993) for the straight coast and by García & Graef (1998) for the channel.

Now we analyse the case in which one of the forcings is produced by the self-interaction
of one mode, and the other forcing is produced by the interaction of one of the RWs of one
mode with one of the RWs of the other mode. In such a situation we get

ω3 = 2ω1 = ω1 ± ω2 =⇒ ω2 = ±ω1,

k3 = 2k1 = k1 ± k2 =⇒ k2 = ±k1,

}
(3.1)

where the ± sign indicates the sum or difference of the wave phases in the forcing terms
produced by the interacting waves. Again, the primary modes match, and we are in the
previous case. Another possibility from (3.1) arises if we exchange ω1 and ω2, so that we
consider the self-interaction of mode 2. In such a case

ω3 = 2ω2 = ω1 ± ω2 =⇒ ω1 = 3ω2,

k3 = 2k2 = k1 ± k2 =⇒ k1 = 3k2,

}
(3.2)

where we chose the waves’ phase difference, otherwise we are in the case in which
the primary modes match. Let us call ω2 = ω, then ω1 = 3ω and ω3 = 2ω. Then the
wavenumbers perpendicular to the coast or channel of mode 3 are

l13 = l12 + l22 = 2l02 (self-interaction of mode 2),

l23 = l11 − l12.

}
(3.3)

If it is a mode, necessarily l13 + l23 = 2l03 = −β sinα/(2ω) = l02, since ω3 = 2ω (in
fact, from (2.7), it follows that 3l01 = l02 = 2l03). Thus, l23 = −l02, which in combination

918 A34-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.344


F. Graef and R.F. García

with the second equation of (3.3) yields l01 = Δ2 −Δ1, upon using (2.10). Also l13 −
l23 = 2Δ3 = 3l02. Thus, between the variables Δj, only one is independent, say Δ2.
Therefore, for this particular case in which the frequencies are multiples of ω, we have
three equations, one for each mode, i.e. (2.9) for j = 1, 2, 3, and three unknowns: ω, k and
Δ2. If there is a solution for the coast, it is unique (there are no degrees of freedom). For
the channel, since Δj = mjπ/W must be prescribed, there are two unknowns, the system
is incompatible, and there are no solutions. We will not consider this particular case in
any further analysis in what follows in this paper. Note, however, that only three RWs
participate in exciting, in principle, a third mode.

Thus, it follows from the above considerations that: for a channel, a third Rossby mode
can never be excited if we consider the forcing produced by the self-interaction of any one
of the Rossby modes.

3.2. Forcings produced by the interaction of the four RWs
Let us take, without loss of generality, the forcing produced by the interaction of the
incident waves of each mode and the forcing produced by the interaction of the reflected
waves of each one. Thus, the four waves, two of each mode, participate in the formation
of a third mode, whose wave parameters are given by

ω3 = ω1 ± ω2,

k3 = k1 ± k2,

l13 = l11 ± l12,

l23 = l21 ± l22.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

The sum of the last two relations of (3.4) establishes that

l03 = l01 ± l02, (3.5)

which is trivially satisfied if the coast or channel is zonal (sinα = 0). On the other hand,
if the coast or channel is not zonally oriented, (3.5) yields, upon substituting (2.7)

(ω2 ± ω1) (ω1 ± ω2)− ω1ω2 = 0, (3.6)

which is satisfied only if

ω2 = 1
2

(
−1 ± i

√
3
)
ω1, (3.7)

if the sum of the phases is considered; or

ω2 = 1
2

(
1 ± i

√
3
)
ω1, (3.8)

if the difference of the phases is considered (in these solutions for ω2, the ± refers
obviously to the two roots). From (3.7) or (3.8), which are the product of the sum or
difference of the wave phases, one can see that if the frequency of one of the modes is
real (as it must be), the frequency of the other is complex, which does not constitute a
free Rossby mode. The case ω1 = ω2 = 0 is not possible because we are in the non-zonal
orientation sinα /= 0, in which stationary currents cannot be solutions of the QGPVE
without an external forcing.

Therefore, for a non-zonally oriented coast or channel, the forcings produced by the
interaction between the four RWs of the primary modes can never excite a third mode.
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Resonant interactions of Rossby modes

3.2.1. Zonal case
We already saw that the sum l13 + l23 from (3.4) is trivially satisfied if the coast or channel
is zonal. However, the difference l13 − l23 yields Δ3 = Δ1 ±Δ2, which means that a
new horizontal structure is produced by the resonant interactions, i.e. there is ‘barotropic
transfer’. Therefore, for the zonal case, the kinematic conditions that must be satisfied for
resonance to occur between three Rossby modes are

ωj

(
k2

j +Δ2
j + â−2

nj

)
+ βkj = 0, j = 1, 2, 3,

ω3 = ω1 ± ω2,

k3 = k1 ± k2,

Δ3 = Δ1 ±Δ2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.9)

These conditions are identical to those posed by Longuet-Higgins & Gill (1967) in their
study on resonant interactions between barotropic planetary waves. However, our case is a
generalization of that work, since here we consider a continuously stratified ocean and the
coupling between the vertical structure of the modes. Incidentally, we should mention the
work by Vanneste (1995), who treated the nonlinear interaction among normal modes in a
multilayer QG (zonal) channel.

In general, there are six equations and twelve variables: ωj, kj, Δj and nj. The last three
(the nj) must be specified, and therefore we end up with a system with three degrees of
freedom. It is convenient to note that the variables that define the third Rossby mode,
except for its vertical structure n3, may not be taken into account to determine the degrees
of freedom of the resonance conditions. In such a case the last three relations of (3.9) are
eliminated, to obtain the system

ω1

(
k2

1 +Δ2
1 + a−2

n1

)
+ βk1 = 0,

ω2

(
k2

2 +Δ2
2 + a−2

n2

)
+ βk2 = 0,

(ω1 ± ω2)
[
(k1 ± k2)

2 + (Δ1 ±Δ2)
2 + a−2

n3

]
+ β (k1 ± k2) = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.10)

Now we have three equations and nine unknowns, but when we specify the discrete
variables nj, we get a system with three degrees of freedom.

For a channel of constant width W, however, the variables Δ1 = m1π/W and Δ2 =
m2π/W need to be specified. Thus, the system (3.10) has only one degree of freedom.
This case is similar to the study of Plumb (1977).

Finally, we note the following fact. In the zonal case, and this is true for the coast or
channel, if the nonlinear interaction between one RW of mode 1 and one RW of mode
2 excites a free RW, i.e. if for example {ψ(0)11 , ψ

(0)
12 , ψ

(0)
13 } form a resonant triad, then it

follows that the interaction between the other RW of mode 1 and the other RW of mode 2,
also forces another free RW, i.e. {ψ(0)21 , ψ

(0)
22 , ψ

(0)
23 } also form a resonant triad; and further,

these two new waves form a third mode. In other words, the forcing of a third mode occurs
automatically. This does not happen in the non-zonal case. Therefore, the zonal orientation
is less restrictive in terms of finding resonance among modes.

3.3. Forcings produced by the interaction of three RWs
Let us now consider the forcing that is produced by the interaction of one of the RWs of
one mode with the two RWs of the other mode. In that case, without loss of generality, we
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have

ω3 = ω1 ± ω2,

k3 = k1 ± k2,

l13 = l11 ± l12,

l23 = l11 ± l22.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.11)

The sum of the last two relations of (3.11) yields

l03 = l11 ± l02, (3.12)

= l01 +Δ1 ± l02, (3.13)

which, in terms of the frequencies, i.e. using (2.7), is

Δ1 =
(

±ω2
3 − ω1ω2

2ω1ω2ω3

)
β sinα. (3.14)

Equation (3.14) that relates ω1, ω2 andΔ1, is additional to the three equations (one for each
Rossby mode), and distinguishes the non-zonal case from the zonal case. It also reduces
the degrees of freedom.

If the coast or channel is zonally oriented, from (3.14) it follows that Δ1 =
0, but this implies that l11 = l21 = 0, i.e. only one RW with the group velocity
parallel to the coast and whose solution is ∼y cos(kx − ωt), physically there is no
reflection; and for the channel this means that there is no mode 1 (see Graef
2017). Thus, the interaction of three RWs cannot produce a third mode in the zonal
case.

On the other hand, the difference of the last two relations of (3.11) yields

l13 − l23 = ± (l12 − l22) =⇒ Δ3 = ±Δ2. (3.15)

Therefore, the horizontal structure of the ‘standing’ part of the forced mode is identical
to that of the mode whose two RWs participate in the interaction (mode 2 in this
case). Resonant interactions do not produce new horizontal structure in the non-zonal
case.

From the results obtained above it follows that:

(i) If the coast or channel is zonally oriented, we need the participation or interaction of
the four RWs, two of each mode, to excite a third Rossby mode that can resonantly
interact with the modes that originate it.

(ii) If the coast or channel is not zonally oriented, only three waves (of the four RWs)
can participate in exciting, in principle, a third mode that can resonantly interact
with the modes that originate it.

(iii) Only in the zonal case is a new horizontal structure created, i.e. there is ‘barotropic
transfer’.
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Resonant interactions of Rossby modes

In the non-zonal case, the kinematic conditions for resonance to occur between three
Rossby modes can be written as

(
k1 + β cosα

2ω1

)2

+Δ2
1 − β2

4ω2
1

+ â−2
n1

= 0, (3.16)

(
k2 + β cosα

2ω2

)2

+Δ2
2 − β2

4ω2
2

+ â−2
n2

= 0, (3.17)

[
(k1 ± k2)+ β cosα

2 (ω1 ± ω2)

]2

+Δ2
2 − β2

4 (ω1 ± ω2)
2 + a−2

n3
= 0, (3.18)

Δ2
1 −

[
(ω1 ± ω2)

2 ∓ ω1ω2
]2

4ω2
1ω

2
2 (ω1 ± ω2)

2 β2 sin2 α = 0. (3.19)

Thus, unlike the zonal case, in the non-zonal case we have a system with nine unknowns:
k1, k2,Δ1,Δ2, n1, n2, n3, ω1 and ω2, but four equations. Once we specify the nj, we have a
system with two degrees of freedom. For a channel of width W, where Δ1 = m1π/W and
Δ2 = m2π/W need to be specified, the system (3.16)–(3.19) is compatible and determined;
that is to say, there are no degrees of freedom. If a solution exists, it is unique.

The solutions of (3.16)–(3.19), for both geometries, will be discussed in the next two
sections.

4. Resonant interactions of Rossby modes in a straight coast

We will only treat the non-zonal orientation since, as discussed before, the case of a
zonal coast is identical to the work done by Longuet-Higgins & Gill (1967). The resonant
conditions (3.16)–(3.19) can be rewritten as

Δ2
1 = fn1 (k1, ω1) , (4.1)

Δ2
2 = fn2 (k2, ω2) , (4.2)

Δ2
2 = fn3 (k1 ± k2, ω1 ± ω2) , (4.3)

Δ2
1 = g (ω1, ω2) , (4.4)

where

fn (k, ω) ≡ β2

4ω2 − â−2
n −

(
k + β cosα

2ω

)2

(4.5)

and

g (ω1, ω2) ≡
[
(ω1 ± ω2)

2 ∓ ω1ω2
]2

4ω2
1ω

2
2 (ω1 ± ω2)

2 β2 sin2 α. (4.6)

Equating (4.1) and (4.4) to eliminate Δ1, we get a quadratic in k1

4ω2
1ω

2
2ω

2
3k2

1 + 4ω1ω
2
2ω

2
3β (cosα) k1 + ω4

3β
2 sin2 α + ω2ω

2
3

×
[
4ω2

1ω2â−2
n1

− (ω2 ± 2ω1) β
2 sin2 α

]
+ ω2

1ω
2
2β

2 sin2 α = 0, (4.7)
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where the variable ω3 has been left in (4.7) for simplicity. Solving for k1, after substituting
ω3 by ω1 ± ω2, and some algebra and simplifications, we obtain

k(1,2)1 = −β cosα
2ω1

± 1
2

[
β2

(
cos2 α

ω2
1

− sin2 α

ω2
2

)
− 4â−2

n1
− β2 sin2 α

(ω1 ± ω2)2

]1/2

. (4.8)

Thus, there are two roots or solutions: k(1)1 and k(2)1 , corresponding to the + and − in
front of 1

2 [. . .]1/2, respectively, for the phase sum (ω1 + ω2), or for the phase difference
(ω1 − ω2). We could not find a condition that only involves the coast orientation α to have
k(1,2)1 real. However, it is easy to see that there are no real solutions for a meridional coast
(α = π/2). The real solutions are restricted to more zonally oriented coasts. We need
real wavenumbers parallel to the coast, otherwise, the solution blows up as x −→ ±∞.
A necessary condition to have k(1,2)1 real is

| sinα| ≤
[

(1 ± r)2 r2

(1 + r2)(1 ± r)2 + r2

]1/2

, (4.9)

where r = ω2/ω1 = T1/T2 and T1 = 2π/ω1, T2 = 2π/ω2 are the primary modes’
periods. This condition is in terms of | sinα|, as in previous works (Graef 1993; García
& Graef 1998), and one can easily see special cases. For example, if r = 1 (initial modes
have equal frequency) it reduces to | sinα| ≤ 2/3 (see (4.11) below) and if r = 2 (i.e.
ω2 = 2ω1) | sinα| ≤ 6/7.

Figure 2 shows the function X±(r, α) = | sinα|2 − (1 ± r)2 r2/[(1 + r2)(1 ± r)2 + r2]
in which the yellow regions are prohibited (X± > 0); note the region around a meridional
coast (α = 90◦). If k(1,2)1 are real then r and α must be in the green and blue regions where
X± < 0. Large values of r or T1  T2 favour real solutions for more meridionally oriented
coasts (α ∈ (70, 85) or α ∈ (95, 110) ◦).

To complete the story, however, we still need to calculate the wavenumber k2 of the
second mode. This is accomplished by equating (4.2) and (4.3) to eliminate Δ2, but this
time the term k2

2 drops out, and we get a linear equation in k2(
±2k1 ± β cosα

ω1 ± ω2
− β cosα

ω2

)
k2 = β2 sin2 α

4

[
1

(ω1 ± ω2)2
− 1
ω2

2

]

+ â−2
n2

− â−2
n3

− k2
1 − β cosα

ω1 ± ω2
k1. (4.10)

From (4.10) we can easily solve for k2 and substitute the roots k(1,2)1 to obtain k(1,2)2 for
either the sum or phase difference. It is worth remarking that both (4.8) and (4.10) are
necessary conditions to have solutions of the system (4.1)–(4.4). That is, with the roots
k(1,2)1 we have to go back to (4.1) to calculateΔ2

1; similarly, with k(1,2)2 , we go back to (4.2)
or (4.3) to calculate Δ2

2. Thus, the whole solution is obtained.
In the previous section, we showed that we have two degrees of freedom in this problem.

Given the frequencies of the primary modes ω1 and ω2, we can get the wavenumbers
along the coast of the first mode k(1,2)1 and second mode k(1,2)2 , for either the sum or phase
difference of the interacting RWs. Thus, for each ω1 and ω2, there are two solutions k(1,2)1p

for the phase sum and two solutions k(1,2)1m for the phase difference.
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Figure 2. The function X±(r, α), where r = ω2/ω1 and α is the angle between the eastern direction and the
coast (in degrees). If k(1,2)1 are real, then r and α must be in the green and blue regions X± < 0. Yellow regions
have X± > 0, for which k(1,2)1 are complex: (a) is X+; (b) is X−.

In figure 3 we show the real solutions k(1,2)1p,m as a function of the mode periods T1 and T2
for values appropriate for the Hawaiian Ridge: reference latitude φ0 = 21◦ and α = 25◦;
we choose a first baroclinic mode n1 = 1 for Rossby mode 1. Note that the (T1, T2) space
of real solutions is more restrictive (T1 > T2) for the phase difference than for the phase
sum. Due to (4.10), if k1 is complex, then k2 is complex. Thus, the white regions of figure 3
will be exactly the same for the wavenumber k2 of the second mode.

To give an idea of the RWs of each mode of the resonant triad, we calculate their
wavelengths as a function of T1 and T2 for values of the Hawaiian Ridge and vertical
mode numbers n1 = 1, n2 = 1 and n3 = 2 (see figures 4–7). A few notes about these four
figures are in order. First, the allowed (T1, T2) space is reduced further for the wavelengths
(as compared with the one for k1 of figure 3) because we only permit solutions that yield
real wavenumber components perpendicular to the coast (otherwise the solution blows
up as y −→ ∞). That is, the fact that the k values are real does not guarantee that the
l values are real, so when calculating the l values, we must require Δ2

2 > 0 (see (2.9)
and (2.10)); note that Δ2

1 > 0 by (4.4) and (4.6) and we have Δ2
3 = Δ2

2. Therefore, the
approach to correctly understanding figures 4–7 is to choose the periods (T1, T2) such
that they fall on coloured regions in all 6 panels of each figure. Figures 4 and 5 show the
wavelengths of the incident and reflected RWs of the three modes corresponding to the
solutions k(1)1p and k(1)1m , respectively. For the phase sum ω1 + ω2 (figure 4), the range of
wavelengths for the first mode is � 1000 km for the incident RW (note the white wedge
in modes 2 and 3) and � 50 for the reflected RW; for the second mode, the ranges are
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Figure 3. The solutions for the wavenumbers k(1,2)1 from (4.8) as a function of the mode periods T1 and T2 in
years. Panels (a,b) and (c,d) correspond to the phase sum and phase difference, respectively. Panels (a,c) and
(b,d) show k(1)1 and k(2)1 , respectively. The white regions yield complex solutions. Reference latitude φ0 = 21◦,
α = 25◦, which are values appropriate for the Hawaiian Ridge; n1 = 1.

[100, 240] km and [20, 120] km, respectively; and for the third mode they are [100, 1400]
km and [� 50, 200] km, respectively. Note, however, that in general the space for the
larger wavelengths is squeezed into a very small region. For the phase difference ω1 − ω2
(figure 5), the range of wavelengths is: � 1000 (note the small white wedge in modes 2
and 3 for very small T2) and [� 20, 100]; [� 50, 200] and [20, 140]; and [� 100, 2000]
and [� 20, 120], for the incident and reflected and for modes 1, 2 and 3, respectively.

Figures 6 and 7 show the wavelengths corresponding to the solutions k(2)1p and k(2)1m ,
respectively. It is noteworthy that there is a dramatic reduction in the allowable (T1, T2)
space for the solution superscript (2). This is mainly due to the fact, that for western
coasts facing north, such as the Hawaiian Ridge, α ∈ (0, 90) degrees, cosα > 0 and
|k(2)1 | > |k(1)1 | (see (4.8)), so that in general |k(2)2 | > |k(1)2 |, making Δ2

2 negative in a much
larger region of the (T1, T2) space, thus reducing the space for real l values. The real
solutions for both k and l lie only within the very tiny region (resembling a slice of a pie),
with T2 > T1 for solution k(2)1p and T1 > T2 for k(2)1m . In both figures all the wavelengths are
small: they range approximately between 20 and 200 km.

We produced figures 4–7 for a reference latitude φ0 = 21◦ and a coastal orientation
α = 25◦, which are values appropriate for the Hawaiian Ridge. We conclude that, in this
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Figure 4. Wavelengths (in km) of the incident (a,c,e) and reflected (b,d, f ) RWs of mode 1 (a,b), mode 2 (c,d)
and mode 3 (e, f ) corresponding to the solution k(1)1p as a function of the mode periods T1 and T2 in years. Here,
φ0 and α are appropriate for the Hawaiian Ridge and the vertical mode numbers are n1 = 1, n2 = 1, n3 = 2.

case, the nonlinear interaction between two n1 = 1 (first mode baroclinic) annual Rossby
modes cannot excite a semi-annual n3 = 2 Rossby mode. However, if instead we consider
that the third or excited mode is barotropic with a free surface n3 = 0 (depth H = 4000 m),
then those annual modes can resonantly interact to force a semi-annual mode (not shown
here).

A general characteristic emerges by looking at different coastal orientations: the (T1, T2)
space of real solutions is smaller for the phase difference than for the phase sum.
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Figure 5. As in figure 4, but for the solution k(1)1m .

4.1. Modes of equal frequency
If the initial modes have equal frequencies, the number of variables is reduced by one (from
6 to 5), but the number of equations remains the same (four). There is still one degree of
freedom, and we can exploit it to examine the possibilities to find resonance easily. This
case is compelling because of its similarity to resonance occurring in the self-interaction
of a Rossby mode (Graef 1993).

For ω1 = ω2 = ω, the solution (4.8), which only makes sense for the sum of the phases,
is given by

k(1,2)1 = −β cosα
2ω

±
[
β2

4ω2

(
1 − 9

4
sin2 α

)
− â−2

n1

]1/2

. (4.11)
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Figure 6. As in figure 4, but for the solution k(2)1p .

It is obvious that, to have k(1,2)1 real, it is necessary that | sinα| ≤ 2/3. Again, the
orientation of the coast or wall imposes a restriction for resonance to occur. We note
that this value (of | sinα|) is twice that obtained by Graef (1993) when considering the
self-interaction of a Rossby mode in a coast.

As can be observed from figure 4, there are solutions for T1 = T2 (i.e. ω1 = ω2) because
a good part of the diagonal straight line lies within the coloured regions of all panels. But
there are no solutions ω1 = ω2 for figure 6, since the diagonal is outside the coloured
regions for modes 2 and 3.
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Figure 7. As in figure 4, but for the solution k(2)1m .

5. Resonant interactions of Rossby modes in a channel

In a channel, we have already shown that there are no degrees of freedom. Once the
5 discrete variables (i.e. the three vertical mode numbers nj, j = 1, 2, 3 and the two
horizontal mode numbers m1 and m2) are specified, the kinematic conditions (3.16)–(3.19)
or (4.1)–(4.4) form a closed system for the four unknowns: ω1, ω2, k1 and k2. If a solution
exists, it is unique. The presence of a second boundary, as compared with the straight coast
case (only one boundary), makes it a much more restrictive problem.
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We tried but did not succeed in arriving at a single equation for any one of the
four unknowns. However, using the solutions for the straight coast (4.8) and (4.10), we
developed the following graphical method to seek for solutions:

(i) First, we give the mode number m1 (i.e. Δ1) and ω1. Then from (4.4) we solve for
ω2, yielding

± ω2
2 + ω1ω2 ± ω1

(
1
ω1

− 2Δ1

β sinα

)−1

= 0, (5.1)

whose solution is

ω2 = ∓ω1

2
±
[
ω2

1
4

− ω1

(
1
ω1

− 2Δ1

β sinα

)−1
]1/2

, (5.2)

in which, as usual, the ∓ in front of ω1/2 corresponds to the RWs’ phase sum (upper
sign) and difference (lower sign), and the ± in front of the square root refers to the
roots of ω2. A necessary and sufficient condition to have the frequency ω2 real is
2Δ1ω1 > β sinα, i.e. T1 < 4πΔ1/(β sinα). This condition (which could be derived
by noting that, for a non-zonal channel, α ∈ (0,π) covers all possible orientations
so that sinα > 0) imposes a restriction on large periods for the first mode, but at
the same time from the Rossby mode dispersion relation, (4.1) and (4.5), we need
to have β > 2ω1Δ1 or T1 > 4πΔ1/β. The conditions are opposed, showing us how
restrictive it would be to find real solutions.
Now, using (4.8), upon substituting (5.2), we draw the curves k1 = F(ω1) (there will
be four curves corresponding to the two roots k(1,2)1 and the two roots of (5.2) for the
phase sum, and other four curves for the phase difference, eight curves total).

(ii) From (4.10) we have k2 as a function of k1. Draw the curve k2 = G(k1) = G[F(ω1)],
i.e. k2 as a function of ω1 only.

(iii) Now considering k2 of step 2, for it to be a solution, must also satisfy (4.2) or
(3.17), which is the equation for mode 2, quadratic in k2. That is, given m2 (i.e.
Δ2) and substituting ω2 from (5.2) of step 1 into (3.17), we could draw the curve
fn2(k2, ω2) = Δ2

2 of this mode for each ω1.
(iv) The intersections of the curves of step 2 and step 3, if they exist, are the solutions for

k2 (it could be for more than one frequency ω1 if there is more than one intersection).
(v) The solutions for k1 would correspond to the same abscissas ω1 at which the curves

for k2 intersect, but on the curve of step 1: k1 = F(ω1).

In figures 8–10 we show an example of the graphical method just described, where
we have chosen the period of the first mode T1 as the independent variable instead of
the frequency ω1. The chosen parameters are: φ0 = 20◦, α = 15◦, channel width W =
500 km, horizontal mode numbers m1 = 2, m2 = 1 (recall m3 = ±m2) and vertical mode
numbers nj = (0, 0, 0), i.e. a fully barotropic case with a free surface and a depth H =
4000 m. Figure 8 shows solution (5.2) in terms of the periods, i.e. T2 as a function of
T1. There are four curves, two in each panel, which correspond to the positive (blue) and
negative (red) root of ω2 (or T2). The upper (lower) panel refers to the RWs’ phase sum
(difference). Note that, for the chosen parameters, T1 cannot be larger than 0.9 years (recall
the restriction 4πΔ1/β < T1 < 4πΔ1/(β sinα)).

As regards to the solution of the resonance conditions, we observe that, for the phase
sum (figure 9), there is only one solution, since the k2-curves of steps 2 and 3 (blue and
red, respectively) intersect in one panel only (a). Such a solution corresponds to the along
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Figure 8. Periods T2 of the second mode as a function of T1 (years) from solution (5.2). Here, φ0 = 20◦,
α = 15◦, channel width W = 500 km, horizontal mode number m1 = 2 and vertical mode number n1 = 0
(free surface, depth H = 4000 m). Panels (a) and (b) show the phase sum and phase difference, respectively.
Blue (red) curve refers to the positive (negative) root of ω2.

channel wavenumbers k(1)1p1 of mode 1 and k(1)2p1 of mode 2, where the additional subscript
(1 or 2) in k1 and k2 refers to the (+ or −) root of ω2 in (5.2).

On the other hand, for the phase difference (figure 10), there are three solutions,
since the k2-curves of steps 2 and 3 (blue and red, respectively) intersect in three
panels (a,b,d), corresponding to solutions (k(1)1m1, k(1)2m1), (k

(2)
1m1, k(2)2m1) and (k(2)1m2, k(2)2m2),

respectively. However, the solutions of (b,d) represent the same Rossby modes (same mode
parameters), but with mode 2 in one panel being mode 3 in the other panel, and vice versa.
This can be seen by realizing that the solutions of these panels have identical T1 (the
blue and red curves intersect at the same abscissa) and identical k1, so both solutions
have equal first mode parameters. Also, the solution of (b) (k(2)1m1, k(2)2m1) has m2 = 1,
k2 ≈ −0.02 km−1 from the graph, m3 = −1 (recall Δ3 = −Δ2 for the phase difference)
and k3 = k1 − k2 ≈ 0; whereas the solution of (d) has m2 = −1, k2 ≈ 0, m3 = 1 and
k3 = k1 − k2 ≈ −0.02 km−1. Thus, mode 2 of (b) is mode 3 of (d) and vice versa; they
are symmetric solutions with respect to modes 2 and 3.

Curiously enough, the only solution of the phase sum (figure 9a) and the solution of
the phase difference corresponding to the figure 10(a), also represent the same Rossby
modes, but with the parameters of mode 2 in one panel (or solution) being equal to minus
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k1p1 (blk), k2 (ble) and K2 (red) vs T1.
(1) Idem for k1p1. nj = (0,0,0); m1 = 2, m2 = 1

(2)
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Idem for k1p2
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(×10–3)(a) (b)
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Figure 9. Along channel wavenumbers (km−1) k1 (black) from step 1 and k2 from steps 2 (blue) and 3 (red)
of the graphical method (see text) as a function of T1 (years). Panel (a) is k(1)1p1, where the additional subscript
(1 or 2) in k1 refers to the (+ or −) root of ω2 in (5.2), obtained from (4.8) and (5.2), and the corresponding k2

from (4.10) (blue) and from (3.17) (red). Panel (b) is for k(2)1p1, (c) is for k(1)1p2 and (d) is for k(2)1p2. If the blue and
red curves intersect (step 4), there is a real solution (as in a). Parameters as in figure 8, with n1 = 0, n2 = 0,
n3 = 0 (free surface, H = 4000 m) and m1 = 2, m2 = 1.

the parameters of mode 3 in the other panel, and vice versa. We call these anti-symmetric
solutions concerning modes 2 and 3. To explain, one solution is the phase sum (subscript p)
and the other is the phase difference (subscript m), thus we have k2p = −k3m, ω2p = −ω3m
and l12,22 = −l13,23. Now, if one computes the eastward phase speed CE = ω/kE of the
RWs of each mode (2 and 3), where kE = k cosα + l sinα is the eastward wavenumber,
the result is that the CE of mode 2 of the solution p are equal to the CE of mode 3 of
the solution m and vice versa, and negative, i.e. all RWs have westward phase speed, as it
should be. Thus, the anti-symmetric solutions with identical Rossby mode 1 and Rossby
modes 2 and 3 exchanged have one of the modes (2 or 3) with the slowness circle on the
kE < 0 space (if the frequency is positive) and the other mode (3 or 2) on the kE > 0 space
(if the frequency is negative).

The graphical method of searching for the intersections of the k2-curves of steps 2
and 3 (i.e. a change of sign of the difference between the k2-curves) proved efficient
in finding the solutions numerically. By choosing a sufficiently small time step of 10−5

year for the period T1, we achieved numerical errors in the solutions for modes 1 and
2 of O(10−18) and mode 3 of O(10−10). The solution corresponding to figure 9(a) is:
(T1, T2, T3) = (0.67, 0.52, 0.29) years, (k1, k2, k3) = (−0.0010, 0.0002,−0.0008) km−1
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Figure 10. As in figure 9, but for the phase difference, i.e. k(1)1m1 and k(2)1m1 for (a,b), respectively, and k(1)1m2 and
k(2)1m2 for (c,d), respectively. Note that the blue and red curves intersect in (a,b,d), so there are real solutions.

and the wavelengths are: (1894, 286) km, (6254, 464) km and (2713, 604) km for
modes 1, 2 and 3, respectively. And the solution corresponding to figure 10(d) is:
(T1, T2, T3) = (0.26,−0.84, 0.200) years, (k1, k2, k3) = (−0.0203,−0.0011,−0.0192)
and the wavelengths are: (283, 242) km, (349, 1139) km and (296, 322) km for modes
1, 2 and 3, respectively.

If we just change the inclination of the channel to α = 5◦, i.e. a more zonally oriented
channel, and leave the rest of the input parameters used in figures 8–10 unchanged, we get
intersections (solutions) in the same four panels. However, the periods are larger than the
case α = 15◦, although the wavelengths are similar.

As a possible oceanographic application, we searched for solutions in four channels with
parameters resembling the Mozambique Channel (φ0 = 19.5 ◦S, α = 115◦, W = 750 km,
H = 3292 m), the Tasman Sea (φ0 = 38◦S, α = 110.5◦, W = 1750 km, H = 2500 m),
the Denmark Strait (φ0 = 67 ◦N, α = 146.5◦, W = 300 km, H = 400 m) and the English
Channel (φ0 = 49 ◦N, α = 157◦, W = 150 km, H = 63 m) (Graef 2017) and for the
vertical and horizontal mode numbers used to produce figures 8–10, namely nj = (0, 0, 0)
(all three modes barotropic, free surface) and m1 = 2, m2 = 1. There were no (real)
solutions for the Mozambique Channel and the Tasman Sea because these channels are
too inclined with respect to the eastern direction. However, we found solutions for the
Denmark Strait and the English Channel. Again, there were four solutions (two and
their mirror or symmetric or anti-symmetric solution with identical Rossby mode 1 and
Rossby modes 2 and 3 exchanged) in each case, although the intersections of the curves
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(solutions) were for k(2)1p1 and its mirror or anti-symmetric k(2)1m1, and for k(1)1m1 and its mirror

or symmetric k(1)1m2 (i.e. in different panels than in figures 9 and 10). The Rossby mode
periods for the Denmark Strait are between 0.54 and 1.30 years, and the wavelengths
between 167 and 2724 km. The second mode period of solution for k(2)1p1 is 1.00 year with
wavelengths of 273 and 2724 km, which is also the period and wavelengths of the third
mode of the solution k(2)1m1. Thus, if barotropic Rossby modes get excited in the Strait, out
of all possible nonlinear interactions among them, the annual Rossby mode m2 = 1 would
have a larger amplitude since it is in resonance with two other modes of periods 0.56 and
1.24 years. The periods range between 0.79 and 2.47 years for the English Channel, and
the wavelengths range between 79 and 1696 km.

After obtaining solutions for other parameters, in particular for various α values, i.e. for
a diversity of channel orientations, the following picture emerges:

(a) There were always four solutions: one for the RWs’ phase sum and three for the RWs’
phase difference. The solutions came in pairs: a solution and its anti-symmetric or
symmetric companion.

(b) The solution and its anti-symmetric or symmetric companion always correspond to
the same root of k1, either k(1)1 or k(2)1 . They represent the same Rossby modes, but
with modes 2 and 3 exchanged.

(c) The anti-symmetric solution arises from solutions corresponding to the RWs’ phase
sum and phase difference, i.e. k1p and k1m.

(d) The last two characteristics of the solutions are because Δ3 = ±Δ2, which is a
consequence of the non-zonal orientation and our choice that wave 1 of mode 1 (i.e.
l11) be the one that interacts with the two waves of mode 2 to produce a third channel
mode. Had we chosen that the single wave is one of mode 2, then Δ3 = ±Δ1, and
the solution pair would come with modes 1 and 3 exchanged.

Therefore, we have found real solutions of the resonance conditions for three Rossby
modes in a non-zonal channel, for both the RWs’ phase sum and difference. Because of
the symmetric solutions, we could say that there are only two independent solutions for
the waves’ phase difference. However, we must realize that, even though the symmetric
solutions represent the same channel Rossby modes (with modes 2 and 3 exchanged), the
amplitudes of modes 2 and 3 are different if we calculate the resonant solutions of the
QGPVE at O(ε).

Finally, we note that, in a non-zonal channel, the interaction of two Rossby modes of
equal frequency can never excite a third Rossby mode. This is simply because, when
two unknowns of the system (3.16)–(3.19) or (4.1)–(4.4) are made equal, the number
of unknowns is reduced by one (from 4 to 3), but the number of equations remains
the same (four). For instance, if ω1 = ω2 = ω, the solution of (5.1) for ω /= 0 is ω =
3β sinα/(4Δ1), which can be plugged into (4.11) to get k(1,2)1 = F(Δ1). Up to here, (3.16)
and (3.19) would be satisfied, but we are left with two equations, (3.17) and (3.18), and
only one remaining unknown k2. Now since Δ2 is given (by virtue of having to specify
m2), k2 = G(Δ2,Δ1) could be computed from (3.17), but this k2 will not satisfy in general
(3.18). Thus, it is generally impossible to satisfy the resonance conditions.

The last result that there is no resonance between three channel modes if two of them
have equal frequencies has the following implication. The self-interaction of a gulf Rossby
mode (which is the superposition of two channel modes of equal frequency and vertical
mode number) can never excite a third channel mode. Also, it corroborates one result
obtained by García & Graef (1998).
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6. Solution in the resonant case

In this section, we show the solution for the resonant forcings, based upon the works of
Graef (1993), García & Graef (1998) and Graef (2017).

The streamfunctions of the three RWs of the initial modes 1 and 2 that nonlinearly
interact in exciting the third mode, for both the straight coast and the channel in the
non-zonal case, are, upon dropping the superscript (0) for simplicity

ψ11 = A1ϕn1(z) cos θ11 and ψi2 = A2ϕn2(z) cos θi2, i = 1, 2, (6.1a,b)

where recall that θij = kjx + lijy − ωjt + ϑj, j = 1, 2, 3. The difference between the coast
and the channel is that, in the latter, Δ1 and Δ2 are fixed, i.e. wavenumbers perpendicular
to the channel take on discrete values. Therefore the resonant forcings are

Fres = J (ψ11, q12)+ J (ψ12, q11)− J (ψ11, q22)− J (ψ22, q11)

= −ϕn1(z)ϕn2(z) {B112 [cos (θ11 − θ12)− cos (θ11 + θ12)]

− B122 [cos (θ11 − θ22)− cos (θ11 + θ22)]} , (6.2)

where qij ≡ [∇2 + ∂z(Γ
2∂z)]ψij, the minus sign in the last two Jacobians is due to the

minus sign of RW 2 of mode 2: ψ2 = ψ12 − ψ22, and the coupling coefficients are, for
i = 1, 2

B1i2 = 1
2 A1A2

(
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

)
(k1li2 − k2l11) . (6.3)

We studied both possibilities: (i) the forced mode corresponding to the phase sum of the
RWs, i.e. ∼ cos(θ11 + θ12) and ∼ cos(θ11 + θ22); and (ii) the forced mode corresponding
to the phase difference of the RWs, i.e. ∼ cos(θ11 − θ12) and ∼ cos(θ11 − θ22). Note that,
unless l12 = l22, which implies that Δ2 = 0, the coefficients of the forced RWs of mode
3 are different. But Δ2 = 0 means that there is no reflection or the group velocity of the
single RW in this case is parallel to the coast, and there is no mode 2 for the channel (see
Graef 2017).

6.1. The straight coast
Taking here the barotropic case for simplicity, we need a solution for

Lψ(1) = −B112 cos(θ11 + θ12) = −B112 cos θ13, (6.4)

where L is given by (2.3), but replacing the operator ∂z(Γ
2∂z) by −â−2

0 (where â0 is the
barotropic Rossby radius).

Following Graef (2017), we put the ansatz ψ(1) = G1( y) cos θ13 in (6.4) and since ω3 =
σ0(k3, l13), where σ0(k, l) ≡ −β(k cosα + l sinα)/(k2 + l2 + â−2

0 ) is the RW dispersion
relation, i.e. the forcing is resonant (a free RW), we end up with

(2ω3l13 + β sinα)G′
1 = −B112 =⇒ G1( y) = −B112 y

2ω3l13 + β sinα
, (6.5)

i.e. the particular solution grows linearly in the offshore coordinate. Note that the
denominator 2ω3l13 + β sinα /= 0 because we precisely require that Δ3 /= 0, i.e. that the
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Resonant interactions of Rossby modes

forced mode be a mode or l13 /= l23. In an identical way, the solution for the other forced
RW of mode 3 proportional to cos(θ11 + θ22) is

G2( y) = B122 y
2ω3l23 + β sinα

. (6.6)

The solution for the forced modeψ(1) = G1( y) cos θ13 + G2( y) cos θ23 obviously satisfies
the boundary condition at the coast. An analogous procedure can be done for the RWs of
the forced mode corresponding to the phase difference.

Therefore, the solution for forced mode 3 is unbounded, and we reject it on physical
grounds. To obtain uniformly valid solutions, we need to invoke the method of multiple
scales, as was done in Graef (1993) for the resonant case of the self-interaction of a single
mode.

6.1.1. Multiple scales
The main idea behind multiple scales is that the mode amplitudes are slowly varying
functions of the offshore coordinate y, namely Y1 = εy. Generalizing the work by Graef
(1993), the leading-order solution is written as a superposition of the three modes
participating in the resonant triad, allowing their otherwise constant amplitudes to be
functions of Y1, i.e.

ψ = ϕn1(z) [A11(Y1) cos θ11 − A21(Y1) cos θ21] + ϕn2(z)[A12(Y1) cos θ12

− A22(Y1) cos θ22] + ϕn3(z) [A13(Y1) cos θ13 − A23(Y1) cos θ23]

=
3∑

j=1

2∑
i=1

(−1)i+1ϕnj(z)Aij(Y1) cos θij. (6.7)

With the new dependence on Y1, there will be additional forcing terms on the right-hand
side of (2.2) besides the Jacobians, namely −2∂t∂yY1ψ − β sinα ∂Y1ψ , to O(ε). To find a
solution to (2.2), ψ(1) is expanded in terms of the complete set of eigenfunctions {ϕq(z)}

ψ(1) =
∞∑

q=0

Φq(x, y, t)ϕq(z), (6.8)

where Φq = ∫ 0
−H ψ

(1) ϕq(z) dz. The equation governing Φq is obtained by multiplying
(2.2) by ϕq(z), integrating over the depth and using the boundary conditions (b.c.s) in
z; the result is, after substituting (6.7) into the right-hand side of the QGPVE (2.2)

L′Φq = −
2∑

i=1

{
(−1)iξn1n2q B11i2 [cos (θ11 − θi2)− cos (θ11 + θi2)]

+ (−1)iξn1n3q B11i3 [cos (θ11 − θi3)− cos (θ11 + θi3)]

+ (−1)iξn2n3q B12i3 [cos (θ12 − θi3)− cos (θ12 + θi3)]

+(−1)i+1ξn2n3q B22i3 [cos (θ22 − θi3)− cos (θ22 + θi3)]
}

+
3∑

j=1

2∑
i=1

(−1)iδnjq
(
2ωjlij + β sinα

)
(∂Y1Aij) cos θij + NRF, (6.9)
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where

L′ ≡ ∂t

(
∇2 − â−2

q

)
+ β

(
cosα ∂x + sinα ∂y

)
, (6.10)

ξpql ≡
∫ 0

−H
ϕp(z)ϕq(z)ϕl(z) dz (6.11)

is the interaction between vertical eigenfunctions (Flierl 1977), and the coupling
coefficients between the modes’ RWs are, for i = 1, 2

B11i2 = 1
2 A11Ai2

(
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

)
(k1li2 − k2l11) ,

B11i3 = 1
2 A11Ai3

(
k2

3 + l2i3 + â−2
n3

− k2
1 − l211 − â−2

n1

)
(k1li3 − k3l11) ,

B12i3 = 1
2 A12Ai3

(
k2

3 + l2i3 + â−2
n3

− k2
2 − l212 − â−2

n2

)
(k2li3 − k3l12) ,

B22i3 = 1
2 A22Ai3

(
k2

3 + l2i3 + â−2
n3

− k2
2 − l222 − â−2

n2

)
(k2li3 − k3l22) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.12)

NRF refers to the non-resonant forcing terms, which include the interactions between the
RW of amplitude A21 (reflected of mode 1) with the other modes’ four RWs, and the
self-interaction of each mode. The self-interaction gives rise to a steady flow parallel to
the coast and a transient flow oscillating at twice the frequency of each mode (Graef &
Magaard 1994).

If we consider the phase sum and difference θi3 = θ11 ± θi2, then the secular terms
on the right-hand side of (6.9) (homogeneous solutions of (6.9)) are: ∼ cos(θ11 ± θi2) if
q = n3 because they are vertical mode n3 RWs; ∼ cos(θ11 − θi3) = cos(∓θi2) if q = n2
because they are vertical mode n2 RWs; ∼ cos(θ12 ∓ θi3) = cos(∓θ11), for i = 1, and
∼ cos(θ22 ∓ θi3) = cos(∓θ11), for i = 2, if q = n1 because they are vertical mode n1
RWs; and for all these we must have ξn1n2n3 /= 0. Finally, we have the secular terms with
a Kronecker delta factor, but only when q = nj. The requirement ξn1n2n3 /= 0 physically
means that, to have resonance, each vertical mode ϕnj(z) must have a non-zero projection
on the product of the other two vertical modes, which is the vertical structure of the
forcing that produces the jth mode. In summary, we have secular terms only when q = nj,
j = 1, 2, 3 (all other q values do not produce secular terms).

Therefore, there are six secular terms on the right-hand side of (6.9) proportional to
cos θij, i = 1, 2, j = 1, 2, 3, with θi3 = θ11 ± θi2, noting that the term ∼ cos θ11 has two
contributions: one from the interactions of RW A12 with RWs Ai3, and other from the
interactions of RW A22 with RWs Ai3.

We note that

2ωjlij + β sinα = (−1)iωj
(
l2j − l1j

) = (−1)i+1 ωj 2Δj, (6.13)

which follows from (2.7) and (2.10), and which is non-zero if we have a mode (i.e. an
incident–reflected RW pair) for a non-zonal coast (and also a mode for the channel).

Finally, we remove the secular terms by requiring that the coefficient of any
homogeneous solution of (6.9) be zero, leading to the following system of six (actually
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five) first-order nonlinear ODEs:

(2ω1l11 + β sinα) ∂Y1A11 = ±ξn1n2n3 [B1213 + B2223] ,

∂Y1A21 = 0,

(2ω2li2 + β sinα) ∂Y1Ai2 = ξn1n2n3B11i3, i = 1, 2,

(2ω3li3 + β sinα) ∂Y1Ai3 = ∓ξn1n2n3B11i2, i = 1, 2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.14)

where the upper (lower) sign in the equations for A11 and Ai3 refers to the phase sum
(difference). The system (6.14) is subject to the boundary conditions A1j = A2j = Aj, j =
1, 2, 3, at Y1 = 0, i.e. at y = 0, to warrant no normal flow at the coast. The second equation
implies that A21 = constant = A1. This system is relatively more complicated than the
typical one found in three-wave resonance problems. Here, the coast’s non-zonality obliges
that only three RWs (not four as in the zonal case) of the primary modes participate in
forcing the third mode. That is why five RWs (out of six RWs of the three modes) have
their amplitudes slowly varying in the offshore coordinate to have a bounded solution
when the modes are in resonance.

After substituting the coupling coefficients, the dispersion relations and (6.13), the
system (6.14) becomes

∂Y1A11 = ξn1n2n3

Δ3

Δ1
(γ12A12A13 − γ22A22A23) ,

∂Y1A21 = 0,

∂Y1Ai2 = ξn1n2n3γi2A11Ai3, i = 1, 2,

∂Y1Ai3 = −ξn1n2n3γi2A11Ai2, i = 1, 2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.15)

which is valid for both the phase sum and difference, where Δ3 = ±Δ2, γi2 = ±γi3 and

γi2 =
1
2

(
k2

3 + l2i3 + â−2
n3

− k2
1 − l211 − â−2

n1

)
(k1li3 − k3l11)

2ω2li2 + β sinα

= ±1
2

(
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

)
(k1li2 − k2l11)

2ω3li3 + β sinα
= ±γi3. (6.16)

The details are given in Appendix A.
There are three functionally independent first integrals of system (6.15). For example,

the last four equations directly imply that ∂Y1(A
2
i2 + A2

i3) = 0 for i = 1, 2 (two integral
constraints). Also, multiplying the first equation by Δ1A11/Δ3, minus the third equation
times A12, plus the fourth equation times A22 yields ∂Y1(Δ1A2

11/Δ3 − A2
12 + A2

22) = 0;
analogously we can obtain ∂Y1(Δ1A2

11/Δ3 + A2
13 − A2

23) = 0. However, only three of these
four first integrals of system (6.15) are independent.

In figures 11 and 12 we show the numerical solution of the wave amplitudes of the
resonant quintet for parameters of the Hawaiian Ridge and for (n1, n2, n3) = (1, 1, 0)
and (T1, T2) = (1, 1.7) years, corresponding to solutions k(1)1p and k(2)1p , respectively. The
solution (1) with larger wavelengths exhibits a clear periodic behaviour in A22 and A23,
whereas A12 and A13 vary much more slowly, which is because γ12 � γ22 in this case,
and A11 oscillates at a higher frequency but with a lower amplitude. If we extended the
integration farther, say to Y1 = 105 km, one could see that A11, A12 and A13 are also
periodic. Solution (2) shows clearly that all four RW amplitudes of modes 2 and 3 oscillate
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Figure 11. Wave amplitudes of a resonant quintet of RWs, which are solution of system (6.15), as a function
of Y1 = εy. (a) A11 (blue); A12 (red); A22 (dashed red). (b) A13 (magenta); A23 (dashed magenta). The
corresponding wavelengths are indicated on each curve. The amplitude value at the coast of modes 1 and
2 is 1 km2 day−1, which corresponds to a maximum horizontal particle speed of the mode 1 incident RW
U11 = 0.038 km day−1 and ε11 = U11|k11|2/β = 0.03. More realistic values can be adjusted accordingly.
Parameters: φ0 and α for the Hawaiian Ridge, vertical mode numbers are (n1, n2, n3) = (1, 1, 0) and the Rossby
mode periods are (T1,T2,T3) = (1, 1.7, 0.63) years for solution k(1)1p .

with similar frequencies (equal for Ai2 and Ai3) and equal amplitudes, whereas A11 displays
a rather different behaviour as in solution (1), but it is periodic.

We plot the wavenumber vectors and the slowness circles (i.e. the curves of constant ωj
for given nj) of the resonant quintet corresponding to figures 11 and 12, in figures 13 and
14, respectively. There we indicate the coastal orientation (parallel to the k-axis) and one
can see graphically that, indeed, ki3 = k11 + ki2 for i = 1, 2, and that Δ3 = Δ2.

In general, the envelope of the incident wave packet A11 is nowhere zero. The envelopes
of incident RW packets (of modes 2 and 3) oscillate around zero out of phase and at
the same frequency; this is also true for the reflected RW packets, but with a different
frequency. Because we choose the b.c. of zero amplitude of mode 3 at the coast, it starts
there and grows approximately linearly near the coast, as indicated by the straightforward
expansion (6.5) and (6.6). The incident (reflected) RW packet of mode 3 reaches an
extreme when the incident (reflected) packet of mode 2 is zero.

After running several cases, we observe that, if the b.c.s at Y1 = 0 are A11 = A12 =
A22 = A1 and A13 = A23 = 0, the solution for another b.c. A′

1 = dA1 is simply A′
ij(Y1) =

dAij(Y1/d). This is because multiplying the b.c. by d means that ε gets multiplied by d, and
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Figure 12. As in figure 11, but for solution k(2)1p .

Y1 = εy. Thus, it is convenient to simply set A1 = 1 (in units of km2 day−1, appropriate to
typical RW length and time scales).

An interesting situation occurs if the primary Rossby modes 1 and 2 have an annual
period (the rest of parameters as in figure 11) so (T1, T2, T3) = (1, 1, 1

2) years. In this
case γ12 ≈ 0 which implies that A12 ≈ A1 and A13 ≈ 0, so the incident RW amplitudes
of modes 2 and 3 remain almost constant (equal to the b.c.), whereas the reflected
RW amplitudes oscillate at the same frequency. The resonant interaction is such that it
preferably excites the reflected RWs.

As an aside remark, it can be shown that, unless the coast is zonal, particular solutions
∼ t cos θi3, i = 1, 2, which satisfy the forced QGPVE, cannot satisfy the boundary
condition at the coast y = 0. The forced or excited mode 3 cannot grow linearly in time,
which ultimately is why the wave amplitudes cannot be slowly varying functions of time.
The speculation of Graef (1993) ‘on what would happen if three modes are taken, allowing
each mode amplitude to be slowly varying in time’, failed in the non-zonal case.

In the zonal coast, the incident and reflected RWs’ wavelengths of each mode are
equal, and their wavenumber vectors satisfy the relations k11 × k12 = −k21 × k22 and
k11 × k22 = −k21 × k12. Thus, the coupling coefficients of the four interactions k11 ↔
k12, k11 ↔ k22, k21 ↔ k12 and k21 ↔ k22 are such that the forced mode 3 satisfies the
boundary condition at the coast y = 0. So, when applying multiple scales, it is sufficient
to allow for each mode’s amplitude to be a slowly varying function of time.
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Figure 13. The wavenumber vectors and the slowness circles of the resonant quintet of RWs corresponding
to figure 11. We indicate the coastal orientation (parallel to the k-axis) making an angle α with respect to the
eastern direction. In blue, the RW (n1, ω1,k11) of mode 1; in red the RWs (n2, ω2,ki2), i = 1, 2 of mode 2;
and in magenta the RWs (n3, ω1 + ω2,ki3), i = 1, 2 of mode 3. Note that ki3 = k11 + ki2 for i = 1, 2, and that
Δ3 = Δ2.

6.2. The channel
For the channel, the solution for the forced mode 3 is uncertain; we could not find it.
However, if the resonant forcing given by (6.2) is such that only one RW is excited, i.e.
we do not excite a channel Rossby mode, then we could easily find a solution. Suppose,
without loosing generality, that the excited RW is proportional to cos(θ13) = cos(θ11 ±
θ12). This is equivalent to saying that the resonant triad is {ψ11, ψ12, ψ13}. The solution is,
adapted from García & Graef (1998) and Graef (2017)

Φn3 = ∓A1A2ξn1n2n3γ13 Re
[

y eiθ13 + W eil13W

eiμW − eil13W

(
eiθ13 − eiθμ3

)]
, (6.17)

where the upper (lower) sign refers to the phase sum (difference), μ is the other root
(besides l13) of the RW dispersion relation ω1 ± ω2 = σn3(k1 ± k2, μ) or ω3 = σn3(k3, μ)
and θμ3 = (k3x + μy − ω3t + ϑ3). It is easy to see that Φn3 = 0 at y = 0,W. It is worth
remarking that l13 is not −β sinα/(2ω3)+ m3π/W, i.e. the excited RW ψ13 is not a wave
of a channel mode, or equivalently Δ3 /= m3π/W. But we need the other RW ∼ eiθμ3 in
order to fulfil the boundary condition at y = W. This physically means that a coastal mode
gets excited, not a channel mode, because eiθ13 − eiθμ3 is just a coastal mode.
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Figure 14. As in figure 13, but corresponding to figure 12, i.e. for solution k(2)1p . The frequencies and vertical
mode numbers are those of figure 13, but the wavenumbers k11, ki2 and ki3 are different. Note the larger scale
here, which is why the whole circles appear in the graph. This graph is a zoom out of figure 13.

The resonant solution (6.17) is bounded, and there is no need to consider multiple scales.
It consists of a term proportional to y cos θ13, plus a term proportional to the real part
of C(eiθ13 − eiθμ3), where C is a complex constant, which is a coastal mode (it vanishes
at y = 0, but not at y = W). This solution is reminiscent of the solution when there is
resonance in the self-interaction of a channel Rossby mode (García & Graef 1998).

7. Discussion and conclusions

In this paper, we studied whether or not there are resonant interactions between three
Rossby modes in two bounded geometries: a coast or a channel, whose orientation is
non-zonal. The fact that the boundaries are not along circles of latitude is a new ingredient
in these problems, not reported in the literature.

As the superposition of two propagating RWs forms a Rossby mode in a coast or a
channel, the nonlinear interaction between two modes produces 12 forcing terms. We
first analysed which of those 12 terms, or which RWs, could excite a third mode. In the
zonal case, we need the participation or interaction of the four RWs, two of each mode.
However, if the orientation is non-zonal, only three RWs (of the four) can participate in
forcing, in principle, the third mode. This difference has two significant consequences
in the non-zonal case. First, the horizontal structure of the ‘standing’ part of the forced
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Geometry Orientation Var. D.V. Eqs. D.F.

Coast Zonal 9 3 3 3
Non-zonal 9 3 4 2

Channel Zonal 9 5 3 1
Non-zonal 9 5 4 0

Table 2. The number of variables (Var.), discrete variables (D.V.), equations (Eqs.) and degrees of freedom
(D.F.) of the resonance conditions, for each geometry (coast or channel) and its orientation (zonal or non-zonal).

mode proportional to sin(Δ3y) is identical to the mode whose two RWs participate in the
interaction. Second, there appears an additional constraint (equation), which reduces the
number of degrees of freedom available to solve the resonance conditions (see table 2).
Thus, finding resonant triads is more restrictive in the non-zonal case.

When one considers the interaction between two modes in a zonal coast or channel, the
initial modes may have Δ1 = Δ2 or Δ1 /=Δ2, but the excited mode is Δ3 = Δ1 ±Δ2 (if
Δ1 = Δ2, we can only excite the mode produced by the sum). We always excite a new
horizontal structure, so there is ‘barotropic transfer’ in the resonant interaction. This was
the case, for example, studied by Plumb (1977), for a zonal channel in a barotropic ocean.
However, if we want to excite a third mode in a non-zonal coast or channel, only three
RWs can participate, and the excited mode must have the horizontal structure of one of
the initial modes (Δ3 = ±Δ2 or Δ3 = ±Δ1). One cannot excite a new Δ, and there is no
‘barotropic transfer’.

As shown in table 2, the non-zonality and the number of boundaries decreases the
number of degrees of freedom to solve the resonance or kinematic conditions for the
existence of resonant triads. For instance, for a non-zonal coast or wall, the resonance
conditions pose a problem with four equations and nine variables: ωi, ki, Δi, i = 1, 2 and
nj, j = 1, 2, 3. However, the last three are discrete and must be specified. Thus, we end up
with two degrees of freedom: 6 unknowns minus 4 equations. In the case of a non-zonal
channel, it is similar but Δ1 = m1π/W and Δ2 = m2π/W are fixed, thus there are no
degrees of freedom.

For the non-zonal coast, we derived analytic expressions for the wavenumbers along
the coast k1 and k2 of modes 1 and 2, respectively, which are necessary conditions to
have solutions of the system (4.1)–(4.4). Although, in general, it is not possible to find a
condition to have k1 real that only involved α, the equation for k1 reveals that a meridional
coast is prohibited, i.e. there are no real solutions. The more meridionally oriented the
coast is, the more restrictive the problem of finding real solutions becomes. For example,
we found that if the period of mode 1 is much larger than the period of mode 2 (T1  T2),
this favours real solutions for the more meridionally oriented coasts (say α ∈ (70, 85)
or α ∈ (95, 110) degrees for western coasts; or with α + 180◦ for eastern coasts). In
the particular case ω1 = ω2, a necessary condition to have real solutions is | sinα| ≤
2/3, which is twice the value obtained by Graef (1993) when considering resonance
in the self-interaction of a Rossby mode at a coast. Therefore, although the orientation
of the coast or wall restricts resonance occurring, it is less restrictive in the case of
resonance between Rossby modes (with ω1 = ω2) than in the self-interaction of a Rossby
mode.

The family of solutions for given mode periods T1 and T2 (recall we have two degrees
of freedom) was shown by plotting the wavelengths of the six RWs (one incident and one
reflected per mode) that participate in the resonant triad of modes. And for each T1 and T2,
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there are two solutions for the initial RWs phase sum (ω3 = ω1 + ω2, k3 = k1 + k2, l13 =
l11 + l12 and l23 = l11 + l22) and two solutions for the phase difference (ω3 = ω1 − ω2,
k3 = k1 − k2, l13 = l11 − l12 and l23 = l11 − l22). By looking at solutions with different
coastal orientations, there are two general characteristics of the solutions: (a) the larger
wavelengths are squeezed in a very small region of the (T1, T2)-space; and (b) the space
of solutions is more limited for the phase difference and it is always T1 > T2. In fact, even
for more zonally oriented coasts, some of the real solutions lie only within a very tiny
region (resembling a thin slice of a pie) of the (T1, T2)-space.

As a possible oceanographic application and because it has received significant attention
since the pioneering work of Mysak & Magaard (1983) regarding the North Hawaiian
Ridge Current (White 1983; Oh & Magaard 1984; Sun et al. 1988; Price, Van Woert &
Vitousek 1994; Qiu et al. 1997; Firing, Qiu & Miao 1999), we showed the solutions for
ambient parameters appropriate for the Hawaiian Ridge (figures 4–7). The wavelengths
of the incident RWs of the first mode corresponding to solutions k(1)1p and k(1)1m are the
largest: � 1000 km, whereas for the third mode, there is a wide range between 100 and
2000 km, and for the second mode they are very short: between less than 50 and 240 km.
The wavelengths of the reflected RWs of all modes are short: between 20 and 200 km.
There is a significant reduction in the allowable (T1, T2)-space (very tiny slices of a pie)
for the other solutions, i.e. for k(2)1p and k(2)1m , and all wavelengths (even the incident RWs)
are quite short, between 20 and 200 km. We conclude that two annual Rossby modes (n1 =
n2 = 1) cannot resonantly interact to force a semi-annual n3 = 2 Rossby mode. However,
if we choose n3 = 0 (not shown here), so that the forced mode (mode 3) is barotropic with
a free surface (depth H = 4000 m), then such resonant interaction is possible. Also, it
is not possible to have resonance if one of the initial modes (first mode baroclinic) has a
period in the broad peak range from 0.7 to 2.5 years, and the other mode has a period of 6.7
years (these are spectral peak periods of RW energy for a 5◦ square east of the Hawaiian
Islands (see Magaard 1983)).

For the non-zonal channel, the resonance conditions form a closed system (four
equations and four unknowns: ωi, ki, i = 1, 2), so there are no degrees of freedom. We
could not arrive at a single equation for any one of the four unknowns. However, we
developed a graphical method to seek solutions using the analytic expressions for k1 and
k2 derived for the coast, which are also valid for the channel. A meridional channel is
prohibited (no real solutions). However, we found real solutions for other orientations,
such as the hypothetical example shown in figures 8–10 for a tilted channel with α = 15◦,
width W = 500 km, at a reference latitude φ0 = 20◦, horizontal mode numbers m1 = 2,
m2 = 1 and vertical mode numbers n1 = n2 = n3 = 0 (all barotropic with a free surface
and depth H = 4000 m). In this example, the mode periods were less than a year, and
the RWs’ wavelengths of the modes had a wide range: between a few hundred to more
than 6000 km. As with other examples that we explored, particularly for other α values,
there were always four solutions to the resonance conditions: one for the RWs’ phase sum
and three for the RWs’ phase difference. The four solutions were related: two symmetric
and two anti-symmetric, with modes 2 and 3 exchanged. The anti-symmetry comes about
because σn(k, l) = −σn(−k,−l) in the RW dispersion relation.

We pointed out that, because there are no degrees of freedom for the resonance
conditions in a non-zonal channel, the interaction of two Rossby modes of equal frequency
can never excite a third Rossby mode. This result has implications for finding resonant
triads in a non-zonal gulf (and by extension in a non-zonal rectangular basin). Since a gulf
Rossby mode is the superposition of an incident–reflected channel mode pair at the head
of the gulf (Graef 2016), it follows that, if there are resonant triads between gulf modes,
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the excited waves cannot be the product of either mode’s self-interaction. In other words,
the forced mode cannot have a frequency equal to two times the frequency of either one of
the primary modes.

Looking at the world’s oceans, the most conspicuous mid-latitude channels for which
planetary wave motion could matter are the Mozambique Channel, the Tasman Sea, the
Denmark Strait and, perhaps (because of their irregularity and or size), the South China
Sea, the Caribbean Sea and the English Channel (Graef 2017). As a possible oceanographic
application, we searched for solutions of the resonance conditions in four of these channels
with nj = (0, 0, 0) (all three modes barotropic, free surface) and m1 = 2, m2 = 1. There
were no solutions for the Mozambique Channel and the Tasman Sea because these
channels are too inclined relative to the eastern direction, but we found solutions for the
Denmark Strait and the English Channel. Because the annual signal always comes to mind
when one thinks about RW motion, an interesting result for the Denmark Strait was that
the second mode period of one solution is 1.00 year with wavelengths of 273 and 2724 km.
This solution suggests that, if barotropic Rossby modes get excited in the Strait, out of all
possible nonlinear interactions among them, the annual Rossby mode m2 = 1 would have a
larger amplitude (being in resonance with two other modes of periods 0.56 and 1.24 years).
For the English Channel, the smallest and largest of the mode periods were 0.79 and 2.47
years, and of the wavelengths were 79 and 1696 km, respectively, for all modes and the
two independent solutions. However, because the lengths of the Denmark Strait and the
English Channel are much smaller than some of the mode wavelengths (≈2000 km), most
probably we cannot apply our results to these channels.

The solution of the forced QGPVE, when the third mode is in resonance with modes 1
and 2, is unbounded in the coast’s case. The pedestrian or straightforward expansion leads
to a linear growth in the offshore coordinate y, which we rejected on physical grounds;
it is acceptable ‘near the coast’. To obtain a bounded solution in the whole half-plane
domain, we used multiple scales, generalizing the work of Graef (1993). First, we wrote
the solution of the QGPVE, to leading order in ε, as the superposition of the three Rossby
modes in resonance, but allowing the RWs’ amplitudes (constant in the straightforward
expansion) to be slowly varying functions of the offshore coordinate, namely functions of
Y1 = εy. Second, we computed all forcing terms that are secular and removed them by
requiring that the coefficient of any homogeneous solution of the equation be zero. This
requirement led to a system of five first-order nonlinear ODEs for the RWs’ amplitudes that
participate in the resonant triad (three of the primary modes and two of the forced third
mode). In Appendix A we were able to show that the factors multiplying the amplitudes’
products, which involve the coupling coefficients, are all related, and only two factors
(out of six) are independent. We showed examples (figures 11 and 12) of the wave
amplitudes’ numerical solution, which exhibit periodic behaviour. For parameter values of
the Hawaiian Ridge and if the primary modes 1 and 2 have an annual period (so the third
mode is semi-annual), the incident RWs’ amplitudes of modes 2 and 3 are nearly constant.
In contrast, those corresponding to the reflected waves oscillate at the same frequency (in
space), indicating that resonant interactions lead to more variability in smaller scales, i.e.
westward intensification. As in Graef (1993), the energies of the modes oscillate in the
offshore direction. There is an energy exchange in space with the three resonant modes
giving and receiving it, satisfying the boundary condition at the coast, and maintaining
the solution bounded as y −→ ∞.

We included figures 13 and 14 to help the reader locate the resonant modes’ incident and
reflected waves together with the coastal orientation. We plotted the wavenumber vectors
of the resonant quintet on the slowness circles corresponding to the examples of the wave
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amplitudes’ numerical solution. In these figures one could see graphically that ki3 = k11 +
ki2 for i = 1, 2, and that Δ3 = Δ2.

The solution of the QGPVE for the channel, when the third mode is in resonance with
the primary modes 1 and 2, is uncertain, and unfortunately, we could not find it. However,
we provided a solution if the nonlinear interaction between a RW of mode 1 and a RW
of mode 2 forces or excites a single RW. The excited RW is not a wave belonging to
a channel mode (if the channel is zonal, this is impossible: the excited RW is a wave
of mode 3 with m3 = m1 ± m2, and also, the other RW of mode 3 gets automatically
excited). This resonance is an example of problem (A) mentioned in the introduction. The
resonant solution shows that (i) a coastal mode gets excited, needed to satisfy the boundary
condition at both coasts; (ii) it is bounded, and there is no need to consider multiple scales;
(iii) the two channel modes and the coastal mode, although in resonance, do not exchange
energy in time or space due to the constraint of the motion imposed by the boundary
conditions at the channel’s non-zonal coasts or walls; and (iv) it is reminiscent of the
solution when there is resonance in the self-interaction of a channel Rossby mode (García
& Graef 1998). Why this lack of energy exchange? First, there is no solution growing
linearly in time when there is resonance (this is true if the coast or channel is non-zonal).
Second, but this is speculation, is that enstrophy is not conserved in a non-zonal channel.
Indeed, in the reflection of RWs from a non-zonal wall, enstrophy is not conserved
(Pedlosky 2013) since the incident and reflected waves’ wavelengths are different. In a
non-zonal channel, the RWs that comprise a mode have different wavelengths, and by
generalization, enstrophy will not be conserved. It is only for a zonal coast or channel
(where enstrophy is conserved) that the resonant triad modes’ amplitudes depend slowly
on time, so there is energy exchange among the triad members, as shown by Plumb (1977)
for a zonal channel.

Regarding possible oceanographic applications, we should keep in mind that our
coast or channel is idealized and that bottom topography and irregular coastlines would
change these solutions. There is no intention or attempt to compare our solutions with
observations. Despite our idealized geometries, the analytical results presented here could
provide a dynamic basis to help explain observations. Furthermore, analytical solutions
are, in general, a handy tool to test numerical models. Beyond these benefits, we believe
in having contributed to the advancement of knowledge in geophysical fluid dynamics.
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Appendix A

In this appendix we show the calculations to go from the ODE system (6.14) to system
(6.15) and the relations between the factors multiplying the RW amplitudes’ products.
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The last four equations of (6.14) are, upon substituting B11i3 and B11i2 given by (6.12)

∂Y1Ai2 =
1
2 A11Ai3 ξn1n2n3

(
k2

3 + l2i3 + â−2
n3

− k2
1 − l211 − â−2

n1

)
(k1li3 − k3l11)

2ω2li2 + β sinα

≡ γi2 ξn1n2n3A11Ai3, i = 1, 2, (A1)

∂Y1Ai3 = ∓1
2 A11Ai2 ξn1n2n3

(
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

)
(k1li2 − k2l11)

2ω3li3 + β sinα

≡ ∓γi3 ξn1n2n3A11Ai2, i = 1, 2. (A2)

We now show that γi2 = ±γi3, where the + (−) refers to the phase sum (difference). Using
the dispersion relations,

ωj

(
k2

j + l2ij + â−2
nj

)
+ β

(
kj cosα + lij sinα

) = 0, i = 1, 2, j = 1, 2, 3, (A3)

which follow from (2.9), (2.10) and (2.7), and the relation (6.13), we have that

γi2 = 1
2

[−β (k3 cosα + li3 sinα)ω1 + β (k1 cosα + l11 sinα)ω3

ω1ω3ω2 (−1)i+1 2Δ2

]
(k1li3 − k3l11) .

(A4)

Substituting the resonance conditions ki3 = k11 ± ki2, i.e. (k3, li3) = (k1 ± k2, l11 ± li2)
(see relations (3.11)), the numerator within square brackets becomes

− β (k1 cosα + l11 sinα) (ω1 − ω3)∓ β (k2 cosα + li2 sinα)ω1

= ±β (k1 cosα + l11 sinα)ω2 ∓ β (k2 cosα + li2 sinα)ω1, (A5)

since ω3 = ω1 ± ω2. Finally, note that k11 × ki3 = ±k11 × ki2. Thus,

γi2 = 1
2

[±β (k1 cosα + l11 sinα)ω2 ∓ β (k2 cosα + li2 sinα)ω1

ω1ω2ω3 (−1)i+1 2Δ2

]
(±1) (k1li2 − k2l11)

= 1
2

[
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

ω3 (−1)i+1 2Δ2

]
(k1li2 − k2l11)

= ±γi3 (A6)

because Δ3 = ±Δ2. Therefore, ∂Y1Ai3 = ∓γi3ξn1n2n3A11Ai2 = −γi2ξn1n2n3A11Ai2, for
both the phase sum and difference.

The first equation of (6.14) takes the form, upon substituting B12i3 for i = 1, and B22i3
for i = 2, from (6.12)

∂Y1A11 = ξn1n2n3 (γ111A12A13 + γ112A22A23) , (A7)

where

γ11i =
1
2

(
k2

3 + l2i3 + â−2
n3

− k2
2 − l2i2 − â−2

n2

)
(k2li3 − k3li2)

2ω1l11 + β sinα
, i = 1, 2. (A8)
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In a similar fashion, using (A3), (6.13), substituting the resonance conditions and noting
that ki2 × ki3 = ki2 × k11, we obtain

γ11i = 1
2

[
β (k2 cosα + li2 sinα)ω1 − β (k1 cosα + l11 sinα)ω2

ω2ω3ω1 (−1)1+1 2Δ1

]
(k2l11 − k1li2)

= 1
2

[
k2

2 + l2i2 + â−2
n2

− k2
1 − l211 − â−2

n1

ω3 2Δ1

]
(k1li2 − k2l11)

= Δ3

Δ1
(−1)i+1γi3. (A9)

Therefore, the system of ODEs for the wave amplitudes that is valid for both the phase
sum and difference is

∂Y1A11 = ξn1n2n3

Δ3

Δ1
(γ12A12A13 − γ22A22A23) ,

∂Y1A21 = 0,

∂Y1Ai2 = γi2 ξn1n2n3A11Ai3, i = 1, 2,

∂Y1Ai3 = −γi2 ξn1n2n3A11Ai2, i = 1, 2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A10)

where Δ3 = ±Δ2 and γi3 = ±γi2.
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