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Pressure-gradient-dependent logarithmic laws
in sink flow turbulent boundary layers
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(Received 22 April 2008 and in revised form 18 August 2008)

Experiments were done on sink flow turbulent boundary layers over a wide range
of streamwise pressure gradients in order to investigate the effects on the mean
velocity profiles. Measurements revealed the existence of non-universal logarithmic
laws, in both inner and defect coordinates, even when the mean velocity descriptions
departed strongly from the universal logarithmic law (with universal values of
the Kármán constant and the inner law intercept). Systematic dependences of
slope and intercepts for inner and outer logarithmic laws on the strength of the
pressure gradient were observed. A theory based on the method of matched asymp-
totic expansions was developed in order to explain the experimentally observed
variations of log-law constants with the non-dimensional pressure gradient parameter
(Δp = (ν/ρU 3

τ )dp/dx). Towards this end, the system of partial differential equations
governing the mean flow was reduced to inner and outer ordinary differential equations
in self-preserving form, valid for sink flow conditions. Asymptotic matching of the
inner and outer mean velocity expansions, extended to higher orders, clearly revealed
the dependence of slope and intercepts on pressure gradient in the logarithmic
laws.

1. Introduction
The effects of strong streamwise favourable pressure gradients (FPG) on the mean

velocity profile of a turbulent boundary layer (TBL) have been reported by many
researchers in the literature. It is known that the mean velocity profiles in such flows
exhibit departures from the universal logarithmic law (see e.g. Patel 1965; Kline et al.
1967; Patel & Head 1968; Jones & Launder 1972; Spalart 1986; Fernholz & Warnack
1998). For such strong pressure gradients, the total shear stress in the near-wall region
can no longer be treated constant as in the case of a zero-pressure-gradient (ZPG)
turbulent boundary layer. Instead a linear variation of the total shear stress (see
Townsend 1976) must be considered as a better approximation to the situation.

Patel & Head (1968) have given a closed form expression for the mean velocity
profile in wall variables for such strong pressure gradient flows. This expression
has been obtained by using a mixing length approach in conjunction with a linear
total stress variation and involves the non-dimensional shear stress gradient as a
parameter. The expression predicts the mean velocity profiles in adverse pressure
gradients (APG) reasonably well. However for FPG flows, Narasimha & Sreenivasan
(1973) have pointed out that it is not possible to evaluate this expression beyond
certain low values of y+ (of the order of 100). Moreover, the total stress gradient in
the analysis of Patel & Head (1968) is an adjustable parameter so as to give a good
fit to the experimental data.
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Figure 1. Two-dimensional sink flow turbulent boundary layer.

Other researchers such as Spalart & Leonard (1986) and Nickels (2004) have also
noted departures of the mean velocity profile from the universal logarithmic law in
pressure gradient flows and have proposed variations of apparent slope and intercept
of the logarithmic law with pressure gradient.

A critical survey of the FPG flows of Kline et al. (1967), Patel & Head (1968) and
Fernholz & Warnack (1998) shows strong departures of the mean velocity profiles
from the universal logarithmic law. Even so, it is interesting to note that the mean
velocity variation in such cases appears to be logarithmic (with the same slope in
the so-called inner and defect scalings) – albeit different from the universal form.
However it is important to note that in all these flows, the conditions change rather
rapidly in the streamwise direction. This implies that each of these boundary layers
is essentially in a non-equilibrium state, in the sense of Clauser (1956). Thus the
mean velocity profiles and the other integral quantities are expected to depend on a
combined effect of the local pressure gradient and the pressure gradient history. The
presence of history effects is likely to render any local scaling argument of little use
in such non-equilibrium boundary layer flows.

In order to study the effect of local pressure gradient on the mean velocity profile
in a compartmentalized fashion, it is therefore necessary as a first step to focus
attention on those flows where the history effects are absent or are negligibly small.
Such flows are termed equilibrium flows by Clauser (1954). Motivation for the idea
of equilibrium comes from an analogy to the self-similar Falkner–Skan profiles in
laminar boundary layers. Extended to turbulent boundary layers, the idea of self-
preservation (in the sense of Townsend 1976) connotes the self-similarity of mean
velocity and shear stress profiles under proper normalization. We shall use the words
equilibrium, self-preservation and self-similarity interchangeably in what follows.

Townsend (1956, 1976) and Rotta (1962) have shown that the turbulent boundary
layer flow in a convergent channel bounded by two smooth plane surfaces, the so-
called sink flow, satisfies the conditions for exact or strict self-preservation. Thus the
sink flow TBL would be an ideal candidate for studying the effects of local FPG.
In addition, the sink flow TBL has many other interesting properties (see Townsend
1976), some of which are described here. First, the mean entrainment is zero for
a sink flow TBL. Consequently the mean edge of the boundary layer becomes a
streamline, with all the streamlines being radial lines of the convergent geometry (see
figure 1). This results in the boundary layer thickness and the other integral thicknesses
decreasing linearly in the streamwise direction. Secondly, the Reynolds number, no
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matter how it is defined, remains constant in the streamwise direction. Also the
acceleration parameter K , the pressure gradient parameter Δp , respectively defined as

K =
ν

U 2
∞

dU∞

dx
, (1.1)

Δp =
ν

ρU 3
τ

dp

dx
=

−K

(Cf /2)3/2
, (1.2)

and the skin friction coefficient Cf all remain constant in the streamwise direction.
Here U∞ is the free-stream velocity and Uτ =

√
τw/ρ is the friction velocity. All

these properties are useful indicators for checking the attainment of a sink flow
configuration in experiments.

Launder & Jones (1969) have given a calculation procedure for sink flow TBLs
based on a mixing length model. Following this, Jones & Launder (1972) have done
experimental studies on sink flow. However, their primary interest was centred on
relaminarization and hence their data present a limited range of pressure gradients (in
terms of the values of Δp) closer to the relaminarization condition. Direct numerical
simulation (DNS) of sink flow by Spalart (1986) also covers a range of Δp values
similar to that of Jones & Launder (1972). Sink flow experiments of Jones, Marusic
& Perry (2001) present data for a range of Δp values which are fairly low (i.e. closer
to the ZPG situation) since their main aim was to test the closure hypothesis of
Perry, Marusic & Li (1994). See also Perry, Marusic & Jones (2002) in this connection
where a closure model for flows approaching equilibrium is discussed with special
reference to the sink flow. There exist no other systematic experimental data on
sink flows covering a broad range of pressure gradients (from the ZPG limit to the
relaminarization limit).

The present work was hence planned to systematically explore the mean velocity
scaling in sink flow TBLs over a wider range of pressure gradients. Details of the
experimental setup and procedures are given in § 2 while results from the present
experiments are presented in § 3. A corresponding theory based on the method of
matched asymptotic expansions is given in § 4. Comparison of the theory with the
results of the present experiments and those of some experimental and numerical
studies from the literature is made in § 5 and the conclusions are presented in § 6.

It must be mentioned here that the asymptotic analysis presented in § 4 is of
classical type (i.e. on the lines of Millikan 1938) involving a two-layer description
and should be contrasted with the work of George & Castillo (1997) (where the
so-called Asymptotic Invariance Principle is developed). Furthermore, terms such as
equilibrium, self-preservation and self-similarity used in the present work are also to
be understood in the classical sense (Townsend 1976; Clauser 1956).

2. Experimental setup
2.1. Experimental facility and pressure, velocity measurements

Experiments were done in a low-speed wind tunnel at the Department of Aerospace
Engineering, Indian Institute of Science. The tunnel is a suction-type open-return
wind tunnel with test-section size of 300 mm × 300 mm over a working length of
about 3 m. Sidewalls are slightly divergent to accommodate boundary layer growth
on them. Suitable honeycomb and screens ahead of an 11:1 contraction ensure nearly
uniform flow at the entry to the test-section with a free-stream turbulence level of less
than 0.3%. The test-section is followed by a diffuser downstream. A fan is located
downstream of the diffuser and is driven by a 10 HP, 3-phase induction motor.
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Figure 2. Schematic of the experimental sink flow setup. All dimensions in metres.

Velocity in the test-section can be varied by changing the fan speed using a variable
frequency drive. The maximum velocity is about 33 m s−1.

All the present boundary layer measurements were done on a smooth, highly
polished test-plate made from duralumin (300 mm × 2000 mm × 5mm). The plate was
mounted rigidly at a height of 70 mm from the floor of the test-section. For pressure
measurements, static pressure holes of 0.7 mm diameter were provided at 20 mm
intervals along the centreline of the plate. A number of flush-mounted removable
teflon plugs (19 mm diameter) were provided in the plate for skin friction measurement
using the surface hot-wire (SHW) technique. These plugs were located on a line parallel
to the centreline of the plate with an offset of 50 mm. The plate was polished with all
the plugs in place so that the plugs were flush with the surface. The boundary layer
was tripped by a rough emery cloth strip (15 mm width, 2 mm height and 300 mm
span) which was stuck 10 mm downstream of the leading edge to hasten transition to
turbulence.

The roof of the test-section was contoured in order to generate the two-dimensional
sink flow configuration as shown in figure 2. The contour consisted of a 10◦

convergence followed by a 7◦ divergence. Absence of separation on both the roof
and the test-plate in the divergent region was checked by tuft flow visualization.
The central longitudinal slot in the contoured roof provided access for measurements
along the centreline of the plate. All gaps, however small, were carefully sealed.

The static pressure coefficient Cp is defined as

Cp =
p − pref

1
2
ρU 2

ref

, (2.1)

where the reference station is at the start of the convergence (see figures 1 and 2). It
can be shown, using an inviscid flow assumption that

Cp = 1 − L2

(L − x)2
, (2.2)

where x and L are as shown in figure 1. For the measured Cp distribution, L may be
obtained from (2.2), and in the present case is about 1.44 m (see figure 3a). This differs
slightly from the actual value of L, which is 1.35 m, as obtained from the geometry of
the contour. This difference is attributed to the virtual origin effect presumably arising

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

40
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004047


Logarithmic laws in sink flow turbulent boundary layers 449

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
–7

–5

–3

–1

1

x (m)
–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

x (m)

C
p

2

6

10

14

18

22

26

K
 ×

  1
07

PE3

Const. K = 1.23 × 10–6

Start of ROI
End of ROI

PE3
Inviscid, L = 1.44 m
Start of ROI
End of ROI

(a) (b)

Figure 3. (a) Streamwise distribution of Cp for the present experiment PE3, and
(b) streamwise distribution of the acceleration parameter K for experiment PE3 and
identification of the region of interest (ROI). Symbol sizes represent typical uncertainty.

due to the longitudinal curvature of streamlines at the beginning of the convergent
section.

Figure 3(a) shows the distribution of pressure coefficient Cp along the length of
the test-plate for a representative present experiment PE3 (for details see table 1
below). As can be expected from (2.2), the Cp distribution was found to be invariant
with changes in reference speed. Figure 3(b) shows the streamwise distribution of the
acceleration parameter K , as defined by (1.1), for the same experiment. In figure 3(b)
it can be seen that in the region between x = 240 mm and x = 480 mm, K is constant
to within ±3% of the average value over that region. This is the region of interest
(ROI) for the present study. In the ROI, five streamwise stations (denoted as L1 to
L5 in figure 2) were chosen for measurements. In all, five different pressure gradients
(designated PE1 to PE5) were investigated at these stations.

The mean velocity profiles were measured by a round Pitot tube (outer diameter of
0.6 mm) using a projection manometer with a least count of 0.1mm of methanol. The
Pitot displacement correction suggested by MacMillan (1956) was always applied.
For traversing the Pitot tube normal to the plate, a dial-type height gauge (Mitutoyo)
with a least count of 0.01 mm, was used.

2.2. Measurement of skin friction by the SHW technique

In order to measure the skin friction in relatively strong FPGs, it was considered
necessary to employ a method which did not depend on the universal logarithmic law.
This consideration excludes use of the Clauser chart method (Clauser 1954) and the
Preston tube (Patel 1965). More recently Warnack & Fernholz (1998) have successfully
used SHW technique for measurement of skin friction in their experiments. These
experiments involved turbulent boundary layers subjected to strong FPGs, involving
relaminarization in some cases. Hence, it was decided to use this method for the
measurement of skin friction in the present experiments. Descriptions of the SHW
technique can be found in Bradshaw & Gregory (1959), Fernholz et al. (1996) and
Fernholz (2006). The two-dimensional momentum integral equation (MIE) was used
for cross-checking the skin friction and for verifying the two-dimensionality of the
mean flow for one representative present experiment.

For implementing the SHW technique, each of the teflon plugs in the ROI was
fitted with two sharp needles 4mm apart, with their tips projecting out from the top
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surface of the plug. Pt–Rh Wollaston wire (5 μm core diameter) was soldered to the
tips, etched over the required length and then taken down close to the surface of the
plug by carefully pulling down both the needles simultaneously. The active length
l of the wire was such that l+ = lUτ/ν varied from 8 to 35 over the entire range
of experiments. Each sensor was calibrated in situ in the ZPG turbulent boundary
layer flow against a Preston tube (outer diameter of 1.65 mm), twice – once before
and once after the sink flow measurement. For the Preston tube, the calibration
given by Patel (1965) was used. For the SHW technique, it is required that the wire
always resides in the law-of-the-wall region. However, to be on the safer side, we have
ensured that the wire always resides in the viscous sublayer. A way to confirm this,
during its calibration in a ZPG, was to examine its calibration equation. A general
calibration equation for heat-transfer-based skin friction gauges can be written as
E2 = A + B(τw)n where n = 1/3 for hot-film gauges. For a SHW sensor located in
the viscous sublayer n can be expected to be close to 0.5. Thus from the calibration
of the SHW gauge, if n is found to be close to 0.5, then we can infer, with some
confidence, that the gauge resides in the viscous sublayer in ZPG flow. For all SHW
sensors, n was ensured to be close to 0.5. It can be expected that the viscous sublayer
is smaller in extent (in terms of y+) in a ZPG flow than in a sink flow (see e.g. Nickels
2004). Hence this exercise gave confidence that the SHW sensor was indeed placed
inside the viscous sublayer in the sink flow as well. This was further corroborated by
the momentum integral balance to be discussed in the next section (see figure 5a).

Several validation checks were carried out in the ZPG to assess the quality and
repeatability of the SHW technique. During these validation checks, Cf could always
be determined (with SHW in ZPG) to within ±2% of the corresponding Preston-tube
value which itself contains a maximum uncertainty of about ±1.5% (see Patel 1965).
Hence, the cumulative uncertainty in Cf obtained by the SHW was about ±3.5%
which agrees well with the uncertainty for the SHW technique quoted in the literature
(see e.g. Fernholz et al. 1996; Fernholz 2006). However, in view of the lower flow
speeds in some of the present sink flow cases and the associated free convection effects,
the uncertainty band can be expected to be ±5%. Each SHW sensor was operated
by a constant-temperature hot-wire anemometer (AMB-717) and a signal conditioner
(AMC-717) manufactured by Sunshine Industries, Bangalore. An overheat ratio in
the range of 1.2 to 1.4 was used for all the sensors. An amplification factor of 50 was
used for the fluctuating component of the signal to improve its dynamical range. SHW
data were acquired at a sampling rate of 5 kHz for 5 s using an IOtech DaqBook
(2000 Series-16 bit, 200 kHz Data Acquisition System) and data acquisition software
DASYLAB (version 7.0).

3. Results of the present experiments
3.1. Sink flow attainment and two-dimensionality of the mean flow

Table 1 summarizes the results of all the five present experiments corresponding to
five different FPGs. The values of all the parameters are averaged over the last three
stations, namely L3, L4 and L5, where the parameters were found to approach an
asymptotically constant value corresponding to the sink flow.

Table 2 summarizes the results for a typical experiment PE2 at all the five streamwise
locations L1 to L5 in the ROI. Here Δ stands for the Clauser thickness and G stands
for the Clauser parameter, both to be formally defined in § 5.4; δ+ = δUτ/ν is the
ratio of the outer length scale to the inner length scale. The velocity scale in all other
Reynolds numbers is U∞.
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Data set K Cf Δp Rδ99.5
Rδ∗ Rθ H G

PE1 7.71 × 10−7 0.00401 −0.0086 17924 1794 1337 1.342 5.689
PE2 9.45 × 10−7 0.00403 −0.0104 15061 1516 1119 1.355 5.835
PE3 1.23 × 10−6 0.00416 −0.0129 11652 1215 879 1.383 6.070
PE4 1.74 × 10−6 0.00430 −0.0175 8021 889 612 1.453 6.722
PE5 2.90 × 10−6 0.00433 −0.0288 4817 614 393 1.563 7.750

Table 1. Details of integral parameters in all the present experiments (averaged over the last
three measurement stations L3 to L5).

U∞ Uτ Cf Cf δ99.5 δ∗ θ Δ

Station (m s−1) (m s−1) SHW MIE (mm) (mm) (mm) (mm)

L1 13.30 0.601 0.00408 0.00437 16.46 1.78 1.31 39.41
L2 13.98 0.631 0.00408 0.00394 15.60 1.66 1.22 36.75
L3 14.76 0.666 0.00408 0.00414 15.39 1.56 1.15 34.54
L4 15.66 0.701 0.00401 0.00393 14.20 1.44 1.06 32.26
L5 16.70 0.748 0.00401 0.00404 13.66 1.35 1.00 30.20

Station Rδ99.5
Rδ∗ Rθ RΔ δ+ H G

L1 14589 1578 1162 34936 659 1.358 5.838
L2 14540 1547 1142 34252 657 1.355 5.802
L3 15150 1534 1134 33991 684 1.353 5.780
L4 14827 1508 1111 33671 664 1.356 5.868
L5 15205 1505 1110 33618 681 1.355 5.858

Table 2. Details of a typical present experiment PE2 at all the five measurement
stations L1 to L5.
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Figure 4. Streamwise variations of various integral flow parameters for the present
experiment PE2. (a) Thickness: ◦, 0.2 × δ99.5; ∗, δ∗; �, θ ; �,Δ × 10−1. (b) Reynolds number:
◦, 0.2 × Rδ99.5

× 10−2; ∗, Rδ∗ × 10−2; �, Rθ × 10−2; �, RΔ × 10−3; �, δ+ × 10−2.

Figure 4(a, b) shows the streamwise variations of various integral parameters for
experiment PE2. Figure 4(a) shows the streamwise variations of various boundary
layer thicknesses. It can be seen that all the thicknesses exhibit a fairly linear decrease
with the streamwise coordinate, as is expected in the case of sink flow TBL. Figure 4(b)
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Figure 5. (a) Comparison of Cf by SHW and by MIE for the present experiment PE2.
(b) Variation of Rθ with K . �, Present experiments; �, Spalart (1986) sink DNS; ∗, Jones
et al. (2001) sink experiments; ——, computed precise equilibrium curve from Jones et al.
(2001).

shows various Reynolds numbers plotted in the streamwise direction. As expected, all
the Reynolds numbers remain almost constant in the streamwise direction, especially
over the last three measurement stations L3, L4 and L5.

In order to assess the two-dimensionality of the mean flow, mean velocity profiles
were measured at closely spaced streamwise stations to evaluate the terms in the MIE
for the experiment PE2. The MIE in its full form was used without any simplifications
pertaining to sink flow. Figure 5(a) shows a comparison of Cf obtained from the
SHW with that obtained from the MIE for this experiment. The maximum difference
between the SHW and the MIE, of the order of 7%, is seen at station L1. The
overall good agreement between the SHW and the MIE indicates that the mean
flow is reasonably two-dimensional and that the performance of the SHW sensors
is quite satisfactory. Also the measured streamwise constancy of Cf seen here, as
could be expected in a sink flow TBL, further confirms the integrity of the SHW
measurements. Other researchers (see e.g. Bradshaw & Ferriss 1965) have noted
the inaccuracies involved in using the MIE, especially in adverse pressure gradient
flows, where the thick sidewall boundary layers are known to compromise the two-
dimensionality of the flow. However this seems to be less of an issue in the sink
flow, where due to flow acceleration, the sidewall boundary layers are expected to be
thinner.

Figure 5(b) shows the momentum thickness Reynolds number Rθ plotted against
the acceleration parameter K for all the present sink flow experiments. Data points
from the present experiments lie fairly close to the computed precise equilibrium curve
as scanned from figure 14 of Jones et al. (2001). Small differences, especially towards
large values of K , may be attributed to the variation of 1/κ with pressure gradient
(which will be demonstrated later in this paper) that was not taken into account
by Jones et al. (2001) while calculating the precise equilibrium solution. In any case,
figure 5(b) confirms the close attainment of the asymptotic sink flow configuration
for all the present experiments.

Following Townsend (1976), the scaling of mean velocity in defect coordinates for
a TBL can be written

U − U∞

Uτ

= F
(y

δ

)
. (3.1)
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Figure 6. Mean velocity profiles for experiment PE2 at the last three stations L3 to L5 in
the ROI. (a) Defect coordinates, (b) conventional coordinates and (c) inner coordinates.

For a sink flow TBL, the skin friction coefficient Cf = 2 (Uτ/U∞)2 is constant in the
streamwise direction. Hence (3.1) may now be rewritten, for sink flow, as

U

U∞
= 1 + (Cf /2)1/2F

(y

δ

)
= G

(y

δ

)
. (3.2)

Equation (3.2) is significant because it shows that for a sink flow TBL, the mean
velocity profiles in conventional laminar-like coordinates (i.e. U/U∞ and y/δ) must
also be self-similar. This seemingly simple but interesting fact is perhaps not well-
recognized in the literature.

Figure 6(a–c) shows the mean velocity profiles in defect, conventional and inner
coordinates respectively, as measured at stations L3, L4 and L5 for the present
experiment PE2. The trend seen in figure 6(b) is in agreement with the expectation
from (3.2). The collapse of streamwise mean velocity profiles (also seen for other
experiments, but not shown here) in all the scalings demonstrates the attainment of
the sink flow configuration in the present experiments.

3.2. Mean velocity profile results

Figure 7 shows the mean velocity profiles from the present sink flow experiments in
conventional coordinates. These profiles correspond to different values of Δp at the
streamwise station L4 in the ROI. Also plotted is the laminar sink flow boundary
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Figure 7. Mean velocity profiles in conventional coordinates for different pressure
gradients at station L4.

layer solution which is an exact solution (see Schlichting & Gersten 2000). All the
measured profiles are much fuller compared to the laminar profile as can be expected
for the turbulent mean velocity profiles.

It is well-known that the mean velocity profiles of ZPG turbulent boundary layers
(having different Reynolds numbers) exhibit a universal logarithmic behaviour in the
overlap region when plotted in inner coordinates (i.e. U+ and y+). This universal
logarithmic law is given by

U+ =
1

κz

ln (y+) + Cz, (3.3)

where U+ = U/Uτ , y+ = yUτ/ν, and κz and Cz are universal constants having values
0.41 and 5.2 respectively.

Figure 8 shows the sink flow mean velocity profiles (corresponding to those in
figure 7) plotted in inner coordinates. Clearly, the profiles depart greatly from the
universal logarithmic law (3.3). However a careful look reveals the following two
interesting points. First, for each mean velocity profile, a logarithmic region appears
to exist even when the profile has departed greatly from the universal logarithmic
law. Secondly, the slope 1/κ and the inner intercept C for this new non-universal
logarithmic law appear to be changing in a systematic fashion in relation to the
strength of the pressure gradient. Further, each profile appears to be like a ‘pure
wall-flow’ (see Coles 1957) when viewed with respect to its own logarithmic region
as the datum. In the light of these observations, one can understand the perceived
disappearance of log-law in strong FPGs, alluded to by many researchers, as arising
primarily due to their choice of the universal logarithmic law as the datum.

Figure 9 shows the sink flow profiles corresponding to figure 8 in defect coordinates
(i.e. (U − U∞)/Uτ and y/δ). Similar features to those of figure 8 may be observed
here pertaining to the outer intercept −D. It must be noted that each velocity profile
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Figure 8. Mean velocity profiles in inner coordinates for different pressure gradients at
station L4.
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Figure 9. Mean velocity profiles in defect coordinates for different pressure gradients at
station L4.

has the same slope 1/κ in both inner and defect plots (i.e. figures 8 and 9), thereby
confirming that this is indeed a logarithmic variation.

It is conceivable that these changes in slope and intercepts of both logarithmic
laws (inner and defect) are related to the changes in the strength of the streamwise
pressure gradient. The method of matched asymptotic expansions (Yajnik 1970;
Van Dyke 1975; Afzal 1976; Afzal & Narasimha 1976; Panton 2007) has been
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used to provide theoretical support for the pressure gradient dependence of these
non-universal logarithmic laws. This analysis is given in the next section.

4. Analysis
Consider a two-dimensional, steady, incompressible turbulent boundary layer flow

subjected to a pressure gradient in the streamwise direction. The equations of mean
motion under the boundary layer approximation are

∂U

∂x
+

∂V

∂y
= 0, (4.1)

U
∂U

∂x
+ V

∂U

∂y
= U∞

dU∞

dx
+ ν

∂2U

∂y2
+

∂τ

∂y
, (4.2)

where x is the streamwise coordinate, y is the coordinate normal to the surface, U and
V are the mean velocity components in the streamwise and wall-normal directions
respectively, U∞ is the free-stream velocity and τ = −u′v′ is the kinematic Reynolds
shear stress. Standard boundary conditions (such as no-slip at the wall) are applicable.
U∞ and δ are the larger or outer scales while Uτ and ν/Uτ are the smaller or inner
scales, where Uτ =

√
τw/ρ is the friction velocity. In the present work, the boundary

layer thickness δ is defined as the value of the wall-normal coordinate y corresponding
to the velocity which is 99.5% of U∞ and is denoted by δ99.5.

In view of the possible rapid streamwise variations of the mean flow quantities that
can be expected in a sink flow, it is of interest to assess the validity of the boundary
layer approximation itself and the relative importance of normal stress terms in the
boundary layer equations. The streamwise pressure gradient introduces a streamwise
length scale, denoted by L′, which is defined as

L′ =
U∞

(dU∞/dx)
. (4.3)

The boundary layer approximation is expected to hold only if the length scale in the
wall-normal direction, which is the boundary layer thickness δ, is much smaller than
L′, i.e.

δ

L′ =
δ

U∞

dU∞

dx
	 1. (4.4)

Condition (4.4) can be rewritten as

δ

L′ =
ν

U 2
∞

dU∞

dx

U∞δ

ν
= KRδ 	 1, (4.5)

where K and Rδ are both separately constants in the case of a sink flow TBL. Thus if
the product KRδ is much smaller than unity, then the boundary layer approximation
is valid. Table 3 shows that for all the present experiments, this is indeed the case.

The Reynolds normal stress gradient terms, in the present experiments, would be
almost two orders of magnitude smaller than the corresponding Reynolds shear stress
gradient term. The following order of magnitude estimate illustrates this point:

∂u′2

∂x
∼ ∂v′2

∂x
∼ U 2

τ

L′ and
∂u′v′

∂y
∼ U 2

τ

δ
, (4.6a)

�
∂u′2/∂x

∂u′v′/∂y
∼ ∂v′2/∂x

∂u′v′/∂y
∼ δ

L′ ≈ 14

1000
. (4.6b)
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Data set K Cf Δp Rδ99.5
δ/L′ ε = 1/[Rδ99.5

(Cf /2)]

PE1 7.71 × 10−7 0.00401 −0.0086 17924 0.0138 0.0279
PE2 9.45 × 10−7 0.00403 −0.0104 15061 0.0142 0.0329
PE3 1.23 × 10−6 0.00416 −0.0129 11652 0.0143 0.0413
PE4 1.74 × 10−6 0.00430 −0.0175 8021 0.0140 0.0581
PE5 2.90 × 10−6 0.00433 −0.0288 4817 0.0140 0.0960

Table 3. Validity of the boundary layer approximation and justification for using the
coefficient of viscous term in (4.9) as the perturbation parameter ε for the problem of
outer layer.

4.1. Outer layer formulation for sink flow

For converting the system of partial differential equations (4.1) and (4.2) into an
ordinary differential equation for the outer layer, we introduce the following outer
variables:

Û =
U

U∞
, η =

y

δ
, T̂ =

τ

U 2
τ

. (4.7)

Introducing (4.7) into (4.1) gives a relation for the mean normal velocity V and
substituting that along with (4.7) into (4.2) yields

dδ

dx

[
−dÛ

dη

∫ η

0

Ûdη

]
+

δ

U∞

dU∞

dx

[
Û 2 − dÛ

dη

∫ η

0

Ûdη − 1

]
=

1

Rδ

[
d2Û

dη2

]
+

(
Uτ

U∞

)2[
dT̂

dη

]
,

(4.8)

where the quantities dδ/dx, (δ/U∞)dU∞/dx, Uτ/U∞ and 1/Rδ must all become
independent of the streamwise coordinate x for achieving self-similarity in terms
of outer variables (4.7). The first condition, of constancy of dδ/dx with respect to x,
indicates that the boundary layer thickness must vary linearly with the streamwise
coordinate x. The second condition, (δ/U∞)dU∞/dx = KRδ = constant with respect to
x, then gives a power law distribution for the free-stream velocity. The third condition,
of constancy of Uτ/U∞ with respect to x, implies that the skin friction coefficient
Cf = 2 (Uτ/U∞)2 must be invariant with x, giving a power law distribution for the
friction velocity as well. The fourth and the last condition, 1/Rδ = constant with x,
connects the variations of U∞ and δ (i.e. it relates the first and the second conditions)
restricting the self-preserving solution only to the sink flow configuration. It has been
demonstrated in § 3.1 (see figures 4a, 4b and 5a) that all the four conditions mentioned
above are indeed fulfilled by the TBLs in the present sink flow experiments. Also,
the mean velocity profile of a sink flow TBL exhibits self-similarity in conventional
coordinates, in addition to the usual defect coordinates (shown before in § 3.1) and
this observation is entirely consistent with (4.8).

For the sink flow configuration, (4.8) then reduces to

β[1 − Û 2] =
1

Rδ(Cf /2)

[
d2Û

dη2

]
+

[
dT̂

dη

]
, (4.9)

where β = (δ/ρU 2
τ )dp/dx is the outer pressure gradient parameter and is proportional

to the pressure gradient parameter βc = (δ∗/ρU 2
τ )dp/dx of Clauser (1956). Equation

(4.9) is the outer layer ODE for a sink flow TBL.
It is proposed to use the coefficient of the viscous term in (4.9) as the perturbation

parameter ε for the outer layer problem in the asymptotic analysis. Towards this end,
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we invoke the evidence from the present sink flow experiments as shown in table 3.
It can be seen that the maximum strength of the viscous term (for the strongest FPG
case PE5) is at most 10% of the strength of the Reynolds stress term. This suggests
that the dynamics of the outer layer is still largely governed by the Reynolds stress
term. This justifies the choice of the coefficient of the viscous term as the perturbation
parameter ε for the outer layer problem.

The asymptotic expansions for the outer layer dependent variables (4.7) are now
written

Û = 1 + εÛ1 + · · · , (4.10a)

T̂ = T̂0 + εT̂1 + · · · , (4.10b)

where ε = ε(Rδ, β) is the first outer gauge function and Ûn (η), T̂n (η) are coefficients,
Û0 (η) being taken as unity. By substituting the expansions (4.10) into (4.9), approxi-
mations of different orders to the outer layer ODE (4.9) may be obtained. These are
given in Appendix A.

4.2. Inner layer formulation for sink flow

The inner variables are defined in the usual fashion as

U+ =
U

Uτ

, y+ =
yUτ

ν
, T+ =

τ

U 2
τ

. (4.11)

Using these inner variables (4.11), the mass conservation equation (4.1) and the mean
streamwise momentum equation (4.2) together yield[

d2U+

dy2
+

]
+

[
dT+

dy+

]
− Δp

[
1 −

(
Cf

2

)
U 2

+

]
= 0. (4.12)

Here the third condition from the outer layer analysis, regarding the streamwise
constancy of Cf , has been used to combine the pressure gradient term and the
advective terms. From (4.12), we see that for the inner layer to be self-preserving,
the inner pressure gradient parameter Δp must be independent of x. Now Δp may
be rewritten as Δp = −K/(Cf /2)3/2 where K is the acceleration parameter given by
K = (ν/U 2

∞)dU∞/dx (see (1.1) and (1.2)). The conditions of streamwise constancy of
Cf and Δp thus lead to the condition K = constant. Equation (4.12) is the inner
layer ODE for a sink flow TBL.

The asymptotic expansions for the inner layer dependent variables (4.11) are now
written

U+ = U0+ + Γ U1+ + · · · , (4.13a)

T+ = T0+ + Γ T1+ + · · · , (4.13b)

where Γ = Γ (Δp) is the first inner gauge function, yet to be specified, and
Un+ (y+) and Tn+ (y+) are coefficients. By substituting the expansions (4.13) into (4.12),
approximations of various orders to the inner layer ODE (4.12) may be obtained.
These are given in Appendix A.

4.3. Lowest-order asymptotic matching

At sufficiently large Reynolds numbers, the outer limit of the inner description should
match with the inner limit of the outer description according to the so-called Millikan–
Kolmogorov matching principle (see Millikan 1938; Afzal & Narasimha 1976). As a
first step, we match the two-term outer expansion (from (4.10)) of the mean velocity
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with the corresponding one-term inner expansion (from (4.13)) as

lim
η→0

U∞(1 + εÛ1) ∼ lim
y+→∞

Uτ (U0+) . (4.14)

Differentiating both sides with respect to y, for matching the gradients, gives

lim
η→0

εU∞

Uτ

(
η
dÛ1

dη

)
∼ lim

y+→∞

(
y+

dU0+

dy+

)
. (4.15)

If in (4.15) we have

εU∞

Uτ

= P0 = O (1) , (4.16)

as the experimental evidence suggests (see table 5), then each side of (4.15) must
approach a constant value, say 1/κ0, which is independent of both η and y+. That is,

lim
η→0

P0

(
η
dÛ1

dη

)
= lim

y+→∞

(
y+

dU0+

dy+

)
=

1

κ0

. (4.17)

Noting that P0 is independent of both η and y+, (4.17) may now be integrated
separately on both sides to give

Û1 =
1

P0κ0

ln (η) − D′
0, (4.18)

U0+ =
1

κ0

ln (y+) + C0. (4.19)

Here 1/κ0, C0, D′
0 and P0 are all constants.

Putting (4.18) in the two-term outer expansion and (4.19) in the one-term inner
expansion and simplifying yields, respectively,

U − U∞

Uτ

=

[
1

κ0

]
ln (η) − [P0D

′
0], (4.20)

U+ =

[
1

κ0

]
ln (y+) + [C0] . (4.21)

Note that the constants 1/κ0 and C0 may be considered to be the same as those for a
ZPG turbulent boundary layer (see (3.3)) since no pressure gradient information was
used when deriving (4.20) and (4.21).

4.4. Higher-order asymptotic matching

First it is necessary to justify the need for higher-order matching. It has been
mentioned in § 1 that the essential feature of strong pressure gradient TBL flows
is the existence of a substantial gradient of total shear stress in the near-wall region.
This is to be contrasted with the classical constant-stress region in ZPG or mild-
pressure-gradient TBL flows. Higher-order matching essentially brings out this aspect
explicitly (see Appendix A).

Let us now consider the matching of the three-term outer expansion (from (4.10))
of the mean velocity with the corresponding two-term inner expansion (from (4.13))
as

lim
η→0

U∞(1 + εÛ1 + ε2Û2) ∼ lim
y+→∞

Uτ (U0+ + ΔpU1+). (4.22)
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Here the sequence of gauge functions in the outer expansion (4.10) is assumed to be
a sequence of integral powers of ε and that in the inner expansion (4.13) is assumed
to be a sequence of integral powers of Δp . Differentiation of (4.22) on both sides with
respect to y gives

lim
η→0

εU∞

Uτ

(
η
dÛ1

dη
+ εη

dÛ2

dη

)
∼ lim

y+→∞

(
y+

dU0+

dy+

+ Δpy+

dU1+

dy+

)
. (4.23)

In view of (4.16) and (4.17), (4.23) reduces to

lim
η→0

P0ε

Δp

(
η
dÛ2

dη

)
∼ lim

y+→∞

(
y+

dU1+

dy+

)
. (4.24)

Now in (4.24) if we have

P0ε

Δp

= P1 = O (1) , (4.25)

as the experimental evidence suggests (see table 5), then each side of (4.24) must
approach a constant value, say 1/κ1, which is independent of both η and y+. That is,

lim
η→0

P1

(
η
dÛ2

dη

)
= lim

y+→∞

(
y+

dU1+

dy+

)
=

1

κ1

. (4.26)

Equation (4.26) on separate integrations of both sides now gives

Û2 =
1

P1κ1

ln (η) − D′
1, (4.27)

U1+ =
1

κ1

ln (y+) + C1, (4.28)

where 1/κ1, C1, D′
1 and P1 are all constants.

Putting (4.18) and (4.27) in the three-term outer expansion and (4.19) and (4.28) in
the two-term inner expansion for the streamwise mean velocity and simplifying yields

U − U∞

Uτ

=

[
1

κ0

+ Δp

1

κ1

]
ln (η) − [P0D

′
0 + ΔpP1D

′
1], (4.29)

U+ =

[
1

κ0

+ Δp

1

κ1

]
ln (y+) + [C0 + ΔpC1]. (4.30)

Equations (4.29) and (4.30) are significant because they explicitly show the dependence
of the slope and the intercepts in both the logarithmic laws on the pressure gradient
parameter Δp for a sink flow TBL. It is possible to extend this matching procedure
to still higher orders as necessitated by the demands of the problem. As will be shown
in the next section, it is sufficient to extend the matching process to second order.
The resulting mean velocity profiles are seen to be of a non-universal log-law form
as given by

U − U∞

Uτ

=
1

κ
ln (η) − D, (4.31)

U+ =
1

κ
ln (y+) + C, (4.32)
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where

1

κ
=

2∑
m=0

Δm
p

1

κm

, D =

2∑
m=0

Δm
p PmD′

m, C =

2∑
m=0

Δm
p Cm. (4.33)

Some more comments about the outer additive constant −D are in order. Equation
(4.33) shows that

D = P0D
′
0 + ΔpP1D

′
1 + Δ2

pP2D
′
2, (4.34)

where P0 = εU∞/Uτ , P1 = P0ε/Δp and P2 = P1ε/Δp . It must be noted that P0, P1 and
P2 are themselves functions of Δp whereas D′

0, D′
1 and D′

2 are constants, presumably
universal. The experimental evidence, as shown in figure 10 in § 5, suggests that
these order-one quantities P0, P1 and P2 are linear functions of Δp to a good
approximation. The data for P2 show mild oscillatory behaviour about the mean line
but that is considered insignificant. Hence

P0 = P ′
0 + ΔpP ′′

0 , P1 = P ′
1 + ΔpP ′′

1 , P2 = P ′
2 + ΔpP ′′

2 , (4.35)

where primes do not indicate differentiation. Putting (4.35) in (4.34) gives

D = D0 + ΔpD1 + Δ2
pD2 + Δ3

pD3, (4.36)

where D0 = P ′
0D

′
0, D1 = (P ′′

0 D′
0 + P ′

1D
′
1), D2 = (P ′′

1 D′
1 + P ′

2D
′
2) and D3 = P ′′

2 D′
2. The

cubic term in (4.36) can be left out since a quadratic in Δp is sufficient to correlate
the data as shown in the next section.

Thus (4.33), in view of (4.36), may now be conveniently rewritten as

1

κ
=

2∑
m=0

Δm
p

1

κm

, D =

2∑
m=0

Δm
p Dm, C =

2∑
m=0

Δm
p Cm, (4.37)

where the constants 1/κm, Cm and Dm must be determined from a curve fit to the
experimental data.

The non-universal skin friction law now follows from (4.31) and (4.32) as

U∞

Uτ

=
1

κ
ln (δ+) + C + D. (4.38)

Equations (4.31) and (4.32) are thus the pressure-gradient-dependent logarithmic laws
for a sink flow TBL and (4.38) is the consequent pressure-gradient-dependent skin
friction law.

The following two points are pertinent to the analysis presented above. First, the
results presented above are strictly valid in the infinite-Reynolds-number limit. We
have also pursued the finite-Reynolds-number corrections to these results and these
are presented in Appendix C. Therein it is shown that for finite Reynolds numbers,
even though the inner and defect profiles are not strictly logarithmic, the contribution
of the additional non-logarithmic terms is insignificant. Thus the infinite-Reynolds-
number results still represent a good approximation to the finite-Reynolds-number
situation for the sink flow TBL.

Secondly, for a given sink flow (i.e. fixed values of δ+ and Δp) the skin friction law
(4.38) clearly shows that the friction velocity is proportional to the free-stream velocity
i.e. Uτ ∝ U∞. In view of this, the defect law scaling (U −U∞)/Uτ = F1(η) could equally
well have been recast in terms of the free-stream velocity as (U − U∞)/U∞ = F2(η).
In this connection, the work of George & Castillo (1997) is relevant. Based on the
full-similarity of the inner and outer governing equations in the limit of Re → ∞, they
show that the appropriate velocity scale for the defect velocity in the outer region of
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the ZPG turbulent boundary layer is U∞. Even though the idea of equilibrium used
in the present work is different from that employed by George & Castillo (1997) (the
so-called asymptotic invariance principle), the defect law scaling is identical for a sink
flow TBL in both these approaches. We believe that this is because of the special
nature of the sink flow with its unique invariance properties discussed above.

4.5. The pressure gradient velocity scale Up

Since we have been considering strong FPGs, one natural question that arises is the
relevance of the velocity scale which the pressure gradient itself introduces. Let us
define this velocity scale Up , similar to what is done for APG flows close to separation
(see e.g. Nickels 2004) as

U 3
p = − ν

ρ

dp

dx
= νU∞

dU∞

dx
. (4.39)

Rearranging (4.39), it is easy to show that

Up = K1/3U∞, Up = (−Δp)1/3Uτ . (4.40)

Since both K and Δp are constants for a sink flow TBL, Up is always proportional
to both U∞ and Uτ . In view of this, Up could have been used as the velocity scale
in both the inner and defect law formulations in lieu of Uτ . However the magnitude
of Up varies from a minimum of about 20% of Uτ to a maximum of about 30% of
Uτ , for the range of pressure gradients covered in the present study. In view of this,
Uτ is used as the velocity scale in this work.

5. Comparison of the analysis with the present experiments and with other sink
flow data in the literature

The following sink flow data sets are taken from various sources for making a
comparison with the data from the present experiments in the light of the analysis
of § 4. One representative data set is taken from the sink flow experiments of Jones
et al. (2001). This corresponds to K = 5.39 × 10−7 and Δp = −0.00528, which is
their strongest pressure gradient case. This pressure gradient is still weaker than the
weakest pressure gradient (case PE1) in the present experiments. Three sink flow
DNS data sets of Spalart (1986) are also included.

The following procedure was adopted for finding the constants in the logarithmic
laws. Inner logarithmic laws were fitted to the logarithmic portions of all the mean
velocity profiles in figure 8 using the least squares fit. The slope 1/κ and the inner
intercept C were thus readily obtained. Intercept −D in the outer logarithmic law was
then calculated from the skin friction law (4.38) by making use of the measured value
of skin friction coefficient and was verified by visual inspection. This procedure was
applied to all the data sets (listed in table 4) for the sake of uniformity. The procedure
mentioned above can be made more systematic, as explained in Appendix B. Values of
various important parameters for all these profiles are listed in table 4. As mentioned
above, the values for the present experiments are averaged over last three stations
L3, L4 and L5. For this reason, there might be slight differences between the values
of these parameters as shown in table 4 and as seen in figures 8 and 9.

The analysis presented in § 4 contains the quantities P0, P1 and P2 which are
assumed to be of order one. Table 5 presents the evidence regarding the validity of
this assumption. Also figure 10 shows the validity of linear approximation (4.35) for
these order-one quantities.
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Data set Δp Cf κ C D Rθ Rδ∗

PE1 −0.0086 0.00401 0.4257 6.9600 −0.3257 1337 1794
PE2 −0.0104 0.00403 0.4382 7.6655 −0.2603 1119 1516
PE3 −0.0129 0.00416 0.4544 8.2886 −0.1703 879 1215
PE4 −0.0175 0.00430 0.4792 9.3096 −0.0820 612 889
PE5 −0.0288 0.00433 0.5002 10.6033 +0.0883 393 614

JMP3 −0.0053 0.00437 0.4204 5.4031 −0.3550 1573 2118
S1 −0.0120 0.00499 0.3960 5.2207 −0.5800 691 985
S2 −0.0188 0.00522 0.4443 7.3136 −0.4570 421 639
S3 −0.0202 0.00530 0.4397 7.2082 −0.3260 384 592

Table 4. Constants in logarithmic laws. PE denotes present experiments, JMP denotes
Jones et al. (2001) and S denotes Spalart (1986).

Data set Cf Rδ99.5
ε Δp P0 P1 P2

PE1 0.00401 17924 0.0279 −0.0086 0.62 −2.02 6.56
PE2 0.00403 15061 0.0329 −0.0104 0.73 −2.32 7.33
PE3 0.00416 11652 0.0413 −0.0129 0.91 −2.90 9.28
PE4 0.00430 8021 0.0581 −0.0175 1.25 −4.16 13.81
PE5 0.00433 4817 0.0960 −0.0288 2.06 −6.88 22.92

JMP3 0.00437 20739 0.0221 −0.0053 0.47 −1.97 8.22
S1 0.00499 8848 0.0453 −0.0120 0.91 −3.42 12.92
S2 0.00522 5574 0.0687 −0.0188 1.34 −4.91 17.96
S3 0.00530 4829 0.0781 −0.0202 1.52 −5.87 22.68

Table 5. Gauge functions and order-one quantities in the asymptotic analysis of § 4 for
various data sets used in this study. See table 4 for data set abbreviations.
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Figure 10. Linearity of order-one quantities P0, P1 and P2 of § 4 with respect to Δp , plotted
for cases listed in table 5.

Jones & Launder (1972) have presented experimental sink flow data. However it
appears that their boundary layers were close to relaminarization. The values of
shape factor H in the present experiments are in the range 1.34 to 1.56. On the
other hand, for Jones & Launder (1972), the corresponding range is 1.42 to 1.76.
This indicates that their mean velocity profiles are less full compared to those in the
present experiments. Hence they may not be fully turbulent (i.e. they might be in a
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1
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Figure 11. Slope 1/κ of logarithmic region versus Δp , for cases listed in table 4.

reverse-transitional state). Figure 2 from Jones & Launder (1972) clarifies this
situation. Their experimental data points are much above the turbulent solution
predicted using the method proposed by Launder & Jones (1969). Furthermore, the
lowest value of Rθ in the present experiments is about 393 whereas the corresponding
value for the data of Jones & Launder (1972) is about 310. Figure 1 from Jones &
Launder (1972) again indicates that their experimental Rθ values are lower than those
demanded by the turbulent sink flow solution. In view of these observations, the data
of Jones & Launder (1972) have not been included in the present comparison.

As will be confirmed later in this section, strong pressure gradients indeed tend to
alter the slope and the intercept of logarithmic region of the mean velocity profile
considerably. For this reason, the method used for determining skin friction should
not be based, in any way, on the universal logarithmic law. In view of this, the
experimental FPG equilibrium turbulent boundary layer data of Herring & Norbury
(1967) could not be used since the method used for skin friction measurement has
not been mentioned. The calculations of Mellor & Gibson (1966) also make use of
the universal logarithmic law for calculating the mean velocity profiles of equilibrium
TBLs with pressure gradients and hence had to be left out.

5.1. The slope 1/κ of the logarithmic region

Figure 11 shows the slope 1/κ of the logarithmic region plotted against Δp . It is found
that the extension of the asymptotic matching process to second order (see (4.37)) is
sufficient to correlate the data from the present experiments including the experimental
sink flow data point of Jones et al. (2001). The resulting second-degree polynomial
fit, shown in figure 11, is given by

1

κ
=

1

κ0

+ Δp

1

κ1

+ Δ2
p

1

κ2

, (5.1)

where κ0 = 0.3862, κ1 = 0.02693 and κ2 = 0.001753.
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The sink flow DNS data points of Spalart (1986) show a similar trend. However
there are differences between the quadratic fit and the sink flow DNS data, especially
pronounced for the DNS data S1; the DNS data are seen to collectively fall onto
a curve distinct from the corresponding experimental points. The reason for this
systematic departure in the trend seems to be related to the fact that the DNS mean
velocity profiles are less full than the experiment profiles. This will be discussed further
in § 5.4.

It can be seen from the trend of the present experiments that 1/κ is an increasing
function of Δp . In order to heuristically understand this trend, we invoke some aspects
of the so-called bursting events occurring close to the wall in a TBL. Bursting of low-
speed streaks close to the wall is regarded as the physical mechanism of turbulence
kinetic energy production (see Kline et al. 1967; Kim, Kline & Reynolds 1971).
Observations indicate that while an APG makes the bursting phenomenon more
vigorous, an FPG tends to suppress it. This implies that the production of turbulence
kinetic energy is enhanced in an APG and is attenuated in an FPG. If so, then we may
write dP+/dΔp > 0, where P+ = (−u′v′/U 2

τ )dU+/dy+ is the turbulence kinetic energy

production in inner scaling. If the boundary layer is turbulent, we may expect (−u′v′)
to scale on Uτ irrespective of the pressure gradient so that (−u′v′/U 2

τ ) is always of
order one. In that case, the condition above can be rewritten as d(dU+/dy+)/dΔp > 0,
which in the overlap region (from (4.32)) becomes d(1/κy+)/dΔp > 0. Now if we focus
our attention on a fixed value of y+, which always belongs to the overlap region (say
y+ ≈ 112 in figure 8), then the above condition simplifies to

[
d(1/κ)/dΔp

]
y+

> 0. This

implies that the slope 1/κ is indeed an increasing function of Δp .
Nickels (2004) has formulated a physical model for the turbulent boundary layer

based on the idea of a universal critical Reynolds number for the viscous sublayer.
This model yields

1

κ
=

1

κ0

√
1 + p+

x y+
c . (5.2)

Here p+
x = (ν/ρU 3

τ )dp/dx is the non-dimensional pressure gradient parameter which
is identical to Δp in the present analysis and y+

c is a non-dimensional sublayer
thickness. Equation (5.2) is valid in the pressure gradient range −0.02 < Δp < 0.06
for near-equilibrium and equilibrium TBL flows. The constant κ0 (taken as 0.39 by
Nickels 2004) is the value of κ corresponding to the ZPG case. The relation between
y+

c and p+
x is given by Nickels (2004) as

p+
x y+3

c + y+2
c − R2

c = 0. (5.3)

Equation (5.3) incorporates the linear variation of total stress in the near-wall region.
Rc = 12 is the critical Reynolds number for the viscous sublayer, which is assumed
to be a universal constant. Thus (5.2) essentially describes the variations in the slope
of the logarithmic region depending on the pressure gradient, by taking the changes
in sublayer thickness into account through (5.3).

In figure 11, (5.2) is plotted by taking κ0 = 0.41 and it agrees fairly well with the
present polynomial fit. It must be kept in mind that (5.2) takes the ZPG case into
account while the present polynomial fit (5.1) does not. Hence differences are seen
between (5.1) and (5.2) close to the Δp = 0 line.

5.2. The inner intercept C of the logarithmic region

Figure 12 shows the inner intercept C of the logarithmic region plotted against Δp .
Again the extension of the asymptotic matching process to second order (see (4.37))
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Figure 12. Inner intercept C of logarithmic region versus Δp , for cases listed in table 4.

is sufficient to correlate the experimental data points. The resulting second-degree
polynomial fit, as seen in figure 12, is given by

C = C0 + ΔpC1 + Δ2
pC2, (5.4)

where C0 = 2.9682, C1 = −533.34 and C2 = −9347.9.
Here again the sink flow DNS data points of Spalart (1986) show a similar trend

as before and there are systematic departures in this case also as in figure 11.
It must be emphasized here that the inner intercept C is related to the non-

dimensional sublayer thickness, and for strong FPGs it is known that the sublayer
thickness is relatively large (see Launder & Jones 1969). This can be seen from the
mean velocity profiles of figure 8. This rise in the value of C, as seen in figure 12,
with the increasing severity of the FPG is thus consistent with the corresponding
thickening of the viscous sublayer.

5.3. The outer intercept −D of the logarithmic region

Figure 13 shows negative of the outer intercept −D of the logarithmic region plotted
against Δp . Again the extension of the asymptotic matching process to second order
(see (4.37)) is sufficient to correlate all the experimental data. The resulting second-
degree polynomial fit, as seen in figure 13, is given by

D = D0 + ΔpD1 + Δ2
pD2, (5.5)

where D0 = −0.5296, D1 = −30.274 and D2 = −302.46.
The sink flow DNS data points of Spalart (1986) again show a similar trend and

consistent departures, similar to those in figures 11 and 12.

5.4. The shape factor H and the Clauser parameter G

It is instructive to examine the behaviour of the shape factor H = δ∗/θ and the
so-called Clauser parameter G (to be defined in (5.9)), as the strength of the pressure
gradient is varied. Clauser (1956), in his classic paper, derived the following relations.
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Figure 13. Negative of outer intercept −D of logarithmic region versus Δp , for cases listed
in table 4.

For self-similar defect profiles of a TBL

U − U∞

Uτ

= F
(y

δ

)
, (5.6)

where F is a function of the Clauser pressure gradient parameter βc (mentioned
in § 4.1). From (5.6), an integral thickness Δ can be defined as

Δ = −δ

∫ ∞

0

(
U − U∞

Uτ

)
d (y/δ) . (5.7)

Now the relations between δ∗, θ and Δ can be shown to be

δ∗

Δ
=

√
Cf

2
,

θ

Δ
=

√
Cf

2

(
1 − G

√
Cf

2

)
, (5.8)

where

G =

∫ ∞

0

(
U − U∞

Uτ

)2

d (y/Δ) . (5.9)

From (5.8), the conventional shape factor H can be written as

H =
δ∗

θ
=

(
1 − G

√
Cf

2

)−1

. (5.10)

The parameter G (referred to as the Clauser parameter here) takes a constant value
for all profiles which possess the same function F , as defined by (5.6). In other
words, G is a constant for a particular self-preserving TBL flow and depends only
on the pressure gradient through the function F . In particular, for a ZPG turbulent
boundary layer, G = 6.8 (see Clauser 1956).
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Figure 14. (a) Shape factor H versus Δp and (b) Clauser parameter G versus Δp , for cases
listed in table 4. �, Present experiments; ◦, Spalart (1986) sink DNS; ∗, Jones et al. (2001)
sink experiment.

Note that the shape factor H , which is a measure of the fullness of the velocity
profile, depends on the local skin friction coefficient (see (5.10)) even for nearly
self-preserving TBL flows. This means that even if the mean velocity profiles show a
collapse in the defect coordinates (i.e. G = constant), H would vary with Cf . However,
in the case of sink flow where there is exact self-preservation, H remains constant
in the streamwise direction and changes only with the pressure gradient. Note that
G also may be interpreted as a measure of the fullness of the mean velocity profile
and is generally considered to be more convenient than H , for TBL flows. In fact,
G could very well be considered as an indicator of the fullness of the defect velocity
profile.

Figure 14(a) shows the shape factor H plotted against Δp for cases listed in table 4.
For sink flows with mild FPGs, the values of H are low. As the magnitude of Δp

increases, the value of H is seen to increase continuously, implying a continuous
reduction in the fullness of the mean velocity profile. It is important to note that the
DNS sink flow profiles of Spalart (1986) are relatively less full (relatively higher values
of H ) than those of the experimental data. This is believed to be the reason for the
systematic departures of these DNS sink flow data sets from the corresponding trend
of experiments in all the previous plots. This is also consistent with lower Reynolds
numbers and higher skin friction values of the DNS data compared to those of the
experiments (see table 4).

Figure 14(b) shows the behaviour of the Clauser parameter G for various sink flow
cases given in table 4. It can be seen that all the data points fall on a single curve.
This suggests that G may not be as appropriate an indicator of the fullness of the
mean velocity profile as H . In general, the functional form of G could be expected
to depend on the Coles wake factor Π (see Coles 1956) and the pressure gradient
parameter Δp . To see this, consider the functional form of the defect velocity profile
on the lines of (2.6) from Perry et al. (2002): (U −U∞)/Uτ = F1(η, Π, Δp). This can be
integrated across the boundary layer (see (5.7) and (5.9) above) to yield G = G(Π, Δp)
where the explicit Δp dependence comes about through the slope 1/κ and intercept
−D of the defect velocity profile. However, for a sink flow, Π = 0. This means that
for different sink flow profiles G = G(Δp). This is the reason for the collapse of G

values for different sink flows from experiments and DNS onto a single curve as seen
in figure 14(b).
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6. Conclusions
A systematic experimental study of sink flow turbulent boundary layers has been

carried out over a wide range of streamwise pressure gradients. It is found that
the mean velocity profiles (in inner coordinates) for these strong FPG flows exhibit
systematic departures from the universal logarithmic law as the pressure gradient
parameter Δp is varied. Even so, each of these mean velocity profiles exhibits a
logarithmic region, albeit non-universal, whose constants are functions of the pressure
gradient. Systematic dependence of these constants on the pressure gradient parameter
Δp is observed. Moreover, the wake region is uniformly absent in all these profiles.
In other words, each profile looks like a ‘pure wall flow’, in the sense of Coles (1957),
only if it is viewed in relation to its own non-universal logarithmic law.

The method of matched asymptotic expansions has been applied to the sink flow
turbulent boundary layer. This theory reveals a systematic dependence of inner
and outer logarithmic laws on the pressure gradient parameter Δp . Comparison of
the theory with the experimental data demonstrates that the disappearance of the
universal logarithmic law in strong FPG situations does not necessarily imply the
absence of a classical inner–outer overlap region. The overlap may still manifest itself
as a logarithmic functional form with constants that are strongly influenced by the
magnitude of FPG.

We would like to record our thanks to Professor P. Bradshaw for pointing out the
literature on the surface hot-wire method for skin friction measurement and related
discussions. Thanks are also due to Dr Tim Nickels for going through an earlier
version of the manuscript and discussions.

Appendix A. Outer and inner equations of various orders
First, we have selected the sequence of gauge functions in the outer expansion

(4.10) to be a sequence of integral powers of ε. Hence substituting (4.10) into (4.9)
and collecting the coefficients of identical powers of ε gives

dT̂0

dη
= 0, to lowest order, (A 1)

dT̂1

dη
+ 2βÛ1 = 0, to the next order. (A 2)

According to (A 1), to the lowest order, the Reynolds shear stress in the outer layer is
constant with respect to y. This is consistent with the experimental observations that
the mean velocity gradient does not change much over the outer layer and the eddy
viscosity is almost constant in the outer layer (see e.g. Clauser 1956; Mellor & Gibson
1966; Townsend 1976). Equation (A 2) governs the Reynolds stress correction T̂1 of
the next order occurring because of the combined effect of the pressure gradient and
the next-order velocity correction Û1. Viscous terms are of still higher order.

Next, we have selected the sequence of gauge functions in the inner expansion
(4.13) to be a sequence of integral powers of Δp . Hence substituting (4.13) into (4.12)
and collecting the coefficients of identical powers of Δp gives

d2U0+

dy2
+

+
dT0+

dy+

= 0, to lowest order, (A 3)

d2U1+

dy2
+

+
dT1+

dy+

= 1, to the next order. (A 4)

Here, in deriving (A 4), use has been made of (4.16) and (4.25).
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Equation (A 3) shows that, to the lowest order, the total shear stress in the inner
layer is constant with respect to y. Equation (A 4) however indicates that the next-
order correction to the total stress varies linearly with y. It is this term which becomes
important for strong pressure gradients. For almost all pressure gradients of practical
interest, the total stress distribution is thus linear to a good approximation, consistent
with the observations of Townsend (1956, 1976), Patel & Head (1968) and Nickels
(2004). Hence it is clear that unless higher-order matching is done (see § 4.4), the
gradient of total stress, which is an essential feature of the flows with strong pressure
gradients, will not enter the analysis.

Appendix B. A systematic procedure for identifying the logarithmic region
from experimental data

The presence of a logarithmic region in the mean velocity profile of a TBL is
usually clear, especially in the case of a sink flow TBL, where the logarithmic region
extends almost up to the mean edge of the boundary layer. Hence the extent of
the logarithmic region could be decided simply by examining the inner profile by
eye. However in order to avoid ambiguity and minimize the subjectivity involved, a
rational procedure is required. This is described below.

In the logarithmic region, the mean velocity profile in inner coordinates is given by
(4.32) as

U+ =
1

κ
ln (y+) + C, (B 1)

where 1/κ and C are functions of Δp but are constant with respect to y+. Now
differentiating (B 1) with respect to y+ gives

y+

dU+

dy+

=
1

κ
. (B 2)

Following Spalart (1988), the quantity y+ (dU+/dy+) from the mean velocity profile
data is to be plotted against y+. The logarithmic region can be identified as the extent
of y+ values over which the value of y+ (dU+/dy+) is reasonably constant in a local
plateau-like region. This method is applied to two representative data sets from the
present experiments. The values of κ obtained by this method and by the least squares
fit (which is used for all the data sets), are compared. One representative case from the
sink flow DNS results of Spalart (1986) has also been evaluated using this procedure.

Figures 15(a) and 15(c) show the mean velocity profiles, in inner coordinates, for
the present experiments PE1 and PE5 at station L4. Each profile is fitted with a cubic
spline approximation from which the quantity y+ (dU+/dy+) is evaluated at various
values of y+. Also shown in each figure is the region used for the least squares fit which
is essentially decided by eye. It can be clearly seen that the quantity y+ (dU+/dy+) is
reasonably constant over the region where the least squares fit has been used. This
confirms that there exists a logarithmic region, in each of the profiles of figure 15.
Also, the extent of the plateau over which y+ (dU+/dy+) is constant closely matches
the extent of the least squares fit region. The average values of κ over this region
may be obtained using (B 2), from figures 15(b) and 15(d ). Figure 16(a, b) shows the
results of the same procedure for the sink flow DNS (case S3) by Spalart (1986).

Referring to table 6, one can see that the differences in values of κ obtained from
the least squares fit and from the above method are of the order of 2%. As estimated
by Spalart (1988), the typical uncertainty in the value of κ is ±0.01 for his DNS data.
Results in table 6 agree very well with this estimate. This demonstrates that the least
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Figure 15. A systematic procedure for identification of the logarithmic region. (a) Mean
velocity profile: ◦, present experiment PE1 at station L4; ——, spline fit. (b) �, y+ (dU+/dy+)
versus y+ from spline fit of (a). (c) Mean velocity profile: ∗, present experiment PE5 at station
L4; ——, spline fit. (d ) •, y+ (dU+/dy+) versus y+ from spline fit of (c); − − −, start of least
squares fit region; −· −·, end of least squares fit region.
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Figure 16. A systematic procedure for identification of the logarithmic region. (a) Mean
velocity profile: ◦, data set S3 listed in table 4; ——, spline fit. (b) �, y+ (dU+/dy+) versus y+

from spline fit of (a); − − −, start of least squares fit region; −· −·, end of least squares fit
region.
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Data κ from κ % difference in κ with
set least squares fit using (B 2) respect to least squares value

PE1 0.4212 0.4297 2
PE5 0.5008 0.4928 −1.6
S3 0.4397 0.4488 2

Table 6. Comparison of values of κ as obtained by the least squares fit and by using (B 2)
for the cases shown in figures 15 and 16.

squares fit used for all the data sets gives reasonably acceptable and plausible values
of κ .

Appendix C. Higher-order asymptotic matching with inclusion of
finite-Reynolds-number effects

The asymptotic matching given in §§ 4.3 and 4.4 can be made more rational by
including the finite-Reynolds-number effects. Afzal (1976), in his interesting paper,
extended the asymptotic matching of inner and defect regions to the next order for
turbulent pipe and channel flows. He used the result of Gill (1968) concerning the
estimate of the error involved at the lowest level of matching. Following Afzal (1976),
Buschmann & Gad-el-Hak (2003) extended the matching procedure to arbitrary orders
and derived a generalized logarithmic law (which contains other non-logarithmic
terms as well) that takes into account the effects of finite Reynolds number for a
ZPG turbulent boundary layer flow. It is possible to apply the same methodology in
the present case. In order to do so, consider (4.17) which in view of Gill (1968) becomes

lim
η→0

P0

(
η
dÛ1

dη

)
=

1

κ0

+ O (ηs) , (C 1)

lim
y+→∞

(
y+

dU0+

dy+

)
=

1

κ0

+ O(y−t
+ ), (C 2)

where s > 0 and t > 0. In view of (C 1) and (C 2), (4.18) and (4.19) can now be
written as

Û1 =
1

P0κ0

ln (η) − D′
0 + o (1) , (C 3)

U0+ =
1

κ0

ln (y+) + C0 + o (1) . (C 4)

The o (1) quantities in (C 3) and (C 4) must be estimated, at least to their lowest
order, before proceeding further with the matching of O (ε) terms in the expansions
for mean velocity as is done is (4.22). In other words, the higher-order contribution
of the lower-order result must be taken into account when higher-order matching is
carried out. Following Afzal (1976), (C 3) and (C 4) may be rewritten as

Û1 =
1

P0κ0

ln (η) − D′
0 + E0η + · · · as η → 0, (C 5)

U0+ =
1

κ0

ln (y+) + C0 +
F0

y+

+ · · · as y+ → ∞, (C 6)
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where E0 and F0 are constants, essentially O(1) (for the meaning of order symbols
O and o, refer to Van Dyke 1975). Now (C 5) and (C 6) must be substituted in (4.23)
to obtain a rational higher-order matching. When this is done, one obtains modified
forms of (4.27) and (4.28) as

Û2 =
1

P1κ1

ln (η) − D′
1 − E0

ε
η + E1η

2 + · · · as η → 0, (C 7)

U1+ =
1

κ1

ln (y+) + C1 − F0

Δp

1

y+

+
F1

y2
+

+ · · · as y+ → ∞, (C 8)

where E1η
2 and F1/y

2
+ are the estimates of o(η) and o(1/y+) quantities in (C 7) and

(C 8) which have to be used for the next-order matching.
Proceeding in similar fashion to the next order and substituting the expressions for

Û1, Û2 and Û3 in the four-term outer expansion (from (4.10)) and the expressions for
U0+, U1+ and U2+ in the three-term inner expansion (from (4.13)) yields

U − U∞

Uτ

=
1

κ
ln (η) − D + P0E2ε

2η3 as η → 0, (C 9)

U+ =
1

κ
ln (y+) + C +

F2Δ
2
p

y3
+

as y+ → ∞, (C 10)

where

1

κ
=

2∑
m=0

Δm
p

1

κm

, D =

2∑
m=0

Δm
p Dm, C =

2∑
m=0

Δm
p Cm. (C 11)

Equations (C 9) and (C 10) are general versions of (4.31) and (4.32), each including one
additional non-logarithmic term that represents the effect of finite Reynolds number.
This additional term is of the same order as the one up to which the matching
procedure is extended. Also note that there are no additional lower-order terms.

It is instructive to plot (C 9) and (C 10) along with their pure logarithmic
counterparts (4.31) and (4.32) in order to assess the effect of the non-logarithmic
extra terms. It was decided to use the strongest pressure gradient experiment PE5 for
this purpose since it contains the largest values of ε, Δp and P0 (this will yield the
largest values for the extra terms). Tables 3, 4 and 5 respectively show that ε = 0.096,
Δp = −0.02882 and P0 = 2.06 for case PE5. Further E2 and F2 are by definition O(1)
and for the present purpose they are arbitrarily chosen to be equal to unity.

Figures 17(a) and 17(b), for the present experiment PE5, respectively show a
comparison of inner equations (C 10) and (4.32) and the defect equations (C 9) and
(4.31). It is clear that the extra terms make no discernible difference. Also, if the
value of E2 is changed from 1 to 10, (C 9) and (4.31) are seen to be identical up to
about η = 0.1 and thereafter show only slight differences towards the edge of the
boundary layer. On the other hand (C 10) and (4.32) hardly differ from each other
even for large changes in the value of F2, say from 1 to 100. This demonstrates
that the finite-Reynolds-number correction terms are in practice insignificant. Thus it
appears that the infinite-Reynolds-number results (4.31) and (4.32) can be safely used
for finite Reynolds number cases as well. Since the pressure gradient parameter Δp

is related to the Reynolds number through Cf (see (1.2) and (4.38)), even the infinite
Reynolds number results, in some sense, include the Reynolds number effects for a
sink flow TBL.
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Figure 17. Influence of the extra non-logarithmic terms due to finite-Reynolds-number effects.
(a) Comparison of the inner equations (4.32) and (C 10). (b) Comparison of the defect equations
(4.31) and (C 9).
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