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The margination and adhesion of micro-particles (MPs) have been extensively
investigated separately, due to their important applications in the biomedical field.
However, the cascade process from margination to adhesion should play an important
role in the transport of MPs in blood flow. To the best of our knowledge, this has
not been explored in the past. Here we numerically study the margination behaviour
of elastic MPs to blood vessel walls under the interplay of their deformability and
adhesion to the vessel wall. We use the lattice Boltzmann method and molecular
dynamics to solve the fluid dynamics and particle dynamics (including red blood
cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic
ligand–receptor binding model is employed to capture the adhesion behaviours of
elastic MPs on the vessel wall. Margination probability is used to quantify the
localization of elastic MPs at the wall. Two dimensionless numbers are considered
to govern the whole process: the capillary number Ca, denoting the ratio of viscous
force of fluid flow to elastic interfacial force of MP, and the adhesion number
Ad, representing the ratio of adhesion strength to viscous force of fluid flow. We
systematically vary them numerically and a margination probability contour is
obtained. We find that there exist two optimal regimes favouring high margination
probability on the plane Ca–Ad. The first regime, namely region I, is that with
high adhesion strength and moderate particle stiffness; the other one, region II, has
moderate adhesion strength and large particle stiffness. We conclude that the existence
of optimal regimes is governed by the interplay of particle deformability and adhesion
strength. The corresponding underlying mechanism is also discussed in detail. There
are three major factors that contribute to the localization of MPs: (i) near-wall
hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration
due to the presence of the wall; and (iii) adhesive interaction between MPs and the
wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination.
These three factors perform different roles and compete against each other when
MPs are located in different regions of the flow channel, i.e. near-wall region. In
optimal region I, adhesion outperforms deformation-induced migration; and in region
II, the deformation-induced migration is small compared to the coupling of near-wall
hydrodynamic collision and adhesion. The finding of optimal regimes can help the
understanding of localization of elastic MPs at the wall under the adhesion effect in
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blood flow. More importantly, our results suggest that softer MP or stronger adhesion
is not always the best choice for the localization of MPs.

Key words: blood flow, capsule/cell dynamics, complex fluids

1. Introduction
Margination, defined as the migration of a particle in blood flow towards the

periphery of the blood vessel, allows the particle to come close to the endothelium,
and then adhere to the vessel wall (Du Trochet 1824; Koumoutsakos, Pivkin & Milde
2013). It is of significant importance to understand such physiological processes for
curing relevant diseases. For example, in the inflammation process, margination of
leukocytes towards the vessel wall is the precondition for an organism to perform
defence functions, such as adhering to vascular endothelium and transmigrating
into the tissues (Ley & Tedder 1995; Fedosov, Fornleitner & Gompper 2012). In
atherosclerosis, the thrombosis, formed by the clot, is caused by the margination and
accumulation of numerous platelets responding quickly to events on the vessel wall,
e.g. injury (Wootton & Ku 1999; Fogelson & Neeves 2015). Additionally, margination
has extensive applications in microfluidic devices for the removal of pathogens and
the separation of cells (Bhagat et al. 2010; Gossett et al. 2010; Hou et al. 2010).

The root cause of margination has not been completely revealed so far. In blood
flow, every component of blood such as plasma and red blood cells (RBCs) may
contribute to margination (Farutin & Misbah 2013). Generally speaking, three major
factors, i.e. hydrodynamic forces, wall effects and adhesive interactions between
ligands and receptors, are considered to be responsible for the margination of
micro-particles (MPs). Here, another most important effect, Brownian interaction
in nanoparticles, can be ignored due to the large size of MPs (Ramakrishnan et al.
2017). Hence, when placing the MP in the blood flow through injection or other
administration, the dynamics of MPs is governed by the complex interplay among
these three factors. The performance of the MP will be affected by its physiological
properties, such as size, shape, stiffness and surface functionality – also known as
the ‘4S’ parameters (Li et al. 2016; Ye et al. 2018c). These properties play different
roles, depending on the specific physiological conditions. For example, Decuzzi
et al. (2010) found that, in an in vivo experiment, discoidal particles demonstrated
the strongest accumulation in most organs, such as spleen and kidney; whereas in
the liver, cylindrical particles outperformed the other kinds of particles. Therefore,
investigations of the ‘4S’ parameters become crucial in the optimal design of MPs
acting as drug carriers in biomedical application.

Among the ‘4S’ parameters, stiffness attracts relatively less attention compared to
the other parameters. It should play an important role in the margination process of
MPs. Owing to deformability, the symmetry of the Stokes flow is broken. According
to the mirror symmetry time reversal theorem proposed by Bretherton (1962), the
elastic MP will experience a lateral force in the near-wall region. For example,
usually the leukocyte is assumed to marginate towards the vessel wall in blood flow
(Freund 2007; Fedosov et al. 2012; Marth, Aland & Voigt 2016). Recently it has
been discovered that the reversal of margination (migration from the near-wall region
to the centre of a vessel) happens when the stiffness is reduced by reorganization of
cellular cortical actins (Fay et al. 2016).
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The dynamics of an elastic particle is more complex than that of a rigid one. The
shape of an elastic MP is not given a priori and continuously deforms in flow. The
evolution of shape is determined by the dynamic balance between the interfacial force
and fluid stress, depending on the local flow environment. Additionally, a large number
of RBCs occupy the blood flow. Thus, the deformation and motion of RBCs influence
the flow field around MPs. Hydrodynamic interaction can also happen between RBCs
and elastic MPs. Poiseuille (1836) recognized that blood corpuscles in the capillaries
tended to migrate away from the wall due to deformation-induced migration stemming
from viscous effects. Nevertheless, this stiffness-dependent migration of particles
has attracted extensive attention very recently. Owing to the similar behaviour of
RBCs under flow, a series of elastic particles, such as capsules and vesicles, have
been investigated in regard to their migration motion by experimental (Abkarian,
Lartigue & Viallat 2002; Callens et al. 2008; Coupier et al. 2008; Kantsler, Segre
& Steinberg 2008), analytical (Olla 1997a,b; Seifert 1999; Vlahovska & Gracia
2007; Danker, Vlahovska & Misbah 2009; Farutin & Misbah 2011, 2013; Qi &
Shaqfeh 2017) and numerical studies (Cantat & Misbah 1999; Sukumaran & Seifert
2001; Secomb, Styp-Rekowska & Pries 2007; Doddi & Bagchi 2008; Kaoui et al.
2008; Zhao, Spann & Shaqfeh 2011; Nix et al. 2014; Singh, Li & Sarkar 2014).
Quantitative determination of the deformation-induced migration is instrumental in
revealing the underlying mechanism of the migration behaviours of erythrocytes and
leukocytes in blood flow. Abkarian et al. (2002) used light microscopy to study
the tank-treading motion and deformation of vesicles in linear shear flow. Upon
increasing the shear rate of flow, the vesicle tilted with respect to the substrate, and
further incrementation of shear rate γ̇ made vesicle migrate away from the substrate.
These observations revealed the existence of deformation-induced migration. They
found that the magnitude of the deformation-induced migration depended on the
viscosity η of the fluid, the radius R of the vesicle, the distance h from the substrate
and a monotonically decreasing function f (1 − v) of the reduced volume v. On the
basis of these direct observations, Farutin & Misbah (2013) derived the migration
velocity of a vesicle near the wall. From the method using the stresslet of a droplet in
a Couette device (Smart & Leighton Jr 1991), they employed an asymptotic method
to derive the expression for the migration velocity by determining the stresslet in a
power series of the shape parameter Γ of the vesicles. This parameter Γ quantifies
the deflation of a vesicle from a sphere with the same volume. In the leading order
of Γ , the migration velocity ∼γ̇R3/h2. The theoretical analysis was implemented
on the basis of the assumption that the deflation Γ is small. This means that if
the shear modulus of the particles, such as that of the capsule, is not high, the
expression should not be valid. More recently, Singh et al. (2014) corrected the
analytical migration velocity by fitting the results obtained from a series of numerical
simulations for capsules with different elastic capillary numbers Ca. They found that
there existed a critical Cacr splitting the migration velocity into two distinct regimes.
When Ca < Cacr, migration velocity ∼Ca and ∼γ̇R3/h2, which is similar to the
analytical relation for vesicles. However, when Ca> Cacr, migration velocity ∼Ca0.6

and ∼γ̇R2.35/h1.35. Hence, if the capsule is soft (large Ca), the analytic relation is
not valid for the capsule any more. Also, a detailed study for lift velocity of RBCs
through simulations has been proposed by Qi & Shaqfeh (2017). Here, the elastic
MPs pertain to capsules, and will be discussed in detail later.

According to Farutin & Misbah (2013), in addition to deformation-induced
migration, hydrodynamic interaction is an additional governing mechanism of particle
migration in simple shear flow. Hydrodynamic interaction results in hydrodynamic
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diffusion, which is induced by collisions between particles. Collisions between
two identical particles, namely homogeneous collisions, such as between capsules
(Singh & Sarkar 2015) and between vesicles (Farutin & Misbah 2013), have been
investigated numerically and theoretically, respectively. These homogeneous collisions
are not essential in particle migration and segregation, because the migrations of the
two collision partners are the same. Kumar & Graham (2011, 2012b) and Sinha &
Graham (2016) extended this to heterogeneous collisions between capsules with the
same volume but different membrane rigidities and shapes, respectively. In a binary
suspension of soft and stiff capsules, the stiff particles were observed to accumulate in
the near-wall region in a suspension of primarily soft particles, whereas soft particles
were found to concentrate on the centreline in a suspension of primarily stiff particles.
This segregation behaviour was attributed to larger cross-stream displacement in
heterogeneous collisions of stiff particles than that of soft particles. Furthermore,
Vahidkhah & Bagchi (2015) proposed that a binary collision between an RBC and a
rigid MP should be one of the reasons for the shape-dependent margination behaviour
of MPs. The result presented that spherical and oblate MPs marginated more than
prolate MPs after several collisions. In terms of the elastic MPs, the collisions
between MPs and RBCs will be more complex, and should play an important role
in the margination behaviour of elastic MPs. However, it remains largely unexplored
so far.

After the particle marginates, it has a chance to interact with the vessel wall
and adhere to it, depending on the ligand–receptor binding properties. Adhesion
behaviour has been studied extensively using the Bell model (Bell 1978), developed
by adhesive dynamics which was first employed to understand the dynamics of
leukocyte adhesion under flow (Hammer & Lauffenburger 1987; King & Hammer
2001; Hammer 2014). A number of studies in drug delivery systems focus on the
adhesion process (Decuzzi & Ferrari 2006; Charoenphol, Huang & Eniola-Adefeso
2010; Fedosov 2010; Charoenphol et al. 2012; Luo & Bai 2016; Coclite et al.
2017). In human blood, MPs with diameters of 3 µm were found to be the ideal
choice for spherical, rigid particles to adhere to vessel walls rather than nanoparticles
(Charoenphol et al. 2010, 2012). In addition to spherical particles, Decuzzi & Ferrari
(2006) investigated the effects of particle size and shape on the adhesion behaviour
from the viewpoint of specific adhesive interaction strength. They predicted that,
for a fixed shape (e.g. spherical or ellipsoidal), there existed an optimal volume
(size) making the adhesive strength reach a maximum. Additionally, they found that
non-spherical particles can carry a larger amount of drugs than spherical particles
with the same adhesive strength. More recently, Coclite et al. (2017) constructed
a two-dimensional lattice Boltzmann–immersed boundary model to systematically
predict the near-wall dynamics of circulating particles with different shapes and
adhesive strengths. As for the adhesion behaviour of deformable particles, a variety
of dynamic phenomena, including detachment, rolling, firm adhesion and stop-and-go
motion (Fedosov 2010; Luo & Bai 2016), were found. Luo & Bai (2016) combined
the front-tracking finite element method and adhesion kinetics model to investigate
capsule dynamics in flow and adhesive dynamics, respectively. It was found that,
for a particle with low Ca, deformation promoted the transition from rolling to firm
adhesion; while deformation would inhibit both the rolling to firm adhesion and the
detachment to rolling transitions when the Ca of the particle was relatively high.
Because the particle with high Ca would collapse on the substrate, and in the middle
of the particle, a ligand–receptor free region formed. Further increment of Ca made
the rolling motion vanish and the particle shape largely deviate from spherical.
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In general, margination is thought to be the necessary precondition for adhesion
(Müller, Fedosov & Gompper 2016). Before a particle can interact with a vessel
wall, it should marginate into the near-wall region, e.g. the cell-free layer (CFL) in
the blood flow. The CFL is a thin layer near the vessel wall with no RBCs inside,
which forms due to the deformability of RBCs. However, adhesion can also, in turn,
affect the margination process. In engineering applications, micrometre-sized particles
are often used as drug carriers due to their better performance over nanometre-sized
particles in the margination process (Tasciotti et al. 2008). The thickness of the
CFL is also measured in micrometres (approximately 1.5–5.0 µm) in the human
vasculature (Fedosov et al. 2010b). Hence, when a particle moves close to or enters
the CFL, the particle can interact with the vessel wall through ligand–receptor binding.
Additionally, in terms of deformation of the particle, the elastic MP may move away
from the wall to the centre of blood flow due to deformation-induced migration. But
adhesion may play a role in preventing it escaping from the CFL. Thus, adhesion
will affect the choice of elastic MP located near the CFL: entering or departing
from the CFL? Such a phenomenon was also reported in previous work (Müller
et al. 2016), but without discussion. Researchers pay more attention to the effects of
particle ‘4S’ properties on either margination or adhesion (Decuzzi & Ferrari 2006;
Müller, Fedosov & Gompper 2014; Vahidkhah & Bagchi 2015).

Considering the above aspects, we focus on the performance of elastic MPs in
the whole process from margination to adhesion. We combine the lattice Boltzmann
method (LBM) and molecular dynamics to solve the fluid dynamics and particle
dynamics (RBCs and elastic MPs), respectively. These two parts are coupled by the
immersed boundary method (IBM). In our simulation, the most expensive part is
solving the fluid dynamics. The LBM is adopted due to its high natural parallelism.
In the past two decades, it has been confirmed as an efficient and accurate numerical
solver to handle fluid dynamics problems (Higuera, Succi & Benzi 1989; Benzi,
Succi & Vergassola 1992; Chen & Doolen 1998). Its application in simulating blood
flow has achieved significant progress (Zhang, Johnson & Popel 2007, 2008; Lorenz,
Hoekstra & Caiazzo 2009; MacMeccan et al. 2009; Aidun & Clausen 2010; Clausen,
Reasor & Aidun 2010; Melchionna et al. 2010; Czaja et al. 2018; de Haan et al.
2018). In the absence of large numbers of RBCs, Melchionna et al. (2010) took
a hydrokinetic approach (Bernaschi et al. 2009) to model large-scale cardiovascular
blood flow to recognize the key relevance to the localization and progression of major
cardiovascular diseases, such as atherosclerosis. Borgdorff et al. (2014) provided a
multiscale coupling library and environment to make possible the simulation of
an extra-large-scale vasculature network. Furthermore, considering the existence of
RBCs, Zhang et al. (2007, 2008) conducted simulations from the aggregation of
multiple RBCs to the rheology of an RBC suspension in two-dimensional blood flow.
MacMeccan et al. (2009) and Clausen et al. (2010) extended it to three-dimensional
blood flow by coupling the LBM with the finite element method. Additionally, the
adhesive dynamics of elastic MPs to a vessel wall is governed by the probabilistic
model proposed by Hammer & Lauffenburger (1987). The diameter of MPs is set as
2 µm, and the haematocrit of blood flow is 30 %, in which the thickness of the CFL
is comparable to the particle size. To clarify the influence of near-wall adhesion on
the localization of MPs, the particle size and blood flow conditions are fixed. The Ca
is tuned by changing the shear modulus of elastic MPs, and we vary the adhesion
strength to adjust Ad. The interplay of adhesion strength and particle deformability
leads to two optimal margination regimes. One is with moderate Ca and high Ad,
and the other is with small Ca and moderate Ad. This may shed light on the optimal
design of MPs favouring high localization at the wall in blood flow.
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FIGURE 1. (Colour online) Transport of elastic MPs in blood flow. (a) Computational
model of margination and adhesion of elastic MPs in blood flow. The zoomed panels
give the detailed adhesion behaviour of an elastic MP under a stochastic ligand–receptor
binding effect. (b) Schematic of transport process of an elastic MP from the centre of the
bloodstream (denoted (C)) to the cell-free layer (F), and then reaching the adhesion layer.

The paper is organized as follows. In § 2 we describe the physical problem involving
the transport of elastic MPs in blood flow and the numerical methods that we employ
to solve the fluid flow, particle dynamics and adhesive dynamics. We validate our
computational method in § 3. Furthermore, § 4 presents the margination and adhesion
results. A detailed discussion of the underlying physical mechanisms is also provided.
In § 5, conclusions are given.

2. Physical problem and computational method
2.1. Physical problem

In blood flow, most parts of the vessel are occupied by a large number of RBCs.
In a normal human blood vessel, the volume fraction of RBCs (haematocrit Ht)
is approximately 20 %–45 %. Under the interplay effect of the flow and the vessel
wall, RBCs move from the near-wall region to the centre of the vessel due to
deformation-induced migration. This results in the formation of a cell-free layer
(CFL). The CFL plays the role of a lubricant layer and reduces the blood flow
resistance, which is also called the Fåhraeus–Lindqvist effect (Fåhraeus & Lindqvist
1931). When elastic MPs, acting as drug carriers, are injected into a vein, they
move with the bulk flow as shown in figure 1(a). The elastic MPs deform under
the shear stress and collide with RBCs. The deformation depends on the local
flow environment. Additionally, the MPs may move in the cross-stream direction,
migrating either towards the wall or to the centre of the channel. Once MPs migrate
to the near-wall region, i.e. CFL, the ligands decorated on their surfaces have the
chance to interact with the receptors on endothelial cells distributed on the vessel
wall (figure 1a). This ligand–receptor binding is required for the further release of
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Parameters Simulation Physical value

Equilibrium length of bond (l0) 1 250 nm
Bond strength (ks) 2.6× 10−5–1.2× 10−2 1.64× 10−9–7.56× 10−6 N m−1

Reactive and rupture distance
(don and doff ) 4 1 µm

On strength (σon) 0.7305 1.9× 10−7 N m−1

Off strength (σoff ) 0.7305 1.9× 10−7 N m−1

Unstressed on rate (k0
on) 3.75 1.3× 106 s−1

Unstressed off rate (k0
off ) 0.05 1.8× 104 s−1

Ligand density (nl) 4.11 66 mol µm−2

Receptor density (nr) 1.0 16 mol µm−2

TABLE 1. Parameters used in adhesive model for ligand–receptor binding.

drug molecules into tumour sites through a vascular targeting strategy (Schnitzer
1998; Neri & Bicknell 2005). However, reaching the CFL cannot guarantee that such
interactions will occur. Only when an MP reaches a closer distance to the vessel wall,
in which ligands can interact with receptors, does the interaction occur. This distance
is determined by the reaction distance between ligands and receptors. We name the
layer within this distance as the adhesion layer (χ ). Usually the thickness of the
adhesion layer is in the range of tens to hundreds of nanometres (Decuzzi & Ferrari
2006; Müller et al. 2014, 2016). Here, it is set as 1.0 µm according to the reaction
distance that we used in the computational model. This is reasonable compared to
that used in the previous work of Müller et al. (2014).

The numerical study is employed to study the transport of elastic MPs due to its
flexibility in tuning the properties of MPs and adhesive interactions. Blood flow is
considered as a suspension of RBCs. Owing to limited computational resources, a
small part of the vessel is taken into account and modelled as a rectangular channel.
The size of the channel is of height 36 µm, width 27 µm and length 54 µm. Periodic
boundary conditions are applied in the width (x) and length (y) directions. The height
(z) direction is bounded by two flat plates. The bottom plate (vessel wall, also named
substrate) is fixed and the flow is driven by the moving of the upper one with a
constant velocity U. In all of the simulations, shear rates stay at 200 s−1. A total of
162 RBCs and 80 identical elastic MPs are placed inside the channel. The haematocrit
is approximately 30 %. MPs are initially set to a spherical shape with radius 1 µm,
and their total volume fraction is approximately 0.64 % in the channel. Additionally,
the ligands and receptors are uniformly distributed on the surfaces of MPs and
substrate, respectively. The densities of ligands and receptors are listed in table 1.

2.2. Computational method
2.2.1. Lattice Boltzmann method for fluid flow

The RBCs are immersed within blood plasma in the blood flow. The other
components, such as the white blood cells and platelets, are negligible due to their
low volume fractions compared to that of RBCs. The plasma is usually considered
as a Newtonian fluid. Its dynamics is described by the continuity equation and
incompressible Navier–Stokes (NS) equation:

∇ · u= 0, (2.1)

ρ
∂u
∂t
+ ρu · ∇u=−∇p+µ∇2u+ F, (2.2)
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where ρ is the plasma density, and u and p represent the velocity and pressure of
the flow, respectively. The term F on the right-hand side of (2.2) is the external
force; µ is the dynamic viscosity of the plasma and is set as 1.2 cP. The LBM
is employed to solve the NS equation due to its high efficiency and accuracy in
handling incompressible Newtonian flow (Higuera et al. 1989; Benzi et al. 1992;
Chen & Doolen 1998). By discretizing the velocity of the linearized Boltzmann
equation, a finite difference scheme is obtained:

fi(x+ ei1t, t+1t)= fi(x, t)−
1t
τ
( fi − f eq

i )+ Fi, (2.3)

where fi(x, t) is the distribution function and ei is the discretized velocity. In the
current simulation, the D3Q19 velocity model is used (Mackay, Ollila & Denniston
2013), and the fluid particles have the possible discrete velocities stated in Mackay
et al. (2013). In (2.3) τ denotes the non-dimensional relaxation time, which is related
to the dynamic viscosity in the NS equation as follows:

µ= ρc2
s (τ −

1
2)1t. (2.4)

Also in (2.3) f eq
i (x, t) is the equilibrium distribution function and Fi is the discretized

scheme of the external force. In the current simulation, the equilibrium distribution
function adopts the form

f eq
i (x, t)=ωiρ

[
1+

ei · u
c2

s

+
(ei · u)2

2c4
s

−
(u)2

2c2
s

]
, (2.5)

where the weighting coefficients are ω0= 1/3, ωi= 1/18 (i= 1–6) and ωi= 1/36 (i=
7–18). The term cs represents the sound speed, which equals 1x/(

√
31t). The

external forcing term can be discretized by the form (Guo, Zheng & Shi 2002):

Fi =

(
1−

1
2τ

)
ωi

[
ei − u

c2
s

+
(ei · u)

c4
s

ei

]
·F. (2.6)

Equation (2.3) is advanced through the algorithm proposed by Ollila et al. (2011).
Here, the solver of the LBM is embedded in a large-scale atomic/molecular massively
parallel simulator (LAMMPS) (Plimpton 1995), which is implemented by Mackay
et al. (2013). After the particle density distributions are known in the whole fluid
domain, the properties of the fluid, such as fluid density and velocity, can be
calculated as

ρ =
∑

i

fi, u=
1
ρ

∑
i

fiei +
1

2ρ
F1t. (2.7a,b)

2.2.2. Coarse-grained models for RBC and MP
To capture the dynamics and deformation of RBCs and elastic MPs, we develop a

coarse-grained model and implement it into LAMMPS (Ye, Shen & Li 2018b). The
RBC is modelled as a liquid-filled coarse-grained membrane, and its equilibrium shape
is biconcave. The diameter of an RBC is 7.8 µm, and the thickness is approximately
2.1 µm. The surface area and volume of an RBC are 134.1 µm2 and 94.1 µm3,
respectively (Evans & Skalak 1980). In the simulation, the membrane is discretized
into 3286 vertices and 6568 triangular elements.
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To capture the in-plane shear property of an RBC, a stretching potential Ustretching is
used. It includes two parts, namely an attractive nonlinear spring potential (wormlike
chain model, WLC) and a repulsive power potential (power function, POW) (Fedosov,
Caswell & Karniadakis 2010a; Fedosov et al. 2011b). They can be expressed as

UWLC =
kBTlm

4p
3x2
− 2x3

1− x
, UPOW =

kp

l
, (2.8a,b)

where kBT is the basic energy unit, x= l/lm ∈ (0, 1), l is the length of the spring, lm is
the maximum spring extension, p is the persistence length, and kp is the POW force
coefficient. Applying the bending potential

Ubending =
∑

k∈1,...,Ns

kb[1− cos(θk − θ0)], (2.9)

the out-of-plane bending property of an RBC is reflected. Here kb is the bending
stiffness, θk is the dihedral angle between two adjacent triangular elements, and θ0
is the initial value of the dihedral angle. In the following, subscript 0 represents the
corresponding initial value; and Ns denotes the total number of dihedral angles.

Besides the above, the bulk properties, such as surface area and volume
conservation, are ensured by introducing the penalty forms:

Uarea =
∑

k=1,...,Nt

kd(Ak − Ak0)
2

2Ak0
+

ka(At − At0)
2

2At
(2.10)

and

Uvolume =
kv(V − V0)

2V0
, (2.11)

where the first term in (2.10) represents the local area constraint, Ak and Ak0 denote
the area of the kth element and its initial area, respectively, and kd is the corresponding
spring constant. The second term in (2.10) is the global area constraint, At is the total
area, and ka is the spring constant. In (2.11), kv is the spring constant and V is the
total volume.

Then the total energy U is

U =UWLC +UPOW +Ubending +Uarea +Uvolume. (2.12)

The nodal forces exerted on each vertex of the RBC membrane are derived from

fi =−∂U(Xi)/∂Xi, (2.13)

where Xi denotes the vertex of the RBC membrane. Thus, if we know the positions
of the membrane vertices, we can calculate the nodal force according to (2.13). The
detailed derivation of the force formulae, such as two-point stretching force and three-
point bending force, are presented in Ye et al. (2018b).

The elastic MPs adopt the same model as RBCs, but with 828 vertices and
changeable in-plane shear strength. Before we choose the parameters for the
coarse-grained model of RBCs and elastic MPs, we should know the corresponding
macroscopic properties through experiments a priori. According to the relationships
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Parameters Simulation Physical value

RBC diameter (Dr) 32 8× 10−6 m
MP diameter (2R) 8 2× 10−6 m
RBC shear modulus (µr) 0.01 6.3× 10−6 N m−1

MP shear modulus (µ0) 10−4–1.0 6.3× 10−8–6.3× 10−4 N m−1

Energy scale (kBT) 1.1× 10−4 4.14× 10−21 N m
Viscosity of fluid (η) 0.167 0.0012 Pa s
Area constant (ka) 0.0075 4.72× 10−6 N m−1

Local area constant (kd) 0.367 2.31× 10−4 N m−1

Volume constant (kv) 0.096 249 N m−2

RBC bending constant (kb) 0.013 5× 10−19 N m
TABLE 2. Coarse-grained potential parameters for RBCs and elastic MPs, and their

corresponding physical values.

between coarse-grained model parameters and macroscopic properties (Allen &
Tildesley 1989; Dao, Li & Suresh 2006; Fedosov et al. 2010a) we have

µ0 =

√
3kBT

4plmx0

(
x0

2(1− x0)3
−

1
4(1− x0)2

+
1
4

)
+

3
√

3kp

4l3
0
,

K = 2µ0 + ka + kd,

Y =
4Kµ0

K +µ0
,


(2.14)

where µ0 is the shear modulus, K represents the area compression modulus and Y
denotes the Young’s modulus. Therefore, the potential parameters can be chosen on
the basis of the physical quantities. The parameters used in the simulation are listed
in table 2.

The accuracy of this model for RBCs and elastic MPs has been validated in our
previous works (Ye et al. 2017a; Ye, Shen & Li 2018a; Ye et al. 2018b). In § 3,
we will show two more validations to confirm the convergence of both the fluid
and membrane meshes and modelling of the rheology of blood flow. Details about
the computational efficiency and cost are discussed in § 5 and Ye et al. (2018b). In
addition to the above potentials, it is necessary to employ intermolecular interactions
between RBCs to characterize their interactions. Here we use the Morse potential as
intermolecular interaction (Liu & Liu 2006; Fedosov et al. 2011b; Tan, Thomas &
Liu 2012), in the form

Umorse =D0[e−2β(r−r0) − 2e−β(r−r0)], r< rc, (2.15)

where D0 represents the depth of the potential energy well and β controls its width,
r is the distance between the two particles, r0 is the equilibrium distance, and rc
is the cutoff distance. Additionally, a short-range and purely repulsive Lennard-Jones
potential is applied to prevent overlap between RBCs and MPs (Ye et al. 2018b).

2.2.3. Immersed boundary method for fluid–structure interaction
The IBM is used to couple the LBM with LAMMPS to account for fluid–structure

interaction (Peskin 2002; Krüger, Varnik & Raabe 2011; Krüger, Kaoui & Harting
2014; Ye et al. 2017b). We use the Lagrangian (X) and Eulerian (x) mesh points in
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the computational domain to represent RBCs (or MPs) and fluid particles, respectively.
The Eulerian fluid mesh is uniform and the resolution is 1x=250 nm in all directions.
The Lagrangian mesh for RBCs or MPs is generated by MATLAB code (Persson
& Strang 2004; Persson 2005). The mesh is approximately uniform and the mesh
size is set at approximately 1X = (0.6–0.8)1x. Then there are approximately 32
Eulerian points across one RBC in diametral direction. That is sufficient to resolve
the deformation and motion of an RBC (MacMeccan et al. 2009; Vahidkhah & Bagchi
2015). The coupling is fulfilled by the interpolation of velocity and force distributions
between Lagrangian and Eulerian mesh points (Mittal & Iaccarino 2005).

To ensure a no-slip boundary condition, the membrane vertex X with Lagrangian
coordinate s should move at the same velocity as the fluid around it, that is

∂X(s, t)
∂t

= u(X(s, t)). (2.16)

The velocity can be interpolated by the fluid velocity through a smoothed Dirac delta
function δ:

u(X, t)=
∫
Ω

u(x, t)δ(x− x(X, t)) dΩ. (2.17)

This condition will cause the membrane to move and deform. The membrane force
density F(s, t) is obtained by derivation of potential functions such as (2.13), and is
distributed to the surrounding fluid mesh points by

f fsi(x, t)=
∫
Ω

Ffsi(X, t)δ(x− x(X, t)) dΩ. (2.18)

2.2.4. Adhesive model for ligand–receptor binding
The ligand–receptor binding is described by the association and dissociation of

biological bonds, and it is governed by the probabilistic adhesion model (Hammer &
Lauffenburger 1987). Figure 1(a) gives a schematic of the adhesive model. When the
ligands on the MP approach the receptors on the vessel wall, they have the chance
to bind together, which is determined by the probability Pon. In the reverse situation,
the existing bond has a probability Poff to break. They can be expressed as

Pon =

{
1− e−kon1t, l< don,

0, l > don,
and Poff =

{
1− e−koff1t, l< doff ,

0, l > doff .
(2.19a,b)

Here 1t is the time step in the simulation, don and doff are the cutoffs for bond
creation and breakup, respectively, and kon and koff are the association and dissociation
rates with the forms

kon = k0
on exp

(
−
σon(l− l0)

2

2kBT

)
and koff = k0

off exp
(
σoff (l− l0)

2

2kBT

)
, (2.20a,b)

where σon and σoff are the effective on and off strengths, representing a decrease and
increase of the corresponding rates within don and doff , respectively, and k0

on and k0
off

are the reaction rates at the equilibrium length l = l0 between ligand and receptor.
The mechanical properties of the biological bond are described by a harmonic spring.
The equilibrium length is l0, and the force exerted on the receptor and ligand is
Fb = ks(l− l0). Here, ks represents the adhesive strength. This model and the relevant

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

89
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.890


66 H. Ye, Z. Shen and Y. Li

parameters (cf. table 1) are chosen according to the previous works of Fedosov (2010)
and Fedosov, Caswell & Karniadakis (2011a).

There are three dimensionless parameters:

Reynolds number Re= ργ̇R2/µ, (2.21)
capillary number Ca=µγ̇R/µ0, (2.22)
adhesion number Ad= ks/µγ̇R. (2.23)

Considering the physiological environment surrounding the cell, the fluid flow is
considered as a Stokes flow. Thus, Re is very small, and we fix its value as Re =
0.0134 to approximately represent the Stokes regime. The capillary number represents
the ratio of the shear stress exerted on the surface of an elastic MP to the elastic force
induced by the deformation of the elastic MP; and µ0 is the shear modulus of the MP.
The higher the Ca, the softer the particle. The adhesion number denotes the ratio of
adhesive strength to shear stress of the flow. Thus, the higher the Ad, the stronger the
adhesion strength. In our simulations, Ca is tuned by varying the shear modulus µ0,
and Ad is varied by changing the adhesive strength ks.

3. Validation of numerical method
Grid independence studies of the fluid and RBC membrane are conducted. We

perform a case study in which a single RBC with diameter Dr moves in simple shear
flow v(z) = γ̇ z, as shown in figure 2(a). Here the RBC is discretized with different
numbers of vertices as presented in figure 2(b). To exclude the size effect of the
channel, we adopt the same channel and same shear rate as the margination studies
of MPs. First, we vary the mesh size 1x of the fluid, and track the trajectories of the
centre of the RBC in the height direction (z direction). Figure 2(c) shows that, when
the mesh is coarse (1x = 1/8Dr), the trajectory is obviously different from those
with fine meshes, and it is not smooth compared to those with fine meshes. Further
increase of mesh resolution (1x = 1/16Dr) leads to a more consistent trajectory,
and only a small difference of trajectory exists between it and with the finer mesh.
When the mesh resolution increases to 1x = 1/32Dr, the difference between it and
with the finer mesh can be negligible. Thus, the current study adopts the mesh size
1x= 1/32Dr. Furthermore, we change the number of discretized vertices of the RBC
membrane. Four cases V = 766, 1418, 3286 and 9864 are investigated here; V and
T represent the numbers of vertices and triangular elements of the RBC membrane,
respectively. Again, we track the trajectories of the centre of the RBC in the height
direction. We find that the discretization of the membrane has a weak influence on
the motion of an RBC under the current scheme (766< V < 9864). There is only a
small difference for the case of V = 766, compared to other cases. To ensure enough
convergence of the membrane mesh, we adopt a relatively fine mesh V = 3286. In
the following simulations, the fluid mesh size is 1x= 1/32Dr and the discretization
of the RBC membrane is V = 3286.

Here, we study the Fåhraeus effect and the Fåhraeus–Lindqvist effect of blood
flow with different haematocrits (15 % and 30 %) in a tube with different diameters
(10, 20 and 40 µm) to validate our numerical method in terms of rheology of blood
flow. The length of the tube is fixed as three times the diameter.

The Fåhraeus effect presented an increased value of discharge haematocrit (Hd)
measured at the tube exit in comparison with that before the tube entrance. It was
first discovered in in vitro experiments of blood flow in a tube (Fåhraeus 1929).
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FIGURE 2. (Colour online) Grid independence studies. (a) Model of motion of a single
RBC in simple shear flow. (b) Discretization of an RBC membrane with different
numbers of vertices. (c) Grid independence of fluid mesh. (d) Grid independence of RBC
discretization.

In our simulation, we take the same definition as that in Fedosov et al. (2010b) to
calculate the discharge haematocrit:

Hd =
v̄c

v̄
Ht, (3.1)

where v̄ = Q/A is the mean velocity of the blood flow, and v̄c is the average cell
velocity averaged in time in the steady-state regime.

The Fåhraeus–Lindqvist effect stated that apparent blood viscosity decreased with
decrease of tube diameter found in experiments (Fåhraeus & Lindqvist 1931; Pries,
Neuhaus & Gaehtgens 1992; Pries et al. 1994). It is usually convenient to calculate
the relative apparent viscosity to investigate this effect, which is defined as

ηrel =
ηapparent

ηplasma
, (3.2)

where the apparent viscosity ηapparent = 1PD2
tube/32v̄L, with 1P and L the pressure

difference between inlet and outlet of the tube and the length of the tube, respectively.
In figure 3(a), we show snapshots of blood flow in a tube with different diameters

under haematocrit 15 %. We calculate the discharge haematocrit and relative viscosity
of the blood flow, and compare our results with those in experiment (Pries et al.
1992) and numerical (Fedosov et al. 2010b; Czaja et al. 2018) studies in figure 3(b,c).
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FIGURE 3. (Colour online) Fåhraeus and Fåhraeus–Lindqvist effects. (a) Snapshots to
show the tube flow with different diameters under haematocrit 15 %. (b) Fåhraeus
effect: discharge haematocrit comparison. (c) Fåhraeus–Lindqvist effect: relative viscosity
validation.

As for the relative viscosity of the blood flow, we also provide the empirical viscosity
from experiment (Pries et al. 1994). We find that our results are more consistent with
an empirical value under low haematocrit 15 % compared with that under haematocrit
30 %. What is more, the results are more consistent with the numerical results
than with the empirical results. The discrepancies between numerical simulations
and experiments may be induced by the interaction between an RBC and the tube
wall, and the estimation method in experiments (Fedosov et al. 2010b). However,
the current study has adequate accuracy to model the blood flow from the above
comparison.

4. Results and discussion
We study the margination behaviours of elastic MPs (i) without (Ad = 0) and

(ii) with (Ad = 0.07–32.8) adhesion. The stiffness of the elastic MPs is varied by
changing the shear modulus µ0, which makes Ca range from 0.00037 to 3.7. This
corresponds to the shear modulus of an MP from 6.3 × 10−4 to 6.3 × 10−8 N m−1

(note that the shear modulus of an RBC is 6.3 × 10−6 N m−1). The elastic MPs
are randomly placed among RBCs in the whole channel at the beginning of all
simulations. For MPs with different shear moduli, they have the same initial
configurations. This eliminates the influence of the initial condition on the margination
results.

4.1. Margination of elastic MPs without adhesion
The margination of MPs without adhesion is first investigated. The margination
process of a typical case of MPs with Ca = 0.0037 is shown in figure 4. In these
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t = 0 s t = 1 s t = 2 sx
y

z

FIGURE 4. (Colour online) Snapshots to show the margination behaviour of an elastic MP
(Ca= 0.0037) without effect of adhesion.

snapshots, at t= 0 s, we can see that MPs are randomly distributed as well as RBCs.
The RBCs and MPs are considered at their equilibrium states. The shapes of RBCs
and MPs are biconcave and spherical, respectively. At time t = 1.0 s, the fluid flow
is developed. A large deformation has been observed for RBCs. Under the shear
flow, we find that RBCs align their major axes along the flow direction. Though the
deformation of MPs is small due to their high stiffness (small Ca = 0.0037), they
should deform under the shear stress; and the deformation will be significant for the
case with high Ca. In addition to the deformation, RBCs and MPs both demonstrate
cross-stream migration, but towards the opposite directions. RBCs migrate from the
near-wall region to the centre of the channel, while MPs move towards the wall. We
also find that the CFL becomes clear and that some MPs reach the CFL quickly. As
simulation time further advances, at t = 2.0 s, the CFL is fully developed and MPs
start to accumulate at the CFL.

Localization of MPs at the wall is characterized by margination probability Φ(t),
which is defined as

Φ(t)=
nf (t)

N
, (4.1)

where nf (t) represents the number of MPs with centres locating in the CFL at time
t, and N denotes the total number of MPs in the channel. Before quantifying the
margination probability, the thickness of the CFL is estimated in the absence of
MPs. We use the same method as proposed by Fedosov et al. (2010b); the thickness
of the CFL is approximately 2.8 µm for current blood flow with Ht = 30 %. This
is consistent with previous numerical studies (Lee et al. 2013; Müller et al. 2014).
Figure 5(a) gives the evolution of margination probabilities Φ for three different
stiffnesses (Ca = 0.00037, 0.037 and 3.7). We find that the margination process can
be split into two stages. In the first stage, the margination probability increases very
fast, which signifies that there are more and more particles moving from the centre to
the CFL. We note that, in this stage, the margination probabilities of softer particles
increase faster (Ca = 0.037 and 3.7) than that of stiff particles (Ca = 0.00037).
However, the duration of this stage for stiff particles is longer than those of soft
particles. Therefore, when the first stage ends, the margination probability of stiff
particles is higher than those of soft ones. In the second stage, the margination
probabilities of both stiff and soft particles increase slower than those in the first
stage. Also, the growth rates for these particles are almost the same.

To investigate this stiffness dependence of margination behaviour, the mean-square
displacements (MSDs) for MPs with different stiffnesses are calculated. The
deformation of RBCs in the blood flow induces the fluctuation of flow around them.
This is considered as the root cause of migration of rigid particles such as platelets
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FIGURE 5. (Colour online) Margination behaviour of elastic MPs with different stiffnesses.
(a) Evolution of margination probabilities for elastic MPs. (b) Mean-square displacement
of elastic MPs during margination. (c) Probabilities of two types of motion: centre to
cell-free layer (C–F) and cell-free layer to centre (F–C). (d) Time-averaged margination
probability in the steady-state regime.

in blood flow (Zhao, Shaqfeh & Narsimhan 2012). From figure 5(b), we find that
there are no obvious differences among MSDs for all of the MPs. At the initial stage
(t < 1.0 s), the MSDs are almost the same. After that, the MSDs for MPs become
different, but with only small variations. We calculated the diffusivities, defined as
D = 〈1z2

〉/2t, and they range from approximately 0.9 to 1.2 × 10−7 cm−2 s−1 for
these MPs. This is in good agreement with previous studies (Zhao & Shaqfeh 2011;
Vahidkhah & Bagchi 2015). The diffusivity is approximately two orders of magnitude
higher than the Brownian diffusivity, which means that the existence of RBCs
augments the diffusion of MPs. However, from these results, RBC augmentation of
diffusion is stiffness-independent. Thus, diffusion alone cannot explain the observed
stiffness dependence of margination behaviour.

To gain a better insight into the margination behaviour, the types of motion of MPs
in blood flow are studied. Compared to rigid particles in blood flow, elastic MPs may
experience deformation-induced migration, which can drive them to move away from
the vessel wall (Coupier et al. 2008; Kumar & Graham 2012b). This is the essential
mechanism for CFL formation in a blood vessel. Here the motion of elastic MPs
can be classified into four types: (i) staying in the centre; (ii) staying in the CFL;
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(iii) moving from the centre to the CFL (C–F); and (iv) moving from the CFL to the
centre (F–C). Obviously, the first two types cannot contribute to the localization of
MPs at the wall. The margination probability is attributed to the difference between
the last two types as shown in figure 5(c). We find that the probabilities of F–C
motion for all of the elastic MPs are the same and the values are almost 0. This
indicates that there are only a few particles migrating from the CFL to the centre
region. We also observe that the C–F motion has the same tendency as the margination
probability Φ. All these results lead to the conclusion that localization of MPs at the
wall in the current study is determined by the C–F motion. This is different from our
previous study in Ye et al. (2017a), in which F–C motion at some time can dominate
the margination behaviour of particles. The reason for this difference mainly lies in
the size of the particle and the haematocrit of blood flow. If the size of the particle
is large (2 µm in diameter), and the haematocrit is high (30 %), there is no available
space for the particle to stay in the centre of the channel, because, under shear flow,
most parts of the centre region are occupied by RBCs. Hence, F–C motion is not
significant in the present study.

To quantify the stiffness effect on margination probability, the mean margination
probabilities 〈Φ〉 are calculated and are given in figure 5(d). The mean value takes
the time-averaged value of margination probability, which is estimated in a time
interval within the steady-state regime. We can see that the margination process of
MPs reaches a steady state after approximately t = 2.5 s. The localization of MPs
at the wall decreases dramatically when the particles are very stiff (small Ca). With
further decrease of stiffness (increase of Ca), there is no obvious change of the
margination probability.

The underlying mechanism of this stiffness dependence of margination behaviour
relies on the interplay of collision with RBCs and deformation-induced lateral
migration of elastic MPs (Qi & Shaqfeh 2017). At the beginning of the simulation,
the RBCs near the wall of the channel sense the shear flow, and then deform under
the shear stress. The existence of the wall makes RBCs move away from the wall, and
then the CFL forms. According to the previous study (Katanov, Gompper & Fedosov
2015), the time needed to fully form the CFL is approximately 0.8 s under the
conditions (channel size and haematocrit) in the current study (Ye et al. 2017a). This
signals that the first stage of margination probability corresponds to the development
of the CFL (cf. figure 5a). In this stage, a large number of RBCs move from the
near-wall region to the centre of the channel. The migration of RBCs should induce
a reverse flow moving from the centre to the CFL in the regions around RBCs,
due to the mass conservation of the fluid. Hence, if the MPs are located in these
reverse flow regions, they will move along with the flow from the centre to the
CFL. This phenomenon looks like the exclusion effect that particles are excluded
by RBCs from the near-wall region to the centre of the channel (Crowl & Fogelson
2011). Specifically, the exclusion effect appears more significant for soft particles
than for stiff particles. Here soft MPs have stronger alignment with the flow due to
deformation. This is the reason why, in the first stage, the soft MPs marginate faster
than stiff ones. In the second stage, the CFL is fully formed and the flow is fully
developed. The soft MPs in the near-wall region may experience deformation-induced
migration due to the existence of the wall. This results in low accumulation of soft
MPs in the CFL. However, when the stiffness of the MPs decreases to a critical
value (approximately Ca = 0.037), the deformation-induced migration dominates the
motion of MPs. Therefore, under this circumstance, changing stiffness of MPs will
not result in an obvious difference of the margination probability.
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FIGURE 6. (Colour online) Snapshots for the margination behaviour of elastic MPs (Ca=
0.37) under the influence of adhesion: (a) Ad= 0.07 and (b) Ad= 32.8.

4.2. Adhesion effect on localization of elastic MPs at wall
In figure 5(a), it is obvious that the evolution of margination probability oscillates.
In some time intervals, the oscillation amplitude can reach approximately 20 % of
the margination probability. This indicates that many MPs are travelling between the
centre of the channel and the CFL. Under this circumstance, MPs near the CFL have
a chance to interact with the vessel wall through ligand–receptor binding. Since the
diameter of an MP is 2.0 µm, when it moves near the CFL, part of its surface will
be located inside the adhesion layer according to the thicknesses of the CFL (2.8 µm)
and adhesion layer (1.0 µm).

To have a direct comparison, figure 6 presents the adhesion effect on the localization
of elastic MPs. In figure 6(a,b), the stiffnesses of MPs are the same Ca= 0.37, while
the adhesion strengths are different: (a) Ad = 0.07 and (b) Ad = 32.8. We find
that there are more MPs entering and staying inside the CFL when increasing the
adhesion strength Ad. With small Ad = 0.07, when MPs move into the CFL, only
a small contact area forms between the MP and the substrate. The ligand–receptor
binding is not strong, and these MPs move freely near the substrate. However, with
strong adhesion Ad = 32.8, the MPs collapse on the substrate like a droplet on the
ground. It should be emphasized that this collapse phenomenon only happens for soft
MPs. If the MP is stiff or rigid, it cannot deform any more. They can only roll on
the substrate (King & Hammer 2001; Decuzzi & Ferrari 2006; Coclite et al. 2017).
However, elastic MPs can either roll or firmly adhere on the substrate, depending on
the adhesion strength Ad.

To differentiate the margination probability of MPs with and without adhesion,
we use Π rather than Φ to represent the margination probability with the adhesion
effect. The interplay of stiffness and adhesion strength effects is isolated in figure 7.
Figure 7(a) gives the relationship between the margination probability and the
adhesion strength for MPs with different stiffnesses. We use 〈 · 〉 to denote the
mean value over a time interval, and subscript m represents margination. We find
that the margination probabilities have the same tendencies with increment of
adhesion strength for MPs with different stiffness. Under relatively low adhesion
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FIGURE 7. (Colour online) Margination probabilities of elastic MPs with adhesion
effect. (a) Margination probability against adhesion strength with different MP stiffnesses.
(b) Margination probability against MP stiffness with different adhesion strengths.

strength (Ad < 5), the margination probability dramatically increases with increasing
adhesion strength; while further increment of adhesion strength makes the margination
probability slowly decrease (5< Ad< 23). But when the adhesion strength exceeds a
critical value, the margination probability will increase with the increment of adhesion
strength again. The critical value differs among MPs with different stiffnesses. The
margination probability against stiffness is given in figure 7(b) for MPs with different
adhesion strengths. The margination probability result of MPs without adhesion
(Ad = 0) is also presented to allow a comparison. We find that, with the same
adhesion strength, the margination probabilities increase with the increment of Ca
when MPs are stiff (relatively small Ca); while a further increase of Ca results in
the decrease of margination probability. Though the margination probability has a
decrement when the MP is soft (high Ca), it is still higher than that of an MP
without adhesion. The difference of margination probability between the cases with
and without adhesion is determined by the adhesion strength. These relationships
remain to be discussed in detail later.

Furthermore, we summarize the results of margination probabilities in the contours
on the Ca–Ad plane as shown in figure 8. We find that two peaks exist in the contours
for the margination probability. One is in the region with high adhesion strength Ad
and moderate stiffness (moderate Ca), namely I; the other one is located in the
region with moderate adhesion strength Ad and large stiffness (small Ca), denoted
as II. These two regions, which favour margination behaviour, are determined by
the interplay of the adhesion effect and deformability. To investigate the underlying
mechanisms, the adhesion behaviour of elastic MPs is first examined.

4.3. Adhesion behaviour of elastic MPs
The adhesion behaviour should be influenced by the deformability according to
previous studies (Ndri, Shyy & Tran-Son-Tay 2003; Khismatullin & Truskey
2005; Balsara, Banton & Eggleton 2016; Luo & Bai 2016; Ye et al. 2018a). The
deformability of MPs can affect the hydrodynamics, which balances the spring
force exerted by the biological bonds. It is revealed that deformation of an MP can
promote the adhesion of the MP to the substrate. Previous studies (Ndri et al. 2003;
Khismatullin & Truskey 2005) demonstrated that when an elastic MP moved near
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FIGURE 8. (Colour online) Contours of margination probability on the Ca–Ad plane.

the substrate, the bottom of the MP was flattened. This resulted in a large contact
area between the MP and the substrate. Then the adhesion became strong. Before we
present the adhesion behaviour of elastic MPs in blood flow, the classification of the
types of motion of elastic MPs is shown first. On the basis of our adhesive model, the
probabilistic model (Hammer & Lauffenburger 1987), there are a total of four motion
types of elastic MPs, which are presented in figure 9(a). They are characterized by
the snapshots at t = 0.01, 0.02, 0.03 and 0.04 s along the flow (y) direction. In the
case of firm adhesion (FA), the MP collapses on the substrate like a droplet and
cannot move any more. The MP can slowly move at some time intervals despite
collapsing on to the substrate in stop-and-go motion (SG). However, in stable rolling
(SR), the MP moves on the substrate. Additionally, the MP deforms like an ellipsoid
under shear stress with a flattened contact area between MP and substrate. In the
free motion (FM), the MP totally becomes an ellipsoid, and it moves freely near the
substrate. Under FM, there is no obvious contact between the MP and the substrate.
These motions are distinguished by calculating the velocity of the MP’s centre (cf.
figure 9b) along the flow direction (y direction). In FA, the velocity is nearly zero
through the simulation time. When the velocity is non-zero at some time intervals
and zero at other time intervals, it is referred to as SG. As for the SR and FM, there
is no difference in terms of trajectories of the MP’s centre, while their velocities
are not identical. If the velocity of the MP’s centre is the same as the fluid velocity
at the same location, it is defined as FM. Otherwise, it is SR motion. The detailed
classification of these adhesion types is discussed in the supporting information
(supplementary material is available at https://doi.org/10.1017/jfm.2018.890).

The adhesion probability is used to quantify the behaviours of MPs near the
substrate; it is defined as

Πa(t)=
na(t)

N
, (4.2)

where na(t) represents the number of elastic MPs that have interactions with the
substrate at time t, N is the total number of elastic MPs, and subscript a is adopted
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FIGURE 9. (Colour online) Identification of motion types of elastic MPs. (a) Snapshots for
firm adhesion (FA), stop-and-go motion (SG), stable rolling (SR) and free motion (FM).
(b) Corresponding trajectories of the four different types of motion for elastic MPs along
the flow direction.

to distinguish it from margination probability. The formation of a biological bond
between the ligand and the receptor is an indication of interaction between the MP
and the substrate. Additionally, the adhesion probability of the four motion types
of MPs on the substrate is defined as the number fraction of MPs with definite
motion types. In the following, for simplicity, the type names of the MPs represent
the corresponding adhesion probability. Figure 10 presents the adhesion probabilities
for elastic MPs and the motion types. In figure 10(a), the adhesion strength is weak
(Ad = 0.7). We find that when the MPs are stiff (low Ca), FM and SR dominate
the motion of MPs compared to SG and FA; almost no MP has FA. But when the
MPs become soft (increasing Ca), FM and SR decrease; and the FM can even vanish
when Ca is large enough. When MPs are very soft (high Ca), SG and FA start to
increase, and SG can exceed SR and FM. One thing that should be noted is that
the sum of the adhesion probabilities of all four motion types should be equal to
the total adhesion probability. The tendency is consistent with previous studies that
deformability can promote the firm adhesion of particles on the substrate (Ndri et al.
2003; Khismatullin & Truskey 2005; Shen et al. 2018). However, when the adhesion
strength increases (cf. figure 10b), the adhesion probabilities have the opposite trend
compared to that under weak adhesion. FA and SG dominate the motion of MPs when
MPs are stiff. When MPs become soft (increasing Ca), SG and FA start to decrease,
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FIGURE 10. (Colour online) Adhesion probabilities for elastic MPs and corresponding
adhesion probabilities of different motion types: (a) Ad= 0.7 and (b) Ad= 32.8.
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FIGURE 11. (Colour online) (a) Phase diagram for motion type of elastic MPs on Ca–Ad
plane. (b) Adhesion probability contours of elastic MPs on Ca–Ad plane.

but SR and FM increase. When MPs are soft enough (high Ca), SR can outperform
FA and SG. This results in the opposite conclusion that a stiff MP demonstrates
superior adhesion compared to soft particles when adhesion strength is strong.

To have detailed motion type distributions with different adhesion strengths and
stiffnesses, we give the phase diagram of motion types on the Ca–Ad plane in
figure 11(a). The type is chosen as follows: for example, when Ca = 0.037 and
Ad = 32.8, the adhesion probability of FA dominates compared to the other three
motion types, and then we use FA to represent the motion type of MPs under the
specific adhesion strength and stiffness. Comparing figure 11(a) with the margination
probability contour under the adhesion effect (cf. figure 8), we find that the two
regions favouring margination are just the FA and SG regions corresponding to
the motion type phase diagram. This means that the adhesion-favouring region is
also the margination-favouring region. Additionally, the adhesion probability contour
is provided in figure 11(b). We find that in the regions where the margination
probabilities are high, the adhesion probabilities are also high. Thus high margination
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FIGURE 12. (Colour online) (a) Interaction modes of elastic MPs in blood flow.
(b) Three mechanisms dominating the motion of elastic MPs near the wall of a channel.

should be a prerequisite for high adhesion, but the intrinsic relationship between
margination and adhesion is not clear. We will discuss it in detail below.

4.4. Mechanism of localization of elastic MPs under adhesion
When the elastic MP is located in the blood flow, it can interact with other objects,
such as RBCs, the wall of the channel and other MPs. Particularly, considering the
adhesion effect, the elastic MPs can also interact with the wall through ligand–receptor
binding. We give a simple schematic to show the interaction modes of an elastic MP
with other objects in figure 12(a). Here, the interaction mode between MP and
MP is negligible due to the low volume fraction (less than 1 %). When the MP is
located in the centre region of the channel, it can only interact with RBCs through
hydrodynamic collision, which is denoted as interaction mode A in figure 12(a).
We define a near-wall region ∆, in which the existence of the wall will influence
the motion of objects within it. The thickness of ∆ is approximately three times
the radius of the object (Singh et al. 2014). If an MP enters the region ∆, it can
experience deformation-induced migration besides a hydrodynamic collision with
an RBC. We name this mode as B. Further moving towards the wall makes an
elastic MP locate around the interface of the CFL (δ). An MP in this region has
complicated interactions with its surroundings. It not only collides with an RBC and
experiences deformation-induced migration, but also starts to interact with the wall
through ligand–receptor binding. The interaction mode in this region is symbolized
as C. After the MP moves into the CFL and adheres on the substrate, it experiences
both adhesive interaction and deformation-induced migration. We call this interaction
mode D. We focus on mode C and isolate it in figure 12(b). Here we believe that the
motion of an elastic MP with mode C is complex but crucial to the margination and
adhesion process. The region where this mode happens is located around the interface
of the CFL and adhesion layer. If the MP moves away from the wall, it will not
be counted as an MP having localization. While, when it moves towards the wall, it
will be regarded as an MP owing to margination and adhesion. The moving direction
is attributed to the competition among three mechanisms: (i) deformation-induced
migration; (ii) adhesion effect; and (iii) near-wall hydrodynamic collision with an
RBC. The deformation-induced migration makes an MP move away from the wall,
and thus hampers localization. The adhesion effect plays a role through biological
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FIGURE 13. (Colour online) (a) Numerical experiment for pair collision between an RBC
and an elastic MP. (b) Collision displacement of an RBC and an elastic MP with different
stiffnesses. (c) Comparison of collision displacement and deformation-induced migration
displacement of elastic MPs. (d) Number of biological bonds established when elastic MPs
adhere on a substrate with different adhesion strengths against stiffness of elastic MP.

bond, and it facilitates localization. As for the near-wall hydrodynamic collision
with an RBC, because there is no RBC within the CFL, then the collision should
be a one-sided collision. The RBCs are always located on one side of the MP.
Furthermore, it is confirmed that three-body and higher-order collision schemes can
be negligible under the current circumstances (Ht= 30 %) (Kumar & Graham 2012a;
Rivera, Zhang & Graham 2016; Qi & Shaqfeh 2017). Therefore, only a side pair
collision is considered here. According to the locations of the RBC and MP, the pair
collision hinders the penetration of the MP into the centre of the channel, and thus
promotes localization.

The side pair collision is first examined systematically for elastic MPs with
different stiffnesses. Figure 13(a) gives the side pair collision illustration. In this
numerical experiment, the channel and the flow condition are the same as in the
above simulations for margination of elastic MPs. A single RBC and an elastic MP
are placed in the centre of the channel to eliminate the wall effect. The centre distance
between their initial positions in the height direction (z direction) is σ =2 µm. During
the simulation, the trajectories of the centres of the RBC and the MP are tracked.
The displacement of the centres of the RBC and the MP in the z direction refers to
the collision displacement. The evolution of collision displacements for the RBC (∆R)
and the elastic MP (∆S) are presented in figure 13(b). As for the RBC, we find that
the collision displacements are almost the same; and they are much smaller compared

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

89
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.890


Deformability and adhesion of elastic micro-particles in blood flow 79

to all of the elastic MPs. They have no dependence on the stiffness of MPs. This is
attributed to the small size of an MP compared to the RBC. The trajectories of MPs
with different stiffnesses have the same trend. The first approach between the RBC
and the MP makes the MP abruptly migrate towards the wall. After collision ends, it
can partially restore towards its initial position. It is located in a specific equilibrium
position between the initial and maximum migration positions. We denote the distance
between this equilibrium position and the initial position as the collision displacement,
which is based on the definition in Loewenberg & Hinch (1997), Kumar & Graham
(2011, 2012a,b) and Zhao & Shaqfeh (2013). From the zoom in figure 13(b), we can
see that the difference of collision displacements among MPs with different stiffnesses
is small. But this is an individual collision between an RBC and an MP. Repeated
collisions between RBCs and MPs will distinguish the collision displacement with
a large value for MPs with different stiffnesses. The result is shown in figure 13(c),
Lp represents the collision displacement. We find that when Ca< 0.037, the collision
displacement increases with the increment of Ca, while when Ca> 0.037, it decreases
slightly with the increment of Ca. Hence, there is an optimal stiffness for the pair
collision of an elastic MP and an RBC (results in the supporting information point
out that this optimal Ca is a bit larger than 0.037).

As far as we know, this is the first time that a hydrodynamic collision between
an RBC and an elastic MP has been presented. There are also a number of previous
studies showing the pair collision between particles with either the same volume or the
same shape (Kumar & Graham 2011, 2012b; Sinha & Graham 2016). The collision
result can be explained as follows. Owing to the size difference between an RBC
(diameter 8 µm) and an elastic MP (diameter 2 µm), the motion of the elastic MP
is probably governed by the fluctuation of the flow field near the RBC induced by
its deformation. The RBC should perform a tank-treading motion under shear flow,
and the flow field around it is presented in figure 13(a). When Ca < 0.037, with
the increment of Ca, it is easier for a soft MP to align itself with the flow field,
thus the collision displacement increases. However, further increase of Ca makes the
tank-treading motion of a soft MP become significant (Fedosov et al. 2010a). The
tank-treading motion of a soft MP can also induce the fluctuation of flow around it,
but with the opposite direction to the flow field induced by RBC motion. It acts as
resistance to the alignment of the MP with the flow field. Therefore, further increase
of Ca will lead to the decrease of the collision displacement of an MP.

When an elastic MP is placed in the flow, the shape cannot be analytically captured,
especially for an MP with large deformation. Therefore, the deformation-induced
migration, which is highly dependent on the shape of the MP, can hardly be
determined. In the literature, numerical simulations are employed to study the
deformation-induced migration of an elastic MP in a flow (Doddi & Bagchi 2008;
Kaoui et al. 2008; Nix et al. 2014; Singh et al. 2014; Qi & Shaqfeh 2017). Here,
an empirical relationship in Singh et al. (2014) is adopted, due to its systematics. In
their study, the lateral migration velocity of the deformable capsule is a function of
its stiffness (Ca) and distance away from the wall (h). A phenomenological formula
for migration velocity is given as

Vd

γ̇ a
=


(0.65Ca+ 0.021)

(a
h

)2
, Ca 6 Cacr,

V∗cr + 0.02(Ca−Cacr)
0.6
(a

h

)1.35
, Ca>Cacr,

(4.3)
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where V∗cr = (Vd/γ̇ a)|Ca=Cacr . Their simulation results pointed out a power-law relation
for the capsule velocity. There exists a critical stiffness, Cacr, of the capsule; here
we choose it as Cacr = 0.15 according to the proposed regime in Singh et al. (2014).
When Ca 6 Cacr, the migration velocity is linearly proportional to Ca and related to
h−2, while when Ca> Cacr, the velocity has 0.6 and −1.35 power scalings with Ca
and h, respectively. On the basis of this relation, we set h= 2 µm, which corresponds
to a position between the adhesion layer and the CFL, and then integrate (4.3) from
t= 0 to t= 0.1. The deformation-induced migration displacement Ld against stiffness
of the elastic MP is obtained and is shown in figure 13(c), denoted as a blue line.

To study the adhesion effect, we also conduct simulation experiments to investigate
the adhesion behaviour of a single elastic MP on a substrate under shear flow. The
flow and the channel size are the same as in the above margination study. The
interaction between an elastic MP and the substrate is established by the biological
bonds formed in the adhesion process, and the bond is modelled as a linear spring.
The number of bonds can be used to quantify the adhesion effect. Figure 13(d) shows
the relationship between the number of bonds and the stiffness of the elastic MP
under different adhesion strengths. We find that the number of bonds increases with
the increment of Ca when Ca is not large (Ca< 0.037). However, further increase of
Ca does not significantly affect the number of bonds. When the adhesion strength is
very strong (Ad = 32.8), the number of bonds may slightly decrease with increment
of Ca.

The results given above demonstrate the strength of three mechanisms against
the stiffness of MPs. They are combined to explain the margination results in
figure 7(b). When the MP is relatively stiff (low Ca < 0.037), with the increment
of Ca, the collision displacement increases, the adhesion effect increases, and
the deformation-induced migration displacement remains almost unchanged. Two
promoting factors of localization increase and one impeding factor remains unchanged.
Thus, the margination probability increases with the increment of Ca. However, when
Ca exceeds the critical value Ca = 0.037, the MP becomes relatively soft. With
the increment of Ca, the collision displacement decreases, the adhesion effect stays
almost unchanged, and the deformation-induced migration drastically increases. The
impeding factor of localization dominates compared to the other two promoting
factors. Hence, in this circumstance, the localization of the MP decreases with the
increment of Ca.

Furthermore, the relationship between margination behaviour and adhesion strength
is isolated for investigation. With the same Ca, the side pair collision displacements
for MPs under different adhesion strengths should be the same, because the collision
displacement is independent of the adhesion, while the deformation-induced migration
displacement should be influenced by the adhesion strength. From (4.3), it seems
that the deformation-induced migration velocity is only relevant to Ca. But this is
not true. The root cause of deformation-induced migration is the deformation of
the MP under shear flow. Here, considering the adhesion effect, the deformation
of the MP is affected not only by Ca, but also by the adhesion strength Ad.
Figure 14(a) presents the configurations of the MP with the same Ca = 0.037,
but under different adhesion strengths. We find that, when the adhesion strength
is weak (Ad = 0.07), the deformation of the MP is small. With the increment of
adhesion strength (Ad= 0.7–13.2), the deformation becomes significant and increases,
while further increase of Ad will not cause any further increment of MP deformation.
This result reveals that the adhesion effect plays a role in the localization of MPs
through influencing the deformation of the MP. Additionally, the relationship between
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FIGURE 14. (Colour online) (a) Deformation of particles with Ca= 0.037 under different
adhesion strengths. Dashed lines are used as a guide to show the deformation of particles.
(b) Number of biological bonds established when elastic MPs adhere on a substrate against
adhesion strengths for particles with different stiffnesses.

the number of bonds and the adhesion strength for MPs with different stiffnesses is
displayed in figure 14(b). We find that, when the adhesion strength is small (Ad< 3.3),
the number of bonds dramatically increases with the increment of Ad; while further
increment of Ad also results in the increase of number of bonds, but with a slow
growth rate.

Apart from the collision effect, the adhesion effect and deformation-induced
migration are combined to reveal the underlying mechanism of margination probability
against adhesion strength for MPs with different stiffnesses in figure 7(a). When Ad
is small (Ad ∼ 0.7), the deformation-induced migration displacements are almost
the same, but the adhesion effect dramatically increases, and thus the margination
probability grows rapidly with the increment of adhesion strength. When Ad becomes
relatively large (Ad ∼ 0.7–13.2), the adhesion effect slowly increases, while the
deformation of particles is significant, leading to large deformation-induced migration
displacement. Therefore, in this regime, the margination probability decreases
with the increment of adhesion strength. With the further increase of Ad, the
deformation-induced migration displacements are almost constant, but adhesion
effects still slowly increase. Hence, the margination probability should increase
with the increment of adhesion strength in this regime.

5. Conclusion

We present numerical results on the localization of elastic MPs without and with
effect of adhesion. Margination probability is adopted to quantify the localization of
elastic MPs. Without adhesion effects, the margination probabilities of MPs decrease
with the increment of Ca. This stiffness dependence of margination behaviour is
found to rely on the interplay of collisions with RBCs and deformation-induced
lateral migration of elastic MPs. We find that the evolution of margination can be
split into two stages. The first stage corresponds to the development of the CFL. And
in this stage, a soft MP marginates more readily than a stiff one. This is attributed
to the exclusion of RBCs moving from the CFL to the centre of the channel. The
volume exclusion effect is more significant for soft MPs than for stiff MPs, because
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the deformation of soft MPs demonstrates stronger alignment with the flow direction.
However, in the second stage, the CFL is fully formed and the flow is fully developed.
The soft MPs in the near-wall region will experience deformation-induced migration
due to the existence of the wall. This results in the low accumulation of soft MPs
in the CFL. Thus, the margination probability decreases with the increment of Ca.
After the MP becomes softer (high Ca), the deformation-induced lateral migration
dominates the motion of MPs; therefore, the margination probabilities almost remain
the same with the change of Ca.

Furthermore, localization of elastic MPs under the adhesion effect is studied.
We obtain the margination probability contours by systematically varying the
capillary number Ca and the adhesion number Ad. We find that there are two
optimal regimes favouring high margination probability on the Ca–Ad plane. It
is concluded that the existence of optimal regimes is induced by the interplay
of MP deformability and adhesion. The underlying mechanism is explained as
competition among three factors: (i) near-wall hydrodynamic collisions between
RBCs and MPs; (ii) deformation-induced migration due to the existence of the wall;
(iii) adhesive interaction between MPs and the substrate. For MPs with the same
adhesion strengths Ad, when they are relatively stiff (low Ca = 0.00037–0.037), the
collision displacements increase with the increment of Ca. At the same time, the
adhesion effects increase. The deformation-induced migration displacements almost
remain the same. Thus, the margination probability will increase with the increment
of Ca. However, after Ca of MPs exceeds the critical value Ca = 0.037, the MPs
become softer. With the increment of Ca, the collision displacements decrease and
the adhesion effects have no obvious difference, while deformation-induced migration
displacements dramatically increase. Hence, the margination probability decreases
with the increment of Ca. Additionally, the dependence of the adhesion effect is
investigated by fixing the stiffness of the MP. As the collision displacement only
depends on the stiffness of the MP, we ignore its influence here. When Ad is small,
the deformation-induced migration displacements are almost the same, while the
adhesion effects increase quickly; then the margination probabilities dramatically
increase with the increment of Ad. Furthermore, when Ad becomes relatively large,
the adhesion effects slowly increase, while the deformation of the MPs is significant.
Therefore, in this regime, the margination probabilities decrease with the increase of
Ad. With the further increase of Ad, the deformation-induced migration displacements
are almost the same. Although the growth rates are small, the adhesion effects
continuously increase. Thus, the margination probabilities can slowly increase with
the increment of Ad.

For computational studies of blood flow, there are still some limitations in the
current numerical model. In normal human vasculature, the viscosity inside the RBC
is 4–6 times larger than in the plasma outside the RBC. This viscosity contrast can
affect the rheology of the RBC suspension. This is one of the reasons why our
simulation results are not exactly the same as experimental results in the validation
part. Besides, the blood vessel is usually tubular. Thus, the results obtained from the
rectangular channel in our model may have some discrepancies with those in a tube.
Tube flow deserves to be investigated in the future.

The findings in this work, especially the optimal regimes favouring localization,
suggest that a softer MP or stronger adhesion is not always the best choice for the
localization of MPs. This could offer further guidance to design efficient drug carriers
in biomedical application, in which high localization is needed.
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