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We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation
in three-dimensional direct numerical simulations. The thermodynamics of phase
changes is approximated by a piecewise linear equation of state close to the phase
boundary. The impact of phase changes on the turbulent fluctuations and the transfer
of buoyancy through the layer is discussed as a function of the Rayleigh number and
the ability to form liquid water. The enhanced buoyancy flux due to phase changes is
compared with dry convection reference cases and related to the cloud cover in the
convection layer. This study indicates that the moist Rayleigh–Bénard problem offers
a practical framework for the development and evaluation of parameterizations for
atmospheric convection.

1. Introduction
Moist thermal convection combines turbulent convection with phase changes

and latent heat release. It is ubiquitous throughout the atmosphere of the Earth
(Heintzenberg & Charlson 2009). When a parcel of air rises in convective motion, it
expands adiabatically. As a consequence, its temperature and pressure drop and at
some point during its ascent the air parcel becomes saturated. Once water condenses,
a cloud is formed. The range of spatial and temporal scales in the convective turbulent
motion varies widely, from a few hundred metres in isolated cumulus clouds to several
thousands of kilometres in midlatitudes storm systems.

Despite its enormous importance, the small-scale structure and statistics of moist
convective turbulence has been studied relatively little compared to its dry convection
counterpart. The reason for this gap is that turbulent convection in moist air includes
the complex nonlinear thermodynamics of phase changes in addition to the turbulent
motion (Stevens 2005; Pauluis 2008). The associated latent heat release provides
a rapidly changing local source of buoyant motion, so that moist convection is
characterized by a complex interaction between dynamics and thermodynamics. One
approach to this problem is to express the buoyancy of a parcel of moist air as function
of its entropy, pressure and total water content. In such framework, phase changes
can be treated implicitly and lead to discontinuities of the partial derivatives in the
equation of state at the saturation point (Emanuel 1994). While moist convection
remains poorly understood, significant progress has been made in the last decade

† Email address for correspondence: joerg.schumacher@tu-ilmenau.de

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

00
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000030


510 J. Schumacher and O. Pauluis

in understanding the global and local mechanisms of turbulent heat transfer in dry
convection (for a comprehensive review see Ahlers, Grossmann & Lohse 2009). In
this work, we aim at transferring some of the numerical analysis concepts from
the well-investigated dry convection case, such as studies of the Rayleigh number
dependence of the heat transfer (Verzicco & Camussi 2003), the flow properties in the
cell (van Reeuwijk, Jonker & Hanjalić 2008) or the small-scale statistics (Emran &
Schumacher 2008) to the less-explored moist convection case.

We propose here to take a first step by considering moist convection in the idealized
setting of moist Rayleigh–Bénard convection with a linearized thermodynamics of
phase changes (Pauluis & Schumacher 2010). On the one hand, the model is a
straightforward extension of numerical studies in dry Rayleigh–Bénard convection
in the Boussinesq approximation (e.g. Schumacher 2009). On the other hand, it
is a generalization of a moist convection model that was discussed by Bretherton
(1987, 1988) for the linear and weakly nonlinear regimes and has not been studied ever
since. Here, we conduct direct numerical simulations (DNS) of the turbulent nonlinear
stage of moist convection. This work reports systematic parameter investigations to
understand the effect of phase change on the turbulent transport of buoyancy through
the shallow layer. We also discuss the dependence of the cloud cover on the physical
parameters of the model.

2. Moist Boussinesq model
The buoyancy B in atmospheric convection is given by (Emanuel 1994)

B(S, qv, ql, qi, p) = −g
ρ(S, qv, ql, qi, p) − ρ

ρ
, (2.1)

where g is the gravity acceleration, ρ is a mean density, p is the pressure, S is the
entropy and qv , ql , qi are the mixing ratios of water vapour, liquid water and ice,
respectively. In the following, we discuss in brief the sequence of simplifications of the
equation of state that result in a model of shallow non-precipitating moist convection
in the Boussinesq approximation – the simplest case that goes beyond the well-known
dry convection (Pauluis & Schumacher 2010). First, in the Boussinesq approximation
the pressure variations about a mean hydrostatic profile are omitted when computing
the buoyancy (Pauluis 2008) and one is left with B(S, qv, ql, qi, z). Second, warm
clouds are discussed with qi = 0. Third, we assume that the air parcels are in
local thermodynamic equilibrium, which means that water vapour and condensed
water can only co-exist at saturation line. This implies that liquid water is formed
whenever a relative humidity of 100 % is exceeded. Furthermore, no rain can fall
out in our model. The two remaining mixing ratios are then combined to the total
water mixing ratio, qT = qv + ql . This assumption also excludes the possibility of
supersaturation. Condensation in the Earth’s atmosphere occurs primarily through
heterogenous nucleation caused by a large number of cloud condensation nuclei
(n ∼ 109 m−3). As a consequence, supersaturation rarely exceeds 1 % (Rogers & Yau
1989). In the absence of condensation nuclei in the fluid, homogeneous condensation
may result in much larger supersaturation, as in a recent experiment by Zhong,
Funfschilling & Ahlers (2009), where the condensate is formed at the top plate of the
convection cell. The assumption of local thermodynamic equilibrium has the practical
advantage that, once the entropy and pressure are known, the total water content
can be separated between the vapour and liquid phases. The dependencies of the
buoyancy are thus reduced to B(S, qT , z). The buoyancy is still a highly nonlinear
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function of the entropy, total water mixing ratio and height. Fourth, we approximate
B as a piecewise linear function of the two state variables S, qT at each height z

around the phase boundary between gas and liquid. The linearization step restricts
us to a shallow layer since the height variations of thermodynamic quantities have to
remain small. It preserves the main physical ingredient: the discontinuity of partial
derivatives (e.g. the specific heat) at the phase boundary. It also allows for an explicit
determination of whether an air parcel is saturated or not. Finally, since B is a linear
function of S and qT , we can introduce two new prognostic buoyancy fields: a ‘dry
buoyancy field’ D (which corresponds to a liquid water potential temperature) and a
‘moist buoyancy field’ M (which corresponds to an equivalent potential temperature).
They are linear combinations of S and qT . Since the state variables S and qT are
adiabatic invariants, the two new state variables M and D are also conserved by
adiabatic transformations. Consequently, the original buoyancy B(S, qv, ql, qi, p) is
simplified to B(M, D, z), a linear function of the fields M and D which is given by

B(x, t) = max
(
M(x, t), D(x, t) − N2

s z
)
, (2.2)

where Ns is the Brunt–Väisälä frequency. This is the saturation condition in our
model.

The dry and moist buoyancy fields can be decomposed in

D(x, t) = D(z) + D′(x, t) = D0 +
DH − D0

H
z + D′(x, t), (2.3)

M(x, t) = M(z) + M ′(x, t) = M0 +
MH − M0

H
z + M ′(x, t). (2.4)

The variations about the mean linear profiles of both fields have to vanish at z =0
and H . Equation (2.2) can now be transformed into

B = M(z) + max
(
M ′, D′ + D(z) − M(z) − N2

s z
)
. (2.5)

Note that the first term on the right-hand side is horizontally uniform. This implies
that it can be balanced by a horizontally uniform pressure field given by p(z) = −M0z

−[(MH −M0)/(2H )]z2. We can thus remove the mean contribution from the buoyancy
field without any loss of generality. A dimensionless version of the equations of motion
is obtained by defining the characteristic quantities. These are the height of the layer
H , the free-fall velocity Uf =

√
H (M0 − MH ), the time Tf = H/Uf , the characteristic

pressure U 2
f and the buoyancy difference M0 − MH . The equations, together with the

decompositions (2.3) and (2.4), are given by

∂u
∂t

+ (u · ∇)u = −∇p +

√
Pr

RaM

∇2u + B(M, D, z)ez, (2.6)

∇ · u = 0, (2.7)

∂D′

∂t
+ (u · ∇)D′ =

1√
PrRaM

∇2D′ +
RaD

RaM

uz, (2.8)

∂M ′

∂t
+ (u · ∇)M ′ =

1√
PrRaM

∇2M ′ + uz. (2.9)

These equations contain three non-dimensional parameters, the Prandtl number Pr ,
the dry and the moist Rayleigh numbers RaD and RaM

Pr =
ν

κ
, RaD =

H 3(D0 − DH )

νκ
, RaM =

H 3(M0 − MH )

νκ
. (2.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

00
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000030


512 J. Schumacher and O. Pauluis

Under most circumstances, the amount of water in the atmosphere decreases with
height. This implies that the moist Rayleigh number should be larger than the dry
Rayleigh number, RaM � RaD . In addition to the three parameters explicitly present
in (2.6)–(2.9), two more parameters are hidden implicitly within the definition (2.5) of
the buoyancy B , which is given in dimensionless form by

B = max

(
M ′, D′ + SSD +

(
1 − RaD

RaM

)
z − CSAz

)
. (2.11)

The so-called surface saturation deficit (SSD) and the condensation in saturated
ascent (CSA) are then defined as

SSD =
D0 − M0

M0 − MH

and CSA =
N2

s H

M0 − MH

. (2.12)

These two new non-dimensional parameters respectively measure how close the lower
boundary is to saturation and how much water can condense within the atmospheric
layer during an adiabatic ascent of a saturated air parcel. The larger CSA, the easier
is the formation of liquid water and thus of clouds. When D0 − M0 is positive, the
air at the lower boundary is unsaturated, and D0 − M0 is proportional to the ‘water
deficit’, i.e. the amount of water vapour that must be added to the air parcel to
become saturated. A positive SSD would occur over the continents. For convection
over the ocean, the lower boundary is neither saturated nor unsaturated, i.e. SSD =0.
It is clear that we can consider a subspace of the five-dimensional parameter space
only which is spanned in general by RaD, RaM, Pr, SSD and CSA. Therefore, this
study is restricted to Pr =0.7 and SSD = 0. The variation of SSD while keeping the
other parameters fixed was discussed by Pauluis & Schumacher (2010).

The equations of motion are solved by a pseudospectral scheme with volumetric
fast Fourier transformations and 2/3 de-aliasing in a Cartesian slab with side lengths
Γ H × Γ H × H . Here Γ is the aspect ratio of the slab. In lateral directions x and y,
we apply periodic boundary conditions. In the vertical z direction, we apply free-slip
boundary conditions

uz = D′ = M ′ = 0 and
∂ux

∂z
=

∂uy

∂z
= 0. (2.13)

The boundary conditions, which have also been used by Bretherton (1987, 1988),
approximate a situation over an ocean surface at the bottom and a temperature
inversion at the top. Time stepping is done by a second-order Runge–Kutta scheme.
Since both buoyancy fields are linearly unstable, the requirements on mesh resolution
and time stepping are the same as in dry convection. The additional scalar field and
the update of the B increases computational costs by 20 %. Table 1 summarizes
the grid resolutions and dimensionless parameter sets that are taken in the direct
numerical simulations. The spectral resolution does not go below kmaxηK = 2.45 for
all DNS, where kmax is the maximum resolved wavenumber and ηK is the Kolmogorov
length. Technically, we use B ′ in the momentum equation (2.6) instead of B since
the mean contribution is B(z) which can be added to the kinematic pressure, i.e.
∂zp+B = ∂zp̃+B ′. For the moist runs, we distinguish two classes for initial equilibrium
configurations – a fully saturated slab which corresponds with M(z) > D(z) − N2

s z

(large CSA) and a fully unsaturated slab with M(z) < D(z) − N2
s z (small CSA).
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Run Nx × Ny × Nz RaM RaD CSA Uf Tf T /Tf

urms

Uf

Mrms

M0 − MH

1∗ 512 × 512 × 65 9.5 × 105 7.0 × 105 0.53 3.06 1.03 141 0.356 0.434
2∗ 512 × 512 × 65 1.1 × 106 7.0 × 105 0.44 3.35 0.94 154 0.334 0.436
3 512 × 512 × 65 1.4 × 106 7.0 × 105 0.35 3.75 0.84 173 0.272 0.432
4 512 × 512 × 65 1.9 × 106 7.0 × 105 0.26 4.36 0.72 368 0.225 0.431
5 512 × 512 × 65 2.9 × 106 7.0 × 105 0.17 5.35 0.59 449 0.184 0.433
6 512 × 512 × 65 – 7.0 × 105 0.00 2.63 1.19 122 0.362 –

7∗ 1024 × 1024 × 129 9.5 × 106 7.0 × 106 0.53 3.06 1.03 342 0.308 0.436
8∗ 1024 × 1024 × 129 1.1 × 107 7.0 × 106 0.44 3.35 0.94 407 0.287 0.437
9 1024 × 1024 × 129 1.4 × 107 7.0 × 106 0.35 3.75 0.84 412 0.240 0.436

10 1024 × 1024 × 129 1.9 × 107 7.0 × 106 0.26 4.36 0.72 431 0.194 0.434
11 1024 × 1024 × 129 2.9 × 107 7.0 × 106 0.17 5.35 0.59 587 0.158 0.436
12 1024 × 1024 × 129 – 7.0 × 106 0.00 2.63 1.19 321 0.320 –

13∗ 2048 × 2048 × 257 1.1 × 108 7.0 × 107 0.44 3.35 0.94 125 0.258 0.439
14 2048 × 2048 × 257 1.9 × 108 7.0 × 107 0.26 4.36 0.72 150 0.176 0.438

Table 1. Parameters of simulation runs: grid resolution, RaM , RaD and CSA. For all runs,
Pr = 0.7, Γ = 8 and SSD = 0. We also display the characteristic velocity Uf =

√
(M0 − MH )H ,

the characteristic time scale Tf = H/Uf and the total integration time T/Tf . For dry runs

6 and 12, Uf =
√

(D0 − DH )H . Furthermore, urms/Uf with urms =
√

〈u2
x + u2

y + u2
z〉x,y,z,t and

Mrms/(M0 − MH ) with Mrms =
√

〈M ′ 2〉x,y,z,t are shown. Runs that are labelled with an asterisk

start out of a completely saturated equilibrium, M(z) >D(z) − N2
s z.
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CSA = 0.44
CSA = 0.35
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CSA = 0.17

Figure 1. Mean total buoyancy profiles 〈B(z)〉 for runs 1–5. All runs have the same amplitude
of M0 (which equals D0). It is also indicated for which runs the initial equilibrium solution is
completely unsaturated or saturated. Profiles for the series with RaD = 7×106 look qualitatively
similar, except that the boundary-layer thickness decreased.

3. Results
3.1. Buoyancy and velocity fluctuations

Initially, the equilibrium configuration is perturbed infinitesimally and after
T/Tf ∼ 102 the flow is relaxed into a fully developed and statistically stationary
turbulent state. This is when the statistical analysis is started. As indicated in the
table, we restrict dependencies of moist convection on the two Rayleigh numbers
and parameter CSA. Figure 1 shows the mean vertical profile of the buoyancy,
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Figure 2. Asymmetry of the velocity fluctuations as a function of CSA and RaD . (a) Skewness

m3/m
3/2
2 of the vertical profiles of the r.m.s. of the vertical velocity component uz. (b) Vertical

fraction Δz/H of the layer with 0.05 < F (z) < 0.95, where F (z) is given by (3.5).

〈B(z)〉, which is obtained by taking averages in the z planes and over an ensemble of
statistically independent snapshots. It is observed that this profile becomes strongly
asymmetric for the cases that started with an initially fully saturated equilibrium.
These will be the cases where phase changes affect the turbulence properties most
strongly.

Table 1 lists the root-mean-square (r.m.s.) values of M and u as obtained in the
statistically stationary regime. Since both buoyancy fields follow a linear advection–
diffusion equation, the ratio of the r.m.s. fluctuations to the outer buoyancy difference
M0 −MH should be constant. The velocity r.m.s. fluctuations decrease with decreasing
CSA. At fixed CSA, the fluctuations decrease also with increasing Rayleigh number
RaD . This result is also observed in dry convection (Verzicco & Camussi 2003).
In figure 2, we refine this analysis and study the vertical profile of the r.m.s. of
the vertical velocity component, uz,rms(z) =

√
〈u2

z(z)〉x,y,t . A measure of asymmetry
of the profile with respect to the midplane z = H/2 can be based on the moments

mn =
∫ H

0
(z − (H/2))n uz,rms(z) dz. If the skewness m3/m

3/2
2 is larger than zero then the

vertical velocity fluctuations are enhanced in the upper half of the slab. Figure 2(a)
shows that the profile is symmetric for the dry reference run and those with smaller
amount of water which can be condensed. Asymmetry is observed for CSA � 0.35,
which peaks at CSA=0.35 and decreases again for larger CSA. We will show at the
end of § 3.2 that the asymmetry in the vertical velocity fluctuations is directly coupled
to the vertical fraction Δz/H of the convection layer that is partially saturated and
unsaturated. This fraction turns out to be largest at CSA= 0.35 for all RaD (see
figure 2b). It is also found that isotropy in the velocity fluctuations is established
to a better degree with increasing RaD . We conclude that phase changes cause the
asymmetry of the vertical velocity fluctuations. However, with increasing Rayleigh
number and thus Reynolds number, the small-scale turbulence is found at increasingly
isotropic conditions which can compensate this trend in parts.

Of central importance in dry convection is the one-point-correlation between
buoyancy (or temperature) and vertical velocity, 〈uzB(z)〉 (which is equal to 〈uzB

′(z)〉).
It enters the definition of the dimensionless measure of buoyancy flux through the
layer, the Nusselt number Nu . In the present model, we can define two Nusselt
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Figure 3. Convective part of the buoyancy flux as a function of RaD , RaM and CSA.
(a) Relation between the fluxes 〈uzD(z)〉, 〈uzM(z)〉 and 〈uzB(z)〉. Data are for CSA= 0.44
and RaD = 7.0 × 106. (b) The same as (a) for CSA= 0.35. (c) 〈uzB(z)〉 normalized by the
corresponding dry diffusive buoyancy flux which is given as κ(D0 − DH )/H . Data are for runs
7–12.

numbers for both fields in a standard way, such as NuD(z) = [〈uzD(z)〉 − κ∂z〈D(z)〉]/
[κ(D0 −DH )/H ] for D which is constant and thus simply denoted by NuD . Since NuD

and NuM are normalized with respect to their diffusive fluxes, NuD =NuM follows
which was verified in the simulations. In order to quantify the additional amount
of buoyancy transfer, we will relate the correlations 〈uzB(z)〉 to the dry field in the
following. Note that the buoyancy flux 〈uzB(z)〉 is tied to the correlations 〈uzD(z)〉
and 〈uzM(z)〉. Moreover, because the partial derivative of the buoyancy with respect
to M and D is bound by 0 and 1 (see (2.2)), we have automatically that at each
level z

〈uzD(z)〉 � 〈uzB(z)〉 � 〈uzM(z)〉. (3.1)

The lower bound (〈uzD(z)〉 = 〈uzB(z)〉) occurs when a layer is fully unsaturated, while
the upper bound (〈uzB(z)〉 = 〈uzM(z)〉) is achieved in a fully saturated layer. This is
demonstrated in figures 3(a) and 3(b). In figure 3(c), we normalize the correlation by
the dry diffusive buoyancy flux (which would correspond with NuD = 1). It is given by
κ(D0 − DH )/H . Again, we observe an enhancement of the correlations for the three
largest values of CSA. The profiles for the two smaller values of CSA collapse almost
perfectly with the corresponding dry reference cases in both series of DNS. Note that
a normalization by the moist diffusive buoyancy flux κ(M0 − MH )/H would result
in systematic growth of the correlation since an increase of RaM is in line with a
decrease of CSA. Finally, the correlations increase as well when the Rayleigh numbers
RaD and RaM are enhanced at given CSA.

On the basis of the correlations between buoyancy and vertical velocity and the
mean vertical profiles, the additional buoyancy flux due to phase changes can be
determined. We define a Nusselt number based on the dry diffusive buoyancy flux:

NuB(z) =
〈uzB(z)〉 − κ∂z〈B(z)〉

κ(D0 − DH )/H
, (3.2)

which is not necessarily constant with height, as can be seen in figure 4. A similar
behaviour was found by Oresta et al. (2009) in bubbly convection with phase changes.
The additional buoyancy flux due to phase changes and latent heat release can be
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Figure 4. Vertical profiles of NuD(z) and NuB (z) as given by (3.2). Data are for runs 7 and 12.
The additional amount of buoyancy, Q is the area between moist and dry reference profiles.
The inset shows Q as a function of CSA and RaD (runs 1–5 and 7–11).

quantified in terms of the parameter:

Q =
1

H

∫ H

0

NuB(z) dz − NuD. (3.3)

The upper and lower bounds on the buoyancy flux (3.1) imply that the enhancement
factor Q is itself bound by 1 � Q � RaM/RaD . Figure 4 shows Q as a function of
CSA and RaD . The sensitivity of Q to CSA at a given value of RaD is complex. On
the one hand, a high value of CSA implies more water and a deeper saturated layer.
On the other hand, in our experimental set-up with SSD = 0 and constant RaD , any
increase of CSA is connected with a decrease of RaM . We observe here a maximum of
Q at CSA= 0.44. This is the case where in figure 3 the largest amplitudes for 〈uzB(z)〉
are observed (see the dashed line in figure 3c).

3.2. Cloud cover

The phase changes in the convective turbulence are associated with the appearance
and disappearance of clouds. They are defined as sites where the liquid water mixing
ratio ql(x, t) > 0. Translated into our framework, this corresponds with

ql(x, t) = M(x, t) −
[
D(x, t) − N2

s z
]

> 0. (3.4)

The cloud boundary is given by ql = M − D + N2
s z = 0. Depending on CSA and both

Rayleigh numbers, this is a simply connected isosurface or a collection of disconnected
isosurfaces. The latter case is illustrated in figure 5. The white isosurfaces ql = 0 display
isolated clouds. They are correlated with strong updrafts as illustrated by the red
isosurfaces for uz � 0.23Uf . Warm air rises up and expands adiabatically such that
the temperature decreases and condensation sets in.

Figures 6(a) and 6(b) display the probability to find clouds at height z in the slab
as a function of RaD and CSA in a semi-logarithmic plot. The formation of clouds
is less probable when RaD is increased. Reasons could be the stronger filamentation
of the turbulent patches and the decreased velocity fluctuations which are in line
with an increase of the Reynolds number of the turbulent flow. For CSA= 0.53 and
0.44, the cloud layer is closed for all RaD , which is in line with P (z|ql � 0) = 1. For
CSA= 0.35, 0.26 and 0.17, a broken cloud layer with isolated clouds can be observed.
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Figure 5. Snapshot of the instantaneous cloud distribution (white isosurface) in combination
with the updrafts (red isosurface). The white isosurface is the cloud boundary with ql = 0. The
red isosurface is for uz � 0.23Uf or 1.5 urms . Data are for run 14 with CSA= 0.26.
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Figure 6. Measures of the cloud cover. (a) Probability P to find clouds in a layer at height z
as a function of RaD . Data are for CSA= 0.44. (b) The same as in (a) for CSA=0.26. The
corresponding dry Rayleigh numbers for both (a and b) are given in (a). (c) Function F (z) as
a function of RaD and CSA. Line styles correspond with (a). (d ) Comparison of P and F (z)
for runs 1–5. Data for run 5 at CSA= 0.17 coincide with the axis.
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While the former could correspond with a stratocumulus-like convection regime, the
latter could correspond with a cumulus-like regime. Note also that layer remains
basically dry for the smallest CSA.

The presence of clouds is also related to the enhancement of the buoyancy flux. We
define a saturation fraction F (z) for the buoyancy flux that follows from (3.1) and is
given by

F (z) =
〈uzB(z)〉 − 〈uzD(z)〉
〈uzM(z)〉 − 〈uzD(z)〉 . (3.5)

This saturation fraction is such that in a fully saturated environment F (z) = 1, while
in an unsaturated environment, we have F (z) = 0. Figures 6(c) and 6(d ) replot the
same data sets for F (z) and in figure 6(d ) a direct comparison with P (z|ql � 0) is
provided. On the basis of the data, we can conclude that both measures collapse quite
well for a fully saturated or unsaturated layer, but the case CSA= 0.35 indicates there
are some significant departures in partially saturated layers. Finally, one can define
now the vertical fraction of the layer that is partially saturated and unsaturated as
0.05 <F (z) < 0.95 (see figure 6d ). This fraction is biggest for the runs at CSA= 0.35
as shown in figure 3(b). In this case, the asymmetry between saturated ascents
and unsaturated descents can be expected to be largest. Consequently, the largest
asymmetries of the vertical velocity fluctuations can be built up. The peak at exactly
the same CSA value in figure 3(a, b) supports our conclusion and closes the loop
between buoyancy transfer, cloud cover and vertical flow asymmetry.

4. Summary and conclusions
We have presented a shallow moist convection model with a linear equation

of state for the thermodynamics of phase changes. This model that contains
five dimensionless parameters is discussed in a three-dimensional subspace due to
fixed Prandtl number and SSD . The most important simplification that reduces
the complexity is the assumption of a local thermodynamic equilibrium. Several
key physical processes, such as the formation of precipitation and the existence of
supersaturation, are thus omitted. The model nevertheless captures the fundamental
interactions between phase transition and dynamics. Phase changes cause an
asymmetry of the vertical velocity fluctuations when the amount of water that can
be condensed (parameter CSA) is sufficiently large. Similar to the dry convection
case, the correlations between vertical velocity and buoyancy are used to quantify
the amount of additional buoyancy flux due to condensation and related latent heat
release. Furthermore, this correlation can be connected with the cloud cover in the
layer.

The studies in this simplified setting provide thus a basis for possible
parameterizations of cloud impact in large-scale models. In particular, determining
the factors that control cloud fraction is a central issue in climate modelling, as small
changes in cloud cover can dramatically affect the amount of energy received and
emitted by the atmosphere. We found here that the Rayleigh number has a direct
impact on the cloud cover, which should be a cause of concern, as the Rayleigh
number in our numerical simulations (RaD = 7 × 107) is significantly smaller than its
typical atmospheric value, Ra ≈ 1018–1022. Nevertheless, the idealized moist Rayleigh–
Bénard convection provides an important test for our understanding of clouds and
their sensitivity to environmental parameters.
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van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K. 2008 Wind and boundary layers in Rayleigh–
Bénard convection. Part I. Analysis and modelling. Phys. Rev. E 77, 036311.

Rogers, R. R. & Yau, M. K. 1989 A Short Course in Cloud Physics, 3rd edn. Butterworth-
Heinemann.

Schumacher, J. 2009 Lagrangian studies in convective turbulence. Phys. Rev. E 79, 056301.

Stevens, B. 2005 Moist convection. Annu. Rev. Earth Planet. Sci. 33, 605–643.

Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection
in a slender cylindrical cell. J. Fluid Mech. 477, 19–49.

Zhong, J.-Q., Funfschilling, D. & Ahlers, G. 2009 Enhanced heat transport by turbulent two-
phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

00
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010000030

