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Abstract

We present a uniqueness result for Gibbs point processes with interactions that come
from a non-negative pair potential; in particular, we provide an explicit uniqueness
region in terms of activity z and inverse temperature β. The technique used relies on
applying to the continuous setting the classical Dobrushin criterion. We also present a
comparison to the two other uniqueness methods of cluster expansion and disagreement
percolation, which can also be applied for this type of interaction.
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1. Introduction

In this work we present a uniqueness result for a class of Gibbs point processes in R
d, d ≥ 2,

where the Gibbsian interaction is given by a non-negative pair potential.
In statistical mechanics, Gibbs point processes are often defined through the Dobrushin–

Lanford–Ruelle (DLR) equations [10, 21] that prescribe their conditional laws. This large class
of point processes is widely used, as it allows for various types of interaction: among others,
it can be in the form of a k-body potential; depend on geometric features like the Delaunay
tessellation or the area interaction processes; be attractive or repulsive. For an introduction to
Gibbs point processes see [6, 16].

Setting aside the (far from trivial) existence problem, which is not the focus of this paper,
the natural question is that of the uniqueness (or lack thereof) of Gibbs point processes. Indeed,
in the setting of Gibbs point processes that are characterised by a pair potential φ, an activity
parameter z > 0 and an inverse temperature β ≥ 0, we place particular focus on obtaining an
explicit uniqueness region of the parameters z, β. Heuristically, it is expected that for fixed β,
uniqueness is achieved for activities z small enough. We remark, however, that such behaviour
has actually been disproved for the specific case of the Widom–Rowlinson model with random
radii with heavy tails, see [8].

The uniqueness question for lattice systems is one of main interests in the community,
and different arguments and methods exist, including Peierls’ argument [30], the Dobrushin
criterion from [10], cluster expansion (see [26, 37]), a characterisation due to Lebowitz and
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542 P. HOUDEBERT AND A. ZASS

Martin Löf [23], and disagreement percolation (see, for example, [18, 42, 43]). No one method
is a priori stronger than the others; it is a question of finding which is better adapted to the
specific model for which we wish to prove the uniqueness of the Gibbs measure.

This consideration also holds true in the continuous framework, where the uniqueness ques-
tion is even more delicate. The three techniques we analyse in the setting of this paper, namely
the Dobrushin contraction criterion, cluster expansion, and disagreement percolation, all work
under different assumptions, and yield different parameter domains in which uniqueness holds.
It is therefore generally complicated to compare their efficacy.

In the main result of this paper, Theorem 3.1, we provide a set of (simple to test) assump-
tions which lead to a uniqueness result for small activity. The strength of this result lies
in the explicit nature of the uniqueness domain it yields, i.e. the following parameter region
for z, β: {

(z, β) ∈R>0 ×R≥0 : z <

(
sup
x∈Rd

∫
Rd

e−βφ(x,y) dy

)−1}
,

and in the simplicity of its proof, which makes use of the Dobrushin criterion. The celebrated
original uniqueness criterion from [10] (very general, but presented only for discrete Gibbs
models) can be applied to continuum models by first decomposing the space R

d into disjoint
cubes of some side length a > 0. Letting this discretisation parameter a tend to 0 in (3.9), we
are able to obtain the explicit uniqueness bound above.

We prove our result for potentials with a hard-core component close to the origin
(Assumption (A1) in Section 3.1), as such a requirement allows us to only consider configura-
tions having at most one point in each small cube, which in turn simplifies the computations
when taking the limit as the size of the cubes goes to 0. However, since the probability of
having more than one point in a small cube vanishes together with its size, we conjecture that
Theorem 3.1 could still be valid without this hard-core assumption. See Section 3.3 for more
detailed comments.

The second aspect of our work is a comparison between the three uniqueness techniques; in
particular, in Section 3.5 we compare it to the explicit uniqueness regions that can be obtained
from existing works on cluster expansion and disagreement percolation, in [20] and [19],
respectively. What transpires from this comparison is that Theorem 3.1 yields a larger unique-
ness region than the one that can be obtained via cluster expansion [15, 20]. Furthermore, as
expected, for β small enough, the result is also better than the one obtained from disagreement
percolation, yielding a larger range of possible activities z for which uniqueness holds.

The article is organised as follows. In Section 2 we introduce the formalism used in this
work. In Section 3.1 we introduce the assumptions needed and state the uniqueness theorem,
which is then proved in Section 3.2. In Section 3.3 we comment on the assumptions and give
possible generalisations to our work. In Sections 3.4 and 3.5 we discuss the optimality of our
result, and compare it to existing results coming from cluster expansion and disagreement
percolation.

2. The setting

2.1. Configuration space

In this work we consider point configurations in R
d, d ≥ 2. More precisely, we endow R

d

with the usual Euclidean distance |·| and Borel σ -algebra B(Rd), and set the configuration
space � to be the set of locally finite configurations ω on R

d, i.e. measures of the form
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ω =∑
i δxi , with #ω� < ∞ for any bounded � in B(Rd) (here, # denotes the cardinality of

the support of the configuration, and ω� the restriction of ω to ��).
As the configurations we consider here are simple, i.e. with no overlapping points, we

also denote a configuration ω =∑
i δxi by the subset of R

d on which it is supported: ω =
{x1, . . . , xn, . . . }. Consequently, ω� = ω ∩ �. We write ω′ω := ω′ ∪ ω for the concatenation
(or union) of two configurations.

We endow � with the usual σ -algebra F generated by the counting functions on bounded
Borel sets, ω 	→ #ω�.

For any � ⊂R
d, �� ⊂ � denotes the subset of configurations supported on � (and F� the

corresponding σ -algebra).
Let |·| be the usual d-dimensional Lebesgue measure. We denote by vd := |B(0, 1)| the

volume of the unit ball in R
d.

On the space �, we consider the probability measure π z given by the distribution of the
homogeneous Poisson point process with intensity z > 0. Recall that this means that:

i. For every bounded set � ⊂R
d, the distribution of the number of points in � under π z

is a Poisson distribution of mean z |�|.
ii. Given the number of points in a bounded set �, the said points are independent and

uniformly distributed in �.

For any bounded set � ⊂R
d, we denote by π z

� the restriction of π z to ��.
For more details on Poisson point processes see, for example, [4, 22].

2.2. Interactions and Gibbs point processes

As usual, we add an interaction on the Poisson point process by considering the notion of
Gibbs specifications associated to a given Hamiltonian. More precisely, let φ be a symmetric
non-negative (i.e. repulsive) pair potential φ : Rd ×R

d →R≥0 ∪ {+∞}, and define, for any
bounded set � ⊂R

d, the �-Hamiltonian by setting

H�(ω) :=
∑

{x,y}⊂ω
{x,y}∩� �=∅

φ(x, y), ω ∈ �.

Since the potential φ is non-negative, this quantity is well-defined for any configuration ω ∈ �.
In Section 3.1 we provide the more precise assumptions that are needed for the main result of
this work, but we remark now that we do not assume translation invariance.

Definition 2.1. The Gibbs specification associated to the potential φ on a bounded measurable
set � ⊂R

d, with boundary condition γ , activity z > 0, and inverse temperature β ≥ 0, is given
by the following probability measure on the configurations with support in �:

P
z,β
�,γ (dω�) := e−βH�(ω�γ�c )

Zz,β
�,γ

π z
�(dω�), ω� ∈ ��,

where the normalisation factor is the partition function

Zz,β
�,γ :=

∫
�

e−βH�(ω�γ�c )π z
�(dω�) ∈ (0, 1].

Since Zz,β
�,γ is finite, the Gibbs specification is always well-defined.

https://doi.org/10.1017/jpr.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.70


544 P. HOUDEBERT AND A. ZASS

Definition 2.2. A probability measure P on � is said to be a Gibbs point process associated to
the potential φ, with activity z > 0 and inverse temperature β ≥ 0, denoted P ∈ Gz,β (φ), if, for
every bounded measurable function f and for all bounded Borel � ⊂R

d,

∫
�

f dP =
∫

�

∫
�

f (ω�γ�c) P
z,β
�,γ (dω�) P(dγ ). (DLR)

These are the DLR equations after Dobrushin, Lanford, and Ruelle, and prescribe the
conditional probabilities of a Gibbs point process.

The first question that arises in Gibbs point process theory is whether there exists at least
one solution to the DLR equations. This important and difficult problem has been studied for
many different interactions and settings: from the classical works of [29, 37] to more recent
works considering the case of geometrical interactions [5, 7], infinite range pair potentials [9],
and unbounded interactions in the context of marked point processes [36].

The existence of such a measure in the setting of this paper is a known result (for example
in [38]), and is therefore not the subject of our work. For completeness, we state it here:

Proposition 2.1. Let φ be a non-negative and symmetric pair potential. Let β ≥ 0 and assume
that for all x ∈R

d,
∫
Rd

(
1 − e−βφ(x,y)

)
dy < ∞. Then, for any activity z > 0, there exists at least

one Gibbs point process P ∈ Gz,β (φ).

In what follows, we first prove a simple and explicit uniqueness criterion derived from
the standard Dobrushin technique, and then compare it to criteria coming from the two other
techniques of cluster expansion and disagreement percolation.

We do not explore the topic of phase transition; we only mention that the question of the
non-uniqueness of the Gibbs point process is of major interest and very few results are known.
In particular, the existing literature mainly deals with coloured (multi-species) models like the
Widom–Rowlinson model; see, for instance, [2, 8]. In these works, phase transition is proved
by showing that one species ‘dominates’ the others when the activity of the points is large
enough.

3. Uniqueness of the Gibbs point process

In Sections 3.1 and 3.2 we derive a simple and explicit uniqueness region by applying the
discrete Dobrushin contraction criterion from [10] through a discretisation parameter a, and
then considering the limit as a goes to 0.

The remainder of the paper deals with the natural questions that arise from this result.
In particular, in Section 3.3 we discuss the assumptions of Theorem 3.1, as well as possible
generalisations that could be the subject of future work. In Section 3.4 we perform a numerical
study to show that taking the limit for the mesh size a → 0 yields a larger uniqueness region
than that of the Dobrushin criterion for any fixed a > 0. Finally, in Section 3.5 we compare
this uniqueness region to those coming from other approaches, namely cluster expansion and
disagreement percolation.

3.1. Dobrushin uniqueness region

We present here the assumptions that are required in the statement of our main result. See
Section 3.3 for some comments on these conditions.

In what follows we assume that the (not necessarily translation-invariant) pair potential φ is
such that the following three conditions are satisfied:
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Repulsive and hard-core close to the origin: φ is non-negative, and there exists a uniform
hard-core diameter R > 0 such that, for all x, y ∈R

d with |x − y| < R, φ(x, y) = +∞.
Uniform regularity of the potential: Cφ(β) := supx∈Rd

∫
Rd

(
1 − e−βφ(x,y)

)
dy < +∞.

For the third assumption we first need to introduce some notation. Let a > 0, and partition
the space R

d into cubes of side length a, centred in the points of the lattice; for any i ∈ aZd,
these are

�a,i := i +
(
−a

2
,

a

2

]d
. (3.1)

Then, define the following ‘local supremum’ of the Mayer function:

�a(x, y) := sup
ȳ∈�a,i

(
1 − e−βφ(x,ȳ)) if y ∈ �a,i. (3.2)

The last assumption is given by the following:
Regularity of the induced Mayer function:

sup
x∈Rd

∫
Rd

(
1 − e−βφ(x,y))dy = lim

a→0
sup
x∈Rd

∫
Rd

�a(x, y) dy

= inf
0<a<2R/

√
d

sup
x∈Rd

∫
Rd

�a(x, y) dy.

We are now ready to state the main result of this paper.

Theorem 3.1. Let the pair potential φ satisfy Assumptions (A1), (A2), and (A3). Furthermore,
assume

z < Cφ(β)−1. (3.3)

Then there exists a unique Gibbs point process P ∈ Gz,β (φ).

3.2. Proof of Theorem 3.1

Proof. In this subsection we provide the proof to the above theorem. As already stated in
the introduction, the result is an application to the continuous setting of the classical Dobrushin
technique for lattice models. To do this, we use a standard discretisation technique, via a param-
eter a > 0 that defines the mesh size a. The novelty of our result, and what leads to the explicit
uniqueness region, is to consider the Dobrushin criterion in the limit as a → 0; this final step
of the proof is done in Section 3.2.4.

3.2.1. The Dobrushin contraction method in the lattice The proof of Theorem 3.1 relies on the
classical Dobrushin criterion [10]. In this subsection we describe the setting and the results as
they apply to our model. (For a general presentation see, for example, [17].)

Let � be a complete separable metric space, which we call the spin space. Fix a > 0, and
consider the discrete configuration space �aZd

, equipped with the standard cylinder σ -algebra.
Let 
 = (
�(· | ξ ))

�⊂aZd,ξ∈�aZd be a discrete specification, i.e. a consistent family of condi-

tional probability measures indexed by a finite � ⊂ aZd and a discrete configuration ξ ∈ �aZd
.

Furthermore, for any event A, 
�(A|ξ ) only depends on the restriction ξ�c of ξ to ��c
.

Definition 3.1. A probability measure Q on �aZd
is said to be a Gibbs measure compatible

with the specification 
 if, for any finite � ⊂ aZd and any bounded measurable function g, it
satisfies

∫
g(ξ )Q(dξ ) = ∫

g(ξ ′
� ξ�c)
� (dξ ′

� | ξ ) Q(dξ ).
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The original result, proved by Dobrushin in [10], reads:

Theorem 3.2. Let a > 0 and 
i := 
{i}. If

sup
i∈aZd

∑
j �=i

sup
ξ,ξ̃∈�aZd

ξk=ξ̃k ∀k �=j

dTV
(

i (· | ξ ), 
i (· | ξ̃ )

)
< 1,

then there exists at most one Gibbs measure on �aZd
compatible with the specification 
.

An easy generalisation, which we use in the following subsection to restrict the set of
allowed configurations, is the following:

Lemma 3.1. Let a > 0 and consider A ⊂ �aZd
such that Q(A) = 1 for any Gibbs measure Q on

�aZd
compatible with the specification 
. If

sup
i∈aZd

∑
j �=i

sup
ξ,ξ̃∈A

ξk=ξ̃k ∀k �=j

dTV
(

i (· | ξ ), 
i (· | ξ̃ )

)
< 1, (3.4)

then there exists at most one Gibbs measure in �aZd
compatible with the specification 
.

Remark 3.1. As seen in the above lemma, the hard-core Assumption (A1) allows us to restrict
the set of possible boundary conditions in (3.4). This is also achieved in [11], extended to
the continuous setting in [1, 29], but while the criterion provides a uniqueness result for
more general interactions than those considered here, it does not generally provide an explicit
uniqueness region, which is one of the goals of our work. Indeed, as seen in [29, Lemma 6],
their method yields uniqueness for small (non-explicit) values of the parameters.

3.2.2. The correspondence between continuous and lattice models In order to apply
Lemma 3.1, we must express the continuous model as a lattice model. The representation we
make use of here does not lose any of the information from the continuous model, so that the
uniqueness properties of the two models are indeed equivalent (see [11, 29]). In this it differs
from the cell-gas model presented in [34], where the idea is that uniqueness for the discrete
model implies uniqueness for the continuous one, but it is not a one-to-one correspondence.

Fix a > 0, and consider again the partition of Rd into the cubes �a,i defined in (3.1). Set
the spin space to be the space of configurations supported on the closure of �a,0, � := ��̄a,0

,

endowed with its σ -algebra F�̄a,0
. The lattice configurations are then subsets ξ ⊂ �aZd

. The

correspondence between the two models is given by the measurable embedding T : � → �aZd
,

ω 	→ ξ = (ξj)j∈aZd , defined by setting, for all j ∈ aZd, ξj := ω�a,j − j = {x − j : x ∈ ω�a,j} ⊂
�a,0. Its inverse T−1 can be naturally extended from T(�) to the whole of �aZd

by considering
T−1(ξ ) =⋃

j∈aZd ξj + j.

Remark 3.2. A lattice configuration ξ ∈ �aZd \ T(�) contains points in �̄a,0 \ �a,0 and so
T−1 maps it to a continuous configuration γ with overlapping points. Nevertheless, such
configurations have probability 0 under the Gibbs point process as φ(x, x) = +∞.

We next define the lattice specification by setting, for any finite � ⊂ aZd, 
�( · | ξ ) := P
z,β
�,γ ,

where � = ∪i∈��a,i and γ = T−1(ξ ), and let GaZd

z,β (φ) be the set of probability measures on
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�aZd
compatible with the specification 
. Thanks to the hard-core Assumption (A1) and the

previous remark, it can be seen, as in [29], that for a < 2R/
√

d, the map T induces a bijective
map T̂ : Gz,β (φ) → GaZd

z,β (φ). The Gibbs point processes in Gz,β (φ) are supported on the set of
R-hard-core configurations (commonly, allowed) AR ⊂ �, i.e. γ ∈AR is such that if {x, y} ⊂
γ , then |x − y| ≥ R; the Gibbs measures in GaZd

z,β (φ) are supported on their image via T , i.e.
A := T(AR).

We can then restrict our study to only the allowed configurations AR. Indeed, thanks to
Lemma 3.1 and the one-to-one correspondence between continuous and lattice models, in order
to prove the uniqueness of the original Gibbs point process, it is enough to show that, for some
a > 0,

sup
i∈aZd

∑
j∈aZd\{i}

k(a)
i,j < 1, (3.5)

where we have set, for any {i, j} ⊂ aZd,

k(a)
i,j := sup

γ,γ̃∈AR
γ�c

a,j
=γ̃�c

a,j

dTV

(
P

z,β
�a,i,γ

;Pz,β
�a,i,γ̃

)
.

3.2.3. Computation of the coefficients We consider 0 < a < 2R/
√

d so that the cube of side
length a is contained in the hard core: �a,0 ⊂ B(0, R). Thanks to Assumption (A1), this implies
that every allowed configuration γ ∈AR has at most one point in each cube �a,k, k ∈ aZd.

Fix i ∈ aZd, and for the sake of simplicity let � denote the cube �a,i. For any j ∈ aZd \ {i},
consider two configurations that differ only inside the cube �a,j, i.e.

γ, γ̃ ∈AR : γ�c
a,j

= γ̃�c
a,j

. (3.6)

Without loss of generality, we can assume that Zz,β
� (γ̃ ) ≤ Zz,β

� (γ ). Computing the total variation
distance (see, e.g., [35, Lemma 8.2.1]), we have

dTV

(
P

z,β
�,γ , P

z,β
�,γ̃

)
= sup

B⊂AR

∣∣∣Pz,β
�,γ (B) − P

z,β
�,γ̃

(B)
∣∣∣

=
∫
AR

[
e−βH�(ω�γ�c )

Zz,β
� (γ )

− e−βH�(ω�γ̃�c )

Zz,β
� (γ̃ )

]+
π z

�(dω�),

where y+ := max (y, 0) denotes the positive part of y ∈R. Since the configuration ω�

constains at most one point in �, we obtain

dTV

(
P

z,β
�,γ , P

z,β
�,γ̃

)
= ze−z|�|

∫
�

[
e−βH�({x}∪γ�c )

Zz,β
� (γ )

− e−βH�({x}∪γ̃�c )

Zz,β
� (γ̃ )

]+
dx.

Since e−z|�| ≤ Zz,β
� (γ̃ ) ≤ Zz,β

� (γ ) ≤ 1, we have

e−z|�|
[

e−βH�({x}∪γ�c )

Zz,β
� (γ )

− e−βH�({x}∪γ̃�c )

Zz,β
� (γ̃ )

]+

≤ e−z|�|
[

e−βH�({x}∪γ�c )

Zz,β
� (γ )

− e−βH�({x}∪γ̃�c )

Zz,β
� (γ )

]+
≤
[
e−βH�({x}∪γ�c ) − e−βH�({x}∪γ̃�c )

]+
,
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and we can now estimate

dTV

(
P

z,β
�,γ , P

z,β
�,γ̃

)
≤ z

∫
�

[
e−βH�({x}∪γ�c ) − e−βH�({x}∪γ̃�c )

]+
dx. (3.7)

Since φ is non-negative, the right-hand side is largest when γ = ∅; hence, from (3.6), γ̃ = γ̃�a,j ,
with at most one point in the cube �a,j. We then have that the following uniform bound holds
over all pairs of allowed boundary configurations:

for all γ, γ̃ ∈AR : γ�c = γ̃�c , dTV

(
P

z,β
�,γ , P

z,β
�,γ̃

)
≤ z sup

y∈�

∫
�

(
1 − e−βφ(x,y)) dx. (3.8)

In particular, taking the supremum over the configurations γ, γ̃ ∈AR such that γ�c
a,j

= γ̃�c
a,j

yields

k(a)
i,j ≤ z sup

y∈�a,j

∫
�a,i

(
1 − e−βφ(x,y)) dx.

3.2.4. Obtaining the bound Summing the coefficients k(a)
i,j over all j ∈ aZd \ {i} gives

∑
j∈aZd

j �=i

k(a)
i,j ≤ z

∑
j∈aZd

j �=i

sup
y∈�a,j

∫
�a,i

(
1 − e−βφ(x,y)) dx

≤ z
∫

�a,i

∑
j∈aZd

j �=i

sup
y∈�a,j

(
1 − e−βφ(x,y)) dx

= z
∫

�a,i

∑
j∈aZd

j �=i

1∣∣�a,j
∣∣
∫

�a,j

sup
ȳ∈�a,j

(
1 − e−βφ(x,ȳ)) dy dx

= z∣∣�a,i
∣∣
∫

�a,i

∫
Rd\�a,i

�a(x, y) dy dx

≤ z sup
x∈�a,i

∫
Rd

�a(x, y) dy,

where �a is the function defined in (3.2). Taking the supremum over all i ∈ aZd yields

sup
i∈aZd

∑
j∈aZd

j �=i

sup
γ,γ̃∈AR

dTV

(
P

z,β
�a,i,γ

, P
z,β
�a,i,γ̃

)

≤ z sup
x∈Rd

∫
Rd

�a(x, y) dy
a→0−−→ z sup

x∈Rd

∫
Rd

(
1 − e−βφ(x,y)) dy, (3.9)

where the last convergence follows from Assumption (A3). This means, in particular, that if
z supx∈Rd

∫
Rd

(
1 − e−βφ(x,y)

)
dy < 1, there exists a > 0 such that the Dobrushin condition (3.5)

is satisfied: supi∈aZd
∑

j∈aZd\{i} k(a)
i,j < 1. This concludes the proof of Theorem 3.1. �
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Remark 3.3. The uniqueness region obtained for fixed a > 0, i.e.

z sup
x∈Rd

∫
Rd

�a(x, y) dy < 1,

is not explicit due to the nature of the function �a. For the same reason, comparing it for
different values of a is not an easy feat. See the comparison in Section 3.4.

3.3. Discussion about the assumptions and possible generalisations

The proof of Theorem 3.1 relies on the assumptions on the interaction made above, namely
that it is coming from a non-negative pair potential φ which is hard-core close to the origin
(A1), with an integrability assumption (A2), and a technical regularity assumption (A3). We
comment here on these requirements.

3.3.1. The assumptions Firstly, we restrict our study to non-negative potentials φ. We used this
assumption to simplify the estimation of the total-variation distance in (3.8), since in this case
e−βH�(γ ) is (uniformly) bounded from above by 1. Extending our result to more general pair
potentials, e.g. stable and regular like those considered in the Kirkwood–Salsburg approach of
[37], remains an open question. In the setting of repulsive potentials we can, however, easily
apply and compare all three uniqueness methods.

Secondly, the regularity assumption (A3) is purely technical, resulting from taking a → 0
in the proof. The first equality is satisfied whenever the set of discontinuity of φ(x, .) is of
measure 0, which is the case, for example, for the radial potentials with hard core presented in
Section 3.5. The result of Theorem 3.1 is obtained without making use of the second equality,
which ensures instead that the uniqueness region is optimal within the Dobrushin criterion and
it is consistent with numerical results (see Section 3.4).

Thirdly, the regularity assumption (A2) is quite standard, and seems unavoidable when
using the Dobrushin criterion. Furthermore, a similar assumption is required when using the
cluster expansion technique.

The most restricting requirement we make is therefore Assumption (A1), which excludes
interactions that do not have a hard-core component; notice how the condition

( |x − y| ≥ R
)

can be generalised by
(
y /∈ x + U

)
, where U is any neighbourhood of the origin, for example

an ellipse with minor axis equal to R.
The hard-core part of the interaction makes sure that any configuration has at most one point

in each cube, if the cubes are small enough; this in turn allows us to derive the bound in (3.3).
Heuristically, the presence of the hard core means that the discretisation leads to a stationary
approximating sequence. In the absence of it, the approximation would be only asymptotic.
Many interactions, however, do not satisfy this assumption, like the widely known Strauss
pairwise interaction from [41]. In the case of a non-negative potential without hard core, as
for the Strauss model with φ(x, y) = 1{|x−y|≤1}, we would still be able to apply the classical
Dobrushin criterion and then consider the limit a → 0. However, when taking the supremum
in (3.7) over all possible configurations γ, γ̃ , as in this case there is no restriction on the
number of points in each cube, the uniqueness region we would obtain is z < v−1

d , where vd is
the volume of the unit ball. Notice how this criterion no longer depends on β.

One possible way to overcome this issue is to use the so-called Dobrushin–Pechersky
uniqueness criterion [11]. While the assumptions needed for this criterion are well understood
(see [29]), the resulting conditions are too technical to obtain explicit values of the parameters.
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3.3.2. Possible generalisations It seems possible to develop new techniques inspired by the
proof of Theorem 3.1. Heuristically, when taking a → 0 it is less and less likely for a boundary
condition to have more than one point in a small cube of side length a. One would then be able
to do without the hard-core assumption by instead controlling the number of points in small
boxes. This is the case, for example, with superstable potentials [38] or with orderly point
processes [3, 12]; in both cases we are able to bound the probability of having more than two
points in a given box in terms of its volume [40].

By retracing the proof of Theorem 3.1 with Aa := {γ : #γ�a < 2} in place of the R-hard-
core configurations AR, we obtain the following bound, similar to (3.8):

for all γ, γ̃ ∈Aa : γ�c = γ̃�c , dTV

(
P

z,β
�,γ , P

z,β
�,γ̃

)
≤ z sup

y∈�

∫
�

(
1 − e−βφ(x,y)) dx,

and we can set
k(a)′

i,j := sup
γ,γ̃∈Aa

γ�c
a,j

=γ̃�c
a,j

dTV

(
P

z,β
�a,i,γ

;Pz,β
�a,i,γ̃

)
.

The point that remains open is whether we can apply the lattice Dobrushin criterion here.
It is in fact not enough that P( lima→0 Aa) = 1, as what allows us to conclude the proof of
Theorem 3.1 is the existence of a positive a, with P(Aa) = 1, that we can apply the classi-
cal Dobrushin criterion with (via Lemma 3.1). In this limiting case, the uniqueness of the
Gibbs point process therefore remains a conjecture, which requires a not straightforward
generalisation of Lemma 3.1.

Independently, Michelen and Perkins have recently developed [27] a novel approach to
prove uniqueness for repulsive and regular pair potentials, proposing a new explicit bound for
the uniqueness region, by adapting the correlation decay method from theoretical computer
science and using a recursive integral representation of the density of a point process.

3.4. Optimality of Theorem 3.1 within the Dobrushin criterion

We believe the simplicity of the uniqueness region obtained in Theorem 3.1, as well as the
ability to compare it to other criteria, are justifications enough for considering this method. It is
of course natural to ask whether taking the limit for a → 0 actually yields a larger uniqueness
region than is obtained by just considering a fixed a > 0, i.e. when the second equality of
Assumption (A3) holds.

This translates to comparing the uniqueness regions obtained by fixing some a > 0 and by
taking the limit a → 0, i.e. respectively (note that for z̄β (a) we are using the possibly sub-
optimal estimate of (3.9) for the total variation distance)

z̄β (a) := sup

{
z > 0 : z sup

x∈Rd

∫
Rd

�a(x, y) dy < 1

}
= inf

x∈Rd

(∫
Rd

�a(x, y) dy

)−1

, a > 0,

and z̄β (0) := sup {z > 0 : z Cφ(β) < 1} = (
Cφ(β)

)−1. We note that, due to the form of the func-
tion �a defined in (3.2), the uniqueness region obtained for any fixed a > 0 is of implicit
nature (while �a is monotone in a, this monotonicity is broken when integrating and taking
the supremum over all x ∈R

d) and it is therefore difficult to compare the uniqueness regions
for different values of a. We have performed, however, a numerical study in the case of the
hard-sphere model φ(x, y) = ( + ∞)1{|x−y|≤1} in dimension d = 2; Figure 1 displays the upper
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FIGURE 1. Dobrushin uniqueness bound a 	→ z̄β (a) for the hard-sphere model, for several values of
a ∈ [0, 0.7]. We find z̄β (0) � 0.318.

0.6

FIGURE 2. The uniqueness regions (shaded where our method yields a larger bound) for the three dif-
ferent methods consist in the regions below the respective curves. Depicted here for the pure hard-core
potential φ(x, y) = ( + ∞)1{|x−y|≤1} on the left and for φ(x, y) = ( + ∞)1{|x−y|≤1} + 1{1<|x−y|≤3} on the

right.

bound z̄β (a) of the Dobrushin uniqueness interval that we have computed numerically for sev-
eral values of a, showing that taking the limit a → 0 yields a larger Dobrushin uniqueness
region than that of any fixed a > 0. This indicates that the second equality of Assumption (A3)
holds.

3.5. Comparison with other uniqueness methods

In this subsection we briefly describe the two methods of cluster expansion and disagree-
ment percolation, and see how the uniqueness regions that they yield compare to our Dobrushin
criterion result. In particular, we provide a visual comparison between the three uniqueness
methods, displayed in Figure 2 for two potentials with hard core, and in Figure 3 for the case
of the Strauss potential if the result of Theorem 3.1 holds without the hard-core assumption.

3.5.1. Cluster expansion The method of cluster expansion was first developed for lattice sys-
tems in the 1980s (see, e.g., [24]) and later extended to the continuous case. Indeed, different
approaches exist to show the convergence of the cluster terms (see, e.g., [25, 28, 32]).
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FIGURE 3. Uniqueness regions (shaded where our method yields a larger bound) for the Strauss potential
φ(x, y) = 1{|x−y|≤1}, assuming the result can be applied here.

For continuous point processes, the technique [37] relies on a series expansion of the corre-
lation functions. More precisely, it consists in showing that the correlation functions of a Gibbs
point process can be expressed as an absolutely converging series of cluster terms, and unique-
ness is then proved by considering a set of integral equations, the so-called Kirkwood–Salsburg
equations, satisfied by the correlation functions, which can be reformulated as a fixed-point
problem in an appropriately chosen Banach space, therefore having a unique solution.

Jansen [20] presents a cluster expansion criterion for Gibbs point processes with a repulsive
interaction φ, with a condition similar to that presented in [13] as a sufficient condition for the
convergence of cluster expansion. However, since the most general form of this criterion yields
an implicit uniqueness region, in order to compare it with the domains obtained through the
other methods, we only recall a specific uniqueness case that has an explicit region.

Theorem 3.3 ([20]). Suppose there exist a non-negative measurable function a and some
t > 0 such that, almost everywhere for x0 ∈R

d, zet
∫ (

1 − e−βφ(x0,y)
)
ea(y) dy ≤ a(x0). Then

there exists a unique Gibbs measure P ∈ Gz,β (φ).

Restricting a to be a constant function, and remarking that maxa≥0 ae−a = 1
e , the condition

of the above theorem holds for some a ≥ 0 and t > 0 as soon as the classical Ruelle condition
(e.g. [37, Theorem 4.2.3]) holds:

z <
1

e
Cφ(β)−1. (3.10)

By considering a non-constant function a in Theorem 3.3, we could hope to obtain a better
bound than (3.10).

We also note that Fernández, Procacci, and Scoppola were able to improve the classical
cluster expansion bound using tree-graph estimates. Their approach was first presented in [14],
where they also provided a comparison to the other methods; in [15] the authors studied the
specific case of the two-dimensional hard-sphere model (where Cφ(β) = v2 is given by the
volume of the unit ball in R

2) and obtained from cluster expansion an improved bound which
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they estimated numerically as z < 0.5107 v−1
2 . While larger than bound in (3.10), z < e−1v−1

2 ,
this uniqueness region is still smaller than the one we have obtained, i.e. z < v−1

2 .

Remark 3.4. The restriction to non-negative potentials greatly simplifies the cluster expansion
approach. In this setting it is immediate to see that the correlation functions of any Gibbs point
process are in the same Banach space where uniqueness holds: this is generally obtained by
estimating the correlation functions via a so-called Ruelle bound, cf. [39], which is trivial in
the case of repulsive interactions.

3.5.2. Disagreement percolation The method of disagreement percolation was introduced for
lattice systems in [42, 43]. The idea behind disagreement percolation is the construction of a
coupling, sometimes called disagreement coupling, which compares Gibbs specifications with
two different boundary conditions outside a given box, in such a way that the disagreement
points between the two Gibbs specification are ‘connected’ to the boundary of the box. If
the probability of being connected to the boundary of an increasingly large box goes to zero,
uniqueness holds.

Adapting the uniqueness result of [19] to our setting gives the following result.

Theorem 3.4 ([19]). Let φ be a finite-range pair potential, i.e. there exists r > 0 such that
φ(x, y) = 0 if |x − y| > r. Then there exists at most one Gibbs point process P ∈ Gz,β (φ), for
any β ≥ 0 and for any activity

z <
zc(d)

rd
,

where zc(d) is the percolation threshold of the Poisson–Boolean model in dimension d
connecting points at distance at most one.

Remark 3.5. We recall that the Poisson–Boolean model with fixed radius 1
2 is a Poisson point

process of balls π z where the configurations are collections of balls centred in the Poisson point
in R

d and with radius 1
2 . The percolation threshold zc(d) is the smallest intensity value at which

there exists π z-almost surely an infinite connected component (i.e. the model percolates).
Note that zc(d) ≥ v−1

d and, in the asymptotics as d → ∞, zc(d) ∼ v−1
d [31]. We also remark

that in dimension d = 2 we can perform a simulation to see that zc(2) � 1.436 29 [33].

In [19] the above bound was actually proved for interactions that do not necessarily come
from a pair potential, without a hard core, and with a finite random range that may depend
on the (unbounded) marks of each point of the configuration. However, it does not apply for
infinite-range pair potentials, which are instead allowed in Theorem 3.1.

Finally, we remark that the disagreement percolation uniqueness region is independent of
the parameter β and depends only on the range of the interaction. Typically, when β is large
the disagreement percolation uniqueness region is larger than that obtained from our bound in
Theorem 3.1, but when β is small our uniqueness region is larger than the one coming from
disagreement percolation (see the second potential of Figure 2).
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