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Abstract

This paper deals with the realization of a CA model of the physical interactions occurring when high-power laser pulses
are focused on plasma targets. The low-level and microscopic physical laws of interactions among the plasma and the
photons in the pulse are described. In particular, electron–electron interaction via the Coulomb force and photon–
electron interaction due to ponderomotive forces are considered. Moreover, the dependence on time and space of the
index of refraction is taken into account, as a consequence of electron motion in the plasma. Ions are considered as a
fixed background. Simulations of these interactions are provided in different conditions and the macroscopic dynamics
of the system, in agreement with the experimental behavior, are evidenced.
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1. INTRODUCTION

The recent advent of femtosecond lasers~Mourou et al.,
1998; Nisoliet al., 1998! has opened new perspectives in the
research on laser-produced plasmas. In particular, impor-
tant new results have been obtained in the field of soft X-ray
lasers~Zepfet al., 1998b!; high order harmonics generation
and its applications~Zepf et al., 1998a!; sources of relativ-
istic particles~Key, 1999!; laser acceleration of electrons
~Modenaet al., 1995; Dalla & Lontano, 1995!; highly non-
linear interactions and laser beam self-focusing~Amiranoff
et al., 1995; Lontano, 1995!; and the new “fast ignitor”
approach to inertial confinement fusion, ICF~Tabaket al.,
1994; Atzeni, 1995!, including in particular the generation
of fast electrons and their propagation in dense matter~Hall
et al., 1998; Bernardinelloet al., 1999; Gremilletet al.,
1999; Bataniet al., 2000; Pisaniet al., 2000!.

Sophisticated computer codes are already available to
simulate plasmas produced by such short laser pulses, in-
cluding particle-in-cell~PIC! codes~Pukhov & Meyer-ter-
Vehn, 1998!, Vlasov codes~Macchiet al., 1998; Ruhlet al.,
1998! and Fokker–Planck codes~Davieset al., 1997!.

In this paper, a cellular automaton~CA! model of laser–
plasma interaction will be presented. In particular, the inter-

action between a short laser pulse and a fully ionized plasma
will be considered. The development of simulation tools
based on cellular automata appears very interesting for a
number of reasons. First of all, CA codes allow a direct
representation of low-level elementary physical laws, the
complex macroscopic dynamics of the global system emerg-
ing from “simple” microscopic interaction rules among the
cells of the CA. In some situations, this may allow a better or
simpler understanding on the ongoing physics~see, e.g.,
Wolfram, 1983; Toffoli, 1984; Bennetet al., 1986; Frish
et al., 1986; Dab & Boon, 1990; Bruschiet al., 1992; Cat-
taneoet al., 1996!. In general, the goal of all computer codes
is to describe complex phenomena starting from simpler
ones. This is particularly true for CAmodels. Here the “low-
level” description may be particularly “simple” because ev-
erything in CA models is treated through “forces” acting
between cells~particles!.

Moreover, usually in the experimental protocols, the laser
generates very short pulses~'100 fs! which are focused on
a small focal spot~d ' 10 mm! to obtain the high intensity
necessary to create and study the plasma. The transversal
dimension of the region filled with the plasma is of the order
of the focal spot size; the longitudinal dimension is of the
order of the focal depth of the lens~L ' 100 mm!. So, the
physical phenomena that are the subject of the simulation
are confined in a very small region of space and take place in
a very short time. Thus, it is possible to conceive a CA code
that performs a 1:1 simulation of the laser–plasma inter-
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action dynamics. In other words, CA could allow the simu-
lation of the “true” dynamical evolution of the system with
a very high temporal and spatial resolution.

Basically, CA may be used in two different ways: as com-
putational tools, for solving differential equations, used to-
gether with parallel computers~Doolen, 1991!, or as a
dynamical systems completely discrete~both in time and
state variables! used as a physical-based model~Toffoli,
1984; Cattaneoet al., 1996; Previdi & Milani, 1998; Pre-
vidi, 2000!. In this work, the second approach is followed,
using a cellular automaton to describe the radiation-matter
interaction between a laser pulse and a hot plasma.

CAhave already been used for direct physical-based mod-
eling of systems. In particular, applications can be found in
biology for DNA sequences modeling~Burks & Farmer,
1984! and cytoskeleton formation modeling~Smith et al.,
1984!; in vulcanology to simulate lava streams~Di Gregorio
et al., 1996!; for bioremediation of contaminated soils~Spez-
zano & Talia, 1998!; in hydrodynamics, for turbulence sim-
ulation~Frishet al., 1986!; in chemistry, for the investigation
of crystal growth dynamics~Packard, 1985!; in optoelec-
tronics, for simulation of the behavior of semiconductor-
integrated optical devices~Cattaneoet al., 1996; Previdi &
Milani, 1998!.

In plasma physics, in the past, CA models have already
been used to simulate other aspects of plasma physics, in
particular the plasma hydrodynamical behavior~Chenet al.,
1988a, 1988b!. The objective of the paper is to see to what
extent laser–plasma interaction can be described by using a
CA model. Hence here we rather focus on aspects which
were not treated in previous works, that is, to the plasma–
radiation interaction. Although this is a preliminary work, it
shows some possibilities, but also the main difficulties re-
lated to the use of CA for the simulation of laser–plasma
interactions.

The paper has the following structure: in Section 2, a
presentation is given of the CA as discrete~in time and state
variables! dynamical systems. In Section 3, the basic phys-
ical laws of laser–plasma interaction are introduced. Sec-
tion 4 is devoted to the outline of the CA implementation of
the physics described in the previous section. Section 5
contains the simulation results presented following a step-
by-step procedure, that is, by separately presenting the ef-
fects of each single interaction and, finally, by merging all
the rules of evolution in a single CA model.

2. CELLULAR AUTOMATA AS A
DISCRETE-EVENT DYNAMICAL SYSTEMS

Cellular automata are discrete time dynamical systems made
by many identical and simple interconnected subsystems,
calledcells. Each cell interacts with a finite number of other
cells, that is, those belonging to a user-definedneighbor-
hood. The interaction among each cell and its neighborhood
is governed by suitable set ofrules of evolution.Anumber of
state variablescan be defined as function of space~through

the cell position in the CA! and time. So, a CAmodel is fully
defined by the following items:

• thecellular space, which is a discrete lattice of spatially
distributed cells;

• thestate variablesdefined for each cell;
• theneighborhood of a cell, N, that is, the ensemble of

all the cells that must be examined to determine the
state of the considered cell;

• the evolution rules, also called dynamic equations of
the system. They are local in space and time, that is,
their value depends only on the value of the state of a
neighborhood of cells for a fixed number of previous
time steps~usually one!.

The properties of uniformity, locality and discreteness that
define CA make them suitable to reproduce the behavior of
complex dynamic systems, characterized by discrete ele-
ments with local~usually nonlinear! interactions. So, CA
may be considered as an alternative to differential0difference
equations in building and computing mathematical models
of nature, as they are capable of describing systems with a
great number of degrees of freedom.

3. BASIC PHYSICS OF LASER–PLASMA
INTERACTIONS

In this section, we give a brief overview of the properties of
a plasma and of the interactions which take place inside it.
The goal is both to give some basics notions~for nonspe-
cialists! regarding the physics we want to simulate, but also
to give a basis for the implementation of the interaction rules
~i.e., the CA evolution laws! described in the next section.

Plasmais a material in which the majority of the atoms
and molecules are dissociated in positive ions and electrons.
In our case, we refer to plasmas which are generated by the
interaction of a short-pulse high-intensity laser with a gas.
Even with such very fast lasers, a very high ionization de-
gree is achieved during the very first phases of the inter-
action, after which the laser interacts with the plasma. Hence,
in our physical models and in the CA code which imple-
ments them, we will neglect the physics connected to ion-
ization of atoms and molecules in the gas which is only
important at the beginning, and we will concentrate on later
phases. However, it is worth noting that including ionization
appears a rather easy task.

As already recalled in the introduction, the laser produces
very short pulses~'100 fs! and is focused on a small focal
spot~d'10mm!. The transverse dimension of such a plasma
region is of the order of the focal spot size, and the longitu-
dinal one is of the order of the lens focal depth~L'100mm!.
Such small volume~V ' 8 3 1029 cm3 or 8000 mm3!
contains a huge number of molecules~'2 3 1011 corre-
sponding to a density of 2.73 1019 molecules0cm3! for a
gas at atmospheric pressure. Evidently such numbers only
allow a representation of the physical system through statis-
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tical quantities. Hence the typical parameters usually used
to represent the physical state of a plasma are:

• the electron density~ne! and the ionic density~ni ! both
usually expressed in cm23. Electric charge conserva-
tion implies thatne 5 Z*ni whereZ* is the average
ionization degree.

• the electron temperature~Te! and the ion temperature
~Ti ! usually expressed in energy units~i.e., eV!. The
large mass difference between electrons and ions im-
plies different inertia. This means that, while electrons
are easily and quickly heated by the incident laser beam,
ions react on a very different time scale. So, we may
haveTi 50 eV~or the initial, very low, gas temperature!
while Te reaches several tens electron volts. On the
other end, at very late times thermal equilibrium im-
pliesTe 5 Ti .

The propagation of a laser beam in the plasma is substan-
tially different from that in vacuum or in an underdense gas.
Indeed the dispersion relation is:

n2 5 np
2 1 c20l2, ~1!

wherec is the velocity of light,n andl are the laser fre-
quency and wavelength, andnp is the plasma frequency
~whereas in vacuum we get the usual relation between wave-
length and frequencyn 5 c0l!. The plasma frequency char-
acterizes the electron motion: A plasma at equilibrium is
neutral, whenever a charge separation is generated, a strong
electric field arises which moves the charged particles in
order to restore the initial equilibrium conditions. This pro-
duces “plasma oscillations” characterized by a proper plasma
frequency.

The presence of these plasma oscillations reflects in a
dependence of the index of refraction of the plasman on the
electron density

n~x, y, z! 5 ~12 ne~x, y, z!0nc !102 ~2!

that produces, as we will see in the following, a feedback
effect is the core of the aspects we want to simulate. Here
n~x, y, z! andne~x, y, z! are, respectively, the refractive in-
dex of the material and the electron density at the point
~x, y, z!, andnc is the critical density, which represents the
density value above which an electromagnetic wave cannot
propagate in the plasma.

Moreover, typically the distribution of laser intensity is
characterized by a cylindrical symmetry and by a Gaussian
shape both in space and time:

I ~r, t ! 5 I0 exp@22.77~r0r0!2 2 2.77~t0t!2!# , ~3!

wherer0 andt are the values corresponding toI002 in space
and time~i.e., half the FWHM values!. Typically, in the kind
of experiments we want to simulate, we haveI0 at least of
the order of 1017 W0cm2 at 1mm ~near infrared radiation!.

The photon energy is given by Planck relation asE 5 hn 5
hc0l and is'1 eV. The total energy in the laser pulse is
obtained by space and time integration of Eq.~3!:

EL 5EdtE2pr drI ~r, t ! ' 10 mJ. ~4!

This corresponds to a number of photons in the pulse' 63
1016. As in the case of matter particles, we see that an indi-
vidual representation of single photons is not possible and
we turn to using a photon densitynph ~measured in cm23!.

Also in the experimental setup, a lens is used to focus the
laser pulse to the small focal spot with diameterd'10mm
so to obtain the very high intensity quoted before. Usually
theF number of the lens is of the order of 103 which means
that the lens diameter is one-third of its focal length. This
tight focus reflects in a short focal depth~L ' 100 mm as
previously quoted!.

After describing the type of particles that play a role in
laser–plasma interactions~electrons, ion, photons!, we give
a brief description of the basic interactions which take place
between them. We make the further simplifying approxima-
tion of considering the positive ions as a fixed background
as a consequence of their large inertia. Such assumption
allows the system description to be reduced to electrons and
photons. While it is generally valid in the initial stages of the
interaction, this assumption may fall at later times not only
in connection with the ionic timescale, but also as a conse-
quence of the huge electric fields which can be produced by
the charge separation connected to electron displacement.

1. Electron–electron interactions. Electrons interact be-
tween themselves via the Coulomb electric field. Un-
like in vacuum, in a plasma, a screening effect due to
the presence of the many charged particles must be
taken into account. This reflects in the existence of an
effective shielding distance~the Debye length!.

2. Photon–electron interactions. Photons may act over
the electrons by means of theponderomotiveforces.
These are the results of radiation pressure and tend to
move the electrons away from the regions where the
intensity of electromagnetic field is higher. The force
acting on a single electron is

Fp 5 2np
2¹I0~necn!2, ~5!

whereI is the laser pulse intensity that can be alterna-
tively expressed through the local instantaneous pho-
ton density.

3. Electron–photon interactions. Electrons act over the
photons via the changes in the plasma local refractive
index, as expressed by Eq.~2!. The changes inn~x, y, z!
induce both changes in the photon direction~in agree-
ment with Snell’s law! and in photon velocity. In our
case, the plasma has a density which is typically a
factor of 100 smaller thannc, so that the second effect
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is practically negligible.~We recall thatnc'1021 cm23

for a laser wavelength'1mm, while considering, e.g.,
a fully ionized hydrogen plasma produced from gas at
atmospheric pressure,ne ' 5.4 1019 molecules0cm3.!

4. Photon–photon interactions. Obviously photons do not
interact with each other. However, we must consider
that, being fundamental particles, they are subject to
Heisenberg’s principle. In our case, this has important
consequences: Passing through the lens which focuses
them, their position become determined within a di-
mensionD ~the diameter of the lens!. This implies an
uncertainty of the order ofh0D ~h being Planck’s con-
stant! in the momentum of the photon along the same
direction, which reflects in the spatial spread of pho-
tons in the focal plane. This is the only way of intro-
ducing the departure from geometrical optics~which
would imply a perfect focusing in a geometrical point
and an infinite laser intensity in the focal point! in a
purely particle context, as those treated by CA codes.

Apart from these interactions it must be considered that
both electrons and ions are subject to a random motion~due
to thermal agitation at the temperatureT ! and to a hydro-
dynamical pressure. This last can be treated analogously to
the radiation pressure. Both these effects have been ne-
glected in the present work because, on the considered time
scale, they are predicted to have a smaller influence with
respect to the main interactions we have considered here
~and because this is a preliminary work!.

Due to the photon–electron interactions and pondero-
motive forces, when an electromagnetic field propagates in
plasma, electrons are forced to move from the equilibrium
position to the areas where the intensity of the field is smaller.
The induced variation of the electron density creates a gra-
dient of the refractive index that modifies the photon motion
in the plasma~electron–photon interaction!, diverting their
original direction of motion. This creates an interaction loop
characterized by a feedback mechanism, as evidenced in
Section 5.5~see also Fig. 8!. Due to this effect, the laser may
undergo focalization~self focusing effect! in the plasma,
provided the laser power is bigger than a given critical power
~Amiranoff et al., 1995; Lontano, 1995!.

4. CELLULAR AUTOMATON
IMPLEMENTATION OF LASER–PLASMA
INTERACTIONS

In this section, the main features of the proposed model
will be described. In the following, the practical implemen-
tation of each interaction introduced in Section 3 will be
outlined. All the CA rules will be introduced on the same
topological structure, that is, the cellular space. In particu-
lar, a two-dimensional~2D! triangular lattice with hexago-
nal symmetry has been chosen. The cellular space represents
a transversal section of the region filled with the plasma
where the laser–plasma interaction will take place~see

Fig. 1!. The laser beam is assumed to propagate initially in
the z direction, andz 5 0 is the optical axis of the system
~while we call y the perpendicular direction!. Due to the
propagation of radiation in the plasma, the dimension of a
cell l and the discrete time stept must satisfy the following
condition:

l0c 5 Dt, ~6!

wherec is the speed of light in vacuum. The relationship~6!
between the automaton spatial stepl, that is, the distance
between two nearest cells of the lattice, and the discrete time
stepDt will be fulfilled in all the rules of evolution that will
be used in this paper.

Typically, we will choose a time stepDt'1 fs that implies
l ' 0.3mm. These values allow a sufficient resolution both
in time ~t0t ' 100! and in space~d0l ' 33!.

The state variables of the model depend on both time and
space, that is, the cell position. In particular, the number
of electrons at timek in the cell ~i, j ! will be denoted by
Nel~k!~i, j ! and the number of photons for each direction of
motions will be indicated byNsph~k!~i, j !. Then, the inter-
actions described in Section 3 can be described by three
different evolution rules.

Finally, we notice that the chosen topology for the cellular
space is two-dimensional~although a three-dimensional~3D!
model could possibly be considered in the future!. By as-
suming translational symmetry, this is hence useful to sim-
ulate the interaction of a laser beam with a plasma slab of a
given thicknesst. The number of electrons in each CA cell,
Nel~k!~i, j !, can be related to the electron density,ne~k!~i, j !,
by the obvious relation

Nel~k!~i, j ! 5 ne~k!~i, j ! ~3!3 l 2t02!,

that is, through the cell volume. The same relations holds for
ion and photons.

To obtain meaningful numbers,t must be of the same
order of the focal spot size. It is important to fix the cell

Fig. 1. Cellular space with triangular geometry and hexagonal symmetry.
The CA cells are placed on the vertex of the triangles. Shown are the
classical hexagonal neighborhood and the spatial size l. The horizontal axis
~z5 0! is taken to be the optical axis of the system.
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thicknesst because this determines the number of electrons,
ions, and photons in each cell, and the absolute values of the
forces depend on the number of particles~although their
relative importance depends on particle densities!.

In a more realistic and interesting case, our 2D CA model
could be used to simulate 3D geometries with axial symme-
try around the optical axis. The only difference in this case is
that the volume assigned to each CA cell is that of the torus
with the hexagonal cell as base, which depends on the dis-
tance from the optical axis. As a consequence, cells far from
the axis will have a bigger volume and, for the same particle
density, will include more particles, a factor which must be
taken into account when computing the forces.~In this pre-
liminary work, we made no attempt to simulate such axially
symmetric problems.!

4.1. Photon propagation

The laser pulse can be seen as a bunch of photons coming in
the region filled with the plasma from one side~say the left!
and outgoing from the opposite one~say the right!. Hence,
in order to describe correctly the propagation of photons, the
neighborhoodN of a cell~i, j ! for this evolution rule will be
taken nonsymmetric. This is not strictly necessary, but leads
to a computational simplification. In our CA code, we con-
sider a realistic case of laser beam propagation. In particu-
lar, we forget the plane wave approximation, as done, for
instance, in Cattaneoet al. ~1996! and Previdi~2000!, and
we consider the case of a beam focused through a lens,
converging down to a focal position and diverging again.
Although apparently simple, this problem is difficult to be
implemented with a CA. Indeed, it is necessary to settle the
possible infinite directions of propagation for the photons
on the cellular space, where only six directions are avail-
able, that is, NO, NE, E, SE, SO, O~see Fig. 2!.

So, the neighborhood of the cell~i, j ! is defined by all the
cells that lie along the possible directions of motion that end
in the cell~i, j !, that is,

N~i, j ! 5 $~i *, j * !%, so that the cell~i, j ! can be reached
starting from~i *, j * ! and moving in the NE, SE,
E directions.

~7!

Since it is not possible to manage an infinite number of
directions, a quantization of the possible directions is per-
formed, that is, only a finite numbers5 1, . . . ,M is consid-
ered. In particular, the CA spatial steps and the focal length
of the focusing lens fixes the number of possible initial
directions of motion. Then, each of the possible directions is
decomposed along the available directions of the cellular
space. As an example, consider a photon moving a distance
L along a direction with angle between the E and SE direc-
tions~see Fig. 2!. The following decomposition expression
for the motion is obtained:

a~i, j ! 5

L{sinSp

3
2 u~i, j !D

sinS2

3
{pD

b~i, j ! 5
L{sin~u~i, j !!

sinS2

3
{pD

. ~8!

Then, the number of discrete space stepsnE in the E direc-
tion andnSE in the SE direction is computed by

nE 5 @a~i, j !0l # and nSE5 @b~i, j !0l # ,

where@ # is the operator which takes the nearest integer of
its argument.

The CA rule of evolution describing the motion of pho-
tons is the following:

Nph~k11!

~s! ~i, j ! 5 (
r51

M

(
~i *, j * ![N~i, j !

Nph~k!

~r ! ~i *, j * !{R~k!
~r,s!~i *, j * ! ~9!

with

Rk
~r,s!~i *, j * ! 5 5

1 if the destination of a photon with
directionr in the cell~i *, j * ! at time
k is the cell~i, j ! at timek 1 1 and
its final direction of motion iss

0 in all other cases.

Equation~9! gives the number of photons in the cell~i, j ! at
time k 1 1 with direction of motions as the sum of all the
photons in the cell of the neighborhood with a given direc-
tion r which, moving in the cellular space, has the cell~i, j !
as final destination ands as final direction of movement.

4.2. Electron–photon interaction and changes
in the refractive index

The laser beam photons are travelling in a medium with
variable refractive index. So, at each time step, it is neces-
sary to evaluate the current photon direction and to change
the photon state variable accordingly. It is worth stressingFig. 2. Example of the decomposition of the motion of a photon.
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that, in the present model, this is the only situation in which
a photon direction can be changed.

The refraction index modification is the consequence of
the variable charge spatial distribution, due to electron move-
ments. So, local gradients in the refractive index are ob-
tained that modify the photon direction versor. The gradient
of the refraction index¹nk~i, j ! in each cell is computed by
evaluating the local refraction index difference, that is, the
difference between the refraction index in the considered
cell and the one in the cells of the neighborhood. Once the
local values for the refraction index have been computed,
the direction of the photons in each cell are modified accord-
ing to the local value of the refraction index by computing
the “force” acting on the photon and modifying its direction
of propagation. This is done by modifying at each time step
the matrix R~k!

~r,s!~i *, j * !, where ~i *, j *! indicates the cells
belonging to the neighborhood of the considered cell~i, j !.

In practice the ray equation of geometrical optics is
considered:

d

ds
~nv! 5 ¹n.

This is an equation which changes the original direction of
the photon versorv ~the unit vector which gives the photon
direction! according to the local gradient of index of refrac-
tion, and incorporates Snell’s law for refraction.

4.3. Electron–electron and the photon–electron
interaction (Coulomb and ponderomotive
forces)

In these cases, there is no problem of direction of motion. In
fact, the Coulomb and the ponderomotive forces, which
determine the electron–electron–photon interaction, can act
in all directions. So, the neighborhoodN is the set of the six
nearest neighbor cells plus the considered cell.

The main problem in modeling interactions involving
electrons is that once the forces acting on a single electron
are known, they determine an acceleration through New-
ton’s law, that is,a 5 F0me, which produces changes in the
velocity of the particles. In our model, electrons are consid-
ered as “static,” in the sense that they have no velocity state
variable~they could be considered as all having the same
thermal velocity!. Hence, the problem is how to describe the
effect of forces in a CA context with static electrons. To do
this, we consider that the motion of one electron will be
uniformly accelerated during the time stept and hence the
electron displacement will be

Dx 5 F~Dt !2 0~2me!.

Since in the model computation we always obtainx ,, l,
that is, a displacement less than the CA spatial step, we
have displaced over l a number of electrons given by
~DxNel~0!0l !, whereNel~0! is the number of electrons ini-
tially present in the cell. The evolution rule, describing the
dynamics of the electron number in each cell, is given by

Nel~k11!
~i, j ! 5 Nel~k!

~i, j !

2 (
~i *, j * ![N~i, j !

FK1~k!

~i *, j * !~i, j !S(
s51

M

Nph~k!
~i, j !

2 (
s51

M

Nph~k!
~i *, j * !DG

2 (
~i *, j * ![N~i, j !

@K2~k!

~i *, j * !~i, j !~Nel~k!
~i, j ! 2 Ni !#. ~10!

In the right side of Eq.~10!, three terms are evident:

• Nel~k!
~i, j !, the number of electrons in the cell~i, j ! at

time k.

• (
~i *, j * ![N~i, j !

FK1~k!

~i *, j * !~i, j !S(
s51

M

Nph~k!
~i, j ! 2 (

s51

M

Nph~k!
~i *, j * !DG

represents the number of incoming~outgoing! elec-
trons due to the effects of the ponderomotive force.
This term is the sum of the contributions given by each
cell of the neighborhood. For each contribution, the
number of moved electrons is proportional to the gra-
dient of the optical field intensity, here represented by
the difference between the total photon number in the
considered cell and the total photon number in the cur-
rently considered cell of the neighborhood.

• (~i *, j * ![N~i, j ! @K2~k!

~i *, j * !~i, j !~Nel~k!
~i, j ! 2 Ni !# represents

the number of incoming~outgoing! electrons due to the
effects of the Coulomb force. Also in this case, this is
the sum of the contributions given by each cell of the
neighborhood. The number of moved electrons is pro-
portional to the net charge in the cells of the neighbor-
hood, that is, the difference between the number of
electrons and the number of ions in each cell~we notice
that we neglect the self-forces due to the a net electric
charge in the cell to the particles in the same cell!.

Equation~10! contains two constants, namelyK1~k!

~i *, j * ! and
K2~k!

~i *, j * !, which can be both time-varying and space depen-
dent. So, the number of electrons in the cell~i, j ! at time
k11 is given by the number of electrons in the same cell at
the previous time step modified by a quantity depending of
the intensity of the Coulomb force and the ponderomotive
force.

5. SIMULATION RESULTS

In this section, simulation results obtained using the model
described in the previous section will be presented using a
step-by-step approach. In fact, results on the effects of each
single evolution rule of the CA will be outlined separately,
in order to check at each step the physical coherency of the
obtained results.

It follows from the definition of the interaction rules that
the evolution algorithms conserve the number of electrons
and photons. Indeed particles are only “moved” between
adjacent cells and all photon absorption effects~ionization
for instance! are neglected. However, we have verified num-
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ber conservation explicitly. The proposed algorithm also
respects conservation laws requirements. In a real situation,
the electrons are set in motion by ponderomotive forces:
The energy they gain must be taken from the incoming laser
beam. Hence, strictly, photon number conservation would
imply that energy conservation is not really respected, even
if this is a small fraction of the energy carried by the beam.
However in our model, as we have noticed before, the elec-
trons are “static,” that is, they are moved between cells but
do not gain any kinetic energy.

5.1. Propagation of light through a focusing lens

First of all, the propagation of photons in the absence of
matter has been studied, in order to verify if the proposed
law ~see Eq.~9!! allows us to obtain focalization in geomet-
ric optics when the laser pulse passes through a thin lens. As
already said, the pulse is Gaussian in space and time and has
the following parameters: energyE 5 10 mJ; pulse dura-
tion ' 100 fs; input spot sizer0 ' 15 mm.

If no diffractive effect is considered~geometrical optics
framework!, focalization of the pulse in a single point on the

focal axis must be obtained. Then, after focusing, the pulse
must widen again and, in the absence of any perturbation,
the starting situation should be reproduced on the opposite
side of the CA. This is what has been obtained, but results of
such simulations are not presented for the sake of brevity.

As a second step, similar simulations have been per-
formed in the diffractive optics framework. In this case, we
expect the progressive decrease of the transversal dimen-
sions of the laser pulse until it arrives at the focal plane,
where its transverse dimension is minimum and equal to the
focal spot size. In Figure 3, the pulse is focused by a thin lens
with f-numberf0D 5 7. It is worth noting that Figure 3, and
many others in the following, have been drawn using a
technique typical of CA. The figure represents the CA
~stretched to a matrix representation! and the value of the
considered state variable is plotted in gray scale, the darker
corresponding to a higher value of the state variable.

The results in Figure 3 allow the laser beam size to be
measured as a function of time~space!. The resulting trend
is shown in Figure 4, where the focal size is about 5mm. The
obtained trend can be compared with the analytical calcula-
tion for a Gaussian laser beam, which is

Fig. 3. The laser pulse at different times, during its propagation in a vacuum region after focalization by a thin lens. The figure is in
gray scale, the darker shade corresponding to a higher number of photons. The CA spatial step isl 51 micron; each simulation time step
is t 5 3 fs.
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R~z! 5 w0S11 S Fz

w0
2D2D102

~11!

wherez5 0 corresponds to the focal point;w0 is the focal
spot diameter andF 5 D0f is thef-number of the thin lens of
diameterD. As already recalled,w0 can be obtained by
application of the Heisenberg principle, by noting thatw0 5
f Q ~whereQ is the beam divergence, i.e., the angle under
which the focal spot is seen by the lens!, which is given by
Q 5 Dp0p 5 ~h0D!0~hn0c! 5 l0D.

Hence the photons~initially assumed to propagate paral-
lel to the optical axis! acquire a momentum component in
they directionDp when they go through the lens of aperture
D. In our model the lens corresponds to the left boundary of
the CA space. The photons are then injected with a momen-
tum componentpy which is randomly distributed with a zero
average and a width given byDp written above. Hence the
only nonlocal information which is necessary to reproduce
the diffractive optics behavior shown in Figure 3 is that the
presence of the lens fixes the photon position within an
incertitude equal to the lens diameterD.

Numerical results in Figure 3 compare very well with
analytical predictions concerning both the focal spot size
and the focal depth, that is, the distance over which the
variation in intensity is less than 10% of the maximum value
achieved at the focus.

5.2. Effect of ponderomotive forces

In this section, the effects of ponderomotive forces are in-
troduced. In particular, it is supposed that these are the only
forces acting on the electrons, that is, no Coulombian inter-
action is active. This is equivalent to considering as a rule of
evolution only the first two terms on the right-hand side of
Eq. ~10!. So, electrons are forced to move away from their
initial position towards regions where the intensity of the
optical field is smaller.

Figure 5 shows temporal evolution of the system state
variables~photon number and electron number!. After the

passage of the laser pulse, a lower electron density plasma
channel is obtained. Figure 6 shows the obtained transversal
modulation of electron density after the propagation of the
beam in the region.

5.3. Beam propagation in a medium with a constant
refractive index

The passage of a laser pulse in a plasma causes the forma-
tion of a central channel with lower electron density, due to
ponderomotive forces which move the electrons towards
regions with smaller optical intensity. So, the electron den-
sity is no longer uniform in the region filled with the plasma.
Consequently, the refractive index is not uniform in that
region too. In particular, if the Coulomb interaction is
switched off, so as to say that in Eq.~10! the third term on
the right-hand side is zero, no other change in the electron
density and in the refractive index will occur~since we have
neglected hydrostatic pressure and thermal motion!. Now,
consider this “frozen time” situation and send into this re-
gion a second laser pulse. As a first approximation, it can be
supposed that the refractive index of the region has a para-
bolic profile and so, the second laser pulse will travel through
a region with constant~in time! refractive index due to a
constant electron distribution. The algorithm which is used
to take refraction into account is described in Section 4.2.

In simulations, photons are introduced in the CA from the
left side as rays of light with different incident angles. Rays
have been simulated by using photon number profiles very
narrow in space and with indefinite duration in time. Results
of simulations are qualitatively and quantitatively similar to
those obtained using ray-optics theory. In Figure 7, the prop-
agation of rays through the region is shown for different
incident angles.

Finally, it is worth noting that the propagation of photons
in this plasma channel is exactly analogous to that in an
optical fiber~in both cases the refractive index is higher on
the central longitudinal axis! and the same theory and ana-
lytical formulas do apply~Gowar, 1984!.

5.4. Effects of Coulomb forces

When the radiation has completely crossed the region filled
with plasma, an inhomogeneous distribution of charge is
obtained~a transversal section can be seen in Fig. 6!. So,
an electric field will recall the electrons~positive ions are
still considered fixed! towards their equilibrium positions.
Relaxation of electrons from the perturbed situation gen-
erated in Section 5.2 is obtained by effect of the electrical
field generated by the charge spatial distribution. Plots of
simulations are omitted for the sake of brevity. The phys-
ical parameters used are the same as in the simulation
in Section 5.2. The final effect is simply a relaxation of
the electron number in each cell to the initial value~here
Nel~0!

~i, j ! 5 8 3 107!. Only the simulation time step is
different: Heret 5 1 ps. So, the process is slower than the
depletion phenomenon caused by the laser pulse.

Fig. 4. Width of the laser pulse~expressed in microns, with respect to the
central axis of the CA! as a function of time~solid line!. Theoretical
prediction from diffractive optics~dotted line!.
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Fig. 5. Photon number and electron number in gray scale~the darker, the higher the number! at different stages of time evolution of the
simulation. The laser pulse propagates with a direction parallel to the optical axis pushing the electrons in regions where the intensity
of the field is smaller. Since only ponderomotive force is considered and the refractive index of the medium is considered constant~i.e.,
the electron–photon interaction has been switched off in this simulation!, no reaction due to charge displacement is visible.
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5.5. Coupled effects of ponderomotive force and
refraction index changes: Self-focusing

Finally, the rules of evolution of all the interactions are
simultaneously considered. The coupled effects of pondero-
motive force on electron distribution, the consequent mod-
ification of the refractive index and its effects on the optical
propagation are described in Figure 8, where a clear feed-
back is evident in the process dynamics.

When an electromagnetic wave propagates in a hot plasma,
electrons are forced to move towards regions where the
intensity of the optical field is smaller, because of pondero-
motive force. The obtained charge density gradient causes a
Coulombian recall field that moves electrons in the opposite
direction~positive ions will still be considered fixed!. The

local and instantaneous variation of the electric field causes
a gradient of the refractive index, which influences the pho-
ton motion in plasma. The final effect of this process is
different depending on the power of the incoming laser
pulse. In particular, if the power is sufficiently high~i.e.,
higher than the so called “critical power” which can be
calculated from well-known formulas~Amiranoff et al.,
1995!! the modification of the refraction index is so that the
laser pulse is focused in the material.

By considering all the interactions, simulations are pro-
vided showing the arising of self-focusing effects. In partic-
ular, Figure 9a shows the propagation of a laser pulse with
power below the critical one. Figure 9b shows the self-
focusing effect. The plots are obtained as a three level plot of
the photon number at different times.

6. DISCUSSION AND CONCLUSIONS

As it is evident from the approach used in the presentation,
the present work should be considered only as a preliminary
one. However, this paper already shows the potential, as
well as the main limits, of the CAapproach to the simulation
of laser–plasma interactions.

A first advantage of CA models is the insight they may
give in the complex physical phenomena that are going on
during the interactions. In the framework of CA models, the
macroscopic physical effects simply arise from the “repli-
cation” of simple local and microscopic physical laws. In
particular, first, we have obtained interesting results, both
qualitatively and quantitatively, concerning the propagation
and focusing of the laser beam in free space and in a frozen
density profile. This last point may be of interest also for the
simulation of laser beam propagation in optical fibers. Sec-
ondly, we have successfully described the creation of a
plasma channel due to ponderomotive forces. Results on
relaxation of the plasma channel and on self-focusing~again
due to ponderomotive forces! of the laser beam in the plasma
are instead at the moment only qualitative.

There are some limits connected either to our specific CA
model or to CA in general. In the presented model, we
consider the electrons as “static,” that is, they may move

Fig. 6. Electron number on a transversal section of the plasma region after
the passage of a laser pulse, considering only the effects of ponderomotive
forces. The following physical parameters have been used in the simula-
tion: l 5 0.25 mm; t 5 0.834 fs; refractive indexn 5 1; r0 5 5 mm;
Nel~0!

~i, j ! 5 8 3 107 for all i, j. The pulse has been chosen with a peak
amplitude of 93 1012 photons.

Fig. 7. Propagation of light rays in a plasma channel produced by pondero-
motive forces. The refractive index profile is assumed to be parabolic with
maximum refraction indexnM 5 1.55; bulk refraction indexnb 5 1.4; the
time step used in the simulation ist 5 10 fs.

Fig. 8. Schematic of laser–plasma interactions.
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from one cell to another but they are not characterized by a
velocity. Hence, we cannot describe even simple phenom-
ena such as plasma oscillations which are based on the
transformation of~electric! potential energy in kinetic en-
ergy and vice versa. As a consequence, we are not able to
describe also more complex phenomena, such as: the accel-
eration of electrons in the laser beam wake-field; the cre-
ation of electron currents and of the magnetic fields they
produce~which may induce a pinching effect in the plasma!;
and the variation of electron mass with velocity in the rela-
tivistic interaction regime. Since this last phenomenon is the
origin of relativistic self-focusing, it follows that it cannot
be modeled with our CA model~here we only modeled
ponderomotive self-focusing!.

Introducing the electron velocity in this CA code is, in
principle, easy: It is sufficient to introduce many electron
families, each characterized by its own velocity, in a similar
way to what we have done with photon directions. However,
in practice, this greatly increases the model complexity. In
fact, the range of the electron velocity in the physical system
is very large. The electron speed ranges from electron ther-
mal velocity to~almost! light speed, for the electrons accel-
erated by the laser beams.Also, the thermal “slow” electrons
and the “fast” ones have very different time constants and
each of them must be dealt with sufficient resolution. On the
other side, there are phenomena that are intrinsically diffi-
cult to simulate with CA models, which are intrinsically
“particle-based” codes. Indeed, in this context, the laser
beam is described as a bunch of photons and it is difficult to
consider the “wave-based” properties of an electromagnetic
field. As a consequence, the generation of the electromag-
netic fields~and even of magnetostatic fields connected to
electron currents! is difficult to be described, as well as all

long-range forces arising in the plasma as a consequence of
the plasma dynamics itself. We recall again that in plasmas,
this is not the case of electrostatic~Coulomb! forces that are
effectively screened over a distance of the order of the plasma
Debye length. Hence, Coulomb forces in plasma are strictly
short range~local!, and this makes their modeling easy to
obtain in a CA context.

The previous considerations fix an optimal range of laser
and plasma parameters for which CA simulation of laser–
plasma interactions can be performed and give physically
sensible results. This is the regime of short pulse lasers at
intermediate intensity~high, but nonrelativistic! and mod-
erate plasma density. This range is dominated by the effects
of ponderomotive forces, while phenomena like electron
acceleration and relativistic effects can reasonably be ne-
glected. Finally, one main advantage of this modeling ap-
proach is the computation time: The presented CA model
has been simulated with very short computational times on
single processor sequential~PC! computers. In fact, CA
lend themselves naturally for parallel computer implemen-
tation, realizing a direct correspondence between the model
structure~i.e., the cellular space topology! and the compu-
tation tool ~i.e., the displacement of the processors in the
machine!. As an extreme consequence, it could be thought a
direct one-to-one correspondence between the automaton
cells and the computer processors.
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Fig. 9. Three-level plots of the pulse during its propagation in the plasma taken every 20 time steps~56 fs!. The chosen level are 30%,
60%, and 90% of the peak number of photons. The physical parameters of the incoming pulse aret 5100 fs andr0 5 5 mm. The initial
electron density in the plasmaNel~0!

~i, j ! for all i, j corresponds to a critical powerPcr 5 33 GW. The laser pulse energy is fixed so that
the ratio between the power of the laser pulse and the critical power is 0.33 in the first case~a! and 3 in the second~b!.
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