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We describe a new approach to modelling three-dimensional rotating stratified
flows under the Boussinesq approximation. This approach is based on the explicit
conservation of potential vorticity, and exploits the underlying leading-order
geostrophic and hydrostratic balances inherent in these equations in the limit of
small Froude and Rossby numbers. These balances are not imposed, but instead
are used to motivate the use of a pair of new variables expressing the departure
from geostrophic and hydrostratic balance. These new variables are the ageostrophic
horizontal vorticity components, i.e. the vorticity not directly associated with the
displacement of isopycnal surfaces. The use of potential vorticity and ageostrophic
horizontal vorticity, rather than the usual primitive variables of velocity and density,
reveals a deep mathematical structure and appears to have advantages numerically.
This change of variables results in a diagnostic equation, of Monge–Ampère type,
for one component of a vector potential ϕ, and two Poisson equations for the other
two components. The curl of ϕ gives the velocity field while the divergence of ϕ

is proportional to the displacement of isopycnal surfaces. This diagnostic equation
makes transparent the conditions for both static and inertial stability, and may change
form from (spatially) elliptic to (spatially) hyperbolic even when the flow is statically
and inertially stable. A numerical method based on these new variables is developed
and used to examine the instability of a horizontal elliptical shear zone (modelling
a jet streak). The basic-state flow is in exact geostrophic and hydrostratic balance.
Given a small perturbation however, the shear zone destabilizes by rolling up into a
street of vortices and radiating inertia–gravity waves.

1. Introduction
The atmosphere and oceans are frequently observed to be in a state of near ‘balance’.

This means that inertia–gravity waves, or the gravitational oscillations of density (or
entropy) surfaces, do not often contribute significantly to the mean observed motions
(important exceptions occur in the upper atmosphere where breaking gravity waves
decelerate the mean flow, and elsewhere). Instead, the observed motions are to a
great extent determined by a nearly materially conserved field, the potential vorticity,
together with approximate ‘balance relations’ which hold instantaneously and filter
the inertia–gravity waves (Hoskins, McIntyre & Robertson 1985; Ford, McIntyre &
Norton 2000 and references therein).

The simplest balance relations are geostrophic and hydrostatic balance, in which
respectively the horizontal acceleration (relative to the rotating Earth) and the vertical
acceleration are neglected in the momentum equations. There are higher-order more
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124 D. G. Dritschel and Á. Viúdez

complex balance relations which appear capable of better representing the balanced
component of the flow (cf. McIntyre & Norton 2000; Mohebalhojeh & Dritschel 2000,
2001). They are judged to be better because, for a given flow, they attribute a
greater proportion of the flow to balanced motions. What is left over is called the
‘imbalance’ or (often misleadingly) the ‘gravity waves’. Just what part of the imbalance
is truly gravity waves is difficult to know precisely. Part of the problem is that this
decomposition into balanced and imbalanced motions is flow dependent; hence, the
balance relations must be tailored to the flow regime. No one set of balance relations
is optimal for a given evolving flow.

In general, if a flow has both a small Froude number (ratio of horizontal vorticity
ωh to buoyancy frequency N) and a small Rossby number (ratio of relative vertical
vorticity ζ to background planetary vorticity f ), then one can expect high-order
balance relations to hold and little interaction between the imbalanced and balanced
parts of the flow. Under these conditions, the balanced part of the flow does not
generate significant imbalance, i.e. through spontaneous gravity wave emission. Hence,
if the imbalanced part of the flow is initially weak, it remains so. This is the basis for
the initialization and data assimilation methods used in weather forecasting. Those
methods apply balance relations to filter the initial imbalance, a significant component
of which is considered to be due to data inaccuracies and model errors.

While the principle of balance can be applied strictly to design approximate models
having no imbalance whatsoever, one need not go this far to exploit the underlying
balanced structure in the equations of motion. Mohebalhojeh & Dritschel (2000, 2001)
have shown, in the single-layer shallow-water equations, that one can simultaneously
make this balanced structure explicit while retaining evolution equations for the
imbalanced part of the flow. That is, balance is not imposed but, rather, it is used to
motivate a choice for a pair of variables to represent the imbalanced part of the flow.
The original ‘primitive’ variables are then recovered from a set of diagnostic relations.
And here is the key point: these diagnostic relations reduce to balance relations when
the time derivatives of the imbalance variables are set to zero. The underlying balance
is explicit, and so is the imbalance. All of this is gained without approximating the
equations of motion.

In practice, shallow-water numerical simulations based on this transformation are
significantly more accurate than those using the original primitive variables (see
Dritschel & Mohebalhojeh 2000), particularly when the Froude and Rossby numbers
are small. The problem with the original variables is that they mix balanced and
imbalanced motions, and, inevitably, numerical discretization errors lead to a false
numerical generation of gravity waves. This in turn can lead to significant errors in
the balanced part of the flow (Dritschel & Mohebalhojeh 2000).

In general, the balanced part of the flow depends only on the instantaneous
distribution of potential vorticity. In the absence of frictional and diabatic processes,
potential vorticity is a materially conserved field (this conservation is also known
as Cauchy’s vorticity formula). Under these conditions (assumed in this work), the
potential vorticity is a natural prognostic variable for representing the balanced
motion. It is not frequently used however, due to its nonlinear dependence on the
original primitive variables. In the shallow-water equations, this is not a major
limitation, although it can lead to nonlinear diagnostic equations for the primitive
variables depending on the choice of imbalance variables (these are no worse however
than the balance relations one must solve in balanced models, and indeed in some
particularly useful cases they reduce to simple linear equations even when the corres-
ponding balance relations are nonlinear).
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Modelling rotating stably stratified geophysical flows 125

In the three-dimensional rotating–stratified fluid equations examined in this work,
the use of potential vorticity is more problematic than in the shallow-water equations.
Inevitably, one is forced to solve a nonlinear diagnostic equation to recover the original
variables no matter what choice is made for the imbalance variables. However, the
situation is not as bleak as it appears, because a variety of choices for the imbalance
variables leads to an appealing diagnostic equation, of the Monge–Ampère type, about
which much is known. Here, we adopt a special choice of imbalance variables that
represents the departure from the simplest leading-order geostrophic and hydrostatic
balance. This does not lead to the best representation of the balanced part of the
flow for small Froude and Rossby numbers, but there are practical reasons for
not trying anything more elaborate. First, the Monge–Ampère structure would be
lost and we would probably confront a more complicated, potentially less robust,
nonlinear equation about which little or nothing is known. Second, the numerical
cost of solving such an equation and computing the evolution of the imbalance
variables would probably be far greater. The design of a numerical algorithm forces
a compromise between mathematical exactness and efficiency.

The plan of the paper is as follows. In § 2, the governing equations are reviewed
and then transformed to use potential vorticity and the ageostrophic horizontal
vorticity as prognostic variables. Several physical examples are discussed next in § 3.
These examples exhibit the spontaneous emission of inertia–gravity waves, albeit at
surprisingly weak amplitudes even for moderately large Rossby and Froude numbers.
In the vertical velocity field, this emission is of secondary importance, roughly five
orders of magnitude smaller than the horizontal velocity field. Some conclusions and
ideas for future work are given in § 4. In an Appendix we outline the numerical
algorithm developed to implement this theoretical approach.

2. The rotating–stratified fluid equations recast
2.1. Primitive variables

We consider the equations for a rotating stratified incompressible fluid whose
density ρ(x, t) departs weakly from a background constant value ρ0, as in the
oceans. Under the so-called ‘Oberbeck–Boussinesq’ approximation (Oberbeck 1879;
Boussinesq 1903), quadratic and higher-order corrections in (ρ −ρ0)/ρ0 are neglected.
The difference ρ − ρ0 is split into a mean linear part �z z, where �z < 0 is a constant,
and an anomaly ρ ′(x, t), or explicitly:

ρ ′(x, t) ≡ ρ(x, t) − �z z − ρ0. (2.1)

Then, the conservation of mass, which becomes the material conservation of density
(ρ̇ = 0) for an incompressible fluid, may be written

ρ̇ ′ + �z w = 0, (2.2)

where (̇ ) = d( )/dt = ( )t + u · ∇( ) denotes the material time derivative (in the rotating
frame), and w is the vertical component of the velocity.

Conservation of linear momentum, in a reference frame rotating with constant
angular velocity f/2 around the vertical z-axis with respect to an inertial frame,
becomes (under the approximation above)

u̇ + f k × u = −α0∇Φ − α0gρ
′k, (2.3)

where u is the three-dimensional velocity field, Φ(x, t) is the geopotential, g is gravity,
α0 ≡ ρ−1

0 , and k denotes the vertical unit vector. One last equation is required to close
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the system of equations: the isochoric condition

∇ · u = 0. (2.4)

Note that, as a consequence of (2.4), the full equations have only three independent
time derivatives.

2.2. The transformation

Various transformations are commonly used to solve the equations above in a different
way, for example the Craya–Herring decomposition (which expresses the velocity in
terms of spatial derivatives of two scalar potentials, see e.g. Smith & Waleffe 2002
and references therein). However, we are not aware of any transformation having
the form of a balance–imbalance decomposition – the Craya–Herring decomposition
appears to be most useful for studying flows dominated by inertia–gravity waves, just
the inverse of the situation considered in the present work. The transformation we
use is described next.

2.3. Buoyancy

It is convenient to introduce the buoyancy field

b ≡ −α0gρ
′, (2.5)

which appears multiplying k on the right-hand side of (2.3). From (2.2), we have

ḃ + N2 w = 0, (2.6)

where N2 ≡ −α0g�z > 0. The quantity N is the mean buoyancy frequency.

2.4. Balance

To motivate the choice of variables to be adopted, consider the equations that result
from imposing geostrophic and hydrostatic balance:

f k × uh = −α0∇hΦ, (2.7a)

0 = −α0Φz + b. (2.7b)

where a subscript h on any vector denotes the horizontal component of that
vector, and ∇h denotes the horizontal gradient operator (subscripts (x, y, z, t) denote
partial derivatives). Now, we can eliminate Φ by taking a z-derivative of (2.7a) and
substituting (2.7b) to give

−f vz = −bx, (2.8a)

f uz = −by, (2.8b)

which are often referred to as the ‘thermal-wind relations’ (although here we are
considering the ocean). Now, a very slight modification of the left-hand side of these
equations yields

f ξ = −bx, (2.9a)

f η = −by, (2.9b)

where ξ ≡ wy − vz and η ≡ uz − wx are the x- and y-components of the vorticity
ω = (ξ, η, ζ ). This is a very slight modification to the thermal wind relations not only
because w is typically much smaller than u and v, but also because z derivatives are
typically much larger than x- and y-derivatives.
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2.5. Imbalance

We shall not impose these balance relations in what follows, but merely use them to
motivate choosing the horizontal components of the vector

A ≡ ω/f + ∇b/f 2 (2.10)

as the variables representing the imbalance. We stress that these variables only
represent the true imbalance to leading order; they might be more appropriately
called ‘ageostrophic, non-hydrostatic vorticity’, since these variables still contain (and
may even be dominated by) balanced motions. When discussing the true imbalance
below, we will refer to it as ‘inertia–gravity waves’ for clarity.

It is convenient at this stage to introduce the shorthand notation χ̃ ≡ χ/f for
any quantity χ , and to express the buoyancy in terms of an isopycnal displacement
D ≡ −b/N2 (note that Ḋ = w). Then we can rewrite (2.10) as

A ≡ ω̃ − c2∇D, (2.11)

where c ≡ N/f . We will also make use of the inverse of c denoted ε ≡ f/N (note
that ε ∼ 10−2 to 10−1 in the oceans).

Now let A = ∇2ϕ, where ϕ is a vector potential. Then the divergence of (2.11)
gives

D = −ε2∇ · ϕ, (2.12)

whereas the curl of (2.11) (using also (2.4)) gives

ũ = − ∇ × ϕ. (2.13)

Thus, from the potential ϕ, we can recover all three components of the velocity field
as well as the isopycnal displacement field.

Similar relations were used by Muraki, Snyder & Rotunno (1999, see their
equation 27) in an attempt to develop an improved quasi-geostrophic model. They
used the Helmholtz decomposition (v, −u, θ) = ∇Φ + ∇ × Ψ where θ is potential
temperature, and set k · Ψ = 0. The relations between the potentials in both app-
roaches are therefore, scaling factors omitted, ϕh → k × Ψh and φ → Φ , where ϕh

and φ are the horizontal and vertical parts of ϕ.

2.6. Potential vorticity

For the variable representing the balance, we choose the potential vorticity (PV). The
dimensionless PV is given by

Π ≡ ω̃a · ∇Z, (2.14)

where ωa denotes the absolute vorticity (including the background component f k)
and Z(x, t) = z − D(x, t) is the reference height of an isopycnal, or simply the density
in disguise since

−N2Z(x, t) = g [α0ρ(x, t) − 1]. (2.15)

Hence we may expand (2.14) to give

Π = (k + ω̃) · (k − ∇D) = 1 + ζ̃ − Dz − ω̃ · ∇D. (2.16)

We next express the PV completely in terms of the vector potential ϕ = ϕh + φk
introduced above. From (2.11) and (2.12) we have

ω̃ = A − c2∇D = ∇2ϕ − ∇(∇ · ϕ). (2.17)
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Hence, the dimensionless PV anomaly � ≡ Π − 1 may be written in terms of ϕ as

� = Lqg{φ} − (1 − ε2)∇h · ϕhz + ε2[∇2ϕ − ∇(∇ · ϕ)] · ∇(∇ · ϕ), (2.18)

where the linear operator Lqg = ∇2
h + ε2∂zz is the ‘quasi-geostrophic’ Laplacian

operator.

2.7. Inversion

We intend to use Ah and � as our prognostic variables, to make explicit use of PV
conservation �̇ = 0. But to do so we need to be able to recover the vector potential
ϕ, and thereby the primitive variables u and b = −N2D, from Ah and � . The
horizontal components of ϕ are found simply by inverting Laplace’s operator:

ϕh = ∇−2Ah. (2.19)

On the other hand, the vertical component of ϕ, namely φ, must be found from the
definition of PV itself (2.18). This results in a double Monge–Ampère equation (the
sum of a Monge–Ampère equation in xz and another in yz):

Ie

(
φzz∇2

hφ − φ2
xz − φ2

yz

)
+ Ia∇2

hφ + 2Ibφxz + 2I ′
bφyz + Icφzz + Id = 0, (2.20)

a quadratically nonlinear equation having (space and time varying) coefficients

Ia = 1 + ε2Θz, Ic = ε2(1 − Θz), Ie = ε2, (2.21a, b, c)

Ib = ε2
(

1
2
∇2ϕ − Θx

)
, I ′

b = ε2
(

1
2
∇2ψ − Θy

)
, (2.21d, e)

Id = ε2[Θx∇2ϕ + Θy∇2ψ − |∇Θ |2] − (1 − ε2)Θz − �, (2.21f )

where Θ ≡ ∇h ·ϕh = ϕx +ψy . A numerical procedure to solve this equation is outlined
in the Appendix.

2.8. Prognostic equations

We next derive the prognostic equations satisfied by the imbalance variables Ah.
From (2.11), it is apparent that the evolution of Ah can be obtained from the
vorticity equation (the curl of (2.3), with −α0gρ

′ = b = −N2D)

˙̃ω = ω̃ · ∇u + uz + f c2k × ∇hD, (2.22)

combined with the gradient of Ḋ = w, i.e.

d∇D
dt

= ∇w − ∇u · ∇D. (2.23)

The result is

Ȧh = −f k × Ah + (1 − c2)∇hw + ω̃ · ∇uh + c2∇hu · ∇D, (2.24)

in which we have used the kinematic relation uz = ∇w − k × ω to express the group
of terms uz + f c2k × ∇D in (2.22) as ∇w − f k × (ω̃ − c2∇D) = ∇w − f k × A.

The third prognostic equation is simply

�̇ = 0, (2.25)

the conservation of PV.
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3. Results
3.1. Problem set-up

Several numerical simulations are presented next using the Contour-Advective Semi-
Lagrangian (CASL) algorithm outlined in the Appendix. Other simulations may be
found in Viúdez & Dritschel (2003), who specifically study the vertical velocity field
and how well it compares with that diagnosed from quasi-geostrophic balance for an
ellipsoidal vortex. The parameters in each simulation are identical unless otherwise
noted. We use a 643 grid together with 64 isopycnal surfaces, a frequency ratio
c ≡ N/f = 100, a domain height LZ = 2π, a domain width LX = LY = cLZ , mean
buoyancy frequency N = 2π, a time step �t = 0.1, a large scale length L (used for the
node distribution on PV contours) equal to the diameter (given below) of the vortex
simulated, and a ‘surgical scale’ δ equal to a twentieth of the horizontal grid scale.

The example presented below consists of a horizontal cylinder of anomalous PV,
which induces two counter-flowing jets centred on the horizontal edges of the cylinder.
This flow is part of a wide class of geostrophically balanced steady flows having no
dependence on one horizontal spatial coordinate, say y, Such flows have u = w = 0,
but v and D (or b) non-zero. As such, the PV is steady, with fluid moving in the
y-direction only.

For these flows, v = f φx and D = −ε2φz, where φ(x, z) satisfies a simplified two-
dimensional Monge–Ampère equation, that is (2.20) without y-derivatives, and with
Ia = 1, Ib = I ′

b = 0, Ic = Ie = ε2, and Id = −� . In fact, this equation is independent
of ε if we scale z by ε:

φxx + φzz + φxxφzz − φ2
xz = � (3.1)

(here z stands for Nz/f ). Note that in this case, φ = α0Φ/f 2, where Φ is the
geopotential in (2.3). We have developed a two-dimensional numerical method that
solves this equation, given any distribution of � , in the periodic computational
domain. However, it is instructive to consider first an analytical solution φ(r) which
is available to any radial distribution of potential vorticity � (r) in an unbounded
fluid. Then, (3.1) reduces to

1

r

d

dr

(
r
dφ

dr

)
+

1

r

dφ

dr

d2φ

dr2
= � (3.2)

– in fact a first-order equation for dφ/dr . This can be integrated directly for any
distribution � (r) with the result

1

r

dφ

dr
= ±

√
τ (r) − 1, (3.3)

where

τ = 1 +
2

r2

∫ r

a

� (r ′)r ′ dr ′

=
2

r2

∫ r

a

Π(r ′)r ′ dr ′, (3.4)

and where a is a constant of integration chosen to ensure τ (r) � 0 for all r . For Π � 0
everywhere, a = 0, and the positive root in (3.3) ensures that the solution is both
statically and inertially stable (the other root corresponds to an unstable solution). If
Π < 0 over any range of r , then one may show that there are always angular sectors
of static and inertial instability, whichever root is taken in (3.3). The integration
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constant a must then be chosen so that the minimum of K(r) =
∫ r

0
Π(r ′)r ′dr ′ occurs

at r = a (since then τ = 2(K(r) − K(a))/r2 � 0). As our focus is on statically stable
flows, we will not consider this situation further.

Notably, for any compact distribution of � (r) or any sufficiently rapidly decaying
distribution, dφ/dr → κ/r as r → ∞, where κ =

∫ ∞
a

� (r ′)r ′dr ′. That is, at large
distances, the nonlinear terms in the Monge–Ampère equation are negligible compared
to the linear terms.

For the special case of a uniform PV cylinder, � = �0 for r < re and � = 0 for
r � re, we have

τ =

{
1 + �0 for r < re (3.5a)

1 + �0r
2
e

/
r2 for r � re (3.5b)

and in general τ is monotonic if � is. The tangential velocity and displacement (also
scaled by ε) are given by v/f = xr−1dφ/dr and D = −zr−1dφ/dr; in particular v is
linear in x while D is linear in z within the cylinder. In the limit 1 + �0 → 0, the
material lines Z(x, z) = z − D(x, z) and X(x, z) = x + v(x, z)/f are expelled from
the cylinder interior, leaving neutral stratification and neutral inertial stability there
(Rellich’s parameter R = 0 in this case as well, see the Appendix). The flow overall
consists of two counter-propagating jets centred on x = ±re, z = 0. Far from the
cylinder, v and D decay like r−1.

For flow initialization, the above solution is not suitable since the domain simulated
is a periodic box of finite dimensions. The numerical solutions found by solving (3.1)
in the periodic domain however differ little from the above when the size of the
cylinder is sufficiently small compared to the domain dimensions, as in the examples
discussed below. There is a further problem in using these two-dimensional numerical
solutions, since any initial disturbance (required to allow three-dimensional evolution)
will be initially unbalanced and will hence adjust by gravity wave emission. To reduce
this effect, we instead follow the initialization procedure described in the Appendix,
and start with a disturbed PV cylinder having initially zero PV anomaly. The anomaly
is then artificially grown over 5 inertial periods to the desired final value by growing
the jumps in � across the PV contours.

The initial contours lie on flat isopycnal surfaces (D = 0), and are chosen to
represent the circular distribution of anomalous potential vorticity � (r) = �0(1 −
r2/r2

e ), where �0 is the maximum anomaly after the period of initialization, and
here r2 = (x − x0(y))2 + z2, where x0(y) is the centreline displacement (in x) used
to impart a transverse disturbance to the cylinder. Specifically, we take x0(y) =
am sin(2πmy/LY ) + an sin(2πny/LY ), with m = 2, n = 3, am = 0.1 and an = −0.1.
The corresponding PV contours are curves of constant x − x0 on each isopycnal
z = z� (initially coincident with grid planes, i.e. z� = z̄�). The values of x̂ = x − x0

are determined by discretizing the distribution of � (r) on z = z� into a series
of equal jumps �� = �0/n, with n an integer, except for the outermost jumps,
which use �� = �0/2n. For a quadratic function of r , the optimal discretization is

obtained by choosing the discrete radii as rk = re

√
1 − (k/n)2, with k = 0, 1, . . . , n−1

(Dritschel 1998). This ensures that the circulation contained within r = rk is the same
in the discrete and continuous profiles. From the rk , the contour positions x̂k� on

each isopycnal surface are determined from x̂k� =
√

r2
k − z2

� , for all k � 0 for which
|z�| < rk . In general, the number of contours on each isopycnal surfaces varies, and
there are no contours on surfaces for which |z�| � re. Finally, the same discretization
procedure can be used for an elliptical cylinder of x : z aspect ratio λ if we multiply
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Figure 1. Vertical distribution at y = 0 (grid point iY = 32) and at t = 5Tip of D (medium

thick lines, contour interval � = 10−2, extrema contour is ±0.08), of v/f (thin lines, contour
interval � = 1, extrema contour is ±9), and gridded PV contours (thick lines, � = 0.1,
minimum contour is −0.4). In this and similar figures the short-dashed horizontal and vertical
lines in the plot are the zero contour lines of D and v/f , respectively; and dashed lines show
negative values. Domain extent is 102[−π, π] × [−π, π].

the x̂k� above by λ. (The circular cylinder here is in fact an ellipse of aspect ratio ε

in the original coordinates.)

3.2. Flow evolution

The simulation presented next uses n = 10 PV levels and �0 = −0.5, corresponding to
a moderately ageostrophic anticyclonic shear zone (other values of �0 have also been
examined, and are compared below). The corresponding PV field � for a cylinder
of radius re = 0.5c, at the end of the initialization period (t = 5Tip), is shown in
figure 1, together with the distributions of v/f and D, in the cross-section plane
y = 0 (here and below z and D are scaled by c = N/f ). Note that the PV contours
displayed are found from the interpolated gridded field; the contours being explicitly
advected lie on isopycnal surfaces oriented nearly perpendicular to the plane shown.
The distribution of v/f corresponds to a double jet, with maxima located very near
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the lateral edges of the PV cylinder. The distribution of D is similar to that of v/f ,
except rotated by 90◦ – isopycnals are displaced upwards above the centre of the
cylinder and downwards below it. This pattern is consistent with near geostrophic
balance.

At this time the Rossby number Ro (the extreme value of the dimensionless vertical
vorticity ζ̃ ) is approximately −0.34, while the Froude number Fr (the maximum value

of |ωh|/
√

N2 + bz) is approximately 0.16. In all cases examined here, |Fr/Ro| ≈ 1
2
,

and this ratio appears to be mainly controlled by the aspect ratio λ of the PV
cylinder (here we have used λ = 1, in the rescaled coordinates). In general, we would
expect |Fr/Ro| ≈ (2λ)−1. From the exact solution for a uniform PV anomaly, (3.3)
and (3.5), one may show that Ro = (1 + �0)

−1/2 − 1, and ζ̃ = Ro on the edge of
the cylinder at x = ±re and z = 0 (note that the sign of Ro is opposite to that of
�0 in this case). For the parabolic profile used here, the extreme value of ζ̃ occurs
at the centre of the cylinder and Ro = (1 + �0)

1/2 − 1 (this has the same sign as
�0). For �0 
 1, Ro ≈ 1

2
�0. Similarly, one may show that for both a uniform and

a parabolic PV profile, the Froude number Fr = |Λ − 1/Λ|, where Λ = [τ (re)]
1/4,

and this is achieved on the outside edge of the cylinder at x = re cos θc, z = re sin θc,
where tan θc = ±Λ. Note that τ (re) = 1 + �0 for a patch and τ (re) = 1 + �0/2 for
a parabolic PV distribution. For �0 
 1, Fr ≈ 1

4
|�0| for the parabolic distribution

used here. These results are summarized in figure 2 for a parabolic PV distribution.
The PV evolution from t = 0 to 30Tip on the central isopycnal � = 32 is illustrated

in figure 3, along with a corresponding three-dimensional view in figure 4. As in
two-dimensional barotropic flows (Dritschel 1989a), the PV rolls up into a street
of vortices, here all anticyclonic, which subsequently merge into larger vortices (the
domain periodicity, however, limits how far this can go). The flow remains strongly
nonlinear, as seen from figure 5, which displays the time evolution of Romin, Romax,
and Fr for this and two other simulations (for �0 = −0.25 and for �0 = −0.75).
The vortices which first form exhibit a height-to-width aspect ratio of order unity
(in scaled height coordinates), a value similar to that found in quasi-geostrophic
turbulence (Reinaud, Dritschel & Koudella 2003), and consistent with the nearly
constant ratio of |Romin|/Fr exhibited in figure 5. On the basis of a wide range of
simulations conducted, we believe that this similarity is not accidental – it indicates
that the dynamics of nearly balanced rotating stratified flows at moderate Rossby
numbers is qualitatively similar to the dynamics of quasi-geostrophic flows. Even
quantitatively, the differences are often minor. In particular, the vertical velocity w

differs by at most 10–20% from the vertical velocity wqg diagnosed from quasi-
geostrophic balance – see e.g. figure 6 for a comparison of w and wqg at t = 12Tip

on the horizontal plane iZ = 28 where w is approximately largest, and figures 7 and
8 for comparisons in the (x, z)- and (y, z)-planes, respectively (for details on the
computation of wqg, see Viúdez & Dritschel 2003, who also found similar results for
an ellipsoidal gyre). The vertical velocity pattern has an octupole structure associated
with the ellipsoidal shape of the developing vortices. The vortex forming on the sides
of the domain is more elongated than the one in the centre, and it has much larger
vertical velocities.

The similarity between w and wqg is quantified by fitting the linear relationship
wqg(x, t) = q(t) + s(t)w(x, t) over all grid points at each time t . The slope s(t), together
with its probable uncertainty σs(t), are plotted in figure 9 as a function of time for
the simulation just described as well as a variety of others differing only in the PV
anomaly �0 (the offset q(t) is always found to be negligible). We find that s(t) < 1
generally, indicating that wqg underestimates the true vertical velocity w associated
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–1 0 1 2 3
–1.0

–0.5

0

0.5

1.0

Romin

Romin

Romax

Romax

Fr Fr

|Ro/Fr|

0

Figure 2. Minimum (most negative) and maximum (most positive) Rossby numbers Romin,
Romax and Froude number Fr for the class of exact radial parabolic PV distributions,
� (r) = �0(1 − r2/r2

e ) for r < re and � (r) = 0 for r � re , as a function of the PV
extremum �0. The overall Rossby number Ro is defined to be largest, in magnitude, of the
two Rossby numbers, and it corresponds to the curve beginning at (−1, −1), crossing Ro = 0
at �0 = 0, and extending to the upper right corner of the figure. This value of Ro is found at
r = 0 and takes the form Ro = Ro1 = (1 + �0)

1/2 − 1. The second, lower-magnitude Rossby
number is found at x = ±re , z = 0 and takes the form Ro = Ro2 = (1 + 1

2
�0)

−1/2 − 1.

with negative PV anomalies (s(t) > 1 is found for positive PV anomalies, see Viúdez &
Dritschel 2003 for further remarks). Moreover, on average s decreases with increasing
magnitude of the PV anomaly, whereas σs increases with it. The increase in σs with
|�0| is not principally due to a breakdown in the linear relationship, but rather to
an increased scatter about it. This scatter is associated with the presence of inertia–
gravity waves in the field of w. Note however that even for �0 = −0.75 the level of
scatter measured by σs is only about 0.1% of s.

3.3. Inertia–gravity waves

Balanced motions are clearly dominant in these examples. To obtain a better view of
the wave motions, we would like to separate them from the balanced motions, but
this is not straightforward. The separation depends on what balance is assumed –
clearly quasi-geostrophic balance is inadequate at these Rossby numbers, since the
difference w −wqg is still highly correlated with the PV field. No attempt has yet been
made to apply higher-order balance relations, e.g. cyclo-geostrophic (that is, including
the centripetal acceleration in the horizontal momentum balance), and instead we
present an alternative way of assessing the importance of inertia–gravity waves.
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t = 5 t = 8 t = 10

t = 12 t = 14 t = 16

t = 18 t = 24 t = 30

Figure 3. Time evolution of the PV contours lying on the middle isopycnal surface � = 32.
Times are indicated in inertial periods. The points on the contours correspond to fluid particles
initially lying on the x-axis.

Since such waves have frequencies ω lying in the range f <∼ ω<∼ N (the uncertainties
being due to variations in both the local stratification (b) and the local rotation
(ζ )), their importance may be estimated by the power within this frequency band
compared with that at zero frequency (the time average). Here, power is measured
in two ways: by the kinetic-energy frequency spectrum and by the squared vertical-
velocity frequency spectrum, averaged over a coarse set of grid points. The points
chosen lie on a regular 8 × 8 × 8 grid, and for these points the kinetic energy density
and vertical velocity are recorded each time step. The resulting frequency spectra
are shown in figure 10 for the present simulation, and for two others having 50%
smaller and 50% larger PV anomalies (�0 = −0.25 and −0.75), as labelled. Only
the spectrum of w2 shows a significant level of wave activity, predominantly in the
form of near-inertial waves (frequencies close to f ), but even here the power within
the range f <∼ ω<∼ N is in all cases less than 1% of the total, and diminishing with
decreasing �0, consistent with the spatial patterns of w shown previously in figures 6,
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Figure 4. Three-dimensional evolution of the PV initially contained within the disturbed
cylinder, at t = 5, 8, 10, 12, 14, 16, 18, 24 and 30Tip (left to right, then downwards) – the
same times shown in figure 3. The height coordinate is here stretched by c = N/f = 100. An
orthographic perspective is used, from a point lying in the (y, z)-plane at an angle of 30◦ from
the vertical. Only the vertical range containing anomalous PV is shown. The front and back
faces of the domain are rendered light grey while the visible bottom is rendered a slightly
darker shade of grey.

7 and 8 for �0 = −0.5. Most notably, these waves are virtually undetectable in the
kinetic-energy frequency spectrum. Hence, PV advection is accomplished by a nearly
balanced flow field. For all practical purposes, these flows are in a state of balance.

It is worth making the point that the kinetic-energy spectrum extends over all
frequencies. There is no clear distinction between ‘slow’ and ‘fast’, except that the slow
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5 10 15 20 25 30
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

5 10 15 20 25 30

0.3

0.4

0.2

0.1

0.0

FrRo

Time (i.p.) Time (i.p.)

(a) (b)

–0.75

–0.50

–0.25

–0.25

–0.50

–0.75

–0.75

–0.50

–0.25

Figure 5. The time evolution of (a) the minimum and maximum Rossby number and (b) the
Froude number, for three simulations differing only in the minimum PV anomaly �0, as
labelled.

(a) (b)

Figure 6. (a) Horizontal distribution of the vertical velocity w (thick lines, � = 10−5) and
vertical displacement D (thin lines, � = 10−2) at z = −π/8 (grid point iZ = 28) at t = 12Tip.
Note that the vertical displacement is entirely negative, so that there are no thin solid lines.
(b) Same as in (a) except the quasi-geostrophic vertical velocity wqg is shown.
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(a) (b)

Figure 7. (a) Vertical distribution of the vertical velocity w (thick lines, � = 10−5) and
gridded PV contours (thin lines, � = 0.1) at y = −5cπ/8 (grid point iY = 12) and at t = 12Tip.
(b) Same as in (a) except the quasi-geostrophic vertical velocity wqg is shown.

(a) (b)

Figure 8. (a) Vertical distribution of the vertical velocity w (thick lines, � = 10−5) and
gridded PV contours (thin lines, � = 0.1) at x = 0 (grid point iX = 32) and at t = 12Tip.
(b) Same as in (a) except the quasi-geostrophic vertical velocity wqg is shown.

motions clearly have more power. The frequencies ω > f here do not correspond to
inertia–gravity waves, but rather to the balanced dynamics, i.e. to the part of the flow
controlled by PV (this part is clearly more than that given by thermal-wind balance).
The balanced motions do involve high frequencies, but they project remarkably
weakly on inertia–gravity waves. What we have found in this example, and many
others conducted, is that there is little significant inertia–gravity wave generation for
Rossby numbers up to about 0.6 (in absolute value), and Froude numbers up to
about 0.3, in flows starting from a nearly balanced state.
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(×10–3)

Figure 9. (a) The slope s(t) and (b) the probable uncertainty σs(t) in the estimate of s in the
linear regression wqg(x, t) = q(t) + s(t)w(x, t), as a function of time and for different values
of �max = −0.25(1), −0.3(2), −0.4(3), −0.5(4), −0.6(5), −0.7(6) and −0.75(7). The linear fit is
computed, once each inertial period, using the w and wqg data in the complete domain (643

data).

3.4. Accuracy

A few comments on the accuracy of this numerical solution are in order. The
original grid, 643, may seem rather coarse for simulating geophysical flows at large
Reynolds numbers. However, in previous work in the related shallow-water context
(Dritschel, Polvani & Mohebalhojeh 1999), it was found that the CASL algorithm
converged much faster than commonly used algorithms (such as pseudo-spectral and
semi-Lagrangian), so that solutions on relatively coarse grids (such as used here)
approximate well the solutions on much higher resolution grids.

Similar results have been found in the present context. We have computed the
flow evolution, starting from the end of the initialization period (t = 5Tip), using
also a pseudo-spectral algorithm (described in the Appendix) for the basic example
with �0 = −0.5. The vertical velocity and displacement fields for this experiment, at
t = 12Tip on the horizontal plane iZ = 28, are shown in figure 11, which is identical in
format with figure 6 (and uses the same contour interval). Most notably, the vertical
velocity in the pseudo-spectral simulation is only half of that in the CASL simulation.
Moreover, the displacement field has weaker gradients and a broader scale overall.
The quasi-geostrophic vertical velocity (b), however, compares with the actual vertical
velocity (a), which indicates that the source of the problem is the PV field.

The PV field is not explicitly conserved in the pseudo-spectral algorithm, and
the result is strong diffusion, as shown in figure 12(a) at t = 12Tip and 24Tip in
the middle isopycnal surface. (This level of diffusion is closely comparable to what
was found previously in the shallow-water context at this resolution, see Dritschel
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(a)

10–16

0.001 0.010 0.100 1.000 0.001 0.010 0.100 1.000

(b)
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w2
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10–5

10–4

10–3
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(2)

(1)
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(2)

(3)

Cycles/b.p. Cycles/b.p.

Figure 10. Averaged frequency spectra for (a) w2 and (b) (twice) the specific kinetic energy
(u2 + v2 + w2), and for the cases �min = −0.25 (1), −0.5 (2), and −0.75 (3). Horizontal
axis is frequency in cycles/(buoyancy period). Every spectra is the average of 83 spectra each
computed from the time series from t = 5 to t = 30Tip (thus comprising 25000 × 83 data
points). In (a), an additional dotted line is plotted linearly interpolating between the spectral
values at f and N .

(a) (b)

Figure 11. (a) Horizontal distribution of the vertical velocity w (thick lines, � = 10−5)
and vertical displacement D (thin lines, � = 10−2) at z = −π/8 (grid point iZ = 28) at
t = 12Tip for the pseudo-spectral simulation having �0 = −0.5. (b) Same as in (a) except the
quasi-geostrophic vertical velocity wqg is shown.
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(a)

(b)

(c)

Figure 12. Comparison of the PV contours lying on the middle isopycnal surface for the 643

pseudo-spectral simulation (a), the 643 CASL simulation (b), and a 1283 CASL simulation
(c), at t = 12Tip (left column) and 24Tip (right column).
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(a) (b)

Figure 13. (a) Horizontal distribution of the vertical velocity w (thick lines, � = 10−5) and
vertical displacement D (thin lines, � = 10−2) at z = −π/8 (grid point iZ = 56) at t = 12Tip

for the 1283 CASL simulation. (b) Same as in (a) except the quasi-geostrophic vertical velocity
wqg is shown. The same fields for the 643 simulation are shown in figure 6.

et al. 1999.) We also show for comparison the present CASL simulation results at the
basic 643 resolution (figure 12b) as well as CASL simulation results at 1283 resolution
(figure 12c). This figure demonstrates the extremely rapid convergence of the CASL
algorithm – 643 resolution is more than enough to capture the PV field accurately. On
the other hand, the pseudo-spectral simulation results completely lack the fine-scale
structure typical of PV advection. This poor representation of the PV field degrades
the overall accuracy of the simulation, as we have seen already for the vertical velocity
field in figure 11. In the CASL simulations, the vertical velocity field is insensitive to
further increases in resolution – compare figure 13 for 1283 with figure 6 for 643.

The general principle that we are stressing, noted previously in the shallow-water
context, is that an accurate representation of the PV field is essential for an accurate
representation of the dominant, balanced part of the fluid motion in the atmosphere
and oceans. This accuracy can only be beneficial to modelling the imbalanced motions
also. Here, we have gone a step further by separating balanced and imbalanced
motions to first order (in the departure from hydrostatic and geostrophic balance),
using appropriate numerical methods for each, and yet fully retaining the coupling
between these motions.

4. Concluding remarks
We have developed a theory which distinguishes, at leading order, balanced and

imbalanced motions in a rotating stably stratified fluid. The theory makes use of the
simplest hydrostatic and geostrophic balance relations to identify an appropriate set
of variables expressing the departure from this balance. The important point is that
the theory does not impose balance, but rather it is used to help separate distinct
kinds of fluid motion: the ‘slow’ potential-vorticity-controlled balanced motions and
the ‘fast’ inertia–gravity waves. This has been found to be practically useful in a
related shallow-water context (Mohebalhojeh & Dritschel 2000, 2001; Dritschel &
Mohebalhojeh 2000), and is likely to prove useful in this context as well.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

49
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003004920


142 D. G. Dritschel and Á. Viúdez

The resulting transformation of the equations of motion, to use potential vorticity
together with a pair of variables representing the imbalance (here the ageostrophic
horizontal vorticity), results in a series of diagnostic relations to recover the original
‘primitive’ variables, i.e. the velocity and density. In particular, the velocity and density
fields are not explicitly evolved. The diagnostic equations are linear apart from the
one associated with the definition of potential vorticity. The latter turns out to be a
double Monge–Ampère equation, a quadratically nonlinear equation relating the
vertical component of the vector potential to the potential vorticity and imbalance
fields. It is shown that properties of this equation are intimately connected with
inertial and static stability.

We have developed a new numerical method to solve these transformed equations
and applied it to the evolution of a disturbed horizontal cylinder of potential vorticity
having initial Rossby numbers ranging from −0.2 to −0.6. The cylinder destabilizes
and rolls up into a series of three-dimensional vortices, yet despite the O(1) Rossby
numbers present in the flow, there is remarkably little inertia–gravity wave emission.

In future work, we would like to explore the instability of horizontal and vertical
potential vorticity cylinders more thoroughly, comparing also with more conventional
numerical approaches. In particular, we would like to quantify the level of wave
emission as a function of Rossby number and other parameters characterizing the flow
(e.g. the ratio f/N and the aspect ratio of the cylinder). This will entail developing
‘radiation’ (wave-absorbing) boundary conditions. We also intend to include solid
boundaries and bottom topography.

Finally, to be able to better distinguish between balanced and imbalanced motions,
methods need to be developed, perhaps analogous to the potential-vorticity inversion
hierarchies examined by Mohebalhojeh & Dritschel (2000) in the shallow-water
context. The results of the first example presented in this paper show clearly that
there is a better balance available than the simplest hydrostatic–geostrophic one.
For instance, one can improve on geostrophic balance by including the centripetal
acceleration in the horizontal momentum balance, and so on. This may not only help
to better distinguish balance and imbalance in a post-processing sense, but it may
also lead to new more accurate numerical methods for simulating such flows. Indeed,
it is sensible that numerical methods respect and exploit the underlying approximate
relations between fields – accurate numerics may depend crucially on this often-hidden
mathematical structure.

Support for this research has come from the UK National Environment Research
Council (grant number GR3/11899), and from the Spanish Research Program Ramón
y Cajal 2001 and Ministerio de Ciencia y Tecnoloǵıa (grant number REN2002-01343).

Appendix. The numerical algorithm
An algorithm has been developed for flow within an idealized geometry, namely a

triply periodic box of dimensions LX × LY × LZ . Extensions to flows with boundaries
are currently underway, and the boundary conditions required in such cases are
discussed below. Since flows close to geostrophic and hydrostatic balance are typified
by nearly isotropic PV structures in x, y, and cz, i.e. in coordinates vertically stretched
by c = N/f (see Reinaud et al. 2003 and references therein), we ensure that the grid
resolution is similarly isotropic. (In previous works studying turbulence in rotating
stratified flows (e.g. Smith & Waleffe 2002), an isotropic grid in x, y, and z was used,
regardless of the value of N/f .)
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A more conventional purely pseudo-spectral version of the algorithm evolving the
full vector A has also been developed to demonstrate the advantages of explicit PV
conservation in the present ‘hybrid’ CASL algorithm.

The basic structure of the algorithm consists of flow initialization, interpolation
of the PV field to grid-point values, inversion to find the vector potential (and by
differentiation the velocity and displacement fields), computation of the imbalance
tendencies, and time integration. In addition, a number of optional diagnostic
operations may be performed. In the subsections below, each of these steps is described
in some detail, with an emphasis on the novel aspects of the algorithm. It turns out
to be simplest to describe initialization after the other steps, so we turn first to the
interpolation of the PV field.

A.1. Potential vorticity interpolation

The advection of potential vorticity, �̇ = 0, is carried out explicitly in the
algorithm by tracking contours of � on a number nρ of isopycnal (constant-density)
surfaces, following Dritschel & Ambaum (1997) (hereafter referred to as DA97), who
introduced this method for the quasi-geostrophic equations. This leads to a significant
improvement in PV conservation over grid-based methods (cf. Dritschel et al. 1999).
Across each contour, � jumps by a given value �� (which may vary from contour
to contour), and so the full PV field is not known in advance. It needs to be generated
by first filling in the grid points between the contours on an isopycnal surface with
the appropriate value of PV – this is done by a ‘fast-fill’ procedure described in DA97.
In that procedure, a grid a power of 2 finer in x and y is used to fill in the values,
which are subsequently averaged to the original (coarser) grid. Normally, a grid 2 or
4 times finer in each direction is used (here we use 4). The use of a fine grid allows a
more accurate account of fine-scale PV for little extra computational cost (cf. DA97).

The novelty here is that a further vertical interpolation is required to find the PV
on a regular Cartesian grid, for compatability with the remaining grid-based parts of
the algorithm. This involves two successive interpolations, first to find the height of
every isopycnal surface from the gridded displacement field, then to find the PV at
grid points lying generally between these surfaces. Both interpolations are taken to
be linear for simplicity. The following is done for each (x, y) grid point:

First interpolation

Compute the reference isopycnal height Z̄i (proportional to density as given in
(2.15)) of each vertical grid point z̄i , i = 1, 2, . . . nZ , from Z̄i = z̄i − Di .

Find the grid points (i, i + 1) straddling isopycnal Z�, � = 1, 2, . . . nρ , from Z̄i �
Z� < Z̄i+1. The values of Z� are given by the initialization procedure, e.g. they may
be equally spaced to uniformly represent the density.

Compute the actual height z� of the isopycnal � by linear interpolation, assuming
D varies linearly between adjacent grid points:

z� = z̄i + �z̄
Z� − Z̄i

Z̄i+1 − Z̄i

(A 1)

where �z̄ is the vertical grid spacing (constant).

Second interpolation

Find the isopycnals (�, � + 1) straddling grid point z̄i , i = 1, 2, . . . nZ , from Z� �
z̄i < Z�+1.
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Linearly interpolate the PV field between these isopycnals to find the gridded
values:

�i = �� + (��+1 − ��)
z̄i − Z�

Z�+1 − Z�

, (A 2)

where �� is the PV on isopycnal �.

A.2. Inversion

Inversion, or the recovery of the original primitive variables from the prognostic set
(Ah, � ), is accomplished by solving (2.19) and (2.20) for ϕ, then substituting this into
(2.13) and (2.12) to calculate u and D (and if needed b = −N2D). The pressure is not
required (since ∇ · u = 0), but if desired it can be obtained by taking the divergence
of (2.3) and inverting the Laplacian operator.

In a triply periodic geometry, inversion does not explicitly require boundary
conditions on ϕ, so long as all fields are considered to be periodic (i.e. by expanding
them in Fourier series, as is done here). Otherwise, explicit boundary conditions must
be imposed. In particular, at a solid wall the normal velocity must vanish, which
involves a condition on the first-order derivatives of ϕ, namely n̂ · (∇ × ϕ) = 0, where
n̂ is the normal vector at the wall. Details are left for future work.

For the periodic boundaries used in the present work, the horizontal potential
ϕh is computed in spectral space, after a fast Fourier transform, from (2.19) by
dividing the spectral components of −Ah by the total wavenumber squared. All
derivatives, like those needed to recover u and D from ϕ, as well as those appearing
in the prognostic equations (2.24) for A, are also computed in spectral space (by
wavenumber multiplication).

Having found ϕh, it remains to compute φ from the double Monge–Ampère
equation (2.20). This is a nonlinear equation with no direct solution method. We have
developed a method based on iteration, in which the linear constant-coefficient terms
in φ are separated from the remaining terms, which are regarded as the ‘source’, i.e.

Lqg{φ} = S{ϕ}, (A 3)

where Lqg is the quasi-geostrophic Laplacian operator defined just following (2.18).
We use the previous guess for φ to compute S and invert Lqg in spectral space (by
division) to find a new guess for φ. The new guess is accepted as the solution if it
differs pointwise by less than a prescribed tolerance, here 10−7, from the previous
guess. In practice, this procedure converges exponentially fast and in just a few
iterations except for extreme situations when Π is significantly less than zero or much
larger than unity.

The lack of convergence in these situations appears to be associated with rapid
changes in the isopycnal displacement D and, when Π < 0, inertial and eventually
static instability (see below). Since the numerical algorithm advects PV on isopycnal
surfaces, this is sensible only when these surfaces are stably orientated. When Π � 1,
isopycnals are strongly bunched in the vertical, leading to strong spatial variations
in D (since, by definition, the mean value of Π is always 1). In this case, higher
resolution may be required to achieve convergence of the iterative procedure.

The double Monge–Ampère equation can change type, from elliptic to hyperbolic,
over any spatial subdomain when the quantity

R ≡ IaIc − I 2
b − I ′

b
2 − IeId (A 4)

– referred to as Rellich’s parameter – changes from positive to negative (see e.g.
Courant & Hilbert 1962 or Bakelman 1994). This condition is obtained by linearizing
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the original equation about a given solution, and then classifying the resulting linear
equation as elliptic or hyperbolic in the standard way. Substituting the expressions
for Ia , etc., from (2.21), one may show that

Rc2 = Π − ε2|Ah|2/4 (A 5)

– a remarkably simple combination of the three prognostic variables used in the
algorithm. In particular, the imbalance comes in quadratically, and reduces R. One
can also see that Π < 0 implies R < 0. In flows not departing greatly from hydrostatic
and geostrophic balance, Ah = O(1) or smaller, while ε2 
 1, implying Rc2 ≈ Π > 0
under these circumstances.

In general, R > 0 implies both inertial and static stability, ζ̃ a = 1 + ζ̃ > 0 and
Zz = 1 − Dz > 0, respectively (cf. Holton 1992; Knox 1997). This follows by rewriting
Rellich’s parameter making use of the original double Monge–Ampère equation
(2.20):

R = [Ie(φxx + φyy) + Ic][Ieφzz + Ia] − (Ieφxz − Ib)
2 − (Ieφyz − I ′

b)
2; (A 6)

hence, if R > 0, we must have that the first two square-bracketed terms are either both
positive or both negative. When they are both positive, they give simply the conditions
for inertial and static stability. This is one of the two solutions to the double Monge–
Ampère equation; the other is characterized by both inertial and static instability.
These solutions represent fundamentally different physical situations, and an evolving
flow cannot simply switch from one to the other. The stable solution is the one always
found by the iterative procedure.

In principle, it is possible for the algorithm to deal with situations when R < 0 and
Π < 0. We have been able to simulate the beginning stages of inertial instability in a
disturbed vertical column having Π = −0.1 at its centre. The iterative procedure for
φ converges even though R < 0 in a small region near the vortex core, from the end
of the initialization period at t = 5Tip until approximately t = 7.2Tip. The horizontal
vorticity grows exponentially fast and violates the CFL criterion around this time.
A variable time step might have allowed us to go a little further, but the growth
of horizontal vorticity would probably soon lead to shear instability (Richardson
numbers Ri = 1/Fr2 < 1

4
) and overturning. Notably, the same numerical instability

occurs, in fact a little sooner, in a pseudo-spectral code (described below) which finds
ϕ directly from ϕ = ∇−2A. It appears necessary to substantially increase the diffusion
or use proper molecular-type diffusion to simulate such flows.

Finally, the iterative procedure developed is based on an elliptic solution procedure,
whereas flows with R < 0 are generally of mixed hyperbolic/elliptic type (in space, not
in space–time as is frequently found in other applications). Based on a variety of exact
solutions to the linearized equation when it is of mixed type, we believe that there is
always a solution. However, in general one may require different solution procedures
in the hyperbolic and elliptic subdomains, e.g. the method of characteristics in the
hyperbolic ones and successive over-relaxation in the elliptic ones, and tie them
together using appropriate boundary conditions along R = 0. Certainly this would be
a challenging exercise, but perhaps one having only limited utility.

A.3. Time integration

The advection of PV is carried out explicitly by solving

dx�

dt
= u�(x�, t),

dy�

dt
= v�(x�, t) (A 7)
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for each point (x�, y�) lying on the PV contours on each isopycnal surface �. The
contours are represented in practice by a finite variable number of nodes, which
are redistributed at periodic intervals, as discussed in the following subsection. The
horizontal velocity used above is found by interpolation, first by linear interpolation
of (u, v) from the regularly spaced vertical grid points to the isopycnal heights z� of
every horizontal grid point, then by a bi-linear interpolation of this isopycnal
horizontal velocity field to the node positions (x�, y�) (as in the original quasi-
geostrophic algorithm developed by DA97). In effect, this is a tri-linear interpolation
of the horizontal velocity field from the regular three-dimensional grid to an arbitrary
point (x�, y�, z�). Higher-order interpolation methods could be used, but there is no
evidence to date that this is required for extra accuracy (cf. Dritschel et al. 1999).

Once (u�, v�) is found in this way, the new node positions are found by a standard
third-order three-time-level Adams–Bashforth integration procedure (full details may
be found in Dritschel et al. 1999). This is highly accurate given that PV contours
dominantly exhibit low-frequency motions, and that a small time step is used for
evolving the imbalance fields Ah. These (grid-point) fields are evolved by an explicit
leap-frog scheme, together with a weak Robert–Asselin time filter (identical to that in
Dritschel et al. 1999) to avoid the decoupling of even and odd time levels. Explicitly,

An+1
h = An−1

h + 2�tAn
ht , (A 8)

where n refers to the time level and �t is the time step (t = n�t). The tendencies Aht

are computed from (2.24), after moving the advective rate of change u · ∇Ah to the
right-hand side. (As already noted, all nonlinear products required are computed on
the grid, while all spatial derivatives are carried out spectrally.)

The use of an explicit leap-frog scheme is accurate and stable only for sufficiently
small time steps. The highest frequency motions arise from inertia–gravity waves,
which range in frequency roughly between f and N . Accordingly, to resolve the
highest frequency motions, we choose N�t < 1. In practice, we always choose N = 2π
(giving a buoyancy period of 1), and �t = 0.1. Previous experience with the two-
dimensional analogue of this algorithm (Viúdez & Dritschel 2003) has shown that
the gain in accuracy from using yet smaller time steps is insignificant.

The numerical integration of nonlinear partial differential equations, spatially
discretized on a fixed grid or by a finite set of Fourier coefficients, normally
requires some form of diffusion, physical or numerical, for stability. For the present
application, molecular viscosity is grossly insufficient to provide numerical stability
for the physical scales of interest in the oceans that are normally modelled (tens
of metres to thousands of kilometres). Instead, an artificially inflated viscosity or
an alternative form of numerical diffusion must be used, e.g. hyperdiffusion. Ideally,
one would like to use some kind of turbulent diffusion, but the general form of this
diffusion (if it is diffusion) remains obscure generally, and particularly for rotating
stratified flows. Instead, researchers have used forms which are easy to implement,
which dissipate minimally, and which have minor side effects. These are somewhat
conflicting requirements, and there is an art to balancing them. We have made
a common compromise by using bi-harmonic hyperdiffusion, which exhibits less
serious Gibbs-fringing and overshooting than higher-order forms (cf. Mariotti, Legas
& Dritschel 1994 and Jiménez 1994), while also reducing the damping of the principal
scales of interest relative to molecular-type harmonic diffusion. Specifically, we add
the term νL2

qg{Ah} to the right-hand side of (2.24); we use Lqg, rather than ∇2,
since ε∂z ∼ ∇h at least in flows having weak to moderate imbalance (such as observed
oceanic vortices, cf. Paillet et al. 2002). The hyperviscosity coefficient ν is chosen
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by specifying the damping rate of the largest wavenumber in spectral space. In
the examples presented here, and in another work using this algorithm (Viúdez &
Dritschel 2003), we have been able to use a very small damping rate of 1 per inertial
period Tip ≡ 2π/f . Note that Tip = cTbp, where the buoyancy period Tbp ≡ 2π/N

(= 1 here), and c = N/f � 1. That is, the damping rate per buoyancy period is very
small, even though the imbalance fields Ah contain, in part, inertia–gravity waves of
frequencies comparable to N .

Finally, to reduce aliasing errors arising from the computation of nonlinear products
of fields in (2.24), a steep spectral filter of the form F (k) = exp(−c(k/kmax)

10), with
c chosen so that F (kmax) = 10−14, is applied when computing derivatives (here k

refers to the x-, y- or z-wavenumber, as the case may be). This filter was first
introduced by Broutman et al. (1997) as a low-cost replacement for de-aliasing, and
was employed in the two-dimensional analogue of the present algorithm by Viúdez &
Dritschel (2002). Aliasing errors otherwise lead to the growth of erroneous grid-scale
noise, which eventually becomes overwhelming. In the examples presented in Viúdez
& Dritschel (2003) and here, the effects of this filter and of hyperviscosity have not
been found to be significant, most probably because the imbalance fields Ah do not
appear to exhibit a strong scale cascade.

A.4. Contour regularization

Periodically, the nodes lying on the PV contours need to be redistributed in order to
maintain an adequate resolution along the contours. Here, this is done every 5 time
steps (half a buoyancy period), but it can be done as infrequently as a twentieth of the
characteristic ‘eddy turn-around time’ Teddy ≡ 4π/|� |max, for flows that remain close
to balance (i.e. when the velocity field is dominantly attributable to � ). Typically,
PV exhibits a strong scale cascade, via the generation and stretching of filaments,
and it is practically impossible to follow these thinning structures for long times. It is
also not sensible to follow these structures well below the computational grid scale,
since the velocity at the contour nodes is found by interpolation from the grid. In
fact, a series of studies has shown that filaments as thin as a tenth of the grid scale
still generally exhibit consistent dynamical behaviour (see Waugh & Plumb 1994;
DA97, and Methven & Hoskins 1998). The key point is that the velocity field is
often significantly smoother than the PV field, so the former can be represented
more coarsely than the latter. The representation here of the PV by contours allows
one to take advantage of this property, leading to significant gains in accuracy over
grid-based numerical methods (Dritschel et al. 1999).

Thin filaments are removed in the algorithm by ‘surgery’ (Dritschel 1989b; DA97), a
procedure which essentially eliminates filaments, or parts of filaments, thinner than
a prescribed surgical scale δ. This dissipation is essential for limiting the growth of
contour complexity, and it is relatively benign compared to hyperviscosity and other
grid-based dissipation (see e.g. Mariotti et al. 1994; Yao, Dritschel & Zabusky 1995;
and Dritschel et al. 1999). Here, as in Viúdez & Dritschel (2002), we take δ = �h/5mg ,
where �h is the horizontal grid length and mg is the fine-grid to coarse-grid ratio
used in converting PV contours to gridded values on each isopycnal surface. Since
subgrid-scale PV contributes to the velocity field, we take the surgical scale to be
one-fifth of this subgrid scale (�h/mg), even though this may be smaller than one-
tenth of the original grid scale (as when mg = 4, as used here). This implies a slightly
more accurate contour representation overall, since for consistency the maximum
node separation µL =

√
2δL depends on δ as well as a prescribed large-scale length

L. The density of nodes on a contour roughly scales with the square-root of local
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curvature divided by µ, but is never less than (µL)−1 – full details are available in
DA97.

A.5. Initialization procedure

Our main interest is to study flows starting from a state of near balance in order
to better understand both how balance is maintained and when it may (partially)
break down, e.g. through spontaneous adjustment emission. This problem underpins
both theoretical and practical studies of atmospheric and oceanic dynamics, and
yet it remains elusive, in part because of the difficulty in disentangling balanced
motions from inertia–gravity waves but also because of poor numerical convergence
(Ford et al. 2000; Dritschel & Mohebalhojeh 2000). The present numerical method
has been developed in order to circumvent these difficulties, by greatly improving the
representation of PV, and by better distinguishing balanced from imbalanced motions.
We believe this approach is sensible theoretically, and preliminary results (Viúdez &
Dritschel 2003) are encouraging.

If we start with a given PV distribution, the fields Ah must be found which in
some measure minimize the initial generation of inertia–gravity waves by adjustment.
We have tried various simple balancing methods, e.g. based on quasi-geostrophic
balance, but none were found to be satisfactory – in particular, weak fields like
vertical velocity were found to be dominated by inertia–gravity waves resulting from
the initial imbalance. Instead, we have developed an alternative procedure which does
not require specifying balance relations. We start with a zero PV anomaly everywhere
but specify PV contours, then we slowly grow the PV anomaly within these contours
(by increasing the PV jumps across the contours) over a period long compared with
both the buoyancy and inertial periods, here 5Tip, then leave the PV constant. This
very simple procedure has been found to generate virtually no inertia–gravity waves,
making it possible to easily detect the balanced component of the vertical velocity
and other fields.

The function used to grow the PV is given by

W (t) ≡ 1
2
(1 − cos(πt/ti)), (A 9)

where ti = 5Tip. Note that W is smooth at t = 0 and at t = ti (W (0) = 0, W (ti) = 1,
Wt (0) = Wt (ti) = 0). This smoothness is important for reducing the generation of
inertia–gravity waves – a linear ramp function does not work nearly so well.

Note that this procedure changes the mass between isopycnal surfaces, since as
the PV grows, the isopycnal surfaces deflect, spreading apart where the PV anomaly
is positive, and bunching together where it is negative. The fractional added mass
between isopycnal surfaces, however, is very small (less than 0.1%) in the examples
studied so far. The procedure also does not keep the PV contours in their original
positions, so the state of the flow after the period of initialization is not directly under
control. Nevertheless, this is unimportant for the present purposes, since we are not
trying to reproduce a specific initial condition (e.g. an oceanic observation) but rather
exploring how flows in general keep or lose their balance.

A.6. Pseudo-spectral algorithm

The pseudo-spectral version of the algorithm developed to compare with the CASL
algorithm above uses the same grid-based procedures but of course does not use any
of the procedures involving the contours or the PV. Hence, there is no nonlinear
equation to invert, but only a Poisson equation for all three components of the vector
potential, ∇2ϕ = A, which is inverted spectrally. All of the parameter settings are
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the same except for the hyperviscous damping rate, which had to be significantly
increased to maintain numerical stability: a value of 200 per inertial period was
necessary – a value 100 times greater than needed in the CASL algorithm. This extra
diffusion is needed to cope with the strong cascade of PV typical of nonlinear vortex
interactions.

In comparisons between the algorithms, we used the fields from the CASL
algorithm, at the end of the initialization period, as the initial conditions for the
pseudo-spectral algorithm. This permits the closest possible comparison between the
two algorithms at subsequent times.
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