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Damped shape oscillations of a viscous
compound droplet suspended in a viscous host
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A study of small-amplitude shape oscillations of a viscous compound droplet suspended
in a viscous host fluid is performed. A generalized eigenvalue problem is formulated
and is solved by using the spectral method. The effects of the relevant non-dimensional
parameters are examined for three cases, i.e. a liquid shell in a vacuum and a compound
droplet in a vacuum or in a host fluid. The fundamental mode l = 2 is found to be
dominant. There exist two oscillatory modes: the in phase and the out of phase. In most
situations, the interfaces oscillate in phase rather than out of phase. For the in-phase
mode, in the absence of the host, as the viscosity of the core or the shell increases, the
damping rate increases whereas the oscillation frequency decreases; when the viscosity
exceeds a critical value, the mode becomes aperiodic with the damping rate bifurcating
into two branches. In addition, when the tension of the inner interface becomes smaller
than some value, the in-phase mode turns aperiodic. In the presence of the unbounded
host fluid, there exists a continuous spectrum. The viscosity of the host may decrease or
increase the damping rate of the in-phase mode. The mechanism behind it is discussed.
The density contrasts between fluids affect oscillations of the droplet in a complicated way.
Particularly, sufficiently large densities of the core or the host lead to the disappearance
of the out-of-phase mode. The thin shell approximation predicts well the oscillation of the
compound droplet when the shell is thin.

Key words: drops, multiphase flow

1. Introduction

If a quiescent spherical droplet of viscous fluid is perturbed by a small harmonic
disturbance, it may undergo periodic oscillations with continuously decreasing amplitude
or an aperiodic direct return to its original spherical shape, depending on the viscosity
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of the fluid being smaller or larger than a critical value. Oscillations of droplets
exist in various processes such as atomization, emulsification, mixing, ink-jet printing,
mass/heat transfer, drug delivery and physical property measurement (Shusser & Weihs
2010; Brenn & Teichtmeister 2013; Hoath et al. 2015; Staat et al. 2017; Kremer,
Kilzer & Petermann 2018; Shao et al. 2019; Lalanne & Masbernat 2020; Montanero
& Gañán-Calvo 2020), which may do good or harm. Whatever the case, the study of
shape oscillations of droplets is of both theoretical and practical significance. To date,
the linear oscillation characteristics of a single inviscid or viscous droplet in a vacuum
have been well understood (Rayleigh 1879; Lamb 1881/82; Chandrasekhar 1959; Reid
1960; Prosperetti 1980a; Arcidiacono, Poulikakos & Ventikos 2004). More recently,
the consideration of other factors, e.g. surfactant, rheological properties, electrification,
non-isothermal condition, solid core or flexible shell, has brought new vitality to this
classical topic (Khismatullin & Nadim 2001; Lyubimov et al. 2011; Li, Yin & Yin 2019;
Liu, Sumanasekara & Bhattacharya 2019). Concerning the approaches, Foroushan &
Jakobsen (2020) contributed a detailed review and concluded that for large viscosities,
the normal mode method provides more reliable results than the energy balance method
based on the irrotational flow assumption.

The two-fluid system, in which a viscous droplet is suspended in an immiscible viscous
host fluid, was first considered by Miller & Scriven (1968). The authors obtained a general
analytical characteristic equation for the complex frequency determining the oscillation
behaviour of the droplet. Later, Basaran, Scott & Byers (1989) restudied the same problem
by numerically solving the characteristic equation for arbitrary values of the relevant
parameters. They also performed experiments to measure the oscillation frequencies of
droplets. Prosperetti (1980b) presented a more compact expression of the characteristic
equation and carried out a systematic parametric study. Li, Yin & Yin (2020) extended the
work of Prosperetti (1980b) to the non-Newtonian case and studied shape oscillations of a
viscoelastic droplet immersed in a viscoelastic host medium.

A more complex case is compound droplets, which are encountered in double
emulsions, microencapsulation, phase separation, biological cells, lab-on-a-chip and other
applications (Duangsuwan, Tüzün & Sermon 2009; Liu et al. 2017; Vian, Reuse &
Amstad 2018; Abbasi, Song & Lee 2019; Santra, Das & Chakraborty 2020). A compound
droplet consists of a liquid core and a liquid shell and is suspended in a vacuum or in
a third medium. Owing to the existence of two interfaces and the involvement of more
parameters, the study of compound droplets is rather challenging. It has been recognized
that the two interfaces of an inviscid compound droplet move in phase (the bubble mode)
or out of phase (the sloshing mode) (Lee & Wang 1988; Saffren, Elleman & Rhim
1981). The bubble mode was found to possess a higher oscillation frequency than the
sloshing mode (Saffren et al. 1981). When the fluids are very viscous and the inertia
is negligible, the modes are damped aperiodically without oscillation and the sloshing
mode has the lowest damping rate (Landman 1985). By using the normal mode method,
Lyell & Wang (1986) derived the general characteristic equation for linear oscillations of
a viscous compound droplet immersed in a viscous host fluid. Unfortunately, the obtained
characteristic equation was so cumbersome that the authors calculated only a special case,
i.e. a viscous liquid shell with the core and host fluids taken to be air of negligible
hydrodynamic effects. They found that the sloshing mode is more damped than the
bubble mode. Lyubimov et al. (2012) studied the influence of small non-concentricity on
small-amplitude oscillations of a spherical liquid droplet surrounded by a non-concentric
layer of dissimilar liquid and found that, in most cases, the correction to oscillation
frequencies caused by non-concentricity is of second order in eccentricity. Shiryaev (2020)
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Oscillations of a viscous compound droplet in a viscous host

examined small-amplitude oscillations of an inviscid encapsulated droplet and confirmed
that liquid parameters influence the sloshing mode and the bubble mode in different ways.
In addition, some experiments have been performed by researchers to observe oscillations
of compound droplets (Kawano et al. 1997; Anilkumar, Hmelo & Wang 2001; Egry 2005).
Particularly, Egry (2005) studied the oscillating compound droplet technique as a feasible
approach to measuring interfacial tension and they also presented an analytical expression
that relates the frequency spectrum to surface and interfacial tensions.

To our knowledge, small-amplitude shape oscillations of a viscous compound droplet
immersed in an immiscible viscous host fluid has not yet been investigated systematically,
which motivates the present work. In this work, we build a generalized eigenvalue equation
and solve it by using the spectral method numerically. The advantage of this method is
that the spectrum of eigenvalues as well as the eigenfunctions can be readily obtained.
The paper is organized as follows: in § 2, the theoretical model is built and the generalized
eigenvalue problem is formulated; in § 3, the numerical results are presented, three cases,
i.e. a viscous shell in a vacuum, a viscous compound droplet in a vacuum and a viscous
compound droplet immersed in a viscous host liquid, are investigated, and for each case,
the oscillation characteristics of the system, the competition between the bubble mode and
the sloshing mode as well as the influence of the relevant non-dimensional parameters are
examined, and moreover, the thin shell limiting case of the three-fluid system is discussed;
in § 4, the main conclusion is drawn.

2. Theoretical model and formulation

Consider a compound spherical droplet suspended in an unbounded host fluid, as sketched
in figure 1(a). The system is stationary before being perturbed. The core of the compound
droplet may sit anywhere inside the shell in the absence of gravity, but when the compound
droplet oscillates, the core moves towards the centre of the droplet (Anilkumar et al. 2001).
To facilitate the analysis, we assume that the core and the shell are concentric all the time
(Lyell & Wang 1986; Shiryaev 2020). The spherical coordinate system (r, θ, ϕ) with the
origin located at the centroid of the droplet, where r, θ and ϕ are the radius, the polar angle
and the azimuthal angle, respectively, is used to describe the problem. The force balance at
the unperturbed interfaces is P1 − P2 = 2γ1/R1 and P2 − P3 = 2γ2/R2, where P is the
basic pressure, γ is the interfacial tension coefficient, R1 is the radius of the core and R2 is
the outer radius of the shell. Hereafter, the subscripts 1, 2 and 3 denote the core, the shell
and the host fluid, respectively, when referring to bulk quantities, and the subscripts 1 and 2
denote the inner and outer interfaces, respectively, when referring to interfacial quantities.
The fluids are assumed to be immiscible, incompressible and Newtonian viscous. The
effects of the gravitational and buoyancy forces are neglected. There is no mass or heat
transfer.

It is assumed that the entire system is perturbed by an infinitesimally small disturbance
at the initial time (García & González 2008). The equations governing the motion of the
fluids can be linearized as follows:

∇ · vi = 0, i = 1, 2, 3, (2.1)

ρi
∂vi

∂t
= −∇pi + μi∇2vi, i = 1, 2, 3, (2.2)

where ρ is the density, μ is the dynamic viscosity, p is the pressure perturbation and v is
the velocity perturbation.
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Figure 1. (a) Schematic of the theoretical model. (b) The in-phase deformation and (c) the out-of-phase
deformation of the interfaces, for the fundamental mode l = 2. (d–f ) The in-phase deformations for the
higher-order modes l = 3, 4 and 5, respectively.

At the inner interface r = R1, the kinematic boundary condition, the continuity of
velocity and the balance of the forces require that

vr1 = ∂ξ1

∂t
, vr2 = ∂ξ1

∂t
, (2.3a,b)

vθ1 = vθ2, vϕ1 = vϕ2, (2.4a,b)

T rθ1 = T rθ2, T rϕ1 = T rϕ2, (2.5a,b)

−p2 + 2μ2
∂vr2

∂r
+ p1 − 2μ1

∂vr1

∂r
= γ1∇ · n1, (2.6)

where ξ denotes the displacement of an interface deviating from its equilibrium position,
vr, vθ and vϕ are the velocity components in the r, θ and ϕ directions, T rθ and T rϕ are
the rθ - and rϕ-components of the deviatoric stress tensor T , respectively, n is the outward
unit normal vector and ∇ · n is the interface curvature.

Similarly, at the outer interface r = R2, the boundary conditions are

vr2 = ∂ξ2

∂t
, vr3 = ∂ξ2

∂t
, (2.7a,b)

vθ2 = vθ3, vϕ2 = vϕ3, (2.8a,b)

T rθ2 = T rθ3, T rϕ2 = T rϕ3, (2.9a,b)

−p3 + 2μ3
∂vr3

∂r
+ p2 − 2μ2

∂vr2

∂r
= γ2∇ · n2. (2.10)

At the origin and at infinity, the boundedness of velocity and pressure perturbations
requires that

v1 < ∞ and p1 < ∞, at r = 0, (2.11)

v3 → 0 and p3 → 0, as r → ∞. (2.12)
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Oscillations of a viscous compound droplet in a viscous host

Taking the curl of (2.2) and introducing the vorticity Ω i = ∇ × vi, we have

ρi
∂Ω i

∂t
= −μi∇ × ∇ × Ω i, i = 1, 2, 3. (2.13)

The vorticity field, which is solenoidal, can be decomposed into a toroidal and a poloidal
part (Miller & Scriven 1968; Prosperetti 1980b), i.e.

Ω i = ∇ × Ai + ∇ × ∇ × Bi, (2.14)

where the vectors A and B only have a non-zero component in the radial direction. The
velocity is

vi = Ai + ∇ × Bi + ∇φi, i = 1, 2, 3, (2.15)

where φ is the velocity potential. From a physical point of view, the second term on the
right-hand side of (2.15) represents tangential motions of the fluids (called shear waves
or purely rotational waves by Miller & Scriven 1968) and has nothing to do with shape
oscillations of the droplet (Prosperetti 1980b). Moreover, as demonstrated in Appendices A
and B and the supplementary material available at https://doi.org/10.1017/jfm.2021.981,
the governing equations and boundary conditions for the vector B and those for the
vector A are completely uncoupled. Similarly, the vector B will not enter in the following
establishment of the generalized eigenvalue equation.

In the normal mode analysis, the small disturbance initially imposed on the system
is assumed to be a monochromatic spherical harmonic ∝ Pm

l (cos θ) exp(jmϕ), where
Pm

l (cos θ) is the associated Legendre polynomial with the integer indices l and m (0 �
m � l and l � 2), and j is the imaginary unit (Chandrasekhar 1959, 1961). Further, the
perturbations of the physical quantities can be decomposed as

(ξi, Ai, φi) = [ξ̂i, Ti(r)er, Φi(r)]Pm
l (cos θ) exp(jmϕ − ωt), (2.16)

where ξ̂ , T(r) and Φ(r) are the initial amplitudes of the corresponding perturbations
(the eigenfunctions), er is the unit vector in the radial direction, and ω is the complex
frequency with the real part Re(ω) the damping rate and the imaginary part Im(ω) the
angular frequency.

The azimuthal wavenumber m has been shown to be absent from the characteristic
equations governing three-dimensional linear shape oscillations of a single droplet in a
vacuum, a droplet suspended in a host fluid and a compound droplet suspended in a host
fluid (Chandrasekhar 1959; Prosperetti 1980b; Lyell & Wang 1986). That is, modes with
different values of m but the same values of the other parameters oscillate with the same
frequency and decay at the same rate. The azimuthal wavenumber m is also absent from the
generalized eigenvalue equation (2.39) built below. Keeping in mind that (2.39) is valid for
three-dimensional oscillations, we will limit our analysis to the axisymmetric case m = 0
in the next section.

With regard to the polar wavenumber l, normally, in a viscous damped system, the
fundamental mode l = 2 has the smallest damping rate and therefore is the dominant
mode (Prosperetti 1980b). The deformed compound droplet is sketched in figure 1(b–f )
for the first four modes l = 2, 3, 4 and 5, respectively, where the solid lines represent
the perturbed interfaces and the dashed lines the unperturbed interfaces. In experiments,
modes with different values of l may couple with each other (Staat et al. 2017; Lalanne &
Masbernat 2020), but linear analysis cannot account for this mode coupling.
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Substituting the decomposition (2.16) into (2.14) and then (2.14) into (2.13) yields

d2Ti

dr2 − l(l + 1)

r2 Ti + ρiω

μi
Ti = 0, i = 1, 2, 3. (2.17)

Substituting (2.15) into (2.1) yields

∇2φi = −∇ · Ai, i = 1, 2, 3. (2.18)

Then substituting (2.16) into (2.18) yields

d
dr

(
r2 dΦi

dr

)
− l(l + 1)Φi = − d

dr
(r2Ti), i = 1, 2, 3. (2.19)

Taking the radius R2, the capillary time tc2 =
√

ρ2R3
2/γ2 and the capillary pressure

γ2/R2 as the scales of length, time and pressure, respectively, the equations are
non-dimensionalized. The non-dimensional form of (2.17) is

d2T1

dr2 − l(l + 1)

r2 T1 + ρr1ω

μr1Oh2
T1 = 0, (2.20)

d2T2

dr2 − l(l + 1)

r2 T2 + ω

Oh2
T2 = 0, (2.21)

d2T3

dr2 − l(l + 1)

r2 T3 + ρr3ω

μr3Oh2
T3 = 0, (2.22)

where ρr1 = ρ1/ρ2 is the relative density of the core, μr1 = μ1/μ2 is the relative viscosity
of the core, Oh2 = μ2/

√
ρ2γ2R2 is the Ohnesorge number of the shell representing the

relative importance of viscosity and capillarity, ρr3 = ρ3/ρ2 is the relative density of the
host and μr3 = μ3/μ2 is the relative viscosity of the host. The non-dimensional equation
for Φi is the same in form with the dimensional one (2.19), which is not repeated. Without
loss of clarity, the same symbols are used to denote the corresponding non-dimensional
quantities.

Non-dimensionalizing the boundary conditions (2.3a,b)–(2.10) and expressing them in
terms of Ti and Φi, we have

T1(a) + dΦ1

dr

∣∣∣∣
r=a

= −ωξ̂1, T2(a) + dΦ2

dr

∣∣∣∣
r=a

= −ωξ̂1, (2.23a,b)

Φ1(a) = Φ2(a), (2.24)

2a
d
dr

(
Φ2 − μr1Φ1

r

)∣∣∣∣
r=a

+ T2(a) − μr1T1(a) = 0, (2.25)

− ωΦ2(a) + 3Oh2
dT2

dr

∣∣∣∣
r=a

+ 2Oh2
d2Φ2

dr2

∣∣∣∣∣
r=a

+ ρr1ωΦ1(a) − 3μr1Oh2
dT1

dr

∣∣∣∣
r=a

−2μr1Oh2
d2Φ1

dr2

∣∣∣∣∣
r=a

= γr
(l − 1)(l + 2)

a2 ξ̂1, (2.26)
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Oscillations of a viscous compound droplet in a viscous host

T2(1) + dΦ2

dr

∣∣∣∣
r=1

= −ωξ̂2, T3(1) + dΦ3

dr

∣∣∣∣
r=1

= −ωξ̂2, (2.27a,b)

Φ2(1) = Φ3(1), (2.28)

2
d
dr

(
μr3Φ3 − Φ2

r

)∣∣∣∣
r=1

+ μr3T3(1) − T2(1) = 0, (2.29)

− ρr3ωΦ3(1) + 3μr3Oh2
dT3

dr

∣∣∣∣
r=1

+ 2μr3Oh2
d2Φ3

dr2

∣∣∣∣∣
r=1

+ ωΦ2(1) − 3Oh2
dT2

dr

∣∣∣∣
r=1

− 2Oh2
d2Φ2

dr2

∣∣∣∣∣
r=1

= (l − 1)(l + 2)ξ̂2, (2.30)

where a = R1/R2 is the radius ratio and γr = γ1/γ2 is the interfacial tension coefficient
ratio.

For the spectral method, (2.11) is not an appropriate boundary condition at the origin
r = 0. Mathematically, the origin is a singular point, at which all quantities should be
single-valued and should satisfy the following consistency condition:

T1 = Φ1 = 0. (2.31)

At infinity r → ∞, (2.12) yields the following boundary conditions in terms of T3 and
Φ3:

T3 + dΦ3

dr
= 0, ρr3ωΦ3 − μr3Oh2

dT3

dr
= 0. (2.32a,b)

The bulk equations (2.19)–(2.22) together with the boundary conditions (2.23a,b)–
(2.32a,b) are solved by using the Chebyshev spectral collocation method. First, the
physical space needs to be transformed into the calculation space y ∈ [−1, 1]. The
following linear or nonlinear transformations can be used,

r = a(1 + y)
2

or r = a
2

[
1 + tanh(δy)

tanh δ

]
for r ∈ [0, a], (2.33)

r = 1 + a
2

+ 1 − a
2

y or r = a + 1
2

− a − 1
2

tanh(δy)
tanh δ

for r ∈ [a, 1], (2.34)

r = 1 + Rm

2
+ 1 − Rm

2
y or r = 1 + C(Rm − 1)(1 − y)

2C + (Rm − 1)(1 + y)
for r ∈ [1, Rm],

(2.35)

where δ is a positive number (the smaller δ, the closer the nonlinear transformation is to
the linear), Rm denotes where the host fluid domain is truncated and C is also a positive
number (the smaller C, the more concentrated the collocation points near r = 1). The
linear transformations turn out to be a better choice when the fluids are highly viscous,
whereas the nonlinear transformations apply to the case of small viscosities. To ensure
accuracy, Rm must be sufficiently large. In the calculation, its value is in the range of 40 to
120.
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The eigenfunctions Ti(r) and Φi(r) are expanded as a sum of Chebyshev polynomials in
the calculation space, i.e.

T1( y) =
N1∑

n=0

anΓn( y), Φ1( y) =
N1∑

n=0

bnΓn( y), (2.36a,b)

T2( y) =
N2∑

n=0

cnΓn( y), Φ2( y) =
N2∑

n=0

dnΓn( y), (2.37a,b)

T3( y) =
N3∑

n=0

enΓn( y), Φ3( y) =
N3∑

n=0

fnΓn( y), (2.38a,b)

where Γn( y) = cos[n cos−1( y)] is the Chebyshev polynomial, an, bn, cn, dn, en and fn are
the expansion coefficients, and N1 , N2 and N3 are the numbers of the polynomials for the
core, the shell and the host, respectively. All Γn values are evaluated at the Gauss–Lobatto
collocation points yj = cos(jπ/Ni), j = 0, 1, . . . , Ni, i = 1, 2, 3. For the core and the shell,
20 to 40 collocation points are sufficient to ensure convergence; for the host, 200 to 500
collocation points are distributed. Finally, a generalized eigenvalue equation is obtained in
the form of

Ax = ωBx, (2.39)

where the eigenvector x = [a0, . . . , aN1, b0, . . . , bN1, c0, . . . , cN2, d0, . . . , dN2, e0, . . . ,

eN3, f0, . . . , fN3, ξ̂1, ξ̂2]T with the superscript T denoting transpose and A and B are
the coefficient matrices of size (2N1 + 2N2 + 2N3 + 8) × (2N1 + 2N2 + 2N3 + 8). The
complex frequency ω is the eigenvalue in this framework. The eigenvalue problem (2.39)
is solved by using a homemade Matlab code. The validity of the code has been checked
by comparing with the results of Prosperetti (1980b) and Li et al. (2020). In addition, the
exactness of the eigenvalues has been checked by substituting them into the determinant of
the non-dimensional characteristic equation, i.e. D3 in Appendix C, to see if the absolute
value of the determinant is close to zero. The characteristic equation for small-amplitude
shape oscillations of a viscous compound droplet suspended in a viscous host fluid is
derived in Appendix B and the supplementary material in a different way from Lyell &
Wang (1986) and is non-dimensionalized in Appendix C.

3. Numerical results and discussion

In this section, the calculation results are presented. Three cases, i.e. a viscous shell
in a vacuum, a viscous compound droplet in a vacuum and a viscous compound
droplet immersed in a viscous host fluid, are considered. For each case, the oscillation
characteristics as well as the effects of the relevant parameters are explored. In addition,
the thin shell approximation is discussed.

3.1. Oscillations of a viscous liquid shell
A liquid shell (in the core and host domains is a vacuum or gases of negligible
hydrodynamic effects) is the simplest case in which there exist two interfaces. In this
case, only three non-dimensional parameters are involved, i.e. the polar wavenumber l, the
Ohnesorge number of the shell liquid Oh2 and the radius ratio a.

A spectrum for this case is shown in figure 2. The spectrum is discrete and consists
of an infinite number of eigenvalues. Only twelve of them are shown. In this study, we
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Figure 2. Spectrum in the complex frequency plane for the case of a viscous liquid shell, l = 2, Oh2 = 1,
a = 0.8. The diamonds denote the eigenvalues.

are mainly concerned about the first four eigenvalues labelled 1–4 in the figure, because,
with the smallest damping rates, the corresponding modes of these four eigenvalues decay
most slowly and thereby most possibly dominate in shape oscillations of the system.
By examining the phase difference Θ defined as the argument of the initial amplitude
ratio of the interfaces ξ̂1/ξ̂2, we find that the two eigenvalues labelled 1 and 4 possess
phase differences nearly 180◦ and thereby belong to the sloshing mode, and the other two
labelled 2 and 3 possess phase differences close to 0◦ and belong to the bubble mode.
To be more intuitive, hereafter the bubble mode is called the in-phase mode and the
sloshing mode the out-of-phase mode. Recall that in the in-phase mode, the interfaces
move perfectly in the same direction (Θ = 0◦) and in the out-of-phase mode, they move
exactly in opposite directions (Θ = 180◦) (Saffren et al. 1981; Lee & Wang 1988).
However, in this model, owing to the existence of viscosity, the phase difference between
the oscillating inner and outer interfaces cannot be just equal to 0◦ or 180◦. The so-called
in-phase mode is that with zero phase difference in the inviscid limit and the out-of-phase
mode is that with a phase difference of 180◦ for zero viscosity. Analogously, for the
geometry of an annular or compound jet of viscous fluids, the phase difference between
the inner and outer interfaces is not exactly 0◦ or 180◦ (Shen & Li 1996; Li, Yin & Yin
2008). An interesting finding is that the other eigenvalues, numbered 5 to 12 in figure 2,
which decay much faster with much larger damping rates, all belong to the in-phase
mode.

Note that the eigenvalues 2 and 3 in figure 2 are symmetrical with respect to the real
axis Im(ω) = 0. As a matter of fact, all the eigenvalues having non-zero imaginary parts
appear in complex conjugate pairs. This feature can be revealed from the characteristic
equation (C1). Also note that the eigenvalue numbered 1, whose damping rate is the lowest,
has a zero angular frequency (Im(ω) = 0). That is, for the case considered in figure 2,
the out-of-phase mode corresponding to the eigenvalue 1 is probably dominant in the
decay of perturbations, but unfortunately, it is aperiodic experiencing no oscillation. This
is not a favourable situation if shape oscillations are expected. In experiments, aperiodic
modes that dominate the motion of a droplet in natural environment may be avoided and
oscillatory modes with higher damping rates may be observed by actively controlling
initial excitations imposed on the droplet.
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The dependence of the damping rate Re(ω), the angular frequency Im(ω) and the phase
difference Θ of the first four eigenvalues on the Ohnesorge number of the shell Oh2 and
the radius ratio a is illustrated in figure 3 for the fundamental mode l = 2 of the shell
case, where the blue curves denote the two eigenvalues of the in-phase mode and the
red curves denote the two eigenvalues of the out-of-phase mode. As shown in figure 3(a)
and the zoomed-in plot in figure 3(b), for either mode, the damping rate bifurcates into
two branches (actually, it is that the damping rates of the two eigenvalues of either mode
are not equal any more) when Oh2 increases to a critical value Oh2cr. Meanwhile, just at
Oh2cr, the angular frequency becomes zero and the transition from oscillatory to aperiodic
decay takes place, as shown in figure 3(c) and the zoomed-in plot in panel (d). Obviously,
the in-phase mode possesses a much wider interval of Oh2 for periodic oscillations and,
moreover, its angular frequency is generally greater than that of the out-of-phase mode.
Hereafter, when mentioning the angular frequency, we mean the absolute value of the
imaginary part of the complex frequency ω, i.e. |Im(ω)|.

Take a second look at the aperiodic branches of the damping rate Re(ω) in figures 3(a)
and 3(b). The upper branch, particularly that of the out-of-phase mode, grows rapidly
with increasing Oh2, whereas the lower branch descends and goes asymptotically towards
zero as Oh2 → ∞, which exhibits the characteristic of the creeping motion of a strongly
overdamped oscillator (Chandrasekhar 1961; Prosperetti 1980b). In the calculation of
linear shape oscillations of a viscous shell, Lyell & Wang (1986) observed a bifurcation of
the damping rate of the out-of-phase mode at a sufficiently large value of the viscosity and
they addressed that the lower aperiodic branch is the counterpart of the creeping mode in
the case of a single droplet (Prosperetti 1980b). This phenomenon was also detected in the
case of a single viscoelastic droplet in a vacuum (Brenn & Teichtmeister 2013; Li et al.
2020).

The competition between the in-phase and the out-of-phase modes is complicated. As
shown in figures 3(a) and 3(b), at small values of Oh2 (Oh2 ∼ O(0.1) or smaller), both
modes are oscillatory with comparable damping rates. When the radius ratio a is relatively
large, e.g. a = 0.9, the in-phase mode decays slower and may be dominant in shape
oscillations of the shell; when the radius ratio a is relatively small, e.g a = 0.6 or 0.7, the
out-of-phase mode has a smaller damping rate and therefore dominates. For the latter case,
if there were a mechanism to destabilize the system and sustain the continuous growth of
perturbations, the inner and outer interfaces would touch each other and breakup would
ultimately take place. There exists a very narrow range of Oh2 just beyond Oh2cr at which
the out-of-phase mode bifurcates; within this range, the out-of-phase mode is aperiodic
and more damped, and the in-phase mode is oscillatory and is presumably observed in
experiments. As Oh2 further increases, soon the lower branch of the out-of-phase mode
decreases rapidly to small values near zero, much smaller than the damping rate of the still
oscillatory in-phase mode. In such a case, the aperiodic out-of-phase mode is predicted
to be dominant in nature and appropriate excitations need to be carefully imposed on the
system at the initial time to observe shape oscillations of in-phase type. Finally, when Oh2
exceeds Oh2cr, at which the in-phase mode turns aperiodic, there is no oscillation of any
type.

Generally, for either mode, when it is oscillatory, its damping rate increases with Oh2,
which indicates that viscosity leads to energy dissipation and accelerates the decay of
perturbations. Note that differently from the case of a single viscous/viscoelastic droplet
(Prosperetti 1980b; Brenn & Teichtmeister 2013), the variation of Re(ω) of neither mode
with Oh2 is linear. Sometimes, as shown in figure 3(b), the damping rate of the in-phase
mode exhibits a local maximum at small Oh2, and then Re(ω) briefly decreases with
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Figure 3. Dependence of (a,b) the damping rate Re(ω), (c,d) the angular frequency Im(ω) and (e, f ) the phase
difference Θ on the Ohnesorge number of the shell, Oh2, for the case of a viscous liquid shell, l = 2. The
radius ratio a = 0.6 (short dashed), 0.7 (dash-dotted), 0.8 (dotted), 0.9 (long dashed). Blue curves, the in-phase
mode; red curves, the out-of-phase mode. The solid curves in (a,c) are for the case of a single viscous droplet
in a vacuum (a = 0).

increasing Oh2, as observed by Lyell & Wang (1986). Noticing that this abnormal tendency
is more evident at smaller values of the radius ratio a, we attribute it to the partial
uncoupling of the interfaces as the shell gets thicker. However, viscosity decreases the
frequency of oscillation of either mode. As mentioned previously, owing to viscosity, the
inner and outer interfaces of the shell do not oscillate perfectly in phase or out of phase.
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Figure 4. Variation of the amplitude ratio Λ with the Ohnesorge number of the shell Oh2 for different values
of the radius ratio a. The case of a viscous liquid shell, l = 2. Only the result of the upper aperiodic branch of
the out-of-phase mode is plotted. The arrows indicate the locations where the transition of mode from out of
phase (blue curves) to in phase (red curves) takes place.

As shown in figure 3(e) and the zoomed-in plot in panel ( f ), at the peak, the deviation of
the phase difference Θ from 0◦ or 180◦ can be up to more than 50 ◦. Only when a mode
becomes aperiodic, the phase difference of it equals 0◦ or 180◦, which suggests that in the
case of aperiodic decay to their quiescent spherical shapes, the inner and outer interfaces
move strictly in phase or out of phase.

The radius ratio a affects the in-phase and out-of-phase modes in different ways. As
shown in figures 3(c) and 3(d), as a decreases from 0.9 to 0.6, the interval of Oh2 for
periodic oscillations of the in-phase mode is significantly narrowed, whereas the interval
of Oh2 for the oscillatory out-of-phase mode is slightly broadened. With the decrease in
a, the oscillation frequency |Im(ω)| of the in-phase mode is generally decreased, whereas
the frequency of the out-of-phase mode is increased. The decrease in the radius ratio a
also leads to the increase in the deviation of the phase difference Θ from 0◦ or 180◦, see
figures 3(e) and 3( f ). That is, a thicker shell results in a looser coupling of the inner and
outer interfaces.

An interesting phenomenon is that the upper aperiodic branch of the out-of-phase
mode may be transformed into an aperiodic in-phase branch at sufficiently large values
of Oh2, as illustrated in figure 3(e) and more clearly in figure 3( f ). Possibly, like those
eigenvalues labelled 5 to 12 in figure 2, for large damping rates, inherently the inner and
outer interfaces tend to move in the same direction rather than in opposite directions.
Noticing the disappearance of this phenomenon at small values of the radius ratio a, e.g.
a = 0.6, the transition may also be related to the coupling of the interfaces. The variation
of the magnitude of the initial amplitude ratio ξ̂1/ξ̂2, denoted by Λ, with the Ohnesorge
number Oh2, is shown in figure 4 for different values of the radius ratio a, which may
help to understand this transition phenomenon. As shown in the figure, for relatively large
values of a (a � 0.7), the amplitude ratio Λ on the upper branch of the out-of-phase mode
grows extremely fast and tends to infinity with Oh2 increasing. Undoubtedly, an infinitely
large value of the amplitude ratio Λ is physically impossible. So, to inhibit the amplitude
ratio from infinitely increasing, the transition from the out-of-phase to in-phase mode takes
place. After the transition, the amplitude ratio Λ falls back to normal with increasing Oh2.
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Oscillations of a viscous compound droplet in a viscous host

The single droplet case a = 0 is plotted in figures 3(a) and 3(c) (the solid curves) for
comparison (the eigenvalues for this case can be obtained by solving the corresponding
non-dimensional form of the characteristic equation (B22) in Appendix B). Obviously,
compared with the single droplet case, the in-phase mode of the shell possesses a wider
interval of Oh2 for oscillations, which favours applications such as mixing or mass/heat
transfer.

The influence of the radius ratio a on the oscillation behaviour of the in-phase and
out-of-phase modes is further examined in figure 5, where a ranges from 0.1 to 0.95 and
the Ohnesorge number of the shell Oh2 is fixed to a small value of 0.15. The variation of
the first four eigenvalues with a in the complex frequency plane is shown in figure 5(a).
As outlined previously, two of them belong to the in-phase mode and the other two
belong to the out-of-phase mode. For Oh2 = 0.15, the in-phase mode remains oscillatory,
regardless of the value of a. As a decreases, the angular frequency of the in-phase mode
first decreases and then increases, with the minimum located at a ≈ 0.6; meanwhile, the
damping rate of the in-phase mode increases monotonically, which suggests that a thicker
shell results in the in-phase oscillations being damped faster. As a → 0, the damping rate
of the in-phase mode approaches infinity. In this sense, we may say the eigenvalues of the
in-phase mode are absent for a single droplet. More significantly, beyond the deflection
point a ≈ 0.6, the damping rate of the in-phase mode becomes less sensitive to the shell
thickness. As a decreases from 0.95, the out-of-phase mode first maintains aperiodic
decay, for its two eigenvalues are located at the abscissa axis Im(ω) = 0. When a decreases
below a threshold value (≈0.8), the out-of-phase mode becomes oscillatory. As a further
decreases, the damping rate of the out-of-phase mode decreases and, meanwhile, the
angular frequency increases. In the limit a → 0, the two eigenvalues of the out-of-phase
mode converge to the eigenvalues of the single viscous droplet case (denoted by two filled
circles in the figure). Nevertheless, at the smallest values of a, the phase difference of the
out-of-phase mode deviates too much from 180◦ and the mode is actually out-of-phase no
more, see figure 5(b). Generally, as a decreases, the phase difference Θ of either mode
deviates more and more from 0◦ or 180◦. At a = 0.6, the deviation is already nearly 50◦.
More shockingly, at a = 0.23, Θ of the in-phase mode exceeds that of the out-of-phase
mode. The trend indicates that as the shell gets thicker, the inner and outer interfaces
gradually become uncoupled. When finally the interfaces uncouple at sufficiently small a,
they oscillate independently of each other: the shell acts like a single droplet, as if the core
did not exist, and the core acts as if it was suspended in an unbounded medium of shell
fluid (Landman 1985).

The vorticity Ω has only one non-zero component in the azimuthal direction, denoted
by Ωϕ . One can easily find that Ωϕ = −(T(r)/r)P1

l (cos θ) exp(−ωt). Obviously, Ωϕ is
proportional to T(r)/r, and T(r)/r, which is only related to the coordinate r, can be
regarded as the eigenfunction of the vorticity. The normalized T(r)/r of the in-phase and
out-of-phase modes is plotted in figure 6(a–d) as a function of r, for Oh2 = 1 and 0.001. At
the moderate Ohnesorge number Oh2 = 1, the maximum of the vorticity of either mode is
located at the inner interface r = a. Moreover, for both modes, the vorticity penetrates into
the entire fluid bulk, owing to the effect of viscosity. In contrast, at the small Ohnesorge
number Oh2 = 0.001, the viscosity is so low that the vorticity is basically confined within
the boundary layers. The velocity fields of the modes at the initial time t = 0 are illustrated
in figures 6(e) and ( f ).

For a single liquid droplet, the fundamental mode l = 2 was found to decay at the lowest
rate and dominate in shape oscillations (Chandrasekhar 1959; Prosperetti 1980b; Li et al.
2020). What about a liquid shell? Figure 7 represents the comparison between the first
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Figure 6. (a–d) Distribution of the normalized eigenfunction of the vorticity, T/r, along r, for the case of a
viscous liquid shell, l = 2, a = 0.8. The solid, dashed and dotted lines denote the absolute value, the real part
and the imaginary part of the eigenfunction, respectively. The velocity fields of (e) the out-of-phase mode and
( f ) the in-phase mode at the initial time t = 0.

four modes l = 2, 3, 4 and 5. As shown in the figure, for the higher-order modes l > 2,
there are two oscillation patterns as well: the in-phase (blue curves) and the out-of-phase
(red curves), which behave similarly to those of l = 2 but with higher damping rates.
As a result, for a liquid shell, the mode l = 2 is still dominant. The damping rates of
the higher-order modes also bifurcate into two aperiodic branches when Oh2 exceeds a
critical value. The in-phase mode of l = 2 possesses the widest interval of Oh2 for periodic
oscillations, as shown in figure 7(b). In the neighbourhood of Oh2 = 0, as Oh2 goes away
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Figure 7. Dependence of (a) the damping rate Re(ω), (b) the angular frequency |Im(ω)| and (c) the phase
difference Θ on the Ohnesorge number of the shell Oh2, for the case of a viscous liquid shell, l = 2 (solid),
3 (dotted), 4 (short dashed) and 5 (long dashed), a = 0.8. Blue curves, the in-phase mode; red curves, the
out-of-phase mode. The insets in panels (b) and (c) show the details at small values of Oh2.

from zero, the angular frequency of the in-phase mode exhibits a sharp descent for all
l values, possibly owing to the boundary-layer effects caused by viscosity. Accordingly,
the inviscid solution overestimates the frequency of oscillation at small values of Oh2
to a certain extent. In figure 7(c), the deviation of the phase difference from 0◦ or 180◦
becomes greater as l increases. At the upper aperiodic branch of the out-of-phase mode,
the transition to the in-phase mode does not occur for l > 2.

3.2. Oscillations of a viscous compound droplet in a vacuum
Setting the values of ρr3 and μr3 to zero, the eigenvalue problem (2.39) reduces to
that for the case of a viscous compound droplet in a vacuum or in a gas of negligible
hydrodynamic effects. In this case, six non-dimensional parameters are involved, i.e. the
polar wavenumber l, the Ohnesorge number of the shell Oh2, the radius ratio a, the core to
shell density ratio ρr1, the core to shell viscosity ratio μr1 and the inner to outer interfacial
tension ratio γr. The calculation results show that the fundamental mode l = 2 is the
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Figure 8. (a) Variation of the first four eigenvalues with the core to shell density ratio ρr1 in the complex
frequency plane (� and ×, the two eigenvalues of the in-phase mode; ◦ and �, the two eigenvalues of the
out-of-phase mode), (b) the damping rate Re(ω) (solid) and the angular frequency |Im(ω)| (dashed) and (c) the
amplitude ratio Λ (solid) and the phase difference Θ (dashed) of the in-phase mode versus ρr1 for the case of
a compound droplet in a vacuum, l = 2, Oh2 = 1, a = 0.8, μr1 = 0, γr = 1. In panel (a), the filled circles are
the four eigenvalues for the case of a viscous liquid shell in a vacuum and the arrows indicate the direction of
ρr1 increasing.

dominant one. The parameters Oh2 and a affect the mode l = 2 in the same way as in
the shell case. So, in the following, we focus on the effect of the other three parameters,
i.e. ρr1, μr1 and γr, on the oscillation of a compound droplet in a vacuum.

The effect of the core to shell density ratio ρr1 on the oscillation of a compound droplet
in a vacuum is shown in figures 8 and 9 for Oh2 = 1 and 0.001, respectively, where a wide
range of ρr1, i.e. ρr1 ∈ [10−2, 102], is explored. The core to shell viscosity ratio μr1 is fixed
to zero, that is, the core fluid is inviscid. In such a case, the viscosity of the shell is the
only factor responsible for the decay of oscillations. At the moderate Ohnesorge number
Oh2 = 1, the in-phase mode remains oscillatory as ρr1 varies, whereas the out-of-phase
mode remains aperiodic without oscillation, as shown in figure 8(a). As ρr1 increases, both
the damping rate and the angular frequency of the in-phase mode decrease monotonically,
see figure 8(b). The increase in ρr1 brings more energy to the damped system and, as a
result, decelerates the decay of oscillations. However, with the increase in ρr1, the droplet
becomes heavier and its oscillation is slowed down. The phase difference Θ of the in-phase
mode first decreases and then increases with ρr1, as shown in figure 8(c). At small and
moderate values of ρr1, Θ remains quite small (<5◦) and the inner and outer interfaces of
the compound droplet are well coupled. The amplitude ratio Λ, also shown in figure 8(c),
remains larger than unity as ρr1 varies, which indicates that the inner interface is a major
source of vorticity.

The case of small Ohnesorge number is another scenario. As shown in figures 9(a)
and 9(b), at Oh2 = 0.001, both the in-phase and out-of-phase modes undergo periodic
oscillations. Moreover, the damping rate of either mode is remarkably small, owing to
the low viscosity. The angular frequency of the in-phase mode is always larger than
that of the out-of-phase mode. In addition, interestingly, when ρr1 exceeds a cutoff
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Figure 9. (a) Variation of the first four eigenvalues with the core to shell density ratio ρr1 in the complex
frequency plane (� and +, the two eigenvalues of the in-phase mode; ◦ and �, the two eigenvalues of
the out-of-phase mode), (b) the damping rate Re(ω) (short dashed, in-phase; dotted, out-of-phase) and the
angular frequency |Im(ω)| (dash-dotted, in-phase; long dashed, out-of-phase) and (c) the amplitude ratio Λ

(short dashed, in-phase; dotted, out-of-phase) and the phase difference Θ (dash-dotted, in-phase; long dashed,
out-of-phase) versus ρr1, for the case of a compound droplet in a vacuum, l = 2, Oh2 = 0.001, a = 0.8,
μr1 = 0, γr = 1. In panel (a), the filled circles are the four eigenvalues for the case of a viscous liquid shell in
a vacuum and the arrows indicate the direction of ρr1 increasing.

value (approximately 35), the out-of-phase mode disappears. According to the tendency
illustrated in figure 9(c), as ρr1 approaches the cutoff value, the amplitude ratio Λ of the
out-of-phase mode ascends rapidly and tends to infinity. From a physical point of view, at
large values of ρr1, the dense core liquid carries a lot of kinetic energy, part of which is
transformed into potential energy at the inner interface and results in a large amplitude of
oscillation there. Then, the interfacial potential energy is released to sustain the vorticity
field and dissipation inside the shell. However, at small Ohnesorge numbers such as 0.001,
the effect of viscosity is confined within the boundary layers, and for the out-of-phase
mode, with the desperately small damping rate and frequency of oscillation, the potential
energy accumulated at the inner interface cannot be released in time to diminish the
large amplitude of the inner interface. Ultimately, the out-of-phase mode collapses and
disappears. The phase difference of either mode remains close to 0◦ or 180◦ within the
range of ρr1 explored, owing to the low viscosity of the system.

The effect of the core to shell viscosity ratio μr1 on the damping rate Re(ω) and the
angular frequency |Im(ω)| of the in-phase mode is shown in figure 10(a), where the
Ohnesorge number Oh2 is fixed to a moderate value 1. The out-of-phase mode is not
diagrammed for it is aperiodic. Clearly, there exists a critical value of μr1 (approximately
1.1), beyond which the in-phase mode turns aperiodic and bifurcates into two branches.
The features of these two aperiodic branches are analogous to those shown in figure 3.
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Figure 10. Influence of the core to shell viscosity ratio μr1 on the in-phase mode of a viscous compound
droplet in a vacuum, l = 2, a = 0.8, ρr1 = 1, γr = 1. (a) The damping rate Re(ω) (dotted and dashed) and the
angular frequency |Im(ω)| (dash-dotted) versus μr1, Oh2 = 1. (b) The domains in the Oh1–Oh2 plane. (c) The
normalized eigenfunction of the vorticity, T/r, along r, Oh2 = 1, μr1 = 1. Solid, the absolute value; dashed,
the real part; dotted, the imaginary part. (d) The velocity field of the in-phase mode at the initial time t = 0.

Before the bifurcation, the in-phase mode is oscillatory, with the damping rate increasing
and the angular frequency decreasing monotonically with increasing μr1. The viscosity of
the core seems to affect the in-phase mode in the same way as the viscosity of the shell.
Defining the Ohnesorge number of the core as Oh1 = μ1/

√
ρ1γ1R1 = μr1Oh2/

√
ρr1γra,

the border between oscillation and no-oscillation in the Oh1–Oh2 plane is plotted in
figure 10(b) for the in-phase mode, where the crosses denote data points and the curve
is the fitted result. The border is almost linear, except in the neighbourhood of zero Oh2.
Below, it is the domain in which the in-phase mode experiences periodic oscillations
during its decay and above it, the mode is overdamped. In figure 10(c), for the moderate
Oh2 = 1 and μr1 = 1, the vorticity penetrates deep into both the shell and the core. The
velocity field of the in-phase mode at the initial time is shown in figure 10(d).

The effect of the interfacial tension coefficient ratio γr on the in-phase mode is
illustrated in figure 11, where γr ranges from 0.2 to 5. The case of moderate viscosities
(Oh2 = 1 and μr1 = 1) is examined, in which the out-of-phase mode remains aperiodic
and hence is not plotted in the figure. As shown in figure 11(a), there exists a critical value
of γr (≈0.7), below which the in-phase mode becomes aperiodic with zero frequency of
oscillation and, moreover, it bifurcates into two branches. The damping rate of the upper
branch increases with decreasing γr, while the damping rate of the lower branch decreases.
Physically, interfacial tension serves as a restoring force that induces periodic oscillations
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Oscillations of a viscous compound droplet in a viscous host

0 1 2 3 4 5

1

2

3

4

5

6

0

1

2

3

4

5

6

R
e(

ω
)

|Im
(ω

)|

γr γr

0 1 2 3 4 5
0.9

1.0

1.1

–1

0

1

2

3

4

Λ

Θ
 (

de
g.

)

(b)(a)

Figure 11. Influence of the interfacial tension coefficient ratio γr on (a) the damping rate Re(ω) (dotted and
dashed) and the angular frequency |Im(ω)| (dash–dotted) and (b) the amplitude ratio Λ (dotted and dashed)
and the phase difference Θ (dash–dotted) of the in-phase mode of a viscous compound droplet in a vacuum,
l = 2, Oh2 = 1, a = 0.8, ρr1 = 1, μr1 = 1.

of a droplet. When γr is smaller than the critical value, interfacial tension is not strong
enough to support oscillations of the droplet any more. In experiments, to guarantee that a
viscous compound droplet undergoes periodic oscillations, the interfacial tensions need to
be sufficiently large. Beyond the critical γr, the damping rate of the in-phase mode is little
influenced by γr, but its oscillation frequency increases remarkably with γr. In figure 11(b),
both the amplitude ratio Λ and the phase difference Θ of the in-phase mode increase with
γr, which reflects the positive effect of interfacial tension on shape oscillations. Within the
range of γr explored, the phase difference remains below 3◦, which indicates that varying
γr damages little the coupling between the interfaces.

3.3. Oscillations of a viscous compound droplet immersed in a viscous host fluid
In the general case of a viscous compound droplet immersed in a viscous host fluid, there
are in total eight non-dimensional parameters. Six of them (l, Oh2, a, ρr1, μr1, γr) are
identical to those in the case of a compound droplet in a vacuum, and the other two, i.e.
the host to shell density ratio ρr3 and the host to shell viscosity ratio μr3, are related to the
properties of the host fluid. In this subsection, we mainly examine the effect of the host
fluid on the oscillation behaviour of the compound droplet by varying the value of ρr3 or
μr3. Only the results for the fundamental mode l = 2 are presented.

Setting μr3 to zero (the host fluid is inviscid), the effect of ρr3 on the oscillation of
the compound droplet is studied first. The results are represented in figures 12 and 13
for Oh2 = 1 and 0.001, respectively, where ρr3 ranges from 10−2 to 102. As shown in
figure 12(a), at the moderate Ohnesorge number Oh2 = 1, the out-of-phase mode remains
aperiodic with Im(ω) equal to zero and its damping rate is little influenced by ρr3.
Differently, within the range of ρr3 explored, the in-phase mode is always oscillatory.
The damping rate of the in-phase mode decreases monotonically with ρr3 increasing,
which indicates that the host fluid serves as an energy supply to slow down the decay
of oscillations. The oscillation frequency of the in-phase mode first increases and then
decreases as ρr3 increases; the maximum is located around ρr3 = 1, see figure 12(b).
Clearly, one of the eigenvalues of the aperiodic out-of-phase mode (the one denoted by the
symbol × in figure 12a) possesses the smallest damping rate, and therefore is dominant in
the decay of perturbations under natural conditions. In such a case, excitations of in-phase
type need to be imposed on the system at the initial time for the observation of shape
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Figure 12. (a) Variation of the first four eigenvalues with the host to shell density ratio ρr3 in the complex
frequency plane (� and +, the two eigenvalues of the in-phase mode; ◦ and ×, the two eigenvalues of the
out-of-phase mode; the arrows indicate the direction of ρr3 increasing). (b) The damping rate Re(ω) (dashed)
and the angular frequency |Im(ω)| (dotted) and (c) the amplitude ratio Λ (dashed) and the phase difference Θ

(dotted) of the in-phase mode versus ρr3, for the case of a viscous compound droplet immersed in an inviscid
host fluid, l = 2, Oh2 = 1, a = 0.8, ρr1 = 1, μr1 = 1, γr = 1, μr3 = 0.
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Figure 13. (a) Variation of the first four eigenvalues with the host to shell density ratio ρr3 in the complex
frequency plane (� and +, the two eigenvalues of the in-phase mode; ◦ and �, the two eigenvalues of the
out-of-phase mode; the arrows indicate the direction of ρr3 increasing), (b) the damping rate Re(ω) (short
dashed, in-phase; dotted, out-of-phase) and the angular frequency |Im(ω)| (dashed–dotted, in-phase; long
dashed, out-of-phase) and (c) the amplitude ratio Λ (short dashed, in-phase; dotted, out-of-phase) and the
phase difference Θ (dashed–dotted, in-phase; long dashed, out-of-phase) versus ρr3, for the case of a viscous
compound droplet immersed in an inviscid host fluid, l = 2, Oh2 = 0.001, a = 0.8, ρr1 = 1, μr1 = 1, γr = 1,
μr3 = 0.

oscillations in experiments. In figure 12(c), the phase difference Θ of the in-phase mode
increases with ρr3. When ρr3 is small or moderate (ρr3 < 10), Θ remains tolerably below
5◦. However, at larger ρr3, Θ may increase to considerably large values so that the in-phase
mode cannot even be said to be approximately in phase. Within the range of ρr3 explored,
the amplitude ratio Λ of the in-phase mode basically remains larger than unity, which
indicates that the inner interface is the major source of vorticity. However, the tendency
suggests that at sufficiently large values of ρr3 (i.e. ρr3 ∼ O(102) or even larger, which
may go beyond the physical realistic), Λ drops below unity and the much denser host fluid
becomes an important energy supply.

At the small Ohnesorge number Oh2 = 0.001, both the in-phase and the out-of-phase
modes oscillate periodically, and moreover, they are fairly long-lived for their small
damping rates, as shown in figure 13. The damping rate of the in-phase mode increases
with ρr3, a trend different from for the moderate value Oh2 = 1, as shown in figure 12.
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Oscillations of a viscous compound droplet in a viscous host

The angular frequency of either mode is decreased by ρr3. When ρr3 exceeds a cutoff
value of approximately 66, the out-of-phase mode disappears, as in the case of large ρr1
illustrated in figure 9 and the mechanism behind it is essentially the same. This time, the
dense host fluid transfers too much energy to the outer interface and, as a consequence,
the amplitude of the outer interface becomes extremely large and the amplitude ratio Λ

becomes extremely small (tends to zero), as shown in figure 13(c); however, the viscosity
of the shell fluid is so low that the potential energy at the outer interface fails to be
released in time and the amplitude of the outer interface cannot be lowered to a normal
level. In one word, this phenomenon, i.e. the disappearance of the out-of-phase mode
at large core-to-shell or host-to-shell density ratios, may be attributed to the failure of
the slightly viscous shell in releasing interfacial energy. Anyway, there is no need to pay
much attention to this phenomenon, for it occurs only at very large density contrasts that
seem to be physically unrealistic. The amplitude ratio of the in-phase mode also behaves
unusually, which increases continuously and becomes remarkably large when ρr3 goes
beyond 10. However, note that at large values of ρr3, the in-phase mode decays faster than
the out-of-phase mode and the latter is the dominant one. At small values of the Ohnesorge
numbers Oh1 and Oh2, increasing ρr3 seems to favour the out-of-phase mode (before it
vanishes) in shape oscillations of the compound droplet. Owing to small viscosities of the
fluids, the phase difference of either mode remains close to 0 ◦ or 180◦, regardless of the
value of ρr3.

For an unbounded viscous fluid field, there commonly exists a continuous spectrum
(Prosperetti 1980b; Schmid & Henningson 2001). In this problem, the continuous
spectrum is a vertical straight line located at the positive semi-axis of Re(ω), as shown in
figure 14(a). Note that it is discretized because of the truncation of the host fluid domain
when applying the spectral method. Because all the modes belonging to the continuous
spectrum are aperiodic and decay without oscillation, it is of no interest in this study.
Well, one thing about this aperiodic continuous spectrum is worthy to be mentioned. In
the calculation, it is found that the eigenvalues on the continuous spectrum which are
smaller than some critical value all belong to the out-of-phase mode, and the eigenvalues
that are larger than this critical value belong to the in-phase mode, similar to the discrete
spectrum, as illustrated in figure 2 for the shell case.

The two discrete eigenvalues with non-zero imaginary parts, denoted by the filled
squares in figure 14(a), belong to the in-phase mode. In the case of moderate viscosities
(Oh2 = 1, μr1 = 1, μr3 = 1) considered, the out-of-phase mode is aperiodic with zero
angular frequency. The variation of the two discrete eigenvalues with the host to shell
viscosity ratio μr3 is illustrated in figure 14(b), where μr3 ranges from 0 to 10. Apparently,
both the damping rate Re(ω) and the angular frequency |Im(ω)| of the in-phase mode
are decreased by increasing μr3. The trend can also be seen in figure 14(c). The viscosity
of the host fluid tends to slow down the decay of oscillations, different from the effect
of the viscosity of the core or the shell illustrated in figures 3 or 10. In practice, the
viscosity of the host fluid has a dual effect on the oscillation of the system. On one
hand, it causes energy dissipation and tends to enhance the decay of perturbations; on
the other hand, it prompts the diffusion of vorticity and tends to suppress the decay of
perturbations (Prosperetti 1980b; Li et al. 2020). For the values of the non-dimensional
parameters considered in figure 14, it appears that the second mechanism overwhelms the
first. Nevertheless, it does not mean that a higher viscosity of the host fluid will result in the
compound droplet oscillating better, for the frequency of oscillation can be significantly
diminished by μr3. As shown in figure 14(c), when μr3 exceeds 2, the angular frequency
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Figure 14. Influence of the host to shell viscosity ratio μr3 on the oscillation of a viscous compound droplet
immersed in a viscous host fluid, l = 2, Oh2 = 1, a = 0.8, ρr1 = 1, μr1 = 1, γr = 1, ρr3 = 1. (a) Spectrum
of eigenvalues, μr3 = 1. (b) Variation of the eigenvalues with μr3 in the complex frequency plane, where the
arrows indicate the direction of μr3 increasing. (c) The damping rate Re(ω) (◦) and the angular frequency
|Im(ω)| (×) and (d) the amplitude ratio Λ (�) and the phase difference Θ (+) of the in-phase mode versus
μr3.

|Im(ω)| decreases to small values very close to zero and basically the in-phase mode can
be regarded as an overdamped mode.

Define the Ohnesorge number of the host fluid as Oh3 = μ3/
√

ρ3γ2R2 =
μr3Oh2/

√
ρr3, and the dual effect of the viscosity of the host fluid is further demonstrated

in figure 15, where the variation of the damping rate Re(ω) and the angular frequency
|Im(ω)| of the in-phase mode with Oh3 is diagrammed for several values of the Ohnesorge
number of the shell Oh2. As shown in figure 15(a), at different values of Oh2, the viscosity
of the host fluid influences the damping rate of the in-phase mode in different ways. At
relatively large values of Oh2 such as 1 and 1.5, Re(ω) decreases monotonically with
Oh3 increasing, which suggests that when the viscosity of the shell is sufficiently high,
the suppression effect of the viscosity of the host on the decay of perturbations is more
pronounced. In contrast, at relatively small values of Oh2 such as 0.1, 0.2 and 0.5, as Oh3
increases, Re(ω) first increases and then decreases. That is, when the viscosities of both
the shell and the host are low, the viscosity of the host tends to accelerate the decay of
oscillations; differently, when the viscosity of the host itself is sufficiently high, its effect
of promoting vorticity diffusion inside fluid bulk is more pronounced and, as a result, the
decay of perturbations is slowed down. In addition to the Ohnesorge number of the shell
Oh2, the other non-dimensional parameters may influence the role the viscosity of the host
plays as well, which are not examined here.
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Figure 15. Variation of (a) the damping rate Re(ω) and (b) the angular frequency |Im(ω)| of the in-phase
mode with the Ohnesorge number of the host fluid Oh3 for various values of the Ohnesorge number of the shell
fluid Oh2. The case of a viscous compound droplet immersed in a viscous host fluid, l = 2, a = 0.8, ρr1 = 1,
μr1 = 1, γr = 1, ρr3 = 1.

As a matter of fact, in the presence of the unbounded viscous host fluid, the viscosity of
the shell fluid also exhibits a duel effect on shape oscillations of the compound droplet. As
outlined previously, when the host fluid is absent, increasing the viscosity of the shell
fluid only leads to the increase in the damping rate of the in-phase mode within the
interval of Oh2 for periodic oscillations. The presence of the host fluid may trigger the
second effect of the viscosity of the shell, that is, suppressing the decay of oscillations
by transporting energy. As shown in figure 15(a), at moderate or relatively large values of
Oh3, say Oh3 = 1, the damping rate Re(ω) of the in-phase mode decreases monotonically
as Oh2 increases. Differently, when the viscosity of the host is low, say Oh3 = 0.1, the
damping rate increases first and then decreases with increasing Oh2. The dual effect of
the viscosity of the shell can be more clearly seen in figure 17(a) in the next subsection.
Note that, in the presence of a viscous host fluid, the damping rate bifurcates no more.
The in-phase mode maintains periodic oscillations no matter how large Oh2 is. Moreover,
the in-phase mode remains oscillatory for all values of Oh3. Nevertheless, as shown in
figures 15(b) and 17(b), as Oh2 or Oh3 increases from zero, the frequency of oscillation
decreases rapidly and almost becomes zero at finite values of Oh2 or Oh3, for which the
in-phase mode is almost aperiodic.

For the case considered in figure 14, the amplitude ratio Λ increases with μr3, while the
phase difference Θ first increases and then decreases. Note that in figures 14(c) and 14(d),
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Figure 16. (a) The eigenfunction of the vorticity, T/r, along r (solid, the absolute value; dashed, the real part;
dotted, the imaginary part) and (b) the velocity field of the in-phase mode at the initial time t = 0, for the case
of a viscous compound droplet immersed in a viscous host fluid, l = 2, Oh2 = 1, a = 0.8, ρr1 = 1, μr1 = 1,
γr = 1, ρr3 = 1, μr3 = 1.

Re(ω), |Im(ω)|, Λ and Θ all appear intermittently at large values of μr3. In the calculation,
with the removal of the continuous spectrum which is aperiodic with Im(ω) equal to
zero, any eigenvalues whose imaginary parts are smaller than 0.001 are filtered off, which
includes those of the discrete spectrum (when |Im(ω)| < 0.001, the initial disturbance
is considered to be overdamped). In addition, in figure 14(d), at large values of μr3, the
phase difference Θ unusually forms a queue of peaks. The peaks appear periodically and
regularly, and we are not sure if they are caused by numerical errors. Anyway, they only
appear when the frequency of oscillation drops down to nearly zero, of little importance
to shape oscillations of the system.

The eigenfunction of the vorticity, T/r, and the velocity field of the in-phase mode at
the initial time are illustrated in figures 16(a) and 16(b), respectively. At the moderate
viscosity of the host, the vorticity penetrates quite deep into the fluid bulk. The flow field
is analogous to that of a quadrupole, because the polar wavenumber l is equal to 2.

3.4. Thin shell approximation
The thin shell approximation of the three-fluid system, in which the thickness of the shell is
much smaller than the outer radius of the shell, i.e. ε = 1 − a � 1, is of particular interest
in some processing techniques such as coating and encapsulation and also in modelling
biological cells with membranes. The characteristic equation for this limiting case is
derived in Appendix D and the supplementary material. It is found that the in-phase mode
is dominant. The inner and outer interfaces of the compound droplet oscillate perfectly in
phase with equal amplitude. Moreover, the hydrodynamic effect of the shell is neglected to
the leading order, and the system behaves like a single droplet consisting only of the core
liquid but bearing capillary pressures from both the inner and outer interfaces, as found in
the case of overdamped compound droplets of highly viscous fluids (Landman 1985). In
the study of the thin annular limiting case of a cylindrical compound jet, it was also found
that the stretching (in-phase) mode is dominant and the compound jet behaves like a single
jet with tension equal to the sum of the two interfacial tensions (Chauhan et al. 2000). With
an extra interfacial tension, a liquid droplet encapsulated by a thin liquid shell oscillates
at a higher frequency and a smaller damping rate compared with the case of no shell,
which is an advantage in mixing, mass/heat transfer and other potential applications. The
characteristic equation for the thin shell limiting case is obtained by setting the second
determinant in (D1) equal to zero. Here we write it in a more compact form following
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Figure 17. Comparison of the three-fluid case with the thin shell approximation. (a) The damping rate Re(ω),
(b) the angular frequency |Im(ω)|, (c) the amplitude ratio Λ and (d) the phase difference Θ versus the
Ohnesorge number of the shell Oh2, for distinct values of the radius ratio a (the dotted curves), where l = 2,
ρr1 = 1, μr1 = 1, γr = 1, ρr3 = 1, μr3 = 1. The arrows indicate the direction of a increasing. The solid curves
in panels (a) and (b) are the results of the thin shell approximation a → 1.

Prosperetti (1980b),

ω2
0

ω2

= −1 +

[
(2 l + 1)P1 + 2l(l + 2)

(
μr3

μr1
− 1

)][
(2l + 1)

μr3

μr1
Q3 − 2(l − 1)(l + 1)

(
μr3

μr1
− 1

)]
z2

1

(
ρr3

ρr1
l + l + 1

)[
P1 + μr3

μr1
Q3 + 2

(
μr3

μr1
− 1

)] ,

(3.1)

where ω0 is the frequency of oscillation in the inviscid case,

ω2
0 = (γr + 1)(l − 1)l(l + 1)(l + 2)

μr3

μr1
l + l + 1

, (3.2)

z1 =
√

ρr1ω

μr1Oh2
, z3 =

√
ρr3ω

μr3Oh2
, (3.3a,b)
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P1 = z1
Jl+1/2(z1)

Jl+3/2(z1)
, Q3 = z3

H(1)
l+1/2(z3)

H(1)
l−1/2(z3)

, (3.4a,b)

where J(·) and H(1)(·) are the Bessel function of the first kind and the Hankel function of
the first kind, respectively, and the corresponding subscripts denote their orders.

The accuracy of the thin shell approximation is examined in figure 17, where the dotted
curves are the results for the three-fluid system obtained with the aid of the spectral method
and the solid curves are the results of the thin shell approximation obtained by solving
the characteristic equation (3.1). As shown in figures 17(a) and 17(b), as the radius ratio
a increases from 0.7 to 0.99, both the damping rate Re(ω) and the angular frequency
|Im(ω)| of the in-phase mode of the three-fluid system approach the values estimated by
the thin shell approximation. Moreover, as a increases, the amplitude ratio Λ approaches
unity, see figure 17(c), which indicates that the inner and outer interfaces possess almost
equal amplitudes at large values of a; meanwhile, the phase difference Θ approaches zero,
see figure 17(d), which indicates that with the decrease in the thickness of the shell, the
interfaces oscillate more and more in phase, consistent with the prediction of the thin
shell approximation. Generally, the thin shell approximation well predicts the oscillation
characteristics of the three-fluid system when a is near 1, although it may underestimate the
damping rate and the frequency of oscillation owing to the neglect of the hydrodynamic
effect of the shell fluid.

4. Conclusion

In this paper, the small-amplitude shape oscillation of a viscous compound droplet
suspended in a viscous host fluid is investigated. A generalized eigenvalue equation is
built, and the damping rate, the angular frequency and the other quantities characterizing
the oscillation behaviour of the droplet are solved numerically with the aid of the spectral
method. The effects of the relevant non-dimensional parameters on shape oscillations of
the droplet are examined successively by considering three cases, i.e. a viscous shell in
a vacuum, a viscous compound droplet in a vacuum and a viscous compound droplet
suspended in a viscous host fluid.

It is found that the fundamental mode l = 2 is dominant in shape oscillations of
the compound droplet. For l = 2 (also for higher-order modes l > 2), there exist two
oscillatory modes, i.e. the in-phase mode and the out-of-phase mode. The in-phase mode
dominates oscillations, except when the viscosities of the fluids are very small. Owing to
viscosity, the inner and outer interfaces of the compound droplet do not oscillate strictly
in the same direction in the in-phase mode or oscillate in totally opposite directions in the
out-of-phase mode. Furthermore, the coupling between the interfaces is greatly influenced
by the thickness of the shell. Generally, a thicker shell leads to the phase difference
between the interfaces deviating more from 0◦ or 180◦. In contrast, in the thin shell limit,
the interfaces oscillate nicely in phase, the hydrodynamic effect of the shell is of secondary
importance and the system behaves like a single droplet of the core fluid immersed in the
host fluid but with the tensions of both interfaces.

In the absence of the host fluid, the spectrum in the complex frequency plane is a discrete
one. Normally, two of the eigenvalues belong to the out-of-phase mode and the rest belong
to the in-phase mode. We focus on the four eigenvalues with the smallest real parts, which
decay the slowest and therefore determine the oscillation behaviour of the compound
droplet. Among these four eigenvalues, two are of the in-phase mode and the other two
of the out-of-phase mode (at high viscosities, the transition from the out-of-phase to the

931 A33-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.981


Oscillations of a viscous compound droplet in a viscous host

in-phase mode may occur on one of the eigenvalues). For either mode, in the absence of
a viscous host fluid, the increase in the viscosity of the core or the shell fluid leads to the
increase in the damping rate as well as the decrease in the oscillation frequency. When the
viscosity increases to a critical value, the transition of a mode from oscillatory to aperiodic
decay takes place, and beyond the critical viscosity, the damping rate of a mode bifurcates
into an upper branch that decays rapidly and a lower branch that exhibits a feature of the
creeping motion of strongly overdamped oscillators. The border between oscillation and
no-oscillation is fitted in the plane of the Ohnesorge numbers of the core and the shell,
Oh1 and Oh2, for the in-phase mode.

In the presence of the unbounded viscous host fluid, the situation is much more
complicated. First, in addition to the discrete spectrum, there exists a continuous spectrum,
which occupies the entire non-negative real axis in the complex frequency plane. The
eigenvalues on the continuous spectrum belong to either the out-of-phase or the in-phase
mode, depending on the eigenvalues being smaller or larger than some critical value. The
continuous spectrum corresponds to aperiodic modes, which is of little interest in shape
oscillations of the droplet. Second, owing to the viscosity of the host fluid, there exists
no such critical value of the Ohnesorge number Oh1 or Oh2 beyond which the transition
of the modes from oscillatory to aperiodic decay occurs. The damping rates of the modes
bifurcate no more. With the increase in the viscosity of the shell, the oscillation frequency
of the mode decreases rapidly but remains larger than zero. When the Ohnesorge number
of the host fluid Oh3 approaches infinity, the oscillation frequency approaches zero.

The viscosity of the host fluid is found to have a dual effect on the damping rate of the
in-phase mode. When the viscosity of the host is small, it mainly causes the dissipation of
energy and accelerates the decay of oscillations. In contrast, when it is sufficiently large,
its second effect becomes more significant, that is, enhances energy transport and vorticity
penetration into fluid bulk, and as a result, the decay of oscillations is slowed. It is also
found that the viscosity of the host only exhibits this dual effect when the viscosity of
the shell is low. At moderate or high viscosities of the shell, the viscosity of the host just
decreases the damping rate of the mode. Notably, in the presence of the viscous host fluid,
the viscosity of the shell fluid may also exhibit a similar dual effect on the damping rate
of the in-phase mode.

The core-to-shell and host-to-shell density ratios have a great effect on the oscillation
characteristics of the compound droplet. When the viscosity of the droplet is moderate or
high, only the in-phase mode is oscillatory, and increasing the core-to-shell or host-to-shell
density ratio generally leads to the decrease in both the damping rate and the oscillation
frequency of the in-phase mode. When the viscosity of the droplet is very low, both
the in-phase and out-of-phase modes are oscillatory and the density ratios affect them
in different ways. Particularly, increasing the density of the core or host fluid helps the
out-of-phase mode to be dominant, but sufficiently large densities of the core or the host
may lead to the disappearance of this mode.

Finally, to make the oscillation of the compound droplet possible, the interfacial tension
of the inner interface cannot be too small. It is found that decreasing the interfacial tension
of the inner interface leads to the decrease in the oscillation frequency of the in-phase
mode. Moreover, when the tension is decreased below a critical value, the in-phase mode
becomes aperiodic. If naturally an aperiodic mode dominates the decay of perturbations,
as in some cases considered in this study, excitations need to be specifically imposed on
the compound droplet to observe shape oscillations.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.981.

931 A33-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.981
https://doi.org/10.1017/jfm.2021.981


F. Li, X.-Y. Yin and X.-Z. Yin

Acknowledgements. We thank all the reviewers and the editor for their constructive comments and
suggestions.

Funding. This work was supported by the National Natural Science Foundation of China (grant numbers
11772328, 11621202).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Fang Li https://orcid.org/0000-0001-9825-0101.

Appendix A. About the vector B

Like the other quantities, the vector B in (2.14) can be decomposed as

Bi = Si(r)erPm
l (cos θ) exp(jmϕ − ωt), i = 1, 2, 3, (A1)

where S(r) is the initial amplitude of B.
Substituting the decomposition (A1) into (2.14) and then (2.14) into (2.13), we get the

governing equation for S(r),

d2Si

dr2 − l(l + 1)

r2 Si + ρiω

μi
Si = 0, i = 1, 2, 3. (A2)

Considering the boundedness of S(r) at the origin r = 0 and at infinity, the solution to
(A2) is

S1 = C1r1/2Jl+1/2(ϑ1r), (A3)

S2 = C2r1/2Jl+1/2(ϑ2r) + C3r1/2Yl+1/2(ϑ2r), (A4)

S3 = C4r1/2H(1)
l+1/2(ϑ3r), if Im(ω) /= 0, (A5a)

S3 = C5r1/2Jl+1/2(ϑ3r) + C6r1/2Yl+1/2(ϑ3r), if Im(ω) = 0, (A5b)

where

ϑi =
√

ρiω

μi
, i = 1, 2, 3, (A6)

where Jl+1/2(·) and Yl+1/2(·) are, respectively, the Bessel functions of the first and second
kinds, H(1)

l+1/2(·) is the Hankel function of the first kind with order l + 1
2 , and C1–C6

are the coefficients to be determined by the boundary conditions (2.3a,b)–(2.10). Finally,
one finds that the eigenvalue ω can be any real, non-negative number, which forms a
continuous spectrum occupying the entire positive real semi-axis in the complex frequency
plane. Physically, the continuous spectrum corresponds to purely rotational waves or shear
waves (Miller & Scriven 1968; Prosperetti 1980b). Waves of this type cause no interface
displacement and are irrelevant to shape oscillations of the droplet. Moreover, owing to
the lack of restoring force, these waves are always damped without oscillation.

Appendix B. The characteristic equation for small-amplitude shape oscillations of a
viscous compound droplet suspended in a viscous host fluid
Following the method of Chandrasekhar (1959), the characteristic equation for
small-amplitude shape oscillations of this three-fluid system is derived, which can be
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expressed in the form of a 10 × 10 matrix,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 ω

0 1 0 Rl−1
1 R−(l+2)

1 R−3/2
1 κ1 R−3/2

1 υ1 0 0 0

0 0 0 Rl−1
2 R−(l+2)

2 R−3/2
2 κ2 R−3/2

2 υ2 1 0 0

0 l + 1 X6 (l + 1)Rl−1
1 −lR−(l+2)

1 R−3/2
1 H1 R−3/2

1 Π1 0 0 0

0 0 0 −(l + 1)Rl−1
2 lR−(l+2)

2 −R−3/2
2 H2 −R−3/2

2 Π2 l Z6 0

0 X5 X3 Ȳ5 Ȳ7 μ2R−3/2
1 H3 μ2R−3/2

1 Π3 0 0 0

0 0 0 Ȳ6 Ȳ8 μ2R−3/2
2 H4 μ2R−3/2

2 Π4 Z5 Z2 0

X1 −X2 X4 −Ȳ1 Ȳ3 2μ2R−7/2
1 H5 2μ2R−7/2

1 Π5 0 0 0

0 0 0 Ȳ2 −Ȳ4 −2μ2R−7/2
2 H6 −2μ2R−7/2

2 Π6 −Z1 Z3 Z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(B1)

where

Υ1 = Jl+3/2(ϑ1R1)

Jl+1/2(ϑ1R1)
, Υ2 =

H(1)
l+3/2(ϑ3R2)

H(1)
l+1/2(ϑ3R2)

, (B2a,b)

H5 = (l − 1)κ1 − ϑ2R1κ3, H6 = (l − 1)κ2 − ϑ2R2κ4, (B3a,b)

Π5 = (l − 1)υ1 − ϑ2R1υ3, Π6 = (l − 1)υ2 − ϑ2R2υ4, (B4a,b)

κ1 = Jl+1/2(ϑ2R1), κ2 = Jl+1/2(ϑ2R2), κ3 = Jl+3/2(ϑ2R1), κ4 = Jl+3/2(ϑ2R2),
(B5a–d)

υ1 = Yl+1/2(ϑ2R1), υ2 = Yl+1/2(ϑ2R2), υ3 = Yl+3/2(ϑ2R1), υ4 = Yl+3/2(ϑ2R2),
(B6a–d)

H1 = (l + 1)κ1 − ϑ2R1κ3, H2 = (l + 1)κ2 − ϑ2R2κ4, (B7a,b)

H3 = (2l2 − 2 − ϑ2
2 R2

1)κ1 + 2ϑ2R1κ3, H4 = (2l2 − 2 − ϑ2
2 R2

2)κ2 + 2ϑ2R2κ4,
(B8a,b)

Π1 = (l + 1)υ1 − ϑ2R1υ3, Π2 = (l + 1)υ2 − ϑ2R2υ4, (B9a,b)

Π3 = (2l2 − 2 − ϑ2
2 R2

1)υ1 + 2ϑ2R1υ3, Π4 = (2l2 − 2 − ϑ2
2 R2

2)υ2 + 2ϑ2R2υ4,
(B10a,b)

X1 = γ1(l − 1)(l + 2)

R3
1

, X2 = ρ1ω

l
− 2μ1(l − 1)

R2
1

, (B11a,b)

X3 = μ1(−ϑ2
1 R2

1 + 2ϑ1R1Υ1), X4 = ρ1ω

l
− 2μ1

R2
1

(ϑ1R1Υ1), (B12a,b)

X5 = 2μ1(l2 − 1), X6 = −ϑ1R1Υ1, (B13a,b)

Ȳ1 =
[

ρ2ω

l
− 2μ2(l − 1)

R2
1

]
Rl−1

1 , Ȳ2 =
[

ρ2ω

l
− 2μ2(l − 1)

R2
2

]
Rl−1

2 , (B14a,b)
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Ȳ3 =
[

ρ2ω

l + 1
− 2μ2(l + 2)

R2
1

]
R−(l+2)

1 , Ȳ4 =
[

ρ2ω

l + 1
− 2μ2(l + 2)

R2
2

]
R−(l+2)

2 ,

(B15a,b)

Ȳ5 = 2μ2(l2 − 1)Rl−1
1 , Ȳ6 = 2μ2(l2 − 1)Rl−1

2 , (B16a,b)

Ȳ7 = 2μ2l(l + 2)R−(l+2)
1 , Ȳ8 = 2μ2l(l + 2)R−(l+2)

2 , (B17a,b)

Z1 = ρ3ω

l + 1
− 2μ3(l + 2)

R2
2

, Z2 = μ3

[
−2(2l + 1) − ϑ2

3 R2
2 + 2ϑ3R2Υ2

]
, (B18a,b)

Z3 = ρ3ω

l + 1
− 2μ3

R2
2

(2l + 1 − ϑ3R2Υ2), Z4 = γ2(l − 1)(l + 2)

R3
2

, (B19a,b)

Z5 = 2μ3l(l + 2), Z6 = −(2l + 1 − ϑ3R2Υ2), (B20a,b)

and ϑi is given in (A6).
Following the method of Miller & Scriven (1968) and introducing the vorticity instead of

the scalar defining function of the velocity, Lyell & Wang (1986) derived the characteristic
equation in the form of a 10 × 10 matrix as well. Our derivation is different, but the
resulting characteristic equation (B1) is equivalent to that obtained by Lyell & Wang
(1986).

Several limiting cases can be obtained directly from (B1).
Case 1: a viscous liquid droplet in a vacuum.
Suppose that only the core fluid exists, and (B1) reduces to the characteristic equation

for a single viscous liquid droplet in a vacuum:∣∣∣∣∣∣
ω 1 0
0 X5 X3

X1 −X2 X4

∣∣∣∣∣∣ = 0. (B21)

After some straightforward manipulations, (B21) turns into

ω2
01

ω2 = 2(l2 − 1)

ϑ2
1 R2

1 − 2ϑ1R1Υ1
− 1 + 2l(l − 1)

ϑ2
1 R2

1

[
1 − 2(l + 1)Υ1

ϑ1R1 − 2Υ1

]
, (B22)

where ω01 is the frequency of oscillation in the inviscid case,

ω2
01 = γ1l(l − 1)(l + 2)

ρ1R3
1

. (B23)

The characteristic equation (B22) is identical in form to that obtained by Chandrasekhar
(1959) and Reid (1960).

Case 2: a gas bubble in a viscous host liquid.
In this case, we assume that the core and shell fluids are a gas of negligible

hydrodynamic effects. Hence (B1) reduces to∣∣∣∣∣∣
1 0 ω

Z5 Z2 0
−Z1 Z3 Z4

∣∣∣∣∣∣ = 0. (B24)

After some manipulations, (B24) becomes

ω2
03

ω2 = 2(l + 2)

ϑ2
3 R2

2

(2l + 1)ϑ2
3 R2

2 − 2(l − 1)(l + 1)(2l + 1 − ϑ3R2Υ2)

2(2l + 1) − 2ϑ3R2Υ2 + ϑ2
3 R2

2
− 1, (B25)
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where ω03 is the frequency of oscillation in the inviscid case,

ω2
03 = γ2(l − 1)(l + 1)(l + 2)

ρ3R3
2

. (B26)

The expression (B25) accords with the characteristic equation presented by Miller &
Scriven (1968).

Case 3: a viscous droplet suspended in a viscous host liquid.
Suppose that the shell is the same fluid with the core (ρ1 = ρ2, μ1 = μ2) and remove

the inner interface (γ1 = 0). Thus (B1) reduces to the following characteristic equation for
a viscous droplet in a viscous host liquid,∣∣∣∣∣∣∣∣∣

ω 1 0 0 0
0 1 0 1 0
0 l + 1 X6 −l −Z6
0 X5 X3 Z5 Z2

X1 −X2 X4 Z1 −Z3

∣∣∣∣∣∣∣∣∣ = 0. (B27)

Note that all R1 values in (B27) should be replaced by R2. The presentation in the form
of a 5 × 5 matrix in (B27) is similar to and also effectively equivalent to the characteristic
equation given by Miller & Scriven (1968).

In addition, (B27) can be reduced to the following form of a 3 × 3 matrix:∣∣∣∣∣∣∣
X6 Z6 2l + 1
X3 −Z2 X5 − Z5

−X4 −Z3 X2 + Z1 + X1

ω

∣∣∣∣∣∣∣ = 0, (B28)

where, again, all R1 values should be replaced by R2. This equation is identical to that
given by Basaran et al. (1989).

Appendix C. Checking the eigenvalues with the aid of the characteristic equation
Using the scales chosen in § 2, the characteristic equation (B1) is non-dimensionalized as
follows:

D3

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 ω

0 1 0 al−1 a−(l+2) a−3/2κ1 a−3/2υ1 0 0 0
0 0 0 1 1 κ2 υ2 1 0 0
0 l + 1 X6 (l + 1)al−1 −la−(l+2) a−3/2H1 a−3/2Π1 0 0 0
0 0 0 −(l + 1) l −H2 −Π2 l Z6 0
0 X5 X3 Ȳ5 Ȳ7 a−3/2H3 a−3/2Π3 0 0 0
0 0 0 Ȳ6 Ȳ8 H4 Π4 Z5 Z2 0

X1 −X2 X4 −Ȳ1 Ȳ3 2Oh2a−7/2H5 2Oh2a−7/2Π5 0 0 0
0 0 0 Ȳ2 −Ȳ4 −2Oh2H6 −2Oh2Π6 −Z1 Z3 Z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(C1)
where

z1 =
√

ρr1ω

μr1Oh2
, z2 =

√
ω

Oh2
, z3 =

√
ρr3ω

μr3Oh2
, (C2a–c)

Υ1 = Jl+3/2(z1a)

Jl+1/2(z1a)
, Υ2 =

H(1)
l+3/2(z3)

H(1)
l+1/2(z3)

, (C3a,b)
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κ1 = Jl+1/2(z2a), κ2 = Jl+1/2(z2), κ3 = Jl+3/2(z2a), κ4 = Jl+3/2(z2), (C4a–d)

υ1 = Yl+1/2(z2a), υ2 = Yl+1/2(z2), υ3 = Yl+3/2(z2a), υ4 = Yl+3/2(z2),
(C5a–d)

H1 = (l + 1)κ1 − z2aκ3, H2 = (l + 1)κ2 − z2κ4, (C6a,b)

H3 = (2l2 − 2 − z2
2a2)κ1 + 2z2aκ3, H4 = (2l2 − 2 − z2

2)κ2 + 2z2κ4, (C7a,b)

H5 = (l − 1)κ1 − z2aκ3, H6 = (l − 1)κ2 − z2κ4, (C8a,b)

Π1 = (l + 1)υ1 − z2aυ3, Π2 = (l + 1)υ2 − z2υ4, (C9a,b)

Π3 = (2l2 − 2 − z2
2a2)υ1 + 2z2aυ3, Π4 = (2l2 − 2 − z2

2)υ2 + 2z2υ4, (C10a,b)

Π5 = (l − 1)υ1 − z2aυ3, Π6 = (l − 1)υ2 − z2υ4, (C11a,b)

X1 = γr(l − 1)(l + 2)

a3 , X2 = ρr1ω

l
− 2μr1Oh2(l − 1)

a2 , (C12a,b)

X3 = μr1(−z2
1a2 + 2z1aΥ1), X4 = ρr1ω

l
− 2μr1Oh2

a2 (z1aΥ1), (C13a,b)

X5 = 2μr1(l2 − 1), X6 = −z1aΥ1, (C14a,b)

Ȳ1 =
[
ω

l
− 2Oh2(l − 1)

a2

]
al−1, Ȳ2 = ω

l
− 2Oh2(l − 1), (C15a,b)

Ȳ3 =
[

ω

l + 1
− 2Oh2(l + 2)

a2

]
a−(l+2), Ȳ4 = ω

l + 1
− 2Oh2(l + 2), (C16a,b)

Ȳ5 = 2(l2 − 1)al−1, Ȳ6 = 2(l2 − 1), (C17a,b)

Ȳ7 = 2l(l + 2)a−(l+2), Ȳ8 = 2l(l + 2), (C18a,b)

Z1 = ρr3ω

l + 1
− 2μr3Oh2(l + 2), Z2 = μr3

[
−2(2l + 1) − z2

3 + 2z3Υ2

]
, (C19a,b)

Z3 = ρr3ω

l + 1
− 2μr3Oh2(2l + 1 − z3Υ2), Z4 = (l − 1)(l + 2), (C20a,b)

Z5 = 2μr3l(l + 2), Z6 = −(2l + 1 − z3Υ2). (C21a,b)

Without loss of clarity, the same symbols are used to denote the corresponding
non-dimensional terms in (C1). Replacing the element in row 4 and column 10 of the
matrix in (C1) with −ω and eliminating columns 8 and 9 and rows 2 and 6, (C1) reduces
to the characteristic equation for the case of a viscous compound droplet suspended in a
vacuum or in a gas of negligible hydrodynamic effects; further, replacing the element in
row 3 and column 1 with −ω and deleting columns 2 and 3 and rows 1 and 5, (C1) reduces
to the characteristic equation for the case of a viscous liquid shell with the core and the
host being a vacuum or a gas of negligible hydrodynamic effects.

The transcendental equation (C1) is cumbersome. Instead of solving it to get the
eigenvalues, we use it as a tool to check the exactness of the eigenvalues obtained with the
aid of the spectral method. The strategy is as follows: We substitute the eigenvalues into
the determinant D3 in (C1) and calculate the corresponding absolute values of D3, denoted
by |D3|. If |D3| = 0, the eigenvalues are accurate. However, owing to the numerical errors
in the use of the spectral method, the values of |D3| are not exactly zero but remain quite
small, as shown in figure 18. In such a case, the eigenvalues obtained by the spectral
method are considered to be acceptable in accuracy.
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Figure 18. The absolute value of D3, i.e. |D3|, obtained by substituting the eigenvalues in figure 14(c) into the
determinant D3 in (C1), versus the host to shell viscosity ratio μr3.

Appendix D. Derivation of the characteristic equation for the thin shell limiting case

In the thin shell limit, the radius ratio a = 1 − ε with ε � 1. To derive the characteristic
equation for this limiting case, we expand the non-dimensional characteristic equation
(C1) in a Taylor series in the small parameter ε. The leading order O(1) yields

∣∣∣∣ω 0
0 ω

∣∣∣∣ ×

∣∣∣∣∣∣∣
−Ξ1 2l + 1 Z6

μr1(−z2
1 + 2Ξ1) X5 − Z5 −Z2

−ρr1ω

l
+ 2μr1Oh2Ξ1 X2 + Z1 + (γr + 1)

(l − 1)(l + 2)

ω
−Z3

∣∣∣∣∣∣∣ = 0,

(D1)

where

Ξ1 = z1
Jl+3/2(z1)

Jl+1/2(z1)
. (D2)

Apparently, the solution to the first determinant in (D1) being equal to zero is just zero,
against the hypothesis Im(ω) /= 0. However, considering that this determinant corresponds
to the positions of the interface amplitudes ξ̂1 and ξ̂2, its structure may suggest that ξ̂1 = ξ̂2.
That is, the interfaces oscillate in phase and with equal amplitude.

The second determinant in (D1) being equal to zero yields the characteristic equation
for the thin shell limiting case. It is not surprising to find that the characteristic equation in
this limit is identical to (B28) for the case of a viscous droplet suspended in a viscous host
fluid, except that the interfacial tension here is the sum of the inner and outer interfacial
tensions γr + 1. It turns out that in the thin shell limiting case, the hydrodynamic effects
of the shell can be neglected to the leading order.

More details about the appendices can be found in the supplementary material.
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