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We develop and apply bootstrap methods for diffusion models when fitted to the long
run as characterized by the stationary distribution of the data. To obtain bootstrap
refinements to statistical inference, we simulate candidate diffusion processes. We use
these bootstrap methods to assess measurements of local mean reversion or “pull” to
the center of the distribution for short-term interest rates. We also use them to evaluate the
fit of the model to the empirical density.
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1. INTRODUCTION

In this paper we propose and implement bootstrapping methods for stationary
diffusion models. We apply these methods to the test-function estimators of Conley
et al. (in press) and to the goodness-of-fit density test of Ait-Sahalia (1996). An
attractive feature of the test-function estimators is that they are easy to implement
in practice, which then makes bootstrap methods feasible. The methods we explore
entail simulating diffusion processes.

The econometric estimators we study are based, in large part, on fitting the
stationary density of the diffusion. This is by design. Calibrating models to long-run
implications is common in a variety of fields of economics. For instance, calibrating
dynamic general equilibrium models often is based in part on selecting parameters
to fit steady-state relations. Christiano and Eichenbaum (1992) demonstrate how
to turn this into a formal econometric exercise. Similarly, Bertola and Caballero
(1992) suggest fitting exchange models to stationary distributions. In our case, we
expect the diffusion model to be misspecified at high frequencies, and we do not

We benefited from comments by Joel Horowitz, Bruce Lehmann, and George Tauchen. Hansen’s research was funded
in part by the National Science Foundation and the Guggenheim Foundation. Address correspondence to: Lars Peter
Hansen, Department of Economics, University of Chicago, 1126 East 59th Street, Chicago, IL 60637, USA; E-mail
address: lhansen@uchicago.edu.

c© 1997 Cambridge University Press 1365-1005/97 $9.00 + .10 279

https://doi.org/10.1017/S1365100597003015 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003015


          

280 TIMOTHY G. CONLEY ET AL.

want our estimation methods to be too sensitive to this misspecification. Fitting
low-frequency time-series movements makes it more difficult to obtain reliable
methods of statistical inference, however.

We show how to use simulation methods to improve the quality of the inferences
based on long-run statistics. Central-limit approximations require an estimate of
a long-run covariance matrix. Accurate estimation of this covariance matrix is
known to be difficult, especially when the data are highly serially correlated.1 Our
application is to short-term interest rates, which are very persistent. Following
on the suggestions of Hall (1992) and others, we use bootstrapping methods to
obtain higher-order approximations to central-limit approximations. We bootstrap
directly on the simulated diffusion and deliberately avoid using blocking meth-
ods, which recently have been advocated in the statistics literature.2 Although the
blocking methods have added robustness at a theoretical level, they seem poorly
suited to problems such as ours in which the temporal dependence is substantial.

We also study local methods of estimation and inference. Following Conley et al.
(in press), we use local methods to estimate the drift; and following Ait-Sahalia
(1996), we use local methods to assess the fit of the model to the empirical stationary
density of the data. For weakly dependent data, localization is known to (eventu-
ally) eliminate serial correlation, and the resulting central-limit approximations do
not contain serial correlation corrections. In other words, the limiting distributions
of the estimators and test statistics are the same as if the data were independent
and identically distributed (i.i.d.). Because we mistrust these approximations when
applied to short-term interest-rate data, we investigate the bootstrap corrections.

2. MODEL AND MEASUREMENT TARGET

Suppose that{xt } is the stationary solution to the stochastic differential equation

dxt = µ(xt ) dt + σ(xt ) dWt ,

whereµ is the drift coefficient,σ 2 is a diffusion coefficient, and{Wt } is a scalar
Brownian motion. We assume that the resulting diffusion process is confined to
(0, ∞) with both boundaries nonattracting. Our primary aim is to measure the
local pull of the diffusion toward the center of its distribution. Measures ofmean
reversionbased solely on the drift ignore the fact that probabilities of moving to
the right or the left from a given position depend also on the diffusion coefficient.
Following Conley et al. (in press), we use local pull measures obtained as the
coefficient in an expansion of the hitting-time probabilities. Starting at a statex,
the probabilityρ(ε | x) of reachingx + ε prior to x − ε is approximately

1

2
+ µ(x)

2σ 2(x)
ε,

where the approximation error is of orderε2. Thus, we takeµ/2σ 2 as the primary
target of measurement in our investigation. In Section 3, we describe our methods
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for estimatingµ/2σ 2. These methods are very easy to implement in practice, mak-
ing it feasible to use bootstrap methods to assess the accuracy of our measurement.

As emphasized by Conley et al. (in press), even if the local hitting-time measure
converges to zero for large interest rates, the diffusion still may be stationary. High-
volatility elasticities (large responses of the diffusion coefficient to changes in the
level of the process) may suffice to induce stationarity. Stationarity is volatility
induced when ∫ +∞

1

µ(y)

σ 2(y)
dy > −∞.

The estimation methods that we consider permit stationarity to be volatility induced.

3. MEASUREMENT METHOD

We use the test-function method of Conley et al. (in press) to construct asymp-
totically efficient estimators of the drift of a scalar diffusion process, given the
diffusion coefficient and the marginal empirical distribution of the data. The idea
is to infer properties of the drift of the diffusion from long-run information.

3.1. Drift Coefficient

We follow Cobb et al. (1983) and Conley et al. (in press) by considering polynomial
specifications of the drift coefficient

µ(xt ) = z∗
t α,

where the asterisk denotes transposition (leaving a prime to denote differentiation)

z∗
t = [

(xt )
−1 1 xt (xt )

2
]
.

The aim is to nest a linear drift specification and to provide some flexibility in
approximating the stationary distribution of the diffusion. Cobb et al. (1983) give
a justification for the flexibility of such specifications.3

3.2. Diffusion Coefficient

Our specification of the diffusion coefficient follows that of Chan et al. (1992) and
assumes that the volatility elasticity is constant

σ 2(x) = κ(x)γ ,

whereγ is the variance elasticity (andγ /2 is the volatility elasticity). We abstract
from estimating the elasticity, but we show how measurements are sensitive to the
elasticity specification. Given our parameterization of the drift, it is easy to verify
that stationarity is volatility induced ifγ exceeds three.
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For flexible models of the drift, the diffusion coefficient and hence the variance
elasticity are not identified from the stationary distribution.4 Methods for estimat-
ing γ are described by Conley et al. (in press), but these estimates tend to be
imprecise for short-term interest-rate data. We follow Conley et al. (in press) and
display results for a coarse grid of variance elasticities.

3.3. Test-Function Estimator

We initially consider the estimation ofα given κ and the variance elasticityγ .
We estimateα using a test-function estimator of the form suggested by Hansen
and Scheinkman (1995) and Conley et al. (in press). LetΨ be a vector of four
test functions. Because the diffusion is stationary, the vector Ito process{9(xt )}
inherits this stationarity. The timet vector of local means for this process is given
by 9 ′(xt )µ(xt ) + 1

29 ′′(xt )σ
2(xt ). Under regularity conditions, the vector of local

means for the process should have unconditional expectation zero. [See Hansen
et al. (in press) for a statement of the regularity conditions.] This implies that the
following moment conditions hold:

E[9 ′(xt )µ(xt )] = − 1
2 E

[
9 ′′(xt )σ

2(xt )
]
. (1)

Thus, the parameterα satisfies

α = −{
E

[
9 ′(xt )z

∗
t

]}−1
E

[
1
29 ′′(xt )σ

2(xt )
]
.

The resulting discrete sample estimator ofα is

aT = −
{

T∑
t=1

9 ′(xt )z
∗
t

}−1
1

2

T∑
t=1

9 ′′(xt )σ
2(xt ).

For reasons of statistical efficiency, we construct our test-function vectorΨ to
be proportional to the score vector of the log-likelihood for the stationary density
function [see Conley et al. (in press)]. Because moment condition (1) depends only
on derivatives of9(·), we need only specify the score vector’s derivatives, not its
level. It is easy to verify that the test-function derivative (with respect to the state)

9 ′(x) =


x−γ−1

x−γ

x−γ+1

x−γ+2


is proportional to the derivative of the score vector. Statistical efficiency is obtained
regardless of the constant of proportionality.

Finally, because our measurement target isµ/2σ 2, it suffices to identifyµ and
σ 2 up to scale. Therefore, in estimation using moment condition (1), we normalize
κ to equal one, replacingκxγ with xγ .
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3.4. Asymptotic Distribution

The limiting distribution for the parameter estimator{aT } has the usual form for a
generalized method of moments estimator:

√
T(aT − α) ≈ −(

E
[
9 ′(xt )z

∗
t

])−1 1√
T

T∑
t=1

[
9 ′(xt )z

∗
t α + 1

2

[
9 ′′(xt )(xt )

γ
]]

.

Use of this limiting distribution requires an estimate of the covariance matrix1

in the central-limit approximation

1√
T

T∑
t=1

[
9 ′(xt )z

∗
t α + 1

2 E
[
9 ′′(xt )(xt )

γ
]] d→ N(0, 1).

Because the data are temporally dependent, one way to estimate1 is to use a
spectral density estimator at frequency zero. Such estimators are known to have
slow rates of convergence, and their inaccuracy might undermine the quality of
statistical inference.

For comparison, we also consider the limiting distribution for an (infeasible) es-
timator that uses a continuous record. The limiting distribution for the continuous-
record estimator is

√
T(aT − α) ≈ −{

E
[
9 ′(xt )z

∗
t

]}−1 1√
T

∫ T

0

[
9 ′(xt )z

∗
t α + 1

2

[
9 ′′(xt )(xt )

γ
]]

dt.

It follows from the continuous-time martingale central-limit theorem for diffusions
that

1√
T

∫ T

0

[
9 ′(xt )z

∗
t α + 1

2

[
9 ′′(xt )(xt )

γ
]]

dt
d→ N(0, 3),

where

3 = 1

κ2
E

[
σ 2(xt )9

′(xt )9
′(xt )

∗] = 1

κ
E

[
(xt )

γ 9 ′(xt )9
′(xt )

∗]. (2)

[For example, see Bhatacharia (1982) and Hansen and Scheinkman (1995).] When
a discrete sample is used, the covariance matrix3 should provide a lower bound
on the matrix1. The expressionE[(xt )

γ 9 ′(xt )9
′(xt )

∗] used in constructing3
can be estimated directly by a sample moments estimator. Thus, provided we can
estimateκ, we can compute a sample estimator of the lower bound3. An estimator
of κ is discussed below.

4. DATA

We use a data set of Federal-fund interest rates. It consists of daily observations on
“effective” Federal-fund overnight interest rates, measured as annualized percent-
ages, from January 2, 1970, to January 29, 1997.5 The data set has some missing
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observations, primarily because of weekends and holidays, but there are still a total
of 6826 observations.

5. SCALE ESTIMATION

We explore bootstrap methods that entail simulating diffusion processes. These
simulations require an estimate ofκ. This parameter pins down the timescale of
the process and hence can be interpreted as dictating the sampling frequency of
our observations. Larger values ofκ make the process less temporally dependent
because it corresponds to sampling the (weakly dependent) stationary diffusion
less frequently. We obtain an estimate ofκ using the sieve estimation method of
Chen et al. (1997). They devise a two-step, semiparametric method for estimating
the diffusion coefficient. We use a coarse grid for the variance elasticityγ by letting
it be 1, 2, 3, and 4. We then apply their method to estimateκ for each of the four
choices ofγ .6 This two-step procedure is based on the following identification
scheme.

5.1. Identification of κ

LetC denote the set of absolutely continuous functionsψ such thatE[ψ(xt )
2] = 1,

E[ψ(xt )] = 0, andE[(xt )
γ ψ ′(xt )

2] < ∞. We use this set as the constraint set for
the following optimization problem:

ρ = min
C

E
[
(xt )

γ ψ ′(xt )
2
]
. (3)

Let φ denote the solution to this problem. The solution to this problem is an
eigenfunction of the infinitesimal generator of the process and of the conditional-
expectation operators over any interval of time. Consequently, the sampled version
of the process{φ(xt )} has a first-order autoregressive representation:

φ(xt+1) = exp(−δ)φ(xt ) + et+1, (4)

where the disturbance termet+1 has expectation zero conditioned onxt . It can be
shown that

κ = δ/ρ. (5)

5.2. Estimation of ρ

Estimation problem (3) is in the form of a generalized eigenfunction problem,
which is the operator counterpart to a generalized eigenvector problem. In practice,
we solve a corresponding generalized eigenvector problem using a finite collection
of basis functions. We useB-spline wavelets of order three as basis functions.
These functions have compact support, are twice continuously differentiable, and
are piecewise cubic polynomials. We disperse these functions in an equally spaced
fashion throughout the support of the distribution by adding translation terms to the

https://doi.org/10.1017/S1365100597003015 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003015


             

BOOTSTRAPPING THE LONG RUN 285

argument of an initial reference function. LetB denote the resultingn-dimensional
vector of functions. Our approximation toφ is given by a linear combination of
the basis functions

φT (x) = b∗
TB(x),

where we construct the coefficient vectorbT as described below.
Form two matrices,

VT = 1

T

T∑
t=1

(xt )
γ B′(xt )B′(xt )

∗

WT = 1

T

T∑
t=1

B(xt )B(xt )
∗,

where an asterisk is used to denote transposition and a prime is used to denote
differentiation. A third matrix used to penalize the second derivative of the ap-
proximating matrix is built as follows. Construct a matrixKT such that

KTbT =


b2,T − b1,T

b3,T − 2b2,T + b1,T

· · ·
bn,T − 2bn−1,T + bn−2,T

−bn,T + bn−1,T


for b∗

T = [b1,T b2,T . . . bn−1,T bn,T ]. The third matrix is

UT = (KT )∗DT KT ,

whereDT is a prespecified diagonal matrix with positive diagonal entries.
To approximateφ, we solve the problem

(λTUT + VT )bT = νT WTbT , (6)

whereλT dictates the magnitude of the penalty on the second differences of the
coefficient vectorbT . We specify this penalty a priori. The scalarνT is a generalized
eigenvalue to be computed along with the generalized eigenvectorbT . It turns out
that theνT = 0 andbT is equal to a coefficient vector with a one in each position
that solves (6). Of course, this solution will not have sample mean zero. Instead,
we take the (generalized) eigenvector associated with the positive (generalized)
eigenvalue that is closest to but distinct from zero. The resulting eigenvectorbT is
normalized so thatb∗

T WTbT = 1. Our estimaterT of ρ is given by

rT = b∗
T VTbT .

This generalized eigenvector method is easy to implement in practice.
Applying this method, we are led to the estimates ofρ in Table 1.7

https://doi.org/10.1017/S1365100597003015 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003015


                

286 TIMOTHY G. CONLEY ET AL.

TABLE 1. Estimates ofρ

γ

1 2 3 4

ρ 0.549 4.97 27.4 118

5.3. Estimation of δ

To calibrate our simulations, for each value ofγ , we estimateδ in two ways. One
method estimates the first-order autoregression (4) of the approximating eigen-
function via least squares. The estimate ofδ is the negative of the logarithm of the
estimated autoregressive coefficient.

The federal-funds data that we use in our estimation are known to have some
high-frequency movements that are not well suited for a (time-invariant) scalar
diffusion model. For instance, there is a known two-week institutional cycle that,
at the very least, introduces periodicity into the interest-rate difference process [see
Hamilton (1996) and others]. Also, the data contain some systematically missing
observations because of weekends and holidays. These high-frequency movements
may lower the least-squares estimate ofδ for uninteresting reasons. As a second
approach, we modify the least-squares estimator by omitting high frequencies from
a Gaussian approximation to the log likelihood. Thus we use a discrete version of
Whittle’s pseudo-log-likelihood function, which is constructed as follows. Form
the periodogram

I (θ j ) = 1

T

∣∣∣∣∣
T∑

t=1

xt exp(−i t θ j )

∣∣∣∣∣
2

at frequencyθ j , where

θ j = 2π j

T
, j = 1, 2, . . . , T.

We can only construct the spectral density function implied by (4) up to scale from
δ via

f (θ j ; δ) = 1

1 + exp(−2δ) − 2 exp(−δ) cos(θ j )
.

At the same time that we estimateδ, we are compelled to estimate the variance of
the implied innovation. LetJ define an index set for the included (low) frequencies.
Concentrating out the variance estimate and omitting high frequencies results in
the pseudo-log-likelihood (up to a constant)

QT (d) = − 1

#J

∑
j ∈J

I (θ j )

f (θ j ; d)
− 1

#J

∑
j ∈J

log

[
I (θ j )

f (θ j ; d)

]
,

where #J denotes the number of elements ofJ. We exclude fromJ frequencies
with periods less than or equal to 10 time periods. Our choice of 10 time periods as
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TABLE 2. Estimates ofδ

γ

Method 1 2 3 4

Least squares 1.09e-2 1.05e-2 2.13e-2 3.12e-2
Whittle 3.51e-3 2.00e-3 3.00e-3 4.01e-3

TABLE 3. Estimates ofκa

γ

Process 1 2 3 4

Low persistence 1.98e-2 2.11e-3 7.75e-4 2.64e-4
High persistence 6.39e-3 4.02e-4 1.10e-4 3.40e-5

aThe low-persistence estimates are constructed from the least-squares estimates ofδ,
and the high-persistence estimates are constructed from the Whittle estimates ofδ.

the cutoff point is that it corresponds to the two-week institutional cycle described
by Hamilton (1996). In other words, we omit frequencies in the range

π/5 ≤ θ j ≤ 9π/5.

By maximizingQT (d), we obtain what we refer to as Whittle estimates ofδ.
Applying these two different methods we are led to the estimates ofδ shown

in Table 2. Notice that the Whittle estimates are much smaller than the least-
squares estimates. Thus, our calibrated diffusions based on the Whittle estimates
are considerably more persistent. We constructκ estimates based on both the
least-squares and the Whittle estimates ofρ and assess inference methods using
the resulting specifications.

Via equation (5) the above estimates ofδ andρ yield the scale values shown in
Table 3.8 The difference between low-persistence and high-persistence processes
is quite substantial. Whenγ is equal to one, the increase in persistence is roughly
equivalent to reducing the sample size to less than one-third of its original size. On
the other hand, for the higher volatility elasticity, the effective change in sample
size is much more modest (about three-fourths of its original size).

Armed with these calibrations ofκ and our previously described estimates of
the drift coefficient (up to scale) we have two fully specified scalar diffusion
processes for each variance elasticityγ . The resulting processes are simulated in
our subsequent bootstrapping and Monte Carlo analysis.

6. GOODNESS-OF-FIT TEST

We use the stationary density specification test of Bickel and Rosenblatt (1973)
and Ait-Sahalia (1996) as a goodness-of-fit test. Ait-Sahalia (1996) extends the
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Bickel and Rosenblatt (1973) analysis to accommodate weakly dependent data
and parameter estimation. The basic idea is to test a parametric model of a dif-
fusion process by comparing the model’s implied stationary density, in this case
π(x; α, γ ), to a nonparametric estimator of the true stationary density:π(x). The
metric for distance between a candidate parametric density and the truth,π(x), is

M =
∫ ∞

0
[π(x; α, γ ) − π(x)]2π(x) dx. (7)

We estimate the general alternative specification forπ using a kernel density
estimator

π̂(x; hT ) = 1

T

T∑
t=1

1

hT
K

(
x − xt

hT

)
,

wherehT is a bandwidth sequence that converges to zero at a rate specified below
andK (·) is a Gaussian kernel. For each variance elasticityγ , we use the previously
describedaT to estimateα. Thus, our normalized estimator ofM is

M̂ = T hT

∫ ∞

0
[π(x; aT , γ ) − π̂(x; hT )]2π̂(x; hT ) dx,

where the integral in (7) is approximated numerically.
It follows from Ait-Sahalia (1996) that, under regularity conditions, if the

parametric specification is correct and the bandwidth sequencehT satisfies
limT→∞ T hT = ∞ and limT→∞ T h4.5

T = 0, then

h−1/2
T (M̂ − EM)

d→ N(0, VM),

where the asymptotic meanEM and varianceVM are given by

EM =
[ ∫ ∞

−∞
K (u)2 du

] ∫
π(x)2 dx

VM = 2

{ ∫ ∞

−∞

[ ∫ ∞

−∞
K (u)K (u + s) du

]2

ds

} ∫
π(x)4 dx.

This limiting distribution coincides with that obtained by Bickel and Rosenblatt
(1973) even though they abstracted from serial correlation and parameter esti-
mation. Because of the difference in rates of convergence for the parametric and
nonparametric parts of̂M , the parametric estimation does not impact its limiting
distribution. The limiting distribution ofM̂ is the same with weakly dependent
data as with independent data because of the local nature of the nonparametric
density estimator.
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We estimateEM by ÊM = [
∫ ∞

−∞ K (u)2 du]
∫

π̂(x; hT )2 dx and estimateVM by
an analogously defined̂VM , where again the integrals are numerically evaluated.
We focus on the standardized version of this test statistic

M̃ ≡ M̂ − ÊM√
hT V̂M

,

whose limiting distribution is standard normal.

7. SIMULATION

To form bootstrap adjustments to confidence intervals and test statistic distribu-
tions, we simulate the estimated diffusion process. In so doing, we use the methods
described by Kloeden and Platen (1995).9 Unfortunately, the regularity conditions
imposed by Kloeden and Platen (1995) to justify simulation methods are too strong
for our applications. As they emphasize, their approximation theorems only pro-
vide sufficient conditions. Consequently, there is scope for simulation methods to
be more generally applicable. In this section, we describe the simulation methods
we use in our bootstrapping, and we discuss the properties of the error term in the
discretization.

7.1. Euler Approximation

The Euler approximation is based on the (first-order) Ito formula,

xt+η = xt + µ(xt )η + σ(xt )(Wt+η − Wt ) + rt,η,

wherert,η is a remainder term and satisfies

rt,η =
∫ η

0
[µ(xt+s) − µ(xt )] ds+

∫ η

0
[σ(xt+s) − σ(xt )] dWt+s,

where we interpret the second integral as a stochastic integral. Let‖‖ denote the
mean-square norm. Then, by the Triangle Inequality and the construction of the
stochastic integral,

lim
η↘0

1

η
‖rt,η‖ = 0

provided that

lim
η↘0

‖µ(xt+η) − µ(xt )‖ = 0

lim
η↘0

‖σ(xt+η) − σ(xt )‖ = 0.

These two requirements will be satisfied if

E
[
µ2(xt )

]
< ∞

E
[
σ 2(xt )

]
< ∞.
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These moment restrictions are only problematic forγ = 3 andγ = 4. Forγ = 3,
the moment restrictions will be satisfied provided that the coefficient onx2 in
the formula for the drift is sufficiently negative, as is the case in our calibrations.
Neither of these moment requirements is met for ourγ = 4 calibrations, in part
because stationarity is volatility induced. Nevertheless, the diffusions remain sta-
tionary and geometrically ergodic.

7.2. Simulating in Logarithms

One way to overcome the potential breakdown of the Euler approximation for
high-volatility elasticities is to simulate the process in logarithms. Construct

yt = log(xt ).

The counterparts to the finite-moment conditions for levels are

E

[
µ(xt )

2 1

(xt )2

]
< ∞

E

[
σ 2(xt )

1

(xt )2

]
< ∞,

both of which are satisfied for the high-volatility elasticity models (γ = 4). Thus,
for the high-volatility elasticity models, we use a first-order simulation scheme
applied to logarithms.

The drift for log process is given by

µy(yt ) = 1

xt
µ(xt ) − 1

2(xt )2
σ 2(xt )

= 1

exp(yt )
µ[exp(yt )] − κ

2
exp[(γ − 2)yt ],

and the diffusion coefficient by

σ 2
y (yt ) = κ exp[(γ − 2)yt ].

7.3. Second-Order Scheme

A second-order scheme aims to improve the accuracy of the first-order, Euler
approximation. The idea is to approximate the evolution of the ingredientsµ and
σ using an Euler scheme. Thus, we are led to study the local mean and local
standard deviation ofµ andσ . The local mean ofµ is given byµµ′ + 1

2σ 2µ′′ and
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its local standard deviation isσµ′. The local mean ofσ is µσ ′ + 1
2σ 2σ ′′ with a

local standard deviationσσ ′. The approximation takes the form

xt+η = xt + µ(xt )η + σ(xt )(Wt+η − Wt ) + (
µµ′ + 1

2σ 2µ′′)η2

+ σ(xt )µ
′(xt )

∫ t+η

t

∫ u

t
dWs du

+[
µ(xt )σ

′(xt ) + 1
2σ 2(xt )σ

′′(xt )
] ∫ t+η

t

∫ u

t
ds dWu

+ σ(xt )σ
′(xt )

∫ t+η

t

∫ u

t
dWs dWu + qt,η,

whereqt,η is the approximation error. Additional restrictions are needed to ensure
that the resulting stochastic integrals are well behaved. For instance, the two local
means and two local volatilities should have finite second moments under the
stationary distribution.

This refinement is problematic for the log specification with high-volatility
elasticities. In particular,

E
[
σ 2

y (yt )σ
′
y(yt )

2
] = κ2(γ − 2)2E

[
(xt )

2γ−4
] = ∞

whenγ = 4.

7.4. Implementation

To implement the simulation methods, we used the second-order scheme for vari-
ance elasticities:γ = 1, 2, 3 with η set to 0.1. For variance elasticityγ = 4, we
simulated the process in logarithms using a first-order scheme withη = 0.05.

8. BOOTSTRAPPING THE CONFIDENCE INTERVALS

We use simulation methods to refine the confidence interval construction for es-
timates of [µ(y)]/[2σ 2(y)] for a collection of statesy and variance elasticitiesγ.
To construct the bootstrap confidence intervals, we simulate from the values of
µ estimated using federal funds data for the prespecified variance elasticities. In
conducting the simulations, we use the two different choices of the persistence
parameterκ given in Table 3. We simulate 500 samples of length 7000 for each
variance elasticity and persistence level.

Hall (1992) shows that bootstrapping methods deliver asymptotic refinements
for studentized statistics in i.i.d. environments. More recently, Datta and
McCormick (1995) show that bootstrapping an estimated Markov chain can some-
times provide second-order accuracy. Similarly, Gotze and Kunsch (1996) show
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that block bootstrapping methods deliver second-order refinements for some sta-
tionary processes. Unfortunately, the results of Datta and McCormick and Gotze
and Kunsch (1996) are not directly applicable to our application. While our strat-
egy of simulating fitted diffusions imitates the parametric bootstrapping method
for a Markov chain, our standard error estimators in both the actual and bootstrap
samples are constructed from Bartlett spectral density estimators. These spec-
tral density estimators are known to have slow rates of convergence. While this
complication is addressed by Gotze and Kunsch (1996), we are not using their
blocking method because we expect that simulating the diffusion will provide a
better approximation of the true dependence structure. Hall (1992) also describes
the advantage to constructing symmetric confidence intervals. Unfortunately, the
second-order bootstrap refinements shown by Datta and McCormick (1995) and
Gotze and Kunsch (1996) are not sufficient to provide the same degree of accu-
racy as in i.i.d. environments. Nevertheless, we use symmetric confidence intervals
in our analysis. Thus, in forming these intervals, we compute an estimatesk

T of
[µ(y)]/[2σ 2(y)] for simulated data setk, subtract the corresponding estimatesT

from the actual data set, and divide by standard error estimated from the simulated
sample.10 Let zj

T denote the resultingt-statistic. In forming this statistic, we ini-
tially use the same standard-error estimation method as Conley et al. (in press). The
standard errors are constructed from Bartlett spectral density estimates with a cut-
off at 60 lags. Subsequently, we study the robustness of our results to changes in this
cutoff point. We obtain critical values for the bootstrapt-statistic distribution by
locating theα% right tail of the empirical distribution of{|zj

T | : j = 1, 2, . . . , N}.
The product of the sample estimate of the standard error and this critical value
is added tosT and subtracted fromsT to construct the symmetricα% confidence
interval. This is repeated for different states and different variance elasticities.

8.1. Results

In Figures 1–4, we present point estimates [reported by Conley et al. (in press)] of
the pull(µ/2σ 2) with confidence intervals calculated three ways. The confidence
intervals in Panel A are one and two standard-error bands computed via the delta
method. Panels B and C contain bootstrap confidence intervals for the two different
calibrations ofκ, which we label as low persistence and high persistence.

Even for the low-persistence specification, the bootstrap method magnifies the
confidence intervals quite substantially. This magnification is enhanced when we
simulate from a more persistent process. For the less-persistent specification, the
confidence intervals at the 68.3% level (one standard deviation for a normal distri-
bution) and 95.4% level (two standard deviations) from the bootstrap distributions
are between 1.5 and 2 times wider than the ones from the asymptotic distributions
for variance elasticities (γ ’s) equal to 1, 2, and 3. For variance elasticity 4, they are
between 1.1 to 1.5 times larger. The bootstrap confidence intervals for the more
persistent specification are even wider. They are about 2 to 3 times larger forγ

equal to 1, 2, and 3, and 1.5 to 2 times larger forγ equal to 4.
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A) Pull Estimates forγ = 1

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 1. Pull (µ/2σ 2) estimates and confidence intervals corresponding toγ = 1. Point
estimates in all panels are obtained using federal funds data. Confidence intervals in Panel A
are one and two standard-error bands computed via the delta method and a Bartlett spectral
density estimator with 60 lags. Panels B and C contain bootstrap confidence intervals for
low- and high-persistence data sets, respectively.

8.2. Alternative Covariance Matrix Estimators

We now explore the sensitivity of our results to changes in the way we estimate
the asymptotic covariance matrix for the drift estimator. First we look at how
the bootstrap confidence intervals change when we increase the number of lags
used in our Bartlett estimator of the long-run covariance matrix1. Our previous
results imitated those of Conley et al. (in press) by using an estimate of the long-
run covariance matrix based on a time-domain Bartlett window with a cutoff
of 60 lags. When we expanded the cutoff point to 100 lags, our standard-error
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A) Pull Estimates forγ = 2

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 2. Pull (µ/2σ 2) estimates and confidence intervals corresponding toγ = 2. Point
estimates in all panels are obtained using federal funds data. Confidence intervals in Panel A
are one and two standard-error bands computed via the delta method and a Bartlett spectral
density estimator with 60 lags. Panels B and C contain bootstrap confidence intervals for
low- and high-persistence data sets, respectively.

estimates increased and our bootstrap distribution for thet-statistic became more
concentrated. These two effects are not fully offsetting, however. For the 68.3%
confidence interval, the net effect is that an increase in the length of the Bartlett
window from 60 to 100 enlarges the confidence intervals by 4 to 12% for the high-
persistence specification, and by 5 to 18% for the low-persistent specification.

Recall that3 is constructed under the premise that the drift estimator uses a
continuous record of data over a finite interval instead of a discrete-time sample.
Consequently, from the asymptotic theory, we expect3 to understate the sampling
variability in the drift estimator. However, a Bartlett estimator of1 is expected
to be less reliable than an estimator of3 because the rate of convergence of the
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A) Pull Estimates forγ = 3

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 3. Pull (µ/2σ 2) estimates and confidence intervals corresponding toγ = 3. Point
estimates in all panels are obtained using federal-funds data. Confidence intervals in Panel A
are one and two standard-error bands computed via the delta method and a Bartlett spectral
density estimator with 60 lags. Panels B and C contain bootstrap confidence intervals for
low- and high-persistence data sets, respectively.

latter estimator is faster. We now compare our estimates of1 to those of3. If
our estimates of3 exceed those of1, this suggests that the understatement of the
sampling variability can be attributed in part to a downward distortion in our1

estimates.
Formally, we compare standard errors for our pull measure based on1 estimates

to standard errors based on3 estimates. We also extract the standard error
counterparts from our bootstrap confidence intervals. This is done by using the
upper and lower endpoints of the symmetric bootstrap 68.3% confidence intervals.
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A) Pull Estimates forγ = 4

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 4. Pull (µ/2σ 2) estimates and confidence intervals corresponding toγ = 4. Point
estimates in all panels are obtained using federal-funds data. Confidence intervals in Panel A
are one and two standard-error bands computed via the delta method and a Bartlett spectral
density estimator with 60 lags. Panels B and C contain bootstrap confidence intervals for
low- and high-persistence data sets, respectively.

(Recall that 0.683 is the probability that a normally distributed random variable
is within one standard deviation of its mean.) These three measures of sampling
variability are reported in Tables 4 and 5. The standard errors constructed from
our 3 estimates are larger than those based on our1 estimates except when the
persistence is low andγ = 4. Thus, the enhancement of the bootstrap confidence
intervals could have been anticipated by the fact that the sample ordering between
3 and1 is the reverse of the population ordering.
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TABLE 4. Standard error for federal-funds pull estimates forγ = 1 and 2 using1
and3

Decilea Low persistence High persistence

(%) SEb Cts. SEc Bootstrap SEd Cts. SEc Bootstrap SEd

(A) Variance Elasticity= 1
10 0.041 0.040 0.057 0.071 0.080
20 0.031 0.032 0.049 0.056 0.065
30 0.025 0.028 0.040 0.049 0.053
40 0.018 0.024 0.030 0.042 0.042
50 0.011 0.020 0.021 0.036 0.027
60 0.009 0.020 0.017 0.035 0.024
70 0.011 0.021 0.021 0.036 0.032
80 0.014 0.022 0.028 0.039 0.042
90 0.016 0.024 0.035 0.042 0.052

(B) Variance Elasticity= 2
10 0.054 0.068 0.091 0.155 0.169
20 0.033 0.045 0.059 0.103 0.106
30 0.023 0.036 0.044 0.082 0.071
40 0.015 0.028 0.030 0.065 0.043
50 0.010 0.024 0.021 0.054 0.028
60 0.011 0.022 0.022 0.051 0.033
70 0.013 0.022 0.024 0.050 0.042
80 0.013 0.021 0.026 0.048 0.048
90 0.013 0.020 0.025 0.045 0.044

aInterest rate deciles are 4.0, 5.0, 5.5, 6.1, 6.9, 8.0, 8.8, 9.8, and 11.7.
bStandard errors are computed via a Bartlett estimator of1.
cStandard errors are computed via an estimator of3.
dStandard errors are based on1 with the bootstrap adjustment.

As might be expected, for the low-persistence (high values ofκ) simulations,
the standard-error estimates based on3 are typically smaller than their bootstrap
confidence-interval counterparts. In contrast, for the high-persistence simulations,
this ordering is often reversed and magnitude of the difference is sometimes sizable.
The high-persistence simulations are the ones in which we expect the asymptotic
approximations (including possibly the bootstrap refinements) to be less reliable.
The bootstrap is known to fail in the presence of a unit root [see Basawa et al.
(1991)] and thus one might be concerned that our bootstrap corrections are also
less reliable when the data are more highly persistent.

9. BOOTSTRAPPING THE GOODNESS-OF-FIT TEST

Ait-Sahalia (1994) reports a rejection of the model specifications for Euro-Dollar
data using a goodness-of-fit test described in Section 6. However, Pritsker (1996)
documents size distortion in Ait-Sahalia’s goodness-of-fit test when applied to
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TABLE 5. Standard errors for federal-funds pull estimates forγ = 3 and 4 using1
and3

Decilea Low persistence High persistence

(%) SEb Cts. SEc Bootstrap SEd Cts. SEc Bootstrap SEd

(A) Variance Elasticity= 3
10 0.070 0.062 0.102 0.166 0.20
20 0.030 0.033 0.053 0.088 0.089
30 0.019 0.024 0.032 0.065 0.052
40 0.013 0.019 0.021 0.050 0.031
50 0.013 0.016 0.019 0.042 0.031
60 0.013 0.013 0.019 0.036 0.032
70 0.013 0.012 0.018 0.032 0.031
80 0.012 0.010 0.016 0.028 0.027
90 0.011 0.009 0.014 0.024 0.025

(B) Variance Elasticity= 4
10 0.082 0.058 0.115 0.162 0.207
20 0.025 0.025 0.037 0.069 0.054
30 0.019 0.018 0.028 0.049 0.039
40 0.019 0.014 0.025 0.038 0.035
50 0.018 0.011 0.022 0.030 0.032
60 0.014 0.008 0.016 0.022 0.026
70 0.012 0.007 0.013 0.018 0.021
80 0.011 0.005 0.012 0.015 0.017
90 0.010 0.005 0.011 0.013 0.016

aInterest rate deciles are 4.0, 5.0, 5.5, 6.1, 6.9, 8.0, 8.8, 9.8, and 11.7.
bStandard errors are computed via a Bartlett estimator of1.
cStandard errors are computed via an estimator of3.
dStandard errors are based on1 with the bootstrap adjustment.

Ornstein–Uhlenbeck processes. Motivated by these findings, we compute bootstrap
corrections for the goodness-of-fit test applied to federal-funds data.11

To implement this test, we must choose a bandwidth for the kernel density es-
timator. An optimal bandwidth choice for estimating the density itself requires
that the bandwidth converge to zero sufficiently slowly for a bias term to en-
ter the limiting normal distribution. However, as noted by Ait-Sahalia (1996), in
constructing the density-fit test statistic there should be a little bit of “under-
smoothing” to eliminate the contribution of the bias to the limiting distribu-
tion.

Even an (asymptotically) optimal bandwidth choice is problematic for our ap-
plication to short-term interest rates. For instance, a common method of band-
width choice is cross validation, and there are many results on cross-validation
procedures for i.i.d. data. However, there is good reason to believe that these
cross-validation procedures will not work well for highly dependent data. Cross-
validation techniques systematically omit observations to measure the goodness
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FIGURE 5.Federal-funds stationary density estimates obtained using a Gaussian kernel with
bandwidths 0.5, 1, and 1.5.

of fit of the model for a given choice of the bandwidth. The amount of
information contained in these omitted observations is much less when the data are
positively serially dependent than when the data are i.i.d. Pritsker (1996) discusses
this issue in depth for the case of Ornstein–Uhlenbeck processes and documents
that the optimal bandwidth choice (minimizing mean integrated squared error) is
very sensitive to the level of persistence.12

In view of these difficulties in bandwidth selection, we consider a range of band-
widths and calculate the test statistic for each. First, we use the test graph method
of Silverman (1978) and obtain a bandwidth of 0.5.13 We use this bandwidth as
a starting point and also use bandwidths of 1 and 1.5 to portray a range of de-
grees of smoothing. The bandwidth of 1 is the first bandwidth larger than 0.5 (in
increments of 0.1) that results in a unimodal density estimate. Finally, motivated
by the discussion below, we look at an even larger bandwidth of 1.5 as well. The
density estimates for federal-funds data using bandwidths of 0.5, 1, and 1.5 are
depicted in Figure 5.

As a check that these bandwidths are in a sensible range, we consider choosing a
bandwidth to minimize the average integrated squared error of the density estimate,
with the average taken across bootstrap samples. For each of our bootstrap samples,
we calculate the integrated squared difference between our kernel density estimate,
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TABLE 6.Bandwidth choices that minimize average integrated
squared errors across bootstrap samples

γ

1 2 3 4

High persistence 1.4 2.1 1.7 1.5
Low persistence 0.8 1.0 0.7 0.4

TABLE 7.Goodness-of-fit test statistics (M̃) for federal-funds
data using bandwidths of 0.5, 1, and 1.5

γ

Bandwidth 1 2 3 4

0.5 64.13 63.78 69.54 101.59
1 56.15 46.50 39.23 64.41

1.5 123.72 103.97 80.97 90.51

π̂(u; h), and the true densityπ(u). Lettingϒk(h) denote this integrated squared
error for samplek,

ϒk(h) =
∫

[π̂(u; hT ) − π(u)]2 du.

Then, we averageϒk(h) across our 500 bootstrap samples to get the average inte-
grated squared error for bandwidthh. The values ofh that minimize (over a coarse
grid of bandwidths) this average integrated squared error are given by Table 6. The
impact of data persistence on an optimal bandwidth choice using this criterion is
readily apparent. Bandwidth choices for all variance elasticities are smaller for the
lower-persistence data than for the high-persistence specification. The bandwidths
in Table 6 give us reason to believe that our bandwidth choices from 0.5 to 1.5 give
us degrees of smoothing in the right range. For the high-persistence simulations,
bandwidth choices of 0.5 and 1 both apparently lead to undersmoothing as re-
quired by the asymptotic distribution theory. For the low-persistence simulations,
a bandwidth choice of 1 no longer appears to result in undersmoothing.

Results from the goodness-of-fit test applied to federal-funds data are presented
in Table 7 for each bandwidth choice. As described previously, the test statisticM̃
has a limiting distribution that is standard normal. The clear inference to be drawn
using this limiting distribution is that the model is woefully misspecified. We now
investigate the magnitude of bootstrap corrections for the distribution of test statis-
tic M̃ to see if these corrections can explain the apparently poor fit of the model.

Tables 8 and 9 present the results of our bootstrap evaluation of the test’s fi-
nite sample distribution. Five hundred bootstrap samples of length 7000 were
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TABLE 8.Percentiles of bootstrap distributions ofM̃ for high-persistence data (500
simulations are used for each specification)

γ

Percentile 1 2 3 4

(A) Bandwidth= 0.5
1 2.33 5.91 5.94 2.06
5 6.71 13.02 10.27 4.38

25 16.64 35.47 24.48 13.88
50 31.28 64.29 47.05 33.96
75 55.66 111.87 86.07 82.23
95 123.59 225.82 174.63 345.05
99 170.92 433.02 292.11 1,386.39

(B) Bandwidth= 1
1 7.36 10.60 7.63 6.42
5 11.75 19.48 17.14 11.80

25 29.92 53.96 40.15 25.27
50 50.88 102.67 74.46 64.56
75 86.08 198.27 180.02 168.01
95 178.14 481.09 501.29 1,019.76
99 271.55 1,013.94 1,202.72 2,833.75

(C) Bandwidth= 1.5
1 16.57 20.94 31.27 32.86
5 29.72 44.30 41.40 45.84

25 71.39 112.95 84.63 85.51
50 127.74 230.18 172.24 139.99
75 226.46 466.16 352.56 324.54
95 447.79 1,202.61 1,025.95 1,523.52
99 696.58 1,867.39 2,416.21 4,764.15

generated for each variance elasticity, and for low- and high-persistence data sets.
Parametric and nonparametric densities were estimated as described above, and
then normalized goodness-of-fit statisticsM̃ were calculated for each bootstrap
sample. Tables 8 and 9 present percentiles of the bootstrap distribution for these
test statistics. These bootstrap distributions are very different from the limiting
standard normal distribution.14

If we conduct inference using these bootstrap distributions in place of the limit-
ing standard normal distribution, we are led to very different conclusions. For the
high-persistence data, the values of the observed federal-funds data statistics in
Table 6 are never above the 95th percentile of the corresponding bootstrap distri-
bution. For the bandwidth of 1, the test statistics for federal-funds data are below
the median of the high-persistence bootstrap distribution for three of the variance
elasticities and just above it for the fourth. For the largest bandwidth of 1.5, the
federal-funds test statistics are below the 75th percentile for two elasticities and be-
low the median for the other two. For the low-persistence specification, inference

https://doi.org/10.1017/S1365100597003015 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003015


         

302 TIMOTHY G. CONLEY ET AL.

TABLE 9. Percentiles of bootstrap distributions ofM̃ for low-persistence data (500
simulations are used for each specification)

γ

Percentile 1 2 3 4

(A) Bandwidth= 0.5
1 1.41 1.72 0.42 −0.47
5 2.48 4.69 1.30 0.73

25 6.57 9.83 4.96 4.15
50 12.04 15.94 9.00 8.64
75 20.88 29.88 16.46 16.07
95 40.02 58.92 32.99 34.91
99 64.31 86.83 45.19 59.64

(B) Bandwidth= 1
1 6.27 7.16 6.44 7.70
5 9.18 9.73 8.79 10.06

25 20.66 21.72 16.77 17.20
50 31.09 37.57 26.98 28.59
75 50.02 62.30 45.59 54.20
95 87.93 118.66 86.58 117.24
99 124.52 191.29 130.92 178.97

(C) Bandwidth= 1.5
1 24.44 24.09 27.64 42.53
5 32.90 34.94 36.96 47.99

25 72.68 64.08 61.56 57.53
50 108.23 106.94 87.82 74.89
75 155.97 173.15 131.23 111.12
95 246.87 298.18 224.21 219.25
99 333.82 477.35 320.81 306.39

differs by bandwidth choice. For the smallest bandwidth of 0.5, the observed
values of the test statistics for federal-funds data are larger than the 95th percentile
of the bootstrap distributions in all cases—the model looks incorrect. However,
for both larger bandwidths, the federal-funds statistics in Table 6 are consistent
with a correct model specification, lying near or below the 75th percentile of the
bootstrap distribution for all elasticities.

Recall that for a bandwidth of 0.5, the kernel density estimates reveal two peaks.
In contrast, only one peak is present with additional smoothing and in the density
implied by our parametric estimates. Thus the evidence against the density fit of
our models comes from the existence of the two peaks in the stationary density.
With either a unimodal kernel density estimate or the high-persistence data, the
model looks to be correctly specified. Regardless of which of these views one
finds most compelling, it is clear that different conclusions will be drawn using
bootstrap techniques than using first-order asymptotics alone to conduct inference.
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10. ACCURACY OF LOCAL LINEAR DRIFT ESTIMATOR

In this section we study the accuracy of the pull measureµ/2σ 2 when a local
estimation method is used for the drift coefficient. As in local linear regression,
the idea is to localize a linear parameterization in the neighborhood of a statey
through the use of a kernel density. In other words, we envision a linear model of the
drift:

µ(x; y) ≈ α0(y) + α1(y)(x − y),

where we estimate different coefficientsα0 andα1 for each choice ofy. We con-
struct the kernel using the quartic function

K (x) ∝ (x2 − 1)2 for |x| < 1,

0 otherwise

and formingK [(y− x)/h], whereh is a bandwidth parameter. In effect,h dictates
the domain for which the linear approximation is supposed to hold and determines
the smoothness of the resulting estimator in practice.

We implement this localization again using a test-function approach, but we
now localize the test function. Formally, we take the efficient test-function vector
for a linear drift model and multiply its derivative byK [(y − x)/h]:

9 ′(x; h) =
 x−γ

x−γ−1

(
x − y

h

) 1

h
K

(
y − x

h

)
.

Because the parameterization is linear, we constructz∗
t = [1 xt − y], and our

test-function estimator of the pull aty is

pT (y; h) = − 1

2yγ
[1 0]

{
2

T∑
t=1

9 ′(xt ; h)z∗
t

}−1 T∑
t=1

(xt )
γ 9 ′′(xt ; h),

which depends on the bandwidth parameterh and the variance elasticityγ . This
local estimator is formally justified and applied by Conley et al. (1997).

Our purpose in this section is to study the accuracy of the large-sample approx-
imation of these methods. It is well known that estimators based on localization
have the property that there is no “correction” for serial correlation in the first-order
asymptotics when the data are weakly dependent [e.g., Robinson (1983)]. Thus,
one way to construct confidence intervals is to simplify our previous method by es-
timating a sample covariance matrix instead of the long-run counterpart. Because
ignoring serial correlation seems treacherous for short-term interest-rate data, we
also compute standard errors constructed from a Bartlett spectral density estimated
with a cutoff point of 60 lags.
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TABLE 10.Standard errors for local linear pull estimates from federal-funds data

Decilea Bandwidth= 3 Bandwidth= 6

(%) Bartlett SEb i.i.d. SEc Bartlett SEb i.i.d. SEc

(A) Variance Elasticity= 1
10 0.0501 0.0069 0.0291 0.0040
20 0.0396 0.0054 0.0156 0.0021
30 0.0354 0.0049 0.0130 0.0017
40 0.0403 0.0056 0.0117 0.0015
50 0.0402 0.0056 0.0113 0.0015
60 0.0363 0.0051 0.0115 0.0016
70 0.0398 0.0058 0.0120 0.0017
80 0.0515 0.0082 0.0139 0.0020
90 0.0797 0.0142 0.0240 0.0035

(B) Variance Elasticity= 4
10 0.0411 0.0056 0.0281 0.0037
20 0.0265 0.0037 0.0215 0.0029
30 0.0256 0.0036 0.0191 0.0025
40 0.0307 0.0043 0.0162 0.0022
50 0.0284 0.0040 0.0131 0.0018
60 0.0229 0.0033 0.0104 0.0014
70 0.0247 0.0037 0.0103 0.0014
80 0.0319 0.0052 0.0108 0.0016
90 0.0468 0.0085 0.0202 0.0030

aInterest-rate deciles are 4.0, 5.0, 5.5, 6.1, 6.9, 8.0, 8.8, 9.8, and 11.7.
bStandard errors are calculated using a Bartlett spectral density estimator with 60 lags.
cStandard errors treat serial correlation as negligible.

Not surprisingly, the two methods of standard-error estimation yield very dif-
ferent results, depicted in Table 10 for variance elasticitiesγ = 1 andγ = 4. The
Bartlett standard errors that allow for serial dependence are much larger than those
that abstract from serial correlation.

Using the same simulated diffusions as before, we study the reliability of the
two alternative estimators of the asymptotic covariance matrix for the local es-
timator of the drift. Formally, we make this comparison by following in large
part the approach described in Section 8. For the generated data sets, we compute
standard-error estimates for our pull measure based on the two different methods
for estimating the asymptotic covariance matrix. We then form the candidatet-
statistics, which by construction should have a limiting normal distribution. The
pull-estimatet-statistics are centered aroundsT (the series pull estimate from
federal-funds data). Finally, we calculate the 68.3% critical values (±1 standard
deviation from the normal distribution) from the bootstrap distribution of absolute
values oft-statistics. If initial standard-error estimates are reliable, we expect the
computed critical value to be close to one.
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TABLE 11.Bootstrapt-statistica critical values at 0.683 level for local linear esti-
mators

Low persistence High persistence

Decileb Bartlett SEc i.i.d. SEd Bartlett SEc i.i.d. SEd

(%) h = 3 h = 6 h = 3 h = 6 h = 3 h = 6 h = 3 h = 6

(A) Variance Elasticity= 1
10 1.80 1.97 8.64 10.48 1.96 2.23 12.05 14.47
20 1.95 3.40 10.91 20.78 2.32 3.56 15.56 24.80
30 1.82 3.51 9.93 22.82 2.39 3.89 16.02 27.79
40 1.78 3.14 9.45 20.86 2.41 3.86 15.83 27.98
50 1.56 2.44 8.04 15.92 2.37 3.55 15.33 25.72
60 1.59 2.07 7.82 13.20 2.16 3.36 13.44 23.63
70 1.64 2.04 7.83 12.80 2.04 3.24 12.32 22.60
80 1.57 2.11 7.25 12.97 2.01 3.02 11.81 20.44
90 1.39 1.91 6.15 11.03 2.01 2.85 10.23 18.47

(B) Variance Elasticity= 4
10 4.40 7.57 22.70 44.94 4.05 5.49 25.62 38.41
20 1.61 1.64 6.72 8.71 2.66 3.34 16.89 23.50
30 1.47 2.25 5.53 11.19 2.39 3.14 14.47 21.50
40 1.52 3.51 4.59 16.62 2.09 3.37 11.82 22.45
50 1.40 3.58 3.93 15.45 1.81 3.23 9.44 21.01
60 1.19 1.85 2.76 6.83 1.46 2.18 6.82 13.21
70 1.20 1.06 2.38 3.47 1.37 1.63 5.75 9.46
80 1.17 1.26 1.95 3.44 1.29 1.50 4.60 8.19
90 1.05 1.21 1.41 2.56 1.19 1.31 3.39 6.00

aUnder the asymptotic distribution, thist-statistic critical value is equal to one.
bInterest rate deciles are 4.0, 5.0, 5.5, 6.1, 6.9, 8.0, 8.8, 9.8, and 11.7.
cCritical values are bootstrapt-statistic estimates that utilize Bartlett spectral density estimators with 60 lags.
dCritical values are bootstrapt-statistic estimates that treat serial correlation as negligible.

We report results in Table 11 for local linear pull estimates. We examine stan-
dard errors for variance elasticitiesγ = 1 andγ = 4. As before, we simulate
both a (relatively) high-persistence process and a low-persistence process for each
variance elasticity. The critical values resulting from using a Bartlett covariance
matrix estimator are labeled Bartlett SE, and ones that abstract from serial correla-
tion are labeled i.i.d. SE. For each covariance estimator, we report two bandwidths
so that the impact of different bandwidth choices can be investigated.

The bootstrapt-statistic distributions are spread out much more than the stan-
dard normal asymptotic distribution. This is especially pronounced for those using
i.i.d. covariance matrix estimators. For a variance elasticity of one, the critical
value is between 6 and 22 for the low-persistence case and between 10 and 28 for
the high-persistence case, depending on bandwidth and decile of interest. These
critical values become larger as the data’s persistence increases and as the band-
width increases from 3 to 6. However, even when we attempt to correct for serial
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A) Pull Estimates forγ = 1

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 6. Local linear pull estimates and confidence bands forγ = 1. All panels contain
local linear and parametric point estimates for federal-funds data. Panel A contains 95.4%
confidence bands estimated from federal-funds data. Panels B and C present bootstrap
95.4% confidence bands for low- and high-persistence specifications, respectively. In all
panels, standard error bands labeled Bart. SE are obtained using a Bartlett spectral density
estimator with 60 lags and those labeled i.i.d. SE impose zero serial correlation.

correlation via a Bartlett estimator of the long-run covariance matrix, the critical
values still exceed one.

The fact that these bootstrapt-statistic distribution critical values are so large
implies that bootstrap confidence intervals will be much wider than those computed
from the limiting standard normal distribution. In Figures 6 and 7, we compare the
confidence intervals reported in Conley et al. (in press), reproduced in Panels A, to
the confidence intervals obtained using bootstrapping. In these figures, we report
the 95.4% confidence intervals (corresponding to±2 standard deviations of the
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A) Pull Estimates forγ = 4

B) Low-Persistence Specification

C) High-Persistence Specification

FIGURE 7. Local linear pull estimates and confidence bands forγ = 4. All panels contain
local linear and parametric point estimates for federal-funds data. Panel A contains 95.4%
confidence bands estimated from federal-funds data. Panels B and C present bootstrap
95.4% confidence bands for low- and high-persistence specifications, respectively. In all
panels, standard error bands labeled Bart. SE are obtained using a Bartlett spectral density
estimator with 60 lags and those labeled i.i.d. SE impose zero serial correlation.

normal distribution). In Panels B and C, we report the bootstrap results from the
low- and high-persistence calibrations, respectively. In contrast to the top panel,
the confidence intervals are centered around our original (global) estimator of the
diffusion pull. This centering is used because it corresponds to processes that were
simulated.

As expected, bootstrap corrections to the confidence intervals are substan-
tial, especially for the corrections based on the i.i.d. standard errors. Notice that
there is a large discrepancy between the time series and i.i.d. standard errors as
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depicted in Panels A. The discrepancy in the corresponding bootstrap confidence
intervals is considerably smaller in Panels B and C. This is to be expected because
the simulations contain an alternative mechanism for making serial correlation
corrections.15

Panel A of Figure 7 suggests that the pull estimates using our global model of
the drift may understate the pull whenγ = 4 and interest rates are between 3
and 5. However, once we make the bootstrap adjustments, the confidence inter-
vals centered around our global estimates of the pull contain the local estimates.
Moreover, in our simulations of the global model, thet-statistic empirical distribu-
tion is translated to the right of zero in these cases. Thus, we observed a tendency
of the local linear pull estimator to exceed the pull of the process being simulated.
Given the bootstrap corrections and the observed distortions in the local estimator,
the global pull estimates for variance elasticity 4 in fact may not understate the pull.
In summary, the observed differences between the local and global methods for
estimating the pull of the diffusion apparently can be attributed to the inaccuracy
of the measurements.

11. CONCLUSION

We have explored bootstrap refinements to the estimation and inference methods of
Ait-Sahalia (1996) and Conley et al. (in press). We find that the first-order asymp-
totics can be very misleading and that bootstrap refinements can be quite important.
We support this finding using two different methods to calibrate the persistence
(sayκ) of the candidate diffusion processes. We also show that the persistence cal-
ibration can be used to obtain lower-bound estimates for the standard errors with
a faster rate of convergence than the standard errors constructed from frequency-
zero, spectral density estimates. These lower-bound estimates provide useful hints
as to when the bootstrap adjustments to the confidence intervals will be large.

A scalar diffusion is not a good model of federal-funds interest rates. The dis-
crepancy between our two estimates ofκ provides informal evidence that the scalar
diffusion model is misspecified. Other forms of evidence against a scalar diffusion
model with a constant volatility specification for short-term Treasury bill data are
given by Gallant and Tauchen (1996) and Anderson and Lund (1997). Although we
explore the sensitivity of our results to changes in the persistence of the diffusion,
none of our simulated processes are designed to accommodate model misspecifi-
cation. Hence, a reader may object to our use of these methods as bootstrapping
methods and instead prefer to view this paper as simply a Monte Carlo study.
Although this complaint is valid, we are skeptical that altering the simulation
environment in realistic ways will result in smaller bootstrap corrections.

Gallant and Tauchen (1996) and Anderson and Lund (1997) emphasize the need
for an additional volatility factor. Such a factor is permitted in the subordinated
diffusion models of Conley et al. (in press), albeit in a different way. For these
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models, the estimation methods described in the paper are applicable. Subordinated
diffusion models may be viewed as two-factor stochastic volatility models in which
the hidden factor shifts both the local mean and the local variance of the process.
Equivalently, a subordinated diffusion may be interpreted as emerging because
the scalar diffusion is observed at random points in time. This sampling can be
modeled with a stationary increment process that is temporally dependent. Such a
sampling scheme could explain differences in ourκ estimates, provided that there
is a substantial amount of positive persistence in the sampling interval process.
Diffusion counterparts to the process suggested by Robinson and Zaffaroni (1997)
in which the sampling (and hence stochastic volatility) process has long memory
may be promising.

NOTES

1. See Robinson and Velasco (1996) for a discussion of a variety and estimation methods and their
properties.

2. Blocking methods have been suggested Kunsch (1989) and Liu and Singh (1992), among others.
3. Cobb et al. (1992) consider polynomial drift specifications. Following Conley et al. (in press),

we include a negative power because we consider processes on the half line.
4. A more precise statement of this lack of identification is that one can construct a drift for any

prespecified logarithmic derivative of the stationary density and any variance elasticity. Similarly, in the
literature on calibrating dynamic, stochastic general equilibrium models, only a subset of the parameters
can be inferred from the steady-state relations.

5. We thank the Federal Reserve Bank of Chicago for providing the data.
6. The method of Chen et al. (1997) also can be used to make inferences about the variance elasticity.
7. The reported estimates were obtained by centering the cardinal B-splines at integer values of

the interest rates, settingDT to be the identity matrix and settingλT to penalize the squared second
differences in the coefficients at about 5% of that of the unrestricted (λT = 0) estimates. Strictly
speaking, the identity matrix forDT is not covered in the analysis of Chen et al. (1997). Instead they
establish approximation results based on second-difference penalties that increase with the level of the
state. We also computed estimates of eigenfunctions and ofρ based on second-difference weighting
schemes that are formally covered by the approximation results of Chen et al. (1997) and byλT targets
designed to impose a common second-difference constraint for the alternative specifications of the
variance elasticityγ . The resulting estimates ofρ were mostly insensitive to these changes except for
theγ = 4 case. In this high volatility elasticity case, our estimates ofρ ranged from 117 to 128.

8. For variance elasticity of three, strictly speaking the entries of Table 3 are not quite equal to the
ratio of the corresponding entries in Tables 2 and 1. This discrepancy is due to rounding error. The
entries in Table 3 are the exact numbers used in our simulations. As mentioned in note 7, we also
used alternative second-difference weighting schemes. Using the least squares estimates forδ, theκ

estimates ranged from 1.98e-2 to 1.99e-2 forγ = 1, from 2.11e-3 to 2.20 e-3 forγ = 2, from 7.07e-4
to 8.32e-4 forγ = 3, and from 2.26e-4 to 2.71e-4. Thus we found more sensitivity in ourκ estimates
for higher variance elasticities.

9. The simulation methods have been used fruitfully in the development of an alternative class of
simulation-based estimators of diffusion processes. See Gourieroux and Monfort (1996) and Tauchen
(1997) for surveys.

10. In estimating the parameterα, we imposed the sign restrictions necessary for a stationary
parameterization. Occasionally, these sign restrictions were binding and the numbers of these occur-
rences for each sample are given by the following table:
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No. of draws

γ = 1 γ = 2 γ = 3 γ = 4

High persistence 32 21 24 4
Low persistence 19 21 0 0

11. The specification test of Ait-Sahalia (1996) and Pritsker (1996) is slightly different from the one
we use. First, Ait-Sahalia (1996) estimatesM̂ using a sample average instead of numerical integration
to approximate the integral in (7). We use numerical integration to reduce computation time. Second,
Ait-Sahalia uses root-T consistent parameter estimates that minimizeM̂ whereas ours uses root-T
consistent test-function estimators. Our test, although asymptotically equivalent, may have different
finite sample properties.

12. Another problem with cross-validation applied to our data set is the presence of small-scale
“lumps” in federal-funds interest-rates data—rates are very often whole numbers and fractions in
eighths. Cross-validation applied to data with small-scale effects is known to produce estimates of
optimal bandwidths that are implausibly small. See Silverman (1986) for a discussion.

13. Silverman (1978) shows that (under regularity conditions on the kernel and true density) if the
bandwidth is chosen to ensure that sup|π̂ − π | converges to zero as fast as possible, then

sup|π̂ ′′ − Eπ̂ ′′|
sup|Eπ̂ ′′|

converges to a constant depending on kernel choice (approximately 0.4 for a Gaussian kernel). The
test-graph method consists of choosing a bandwidth such that the maximum noise in ˆπ ′′ (corresponding
to the numerator of this fraction) is about 0.4 of the maximum trend in the curve ˆπ ′′ (the denominator).
See also Silverman (1986).

14. Because we reestimate the parametric model for each Monte Carlo sample, the smoothness of
the implied density is allowed to adapt to each sample, albeit in a constrained way. On the other hand,
we are holding fixed the bandwidths across Monte Carlo samples. This asymmetry may inflate our
bootstrap corrections.

15. There are sometimes quantitatively important differences in the bootstrap confidence intervals
depending upon whether the i.i.d. or Bartlett standard errors are used. The standard-errors estimators
used in the i.i.d. confidence intervals have a faster rate of convergence than the Bartlett counterparts.
However, they are likely to suffer from a greater downward bias. This leads to question of which
bootstrap intervals we expect to be more reliable in practice. Although we do not have any Monte
Carlo evidence to answer this question, we did find the following. When we used estimates of the
long-run covariance matrix that are analogous to3, the computed confidence intervals turned out to
be closer to the bootstrap i.i.d. confidence intervals than the Bartlett counterparts.
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