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Wind forcing of the ocean generates a spectrum of inertia–gravity waves that is
sharply peaked near the local inertial (or Coriolis) frequency. The corresponding
near-inertial waves (NIWs) are highly energetic and play a significant role in the slow,
large-scale dynamics of the ocean. To analyse this role, we develop a new model of
the non-dissipative interactions between NIWs and balanced motion. The model is
derived using the generalised-Lagrangian-mean (GLM) framework (specifically, the
‘glm’ variant of Soward & Roberts, J. Fluid Mech., vol. 661, 2010, pp. 45–72), taking
advantage of the time-scale separation between the two types of motion to average
over the short NIW period. We combine Salmon’s (J. Fluid Mech., vol. 719, 2013,
pp. 165–182) variational formulation of GLM with Whitham averaging to obtain a
system of equations governing the joint evolution of NIWs and mean flow. Assuming
that the mean flow is geostrophically balanced reduces this system to a simple model
coupling Young & Ben Jelloul’s (J. Mar. Res., vol. 55, 1997, pp. 735–766) equation
for NIWs with a modified quasi-geostrophic (QG) equation. In this coupled model, the
mean flow affects the NIWs through advection and refraction; conversely, the NIWs
affect the mean flow by modifying the potential-vorticity (PV) inversion – the relation
between advected PV and advecting mean velocity – through a quadratic wave term,
consistent with the GLM results of Bühler & McIntyre (J. Fluid Mech., vol. 354,
1998, pp. 301–343). The coupled model is Hamiltonian and its conservation laws, for
wave action and energy in particular, prove illuminating: on their basis, we identify a
new interaction mechanism whereby NIWs forced at large scales extract energy from
the balanced flow as their horizontal scale is reduced by differential advection and
refraction so that their potential energy increases. A rough estimate suggests that this
mechanism could provide a significant sink of energy for mesoscale motion and play
a part in the global energetics of the ocean. Idealised two-dimensional models are
derived and simulated numerically to gain insight into NIW–mean-flow interaction
processes. A simulation of a one-dimensional barotropic jet demonstrates how NIWs
forced by wind slow down the jet as they propagate into the ocean interior. A
simulation assuming plane travelling NIWs in the vertical shows how a vortex dipole
is deflected by NIWs, illustrating the irreversible nature of the interactions. In both
simulations energy is transferred from the mean flow to the NIWs.
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144 J.-H. Xie and J. Vanneste

1. Introduction

Near-inertial waves (NIWs), that is, inertia–gravity waves with frequencies close to
the local Coriolis frequency f0, play an important role in the dynamics of the ocean
(e.g. Fu 1981). They account for almost 50 % of the wave energy (e.g. Ferrari
& Wunsch 2009) and thus make a strong contribution to processes associated
with inertia–gravity waves such as diapycnal mixing, vertical motion and primary
production. Several features explain their dominance (Garrett 2001): their minimum
frequency in the inertia–gravity-wave spectrum, the low frequency of the atmospheric
winds that generate them, the presence of turning latitudes, nonlinear interactions
(Medvedev & Zeitlin 1997), and the transfer of tidal energy through parametric
subharmonic instability (Young, Tsang & Balmforth 2008).

In view of their large energy, it is natural to expect that NIWs affect the large-scale
circulation of the ocean. One possibility is that they do so through enhanced diapycnal
mixing in the regions of the ocean where they dissipate (e.g. Wunsch & Ferrari 2004).
Another, more remarkable perhaps, is that they alter the slow, balanced oceanic
circulation directly through wave–mean-flow interaction processes. Gertz & Straub
(2009) put forward the idea that NIWs provide an energy sink for this circulation.
Their numerical simulations suggest that this process may be significant and, along
with other mechanisms including bottom and surface friction (e.g. Duhaut & Straub
2006; Nikurashin, Vallis & Adcroft 2013) and loss of balance (e.g. Danioux et al.
2012; Vanneste 2013), help resolve the long-standing puzzle posed by the dissipation
of the (inverse energy-cascading) balanced oceanic flow.

The aim of the present paper is to develop a theoretical tool that enables a detailed
analysis of the interactions between NIWs and balanced flow. So far, theoretical
modelling has focused on the impact of the balanced flow on NIWs. Under the
assumption that NIW scales are much smaller than mean-flow scales, a WKB
approach can be applied (Mooers 1975a,b); it shows in particular that the vorticity of
the balanced flow shifts the frequency of NIWs away from f0 (Kunze 1985). Young &
Ben Jelloul (1997) (referred to as YBJ hereafter) derived an asymptotic model based
on the frequency separation between NIWs and balanced motion which, in contrast,
makes no assumption of separation between the NIW and flow spatial scales. Their
model is therefore well suited to examining the realistic scenario of NIWs forced by
atmospheric winds at horizontal scales larger than those of the ocean flow. The YBJ
model describes the slow modulation of the NIW fields about their oscillations at the
fast frequency f0. It neatly isolates the main mechanisms whereby the balanced flow
and stratification influence NIWs: advection, dispersion and refraction.

In this paper, we extend the YBJ model to account for the feedback of the NIWs
on the balanced flow. Specifically, we derive a new model that couples the YBJ
model with a modified quasi-geostrophic (QG) model. The modification – a change
in the relation between the advected potential vorticity (PV) and advecting velocity
involving quadratic wave terms – captures this feedback. As detailed below, we work
in the framework of non-dissipative generalised-Lagrangian-mean theory (GLM: see
e.g. Bühler 2009). Bühler & McIntyre (1998, for short waves) and Holmes-Cerfon,
Bühler & Ferrari (2011, for waves of arbitrary spatial scales) showed that the change
in the PV–velocity relationship is a generic conclusion of this theory which interprets
some of the quadratic wave terms as PV contributions associated with the wave
pseudomomentum (see also Bühler & McIntyre 2005, Bühler 2009 and Salmon 2013).
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Interactions between near-inertial waves and mean flow 145

We pay close attention to the conservation laws satisfied by the coupled model.
These turn out to be particularly important: based on the conservation of NIW
action (in fact, the NIW kinetic energy divided by f0) and total energy alone, we
identify a novel mechanism providing a sink of energy for the balanced flow. In
this mechanism, the reduction in the horizontal scale of NIWs that results from
advection and refraction is accompanied by an increase in the NIW potential energy
and, consequently, a decrease in the energy of the balanced flow.

A key to the derivation of wave–mean-flow models of the kind we develop is to
separate the motion between mean and wave contributions, relying on the time-scale
separation to define the mean as an average over the inertial period 2π/f0. The
GLM theory of Andrews & McIntyre (1978) offers a general framework for this
separation and for the systematic derivation of equations governing the coupled
wave–mean dynamics (see Bühler 2009 for an account). The theory has achieved
notable successes but suffers from a deficiency in that the (Lagrangian) mean velocity
it defines is divergent even for an incompressible fluid. Soward & Roberts (2010)
proposed a variant of GLM, termed ‘glm’, which yields a divergence-free mean
velocity. Because it is convenient, we adopt this approach in the main body of
the paper but show in an appendix that the same leading-order model can also be
obtained from standard GLM. We also adopt a variational approach that ensures
that conservation laws and their link to symmetries are preserved when the primitive
equations are reduced asymptotically (see e.g. Grimshaw 1984, Salmon 1988 and
Holm, Schmah & Stoica 2009). Specifically, we derive the Lagrangian-mean and
perturbation equations by introducing a wave–mean decomposition of the flow map
into the primitive-equation Lagrangian, following closely the method proposed by
Salmon (2013) (see Gjaja & Holm 1996 for a related approach). Because the wave
component consists of rapidly oscillating NIWs, the resulting Lagrangian can be
averaged in time in the manner of Whitham (1974). Variations with respect to the
mean-flow map (or rather its inverse) and to the NIW amplitude then lead to a
coupled primitive-equation–YBJ system; applying a QG approximation reduces this
system to a simple, energy-conserving YBJ–QG coupled model. (See Vanneste 2014
for a related variational derivation of the original YBJ equation.)

The paper is organised as follows. The coupled YBJ–QG model is introduced
without a derivation in § 2. Some key properties of the model and the key scaling
assumptions underlying its derivation are also discussed there. The derivation itself
is carried out in § 3, which also records the complete primitive-equation–YBJ model.
The Hamiltonian structure of the YBJ–QG model and associated conservation laws
are presented in § 4. Sections 3 and 4 are technical; the reader mainly interested
in applications can skip them and move directly to § 5, which considers the
possible implications of the wave–mean-flow interactions represented in the model
for ocean energetics. In § 6 we examine two simplified models deduced from the
full YBJ–QG model assuming certain symmetries. These models are two-dimensional
and hence easily amenable to numerical simulations. We take advantage of this and
present the results of two sets of simulations demonstrating (i) the slow-down of a
one-dimensional barotropic jet by NIWs, and (ii) the deflection of a vortex dipole
under the influence of vertically travelling NIWs. The paper concludes with a brief
discussion in § 7. Appendices A–C provide details of some of the computations and
alternative derivations.
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146 J.-H. Xie and J. Vanneste

2. Coupled model
2.1. Model

We start with the hydrostatic–Boussinesq equations written in the form

∂tu+ u · ∇u+w∂zu− (f0 + βy)v =−∂xp, (2.1a)
∂tv + u · ∇v +w∂zv + (f0 + βy)u=−∂yp, (2.1b)

θ = ∂zp, (2.1c)
∇ · u+ ∂zw= 0, (2.1d)

∂tθ + u · ∇θ +w∂zθ = 0, (2.1e)

where u= (u, v) is the horizontal velocity, w is the vertical velocity, p is the pressure,
and θ is the buoyancy, defined as −g times the density variations relative to a constant
density ρ0 (e.g. Vallis 2006). We have used the β-plane approximation to write the
Coriolis parameter as f0 + βy, with constant f0 and β. Throughout the paper, ∇ =
(∂x, ∂y) denotes the horizontal gradient.

Inertial oscillations are characterised by a linear balance between inertia and the
Coriolis force in (2.1a) and (2.1b) and thus satisfy

∂tu− f0v = 0 and ∂tv + f0u= 0. (2.2a,b)

The solution can written in complex form as

u+ iv =Mz e−if0t (2.3)

for some complex amplitude M(x, y, z). Here we follow YBJ in writing this amplitude
as a z-derivative so that the vertical velocity, deduced from the incompressibility
condition (2.1d), takes the simple form

w=−Mse−if0t + c.c., (2.4)

where s = x + iy, ∂s = (∂x − i∂y)/2, and c.c. denotes the complex conjugate of the
preceding term. The position x = (x, y, z) of fluid particles in the inertial field (2.3)
and (2.4) can be obtained by integration. If this position is written as

x=X+ ξ , (2.5)

the displacement ξ = (ξ , η, ζ ) satisfies

ξ + iη= χz e−if0t and ζ =−χse−if0t + c.c. (2.6a,b)

where χ = iM/f0 in the linear approximation. The mean position X can be regarded
as an integration constant identifying the fluid particle, and the displacement ξ and
amplitude χ can be thought of as functions of X.

For NIWs propagating in a flow, the description leading to (2.6) is overly simplified.
However, it can be extended to capture the two-way interactions between the NIWs
and the flow: this is achieved by regarding X as a suitably defined, time-dependent
Lagrangian-mean position (in fact, a mean map X(a, t) mapping the particle labelled
by a to its mean position at time t), and by taking the amplitude χ(X, t) to be a
function of both time and mean position in typical GLM fashion (e.g. Bühler 2009).
The main achievement of this paper is the derivation of equations governing the joint
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Interactions between near-inertial waves and mean flow 147

evolution of the NIW amplitude χ and of the mean map X(a, t) or, rather, of the
corresponding Lagrangian-mean velocity.

We leave the details of this derivation for the next section and present here the final
equations. These are particularly simple when the Lagrangian-mean flow is assumed to
be QG and hence derived from a streamfunction ψ according to (ūL, w̄L)= (∇⊥ψ, 0),
with ∇⊥ = (−∂y, ∂x). In this approximation, and using x rather than X to denote the
independent spatial variables (the mean positions), the coupled model takes the form

χzzt + (∂(ψ, χz))z + iβyχzz + i
2

((
N2

f0
+ψzz

)
∇2χ +∇2ψ χzz − 2∇ψz · ∇χz

)
= 0,

(2.7a)
qt + ∂(ψ, q)= 0, (2.7b)

where ∂(·, ·) denotes the two-dimensional Jacobian (with ∂( f , g) = fxgy − gxfy), and
N is the Brunt–Väisälä frequency, which generally depends on z and is defined by
N2 = θ̄z, with θ̄ the background stratification.

The first equation can be recognised as a version of the YBJ model, specifically
their complete (3.2) rather than the simplified model given by their (1.2). It is
supplemented by the boundary conditions at the top and bottom boundaries z= z±,

χ = const.± at z= z±, (2.8)

ensuring a vanishing NIW vertical velocity there. The second equation is the
material conservation of the QG potential vorticity (QGPV) q. This is related to
the streamfunction ψ and to χ through

q= βy+1ψ + if0

2
∂(χ∗z , χz)+ f0G(χ∗, χ), (2.9)

where
1=∇2 + ∂z(f 2

0 /N
2∂z) (2.10)

is the familiar QGPV operator,

G(χ∗, χ)= 1
4(2|∇χz|2 − χzz∇2χ∗ − χ∗zz∇2χ), (2.11)

and ∗ denotes complex conjugate. In the usual way, (2.9) should be interpreted as
an inversion equation which relates the streamfunction ψ and hence the advecting
velocity ∇⊥ψ to the dynamical variables, here q and χ . This inversion necessitates
boundary conditions. In the vertical direction they are provided by the advection of
the Lagrangian-mean buoyancy at the top and bottom boundaries, that is,

∂tθ
± + ∂(ψ±, θ±)= 0, where ψ± =ψ |z=z± and θ± = f0ψz|z=z± . (2.12)

For horizontally periodic or unbounded domains, as assumed in what follows, (2.7)–
(2.12) define the new model completely. The YBJ equation (2.7a) describes the weak
dispersion that arises from a finite horizontal scale (through the term iN2∇2χ/(2f0))
and also the various effects that the mean flow has on the NIWs: advection (term
(∂(ψ, χz))z), and refraction by the mean vorticity (term i∇2ψ χzz/2) and by vertical
shear (term −i∇ψz · ∇χz). The simple QGPV equation (2.7b) governs the mean flow.
Here the effect of the NIWs is a modification of the relation between ψ and q by the
quadratic wave terms in (2.9). This structure is expected from GLM theory, which
interprets the quadratic wave terms as a PV contribution stemming from the wave
pseudomomentum (Bühler & McIntyre 1998; Holmes-Cerfon et al. 2011).
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148 J.-H. Xie and J. Vanneste

2.2. Some properties
An important feature of the coupled model is its conservation laws. The model
conserves the total energy

H = 1
2

∫ (
|∇ψ |2 + f 2

0

N2
ψ2

z + f0βy|χz|2 + N2

2
|∇χ |2

)
dx, (2.13)

and the wave action
A = f0

2

∫
|χz|2 dx. (2.14)

The wave action can be recognised as the kinetic energy of the NIWs divided
by f0. Its conservation does not follow from an analogous conservation in the
hydrostatic–Boussinesq equations; rather it stems from an adiabatic invariance
associated with the large time-scale separation between the fast oscillations of the
NIWs and the slow evolution of their amplitude and of the mean flow (see Cotter
& Reich 2004). Since, in the NIW limit, the leading-order wave energy is entirely
kinetic and their frequency is f0, the familiar form of wave action, namely the ratio
of wave energy to frequency, reduces to (2.14). The conservation of H is directly
inherited from the energy conservation for the hydrostatic–Boussinesq equations. The
first two terms in (2.13) are recognised as the QG kinetic and potential energy
associated with the mean flow. The third term is associated with the β-effect. The
fourth and final term can be interpreted as the time-averaged potential energy of the
NIWs; indeed, using the vertical displacement in (2.6) and denoting averaging over
the wave time scale f−1

0 by 〈·〉, we compute this as〈∫
N2ζ 2

2
dx
〉
= 1

4

∫
N2|∇χ |2 dx. (2.15)

Here the left-hand side is the standard expression for the quadratic part of the
potential energy in a Boussinesq fluid in terms of vertical displacements (e.g. Holliday
& McIntyre 1981). The total energy in the model could alternatively be defined as
H + f0A . However, since f0A � H is conserved independently, and H is the
Noetherian conserved quantity associated with time invariance (see § 4), our separation
appears more natural.

The energy and action are not the only conserved quantities for the coupled model.
Clearly, the enstrophy and more generally the integrals∫

f (q) dx (2.16)

of arbitrary functions f of the PV are conserved, as in the standard QG model. In fact,
as we discuss in § 4, the coupled model is Hamiltonian and additional conservation
laws (e.g. linear and angular momentum) can be derived using Noether’s theorem.

2.3. Scaling assumptions
Our derivation of the coupled model relies on a number of approximations which we
now detail. The parameters characterising the mean flow are the Burger and Rossby
numbers

Bu= N2H2

f 2
0 L2

and Ro= UQG

f0L
, (2.17a,b)
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Interactions between near-inertial waves and mean flow 149

where L and H are the mean-flow horizontal and vertical scales, and UQG is a
typical mean velocity. These parameters are taken to satisfy Bu=O(1) and Ro� 1 in
accordance with QG theory. The NIWs are characterised by two parameters analogous
to Bu and Ro, namely

ε = Nk
f0m

and α = UNIW

f0L
, (2.18a,b)

where k and m are typical horizontal and vertical wavenumbers, and UNIW is a typical
NIW horizontal velocity. The parameter ε, which measures the relative frequency shift
of NIWs compared with f0, is small: ε� 1. In the YBJ model (2.7a), dispersion and
mean-flow effects have similar orders of magnitudes provided that Ro=O(ε2), which
we also assume. Note that this makes no specific assumption about the relative size
of the wave and mean horizontal scales, which can be taken to satisfy kL = O(1)
(provided that mH =O(ε−1)� 1).

The parameter α controls the NIW amplitude. We choose its scaling relative to Ro
in order that the NIW feedback affects the mean motion at the same order as nonlinear
vorticity advection. This imposes that

Ro=O(α2), hence α =O(ε). (2.19)

This scaling indicates that UNIW/UQG = α−1 � 1, as is relevant to strong NIWs
generated by intense storms (e.g. D’Asaro et al. 1995). It leads to a mean equation
that is a modification of the QG equation by wave effects. Had a smaller wave
amplitude been assumed in order to model quieter conditions, say by taking
Ro=O(α), the wave effects would have been an O(Ro)-factor smaller than advection
in (2.7b) and of comparable order to balanced corrections to quasi-geostrophy (see
Zeitlin, Reznik & Ben Jelloul 2003). Because these corrections do not alter the
qualitative properties of the QG model, we prefer the scaling (2.19) to retain a model
that is as simple as possible. In spite of their relatively large amplitudes, the NIWs
remain described by the YBJ equation, which neglects all wave–wave interactions.
This is justified on the grounds that these interactions are remarkably weak for NIWs:
first because NIWs triads cannot be resonant, and second because of a cancellation of
the cubic terms associated with resonant quartets (Falkovich, Kuznetsov & Medvedev
1994; Zeitlin et al. 2003).

It is however important to note that our model is not fully consistent from an
asymptotic viewpoint. The assumption of two different aspect ratios for NIWs and
mean flow – implied by the condition ε� 1 and Bu= O(1) and best thought of as
resulting from a disparity in vertical scales, mH � 1 – is not generally consistent.
Indeed, small-scale NIWs generally lead to small-scale wave terms in (2.9) and hence
to a pair q and ψ that varies on the wave scale (with a vertically planar NIW field
χ ∝ exp(imz) a notable exception: see § 6.2). A consistent assumption would be to take
Bu=O(ε2)� 1. But this assumption is less relevant to most of the ocean; it leads to
a different balanced dynamics, namely frontal dynamics, with negligible wave–mean
interactions (Zeitlin et al. 2003).

While the model is heuristic, we regard it as valuable for its simplicity and because
it respects key properties including conservation laws. The variational derivation
of the wave–mean equations as detailed in the next sections makes this possible.
This derivation starts with that of a coupled YBJ–primitive-equation ((3.14)–(3.16)
below) which makes no assumption of quasi-geostrophy for the mean flow. This
model, naturally more complex than (2.7), is asymptotically consistent provided that
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α� Ro1/2/ε1/2 so that the wave–wave interactions are negligible. It could serve as a
basis to obtain a balanced model for the mean flow that is more accurate than QG
and/or with relaxed assumptions on Bu so as to be fully consistent with the YBJ
equation.

3. Derivation of the coupled model
We follow Salmon (2013) in deriving the Lagrangian-mean and wave equations

from a variational formulation of the fluid equations rather than from the equations
themselves. This is advantageous since it guarantees that the wave–mean model
inherits conservation laws from the original hydrostatic–Boussinesq model. While
Salmon (2013) develops a general theory making no specific assumptions on the
form of the perturbations to the mean flow, we focus on NIWs, assuming that the
displacements ξ satisfy (2.6). With this assumption, which can be viewed as a form of
closure relying on a hypothesis of small wave amplitude, a natural step is to average
the Lagrangian in the manner of Whitham (1974) to obtain a reduced Lagrangian that
is a functional of the mean map X and of the NIW amplitude χ . This is described
in § 3.1. Variations with respect to X (or rather its inverse) and χ are carried out in
§ 3.2 to obtain the mean and wave (YBJ) equations.

3.1. Lagrangian and wave–mean decomposition
The hydrostatic–Boussinesq equations (2.1) can be derived from the Lagrangian

L [x, p] =
∫ (

1
2
(ẋ2 + ẏ2)−

(
f0y+ 1

2
βy2

)
ẋ+ θz+ p

(∣∣∣∣∂x
∂a

∣∣∣∣− 1
))

da, (3.1)

where a = (a, b, θ) are particle labels, with the (materially conserved) buoyancy
θ taken as third component, and x(a, t) is the flow map (e.g. Salmon 2013).
The pressure p(x, t) is a Lagrange multiplier enforcing the incompressibility
constraint. Following standard GLM practice, we introduce the mean-map X(a, t)
and displacement ξ(x, t), with

x(a, t)=X(a, t)+ ξ(X(a, t), t). (3.2)

Following Salmon (2013), we regard the Lagrangian as a functional of the inverse of
the mean-flow map, a(X, T)= X−1(X, t), with T = t. Using the chain rule, (3.1) can
be shown to take the form

L [a, ξ , p] =
∫ (

J
(

1
2
((U +DTξ)

2 + (V +DTη)
2)−

(
f0(Y + η)+ 1

2
β(Y + η)2

)
× (U +DTξ)+ θ(Z + ζ )

)
+ p(X)

(∣∣∣∣∂(X+ ξ)

∂X

∣∣∣∣− J
))

dX, (3.3)

where DT = ∂T + U · ∇3, with U = Ẋ = ūL the Lagrangian-mean velocity and ∇3 the
three-dimensional gradient with respect to X, and J = |∂a/∂X| is the Jacobian of the
inverse mean map. In this expression, U should be thought as a differential function of
a(X, T); an explicit form for it is obtained from the material invariance of the labels,
DTa= 0, as

U =−1
J
∂(a, b, θ)
∂(T, Y, Z)

, V =−1
J
∂(a, b, θ)
∂(X, T, Z)

, W =−1
J
∂(a, b, θ)
∂(X, Y, T)

. (3.4a−c)
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We next introduce the expansion

ξ = ξ (1) + ξ (2) + · · ·, (3.5)

of the NIW displacement into the Lagrangian equation (3.3), with |ξ (n)| = O(αn).
Retaining only terms in αn, n 6 2, which amounts to linearising the NIW dynamics,
and averaging leads to the Lagrangian

〈L 〉 =
∫ (

1
2

J(U2 + V2 + 2UDT〈ξ (2)〉 + 2VDT〈η(2)〉 + 〈(DTξ
(1))2〉 + 〈(DTη

(1))2〉)

− J
(

f0Y + 1
2
βY2

)
(U +DT〈ξ (2)〉)− J(f0 + βY)(〈η(2)〉U + 〈η(1)DTξ

(1)〉)

− J
1
2
β〈(η(1))2〉U + JθZ + Jθ〈ζ (2)〉 + P∇3

×
(
〈ξ (2)〉 − 1

2
〈ξ (1) · ∇3ξ

(1)〉
)
+ P(1− J)

)
dX, (3.6)

where 〈·〉 denotes the average. It is standard in GLM theories for this average to be
defined as an arbitrary ensemble average. Here, a natural ensemble is that formed by
a family of NIWs differing by a phase shift. Thus, an ensemble parameter γ ∈ [0, 2π]
is introduced in (2.6) to obtain the ensemble of leading-order wavefields

ξ (1) + iη(1) = χZ e−i(f0t+γ ) and ζ (1) =−χSe−i(f0t+γ ) + c.c. (3.7a,b)

with S=X+ iY and ∂S= (∂X − i∂Y)/2. When there is a time-scale separation between
the (fast) oscillation at frequency f0 and the (slow) evolution of the amplitude χ ,
averaging over γ amounts to averaging over the fast time scale f−1

0 . Thus the
ensemble average becomes physically relevant, and it leads to an averaged dynamics
identical to that obtained by explicit perturbation expansions, as demonstrated by
Whitham (1974). Note that our notation ξ (1)(x, t) does not make the dependence of
ξ (1) on the ensemble parameter γ explicit; our compact notation is justified by the fact
that parameter γ disappears completely from the problem after the (Whitham) average
has been performed. Note also that the truncation of the Lagrangian equation (3.6)
to O(α) can be regarded as a closure in which the nonlinearity of wave dynamics is
neglected.

To derive (3.6), we have used that 〈ξ (1)〉 = 0, that ∇3 · ξ
(1) = 0 (stemming from the

divergence-free property of NIWs), and that∣∣∣∣∂(X+ ξ)

∂X

∣∣∣∣= 1+∇3 · ξ
(2) + 1

2
∇3 · (ξ

(1)
∇3 · ξ

(1) − ξ (1) · ∇3ξ
(1))+O(α3), (3.8)

as well as integration by parts. Importantly, we do not assume that 〈ξ (2)〉 = 0 as
is standard in GLM theory. Instead, we follow Soward & Roberts’ (2010) glm
prescription, which ensures that the mean motion is divergence-free. As detailed in
appendix A, at the order we consider, this prescription amounts to taking

〈ξ (2)〉 = 1
2 〈ξ (1) · ∇3ξ

(1)〉. (3.9)

Thus 〈ξ (2)〉 6= 0 takes a value slaved to ξ (1) (which contains terms in both e±i(f0t+γ ))
and hence to χ . As (3.8) indicates, this ensures that the map X 7→ X + ξ from
mean to perturbed position is volume-preserving: since the map a 7→ X + ξ is
volume-preserving, this is also true for the map a 7→ X, so the Lagrangian-mean
velocity is divergence-free.
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152 J.-H. Xie and J. Vanneste

At this point, we can substitute the NIW-ansatz (3.7) into (3.6) to obtain the
averaged Lagrangian in terms of a, P and χ . This leads to

〈L 〉 =
∫ (

1
2

J(U2 + V2)− J
(

f0Y + 1
2
βY2

)
U + JθZ

+ J
(
− if0

4
(χZDTχ

∗
Z − χ∗Z DTχZ)− 1

2
f0βY|χZ|2

)
+ J(−f0YDT〈ξ (2)〉 − f0〈η(2)〉U + θ〈ζ (2)〉)+ P(1− J)

)
dX. (3.10)

To obtain this expression, we have retained only wave terms that are O(1) or
O(α2/Ro) relative to the size U2

QG of the first term, assuming that βL/f =O(Ro), so
that only a single wave term involving β remains. Note that the linearisation of the
NIW dynamics entailed by ignoring cubic terms in 〈L 〉 can be justified: averaging
eliminates cubic terms in ξ (1), leaving cubic terms involving higher harmonics (with
frequency 2f ), whose size can be estimated as εα4/Ro2 = O(α). The absence of
resonant cubic terms has been noted by Falkovich et al. (1994) and Zeitlin et al.
(2003) and is related to the possible elimination of advective nonlinearities by means
of Lagrangian coordinates (Falkovich et al. 1994; Hunter & Ifrim 2013).

The Lagrangian equation (3.10) governs the NIW–mean flow system: when (3.7)
and (3.9) are used to express ξ (2) explicitly as

〈ξ (2)〉 = 1
4(χZχ

∗
ZS − χSχ

∗
ZZ)+ c.c., (3.11a)

〈η(2)〉 = i
4
(χZχ

∗
ZS − χSχ

∗
ZZ)+ c.c., (3.11b)

〈ζ (2)〉 = 1
2(−χZχ

∗
SS∗ + χSχ

∗
ZS∗)+ c.c., (3.11c)

L is a functional of a, χ and P from which primitive equations for the mean flow
coupled to a YBJ-like equation for the NIWs can be derived systematically. This is
carried out in the next subsection, § 3.2. The reduced QG model (2.7) is then derived
in § 3.3.

3.2. Coupled YBJ–primitive-equation model

Taking the variation δP of the action
∫ 〈L 〉 dt with the Lagrangian equation (3.10)

and using (3.11), we obtain
J = 1, (3.12)

confirming that the mean map is volume-preserving. Thus the Lagrangian-mean
velocity is divergence-free:

∇3 ·U= 0. (3.13)

The mean equations of motion can now be obtained from the stationarity of∫ 〈L 〉 dt with respect to variations δa. It is convenient to use the energy–momentum
formalism as proposed by Salmon (2013). Computations detailed in appendix B lead
to the momentum equations in the form

DTU − (f0 + βY)V + ∂XP = if0

2
(DTχZχ

∗
XZ −DTχ

∗
ZχXZ)− 1

2
f0β∂X(Y|χZ|2)

+ f0〈DTη
(2) −Uη(2)X + Vξ (2)X 〉 + θ〈ζ (2)X 〉, (3.14a)
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DTV + (f0 + βY)U + ∂YP = if0

2
(DTχZχ

∗
YZ −DTχ

∗
ZχYZ)− 1

2
f0β∂Y(Y|χZ|2)

+ f0〈−DTξ
(2) −Uη(2)Y + Vξ (2)Y 〉 + θ〈ζ (2)Y 〉, (3.14b)

−θ + ∂ZP = if0

2
(DTχZχ

∗
ZZ −DTχ

∗
ZχZZ)− 1

2
f0β∂Z(Y|χZ|2)

+ f0〈−Uη(2)Z + Vξ (2)Z 〉 + θ〈ζ (2)Z 〉. (3.14c)

These are completed by the buoyancy equation

DTθ = 0, (3.15)

which expresses that θ is a label. The left-hand sides of (3.13)–(3.15) recover the
hydrostatic–Boussinesq equations (2.1) for the mean flow; the right-hand sides, which
can be written completely in terms of χ , describe the impact of the NIWs on the
mean flow.

Taking the variation δχ∗ of the Lagrangian equation (3.10) after using (3.11) for
ξ (2) leads to the wave equation

(DTχZ)Z − iβYχZZ + i
2
((VχZ)ZS − (VχS)ZZ − (VχZS∗)Z + (VχZZ)S∗)

+ 1
2
((UχZ)ZS − (UχS)ZZ − (UχZS∗)Z − (UχZZ)S∗)

+ i
f0
(−(θχZ)SS∗ + (θχS)ZS∗ + (θχSS∗)Z − (θχZS)S∗)= 0. (3.16)

This equation can be interpreted as a generalisation of the YBJ equations which makes
no assumption that the mean flow is QG or steady.

Together, (3.14)–(3.16) constitute a closed model for the joint evolution of the
wave and the mean flow. This model is complex and we prefer to focus our analysis
on its QG approximation introduced in § 2 and derived in the next subsection. It is
nonetheless worth noting that the full model has two simple conservation laws. The
first is obtained by multiplying (3.16) by χ∗ and adding the complex conjugate of
the resulting equation. Integrating over space and making liberal use of integration
by parts yields the wave-action conservation

d
dt

∫
|χZ|2 dX= 0. (3.17)

This conservation law is associated with the obvious symmetry χ 7→ eiγχ, γ ∈ R,
of the Lagrangian equation (3.10) and can therefore also be obtained from Noether’s
theorem (e.g. Goldstein 1980) in the form

d
dt

∫ (
iχ

δ

δχT
− iχ∗

δ

δχ∗T

)
〈L 〉 dX= 0, (3.18)

thus justifying the terminology of action. The second conservation law is that of
energy. It is best obtained from the Lagrangian equation (3.10). The general form of
the conserved energy, associated with the symmetry T 7→ T + δT , also follows from
Noether’s theorem. This yields the energy in the form∫ (

ai
T
δ

δai
T
+ χT

δ

δχT
+ χ∗T

δ

δχ∗T
− 1
)
〈L 〉 dX, (3.19)
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which implies that the energy is readily deduced from L using the following rules:
terms that are quadratic in U (and hence in ai

T) or χT are retained, terms that are linear
are omitted, and terms that contain no time derivatives change sign. So the energy
conservation reads

d
dt

∫ (
1
2
(U2 + V2)− θ(Z + 〈ζ (2)〉)+ 1

2
f0βY|χZ|2

)
dX= 0 (3.20)

using J= 1. This is a remarkably simple expression in which the effect of the waves
arises only through the potential-energy term −θ〈ζ (2)〉 and the β-term. Surprisingly,
perhaps, it is simpler than the analogous energy that is conserved in the (uncoupled)
YBJ model (Vanneste 2014).

3.3. Quasi-geostrophic approximation
We now derive an approximation to the mean and wave equations in the QG limit
Ro→ 0. The standard QG model cannot be derived in a simple manner from the
variational formulation of the primitive equations (see Bokhove, Vanneste & Warn
1998 or Oliver 2006, however), and the same difficulty arises here. We therefore
derive the QG approximation of the mean equations directly from the momentum
equations (3.14), retaining a variational argument for the wave part only. That the
approximations made in both parts of the model are consistent is confirmed by the
fact that the resulting coupled model has a Hamiltonian structure, as discussed in § 4.

In the QG approximation, the buoyancy is decomposed into a Z-dependent mean
part and a perturbation according to

θ = θ̄ (Z)+ θ ′ =
∫ Z

N2(z) dz+ θ ′. (3.21)

To leading order in Ro, the mean equations (3.14) then reduce to

f0V = ∂X(P− θ̄〈ζ (2)〉), (3.22)
−f0U = ∂Y(P− θ̄〈ζ (2)〉), (3.23)

θ ′ = ∂Z

(
P− θ̄〈ζ (2)〉 −

∫ Z

dz
∫ z

N2(z′) dz′
)
+N2〈ζ (2)〉, (3.24)

and are recognised as expressing geostrophic and hydrostatic balance. This leads to
the introduction of a streamfunction ψ such that

U =−ψY, V =ψX and θ ′ = f0ψZ +N2〈ζ (2)〉. (3.25a−c)

Using this, the buoyancy conservation becomes

D0
T(f0ψZ +N2〈ζ (2)〉)+N2W = 0, (3.26)

where D0
T = ∂T + ∂(ψ, ·).

A closed equation for ψ can now be derived from (3.14) and (3.26) in a familiar
way: taking the horizontal curl of (3.14a) and (3.14b) and keeping terms up to
O(U2/L2), we obtain

D0
T

(
βY + VX −UY + if

2
∂(χZ, χ

∗
Z )+ f0(〈ξ (2)X 〉 + 〈η(2)Y 〉)

)
− f0WZ = 0. (3.27)

Substituting (3.26) to eliminate W leads to the conservation equation

D0
Tq= 0, where q= βY +1ψ + if0

2
∂(χ∗Z , χZ)+ f0∇3 · 〈ξ (2)〉, (3.28)
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with 1 defined in (2.10), is the QGPV. A direct computation using (3.11) gives the
last term explicitly as

∇3 · 〈ξ (2)〉 =G(χ∗, χ), (3.29)

with the symmetric bilinear operator G defined in (2.11). Replacing X by x as
independent variable reduces the QGPV equation (3.28) to the form announced in
(2.7b). An alternative derivation based on PV conservation and valid for an arbitrary
definition of the Lagrangian average is presented in appendix C. The vertical boundary
conditions (2.12) associated with the QGPV equation are derived by applying the
no-normal-flow condition W = 0 at z = z± to (3.26) and noting from (3.9) that
〈ζ (2)〉 = 0 at z± follows from the fact that ζ (1) = 0 there.

The NIW equation associated with (3.28) is best derived by introducing the
geostrophic and hydrostatic conditions into the averaged Lagrangian equation (3.10),
then taking variations with respect to χ or χ∗. The wave part of the Lagrangian is
readily found from (3.10) to be

〈L 〉NIW =
∫ (
− if0

4
(χZD0

Tχ
∗
Z − χ∗Z D0

TχZ)− 1
2

f0βY|χZ|2

− f0ψ∇3 · 〈ξ (2)〉 +
∫ Z

N2(z) dz 〈ζ (2)〉
)

dX, (3.30)

where we have used that J = 1, integration by parts, and neglected a term in 〈ζ (2)〉2.
The terms depending on ξ (2) can now be written in terms of χ using (3.29) and the
observation that

〈ζ (2)〉 = 1
2∂Z〈(ζ (1))2〉 + · · · = 1

4∂Z|∇χ |2 + · · ·, (3.31)

where · · · denotes the horizontal divergence of an irrelevant vector. This simplifies
(3.30) into

〈L 〉NIW =−
∫ (

if0

4
(χZD0

Tχ
∗
Z − χ∗Z D0

TχZ)+ 1
2

f0βY|χZ|2 + f0ψG(χ∗, χ)+ 1
4

N2|∇χ |2
)

dX.

(3.32)
To take the variations of the corresponding action, it is convenient to introduce the
symmetric bilinear operator Ĝ dual to G in the sense that∫

ψG(χ∗, χ) dX=
∫
χ∗Ĝ(ψ, χ) dX. (3.33)

The variation δχ∗ then gives

(D0
Tχ)Z + iβYχZZ + iN2

2f0
∇2χ − 2iĜ(ψ, χ)= 0. (3.34)

From its definition and (2.11), Ĝ(ψ, χ) is calculated to be

Ĝ(ψ, χ)= 1
4(2∇ψZ · ∇χZ −∇2ψχZZ −ψZZ∇2χ) (3.35)

and is recognised as the negative of YBJ’s bracket [[·, ·]]. Introducing (3.35) into
(3.34), dropping the superscript 0 from D0

T and replacing X by x leads to the YBJ
equation in the form (2.7a).
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4. Conservation laws and Hamiltonian structure
We now derive conservation laws satisfied by the coupled model (2.7). We start by

the conservation law identified in YBJ: multiplying (2.7a) by χ∗ and integrating yields

∫ (
−χ∗z ∂tχz +ψ∂(χ∗z , χz)− iβy|χz|2 − iN2

2f0
|∇χ |2 − 2iψG(χ∗, χ)

)
dx= 0, (4.1)

after using integration by parts. Adding the complex conjugate and using the
symmetry of G and antisymmetry of ∂(·, ·) gives

d
dt

∫
|χz|2 dx= 0. (4.2)

Thus, the wave action A defined in (2.14) is conserved. This conservation law
is identical to that obtained for the YBJ–primitive-equation model in (3.17) and, as
checked below using the Hamiltonian structure of the YBJ–QG model, also associated
with an invariance with respect to phase shifts of the amplitude χ .

Next we derive an energy conservation law. Multiplying the QGPV equation (2.7b)
by ψ , integrating and using the definition (2.9) of q gives∫ (

1
2
∂t

(
|∇ψ |2 + f 2

0

N2
ψ2

z

)
− if0ψ

2
(∂(χ∗zt, χz)+ ∂(χ∗z , χzt))

− f0ψ(G(χ∗t , χ)+G(χ∗, χt))

)
dx= 0. (4.3)

Multiplying the YBJ equation (2.7a) by if0∂tχ
∗/2, integrating and adding the complex

conjugate gives ∫ (
if0ψ

2
(∂(χ∗zt, χz)+ ∂(χ∗z , χzt))+ f0βy

2
∂t|χz|2

+ N2

4
∂t|∇χ |2 + f0ψ(G(χ∗t , χ)+G(χ∗, χt))

)
dx= 0, (4.4)

where the relation (3.33) between G and Ĝ is used. Adding (4.3) and (4.4) leads to

d
dt

∫
1
2

(
|∇ψ |2 + f 2

0

N2
ψ2

z + f0βy|χz|2 + 1
2

N2|∇χ |2
)

dx= 0, (4.5)

and hence to the conservation of the energy H in (2.13). This energy conservation
can be recognised as the QG approximation of primitive-equation energy equation
(3.20): the first two terms are the usual QG approximation of the mean kinetic and
potential energy; the third term is unchanged; the fourth term is an approximation to
θ〈ζ (2)〉 obtained by noting that θ ≈ ∫ z N2(z′) dz′ and using (3.31).

The coupled model (2.7) is in fact Hamiltonian. The Hamiltonian structure (e.g.
Shepherd 1990), which can be obtained by inspection, is conveniently written using
the amplitude of the horizontal NIW displacement φ = χz, its complex conjugate φ∗,
q and θ± as dynamical variables. Grouping these in a vector φ, it can be checked that
the governing equations (2.7) are recovered from

φt = J
δH

δφ
, (4.6)
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where

J =


0 −2i/f0 0 0 0

2i/f0 0 0 0 0
0 0 −∂(q, ·) 0 0
0 0 0 (N+)2f−1

0 ∂(θ+, ·) 0
0 0 0 0 −(N−)2f−1

0 ∂(θ−, ·)

 (4.7)

and the Hamiltonian is

H = 1
2

∫ (
|∇ψ |2 + f 2

0

N2
|ψz|2 + f0βy|φ|2 + N2

2

∣∣∣∣∇ ∫ z

φ(z̃) dz̃
∣∣∣∣2
)

dx. (4.8)

The streamfunction ψ is here regarded as a functional of q and φ defined by

ψ =1−1

(
q− βy− if0

2
∂(φ∗, φ)− f0G

(∫ z

φ(z̃)∗ dz̃,
∫ z

φ(z̃) dz̃
))

(4.9)

with
ψz|z=z± = f−1

0 θ± (4.10)

following (2.12).
The Hamiltonian structure provides a systematic route to the derivation of conserva-

tion laws using Noether’s theorem. We note that the Hamiltonian flow associated with
the wave action A = f0

∫ |φ|2 dx/2, namely JδA /δφ, is (−iφ, iφ∗, 0, 0, 0)T. This is
recognised as the generator of the continuous transformation φ 7→ φ exp(−iγ ), γ ∈R,
an obvious symmetry of H . The invariance of H with respect to translations and
horizontal rotations gives rise to conserved linear and angular momenta. For instance,
the conserved x-momentum is readily shown to be

Mx =
∫ (

if0

4
(φ∗φx − φ∗xφ)− qy

)
dx+ f0

∫
((N+)−2θ+ − (N−)−2θ−)y dxdy

=
∫

U dx. (4.11)

Additional conserved quantities are of course the same Casimir invariants as in three-
dimensional QG dynamics, namely the volume integrals of arbitrary functions of q
and surface integrals of arbitrary functions of θ± (Shepherd 1990).

5. Implications
We now discuss some implications of the conservation of energy (2.13) and action

(2.14) for ocean dynamics. First, we note that the action conservation implies that the
NIW amplitude remains zero if it is initially so: thus spontaneous generation of NIWs
is impossible in this model, unsurprisingly since it is expected to be exponentially
small in Ro (Vanneste 2013) and thus much smaller than neglected terms. Second, the
energy conservation indicates that the decrease in NIW scales induced by the β-effect
in the absence of a flow, ψ = 0, is necessarily accompanied by an equatorward drift
of the NIWs, consistent with WKB results (Garrett 2001).

A third, more striking, conclusion is that conservation laws show unambiguously
that oceanic NIWs forced by atmospheric winds provide an energy sink for the mean
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flow. To see how, consider NIWs forced at some initial time t = 0 with horizontal
scales large enough that χ0= χ(t= 0) has negligible horizontal gradient, i.e. ∇χ0≈ 0.
This is a reasonable approximation since NIWs are generated by atmospheric storms
whose scales are ten or more times the scale of oceanic eddies. Initially, NIWs make
no contribution to the energy H , which then purely consists of the mean-flow energy.
As time progresses, the advection and refraction of the waves by the mean flow lead
to a scalar cascade in the NIW field, producing horizontal scales similar to, or smaller
than, the eddy scale. As a result, |∇χ | grows since |χ | is constrained by wave-action
conservation. According to (2.13), the contribution of |∇χ |2 to the energy must be
balanced by a decrease in the energy of the mean flow. Physically, the mechanism
for this energy exchange is clear: as the horizontal scale of the NIWs decreases, their
potential energy increases, necessarily at the expense of the mean energy since the
NIW kinetic energy f0A is conserved. This mechanism can be suggestively termed
‘stimulated wave generation’ to distinguish it from spontaneous generation (ruled out
in our model) and complete an electromagnetic analogy (e.g. Berestetskii, Lifshitz &
Pitaevskii 1982).

The explicit form of (2.13) and (2.14) enables us to make quantitative predictions.
Suppose that the NIWs initially have a typical vertical scale m−1

0 , corresponding for
example to the depth of the mixed layer. Suppose too that at some final time t, the
various processes governing their dynamics have led to typical horizontal and vertical
scales k−1 and m−1 and to typical amplitudes |χ |. The conservation of wave action
(2.14) implies that

f0m2
0

2
|χ0|2 ≈ f0m2

2
|χ |2. (5.1)

Correspondingly, the kinetic energy of the NIW per unit volume, KNIW ≈ f 2
0 m2|χ |2/2

remains unchanged. The potential energy, on the other hand, increases from 0 to
PNIW ≈N2k2|χ |2/4. We therefore conclude that the NIWs extract from the mean flow
an energy

−EQG =PNIW = N2k2

2f 2
0 m2

KNIW = ε
2

2
KNIW (5.2)

per unit volume. Because the dispersion relation of NIWs is ω = f0(1 + ε2/2) (as
follows from the dispersion term in (2.7a) or from a Taylor expansion of the inertia–
gravity-wave frequency ω = (f0 + N2k2/m2)1/2), ε2/2 can also be rewritten as 1ω/f0,
the relative frequency shift away from f0.

Since one of the main open questions in ocean dynamics concerns the dissipation of
mesoscale energy, it is natural to ask whether the mechanism we have identified could
be a significant contributor. Assuming that the process of NIW generation followed by
their cascade to small scale occurs in a continuous fashion, (5.2) can be turned into
an expression for the power rate extracted from the mean flow,

−ĖQG = ε
2

2
˙KNIW, (5.3)

where ˙KNIW is the power injected into NIWs by winds. Integrating over the whole
ocean, this power is estimated as 0.6 TW in Wunsch & Ferrari (2004). It is unclear
what a realistic value of ε2/2 might be: if we take k and m as representative of
typical NIWs, ε2/2 = 1ω/f0 can be interpreted as the width of the inertial peak
relative to f0, and a value of ε2/2 = 0.2 is plausible. This leads to a sink of 0.12
TW, comparable, for instance, with the 0.1 TW estimated for the dissipation caused
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by bottom drag (Wunsch & Ferrari 2004). There is considerable uncertainty in these
estimates, however, in particular because it is not clear what the final values of k and
m ought to be and whether the impact of NIWs is restricted to the upper parts of the
ocean. Furthermore, the scale cascade can be expected to lead to values of ε2/2 that
are not small, e.g. through the mechanism of wave capture (Badulin & Shrira 1993;
Bühler & McIntyre 2005), which suggests that ε stabilises at O(1) values. While our
model ceases to be valid then – and the crucial feature of conserved wave kinetic
energy ceases to hold – one can expect energy to be transferred from mean flow to
the waves throughout the cascading process. Our argument above, necessarily limited
to ε� 1, may therefore underestimate the amount of energy extracted from the mean
flow. It would certainly be valuable to test the efficiency of the process through
detailed numerical simulations.

6. Two-dimensional models
In this section we discuss two two-dimensional models that are deduced from the

YBJ–QG model under certain symmetry assumptions. These models are useful to the
study of NIW-mean interactions in a simplified context.

6.1. Slice model
Neglecting the β-effect, we consider solutions that are independent of y. This reduces
(2.7) to

χzzt + iN2

2f0
χxx + i

2
(ψxxχzz +ψzzχxx − 2ψxzχxz)= 0, (6.1a)

∂t

(
ψxx + ∂z

(
f 2
0

N2
ψz

)
+ f0

4
(2|χxz|2 − χzzχ

∗
xx − χ∗zzχxx)

)
= 0. (6.1b)

Because advection disappears, (6.1b) can be integrated in time to provide the
streamfunction in terms of χ , leaving (6.1a) as the sole prognostic equation.

We illustrate the interest of this model by presenting the result of a numerical
simulation examining the impact of NIWs on a barotropic mean flow using a set-up
based on that of Balmforth, Llewellyn-Smith & Young (1998). In this set-up, NIWs
initialised near the surface propagate vertically as a result of their interactions with
the one-dimensional mean flow

∇
⊥ψ = (0,UQG sin(2πx/L)), (6.2)

where L is the length of the domain. The coupled model enables us to study the
feedback of the NIWs on this mean flow.

We carried out simulations using a pseudospectral implementation of (6.1), with
a domain (x, z) ∈ [0, L] × [−H, 0], where L = 80 km and H = 4 200 m. The
Coriolis frequency is taken as f0 = 10−4 s−1 and a constant Brunt–Väisälä frequency
N = 8× 10−3 s−1 is used, somewhat smaller than that in Balmforth et al. (1998). The
maximum mean velocity is UQG = 0.08 m s−1. The NIWs are initially confined
within the mixed layer with a characteristic depth Hm = 50 m, with the form
χ0z=UNIW exp(−(z/Hm)

2) where UNIW= 0.8 m s−1. The corresponding dimensionless
parameters are Ro= 0.01, α= 0.1 and ε = 0.05, so Ro1/2= α≈ ε, consistent with our
scaling assumptions.
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40 503020100

FIGURE 1. Energy exchange in the slice model: the changes in the mean energy (solid
line), NIW potential energy (dashed line) and total energy (dotted line) are shown as
functions of time. These energy changes are normalised by the initial mean-flow energy
in the mixed layer, z ∈ [−50, 0] m. The increase of NIW potential energy is offset by a
mean energy loss, resulting in a total energy that is conserved up to a small hyperviscous
dissipation added for numerical stability.

Figure 1 shows the evolution of the change in mean energy, wave potential energy
and total energy from their initial values in a 14-day simulation. Here, the mean
energy and wave potential energies are the two terms

1
2

∫ (
ψ2

x +
f 2
0

N2
ψ2

z

)
dx and

N2

4

∫
|χx|2 dx, (6.3a,b)

which make up the constant total energy. The figure confirms that, overall, NIWs
act as an energy sink for the mean flow. The net energy transfer from mean flow
to NIWs is concentrated within the first five days; afterwards, the energy exchange
is much smaller and its sign alternates. The NIW amplitude |χz| and the change in
the mean velocity V =ψx are shown in figure 2. Their feedback results in a slowing
down of the mean flow, consistent with the energy loss and collocated with the NIW
wavepacket. An important feature of the mean-flow evolution is that it is reversible:
at each location, the flow velocity returns to its initial value once the NIWs have
propagated away. This is a particular feature of the slice model, specifically of the
diagnostic relation existing between the mean flow and the NIW amplitude. We next
consider another two-dimensional model in which the NIW–mean-flow interactions
lead to an irreversible behaviour.

6.2. Vertically plane wave
A simple two-dimensional model in the (x, y) plane is obtained by assuming that the
wavefield takes the form of a plane wave in the vertical, that is, χz = ϕ(x, y, t)eimz

for some complex function ϕ and vertical wavenumber m. This is consistent with a
barotropic mean flow ψ = ψ(x, y, t). Introducing this restricted form of the solution
into the coupled model (2.7) reduces it to

∂tϕ + ∂(ψ, ϕ)+ iβyϕ − iN2

2m2f0
∇2ϕ + i

2
∇2ψ ϕ = 0, (6.4a)

∂tq+ ∂(ψ, q)= 0, (6.4b)
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FIGURE 2. (Colour online) Wave amplitude |χz| (a–c) and change in the mean velocity
V = ψx (d–f ) in the slice model; |χz| and V are non-dimensionalised by αL and UQG,
respectively. The downward propagating NIWs induce a mean flow change, which slows
down the original mean flow. Times: (a,d) t = 17.4 days, (b,e) t = 34.7 days, (c,f ) t =
52.1 days.

where
q= βy+∇2ψ + if0

2
∂(ϕ∗, ϕ)+ f0

4
∇2|ϕ|2. (6.5)

As an illustration, we consider the propagation of a vorticity dipole in a NIW field
on the f -plane (β = 0). We carry out simulations initialising the streamfunction ψ to
match the vorticity

ω=∇2ψ =


2kU
J0(κa)

J1(κr) sin θ, r< a

0, r> a,
(6.6)

of the Lamb (1932) dipole propagating at speed U in the y direction. Here (r, θ)
are polar coordinates, a characterises the spatial scale of the dipole, Jn are the Bessel
functions of the first kind of order n, and κ is determined by solving the matching
condition J1(κa)= 0.

We carry out a numerical simulation in a periodic domain of size 500 km× 500 km
using a pseudospectral method. Because of the periodisation, the vorticity (6.6) does
not exactly correspond to that of a dipole steadily propagating at speed U; however,
for the dipole size a = 40 km that we take, the differences are minor. We take the
other parameters to be U= 0.05 m s−1, f0= 10−4 s−1, and N= 0.01 s−1. Taking L= a
gives a Rossby number Ro = 0.0125. The initial wave amplitude is chosen as the
Gaussian

ϕ = Ae−(k0(y−y0))
2
, (6.7)
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FIGURE 3. The same as figure 1 but for the simulation of a vortex dipole propagating
in a field of vertically travelling NIWs. The energy changes are normalised by the initial
mean-flow energy.

where A = 1.5 km, k0 = 2 × 10−5 m−1 and y0 = 250 km. This implies that
α= A/L= 0.0375 and UNIW = 0.15 m s−1. The vertical scale of the wave is taken as
m = 0.02 m−1, so ε = 0.125. We therefore have that Ro < α < ε ≈ Ro1/2, consistent
with our scaling. The initial position of the dipole (r= 0) and wavepacket (maximum
of |ϕ|) are (0.5, 0.3) and y= 0.5 when distances are normalised by the domain size
of 500 km.

We report the results of an integration time of t = 1.5× 107 s ≈ 173 days, within
which the dipole travels about 1.5 times the domain size. The changes in mean and
wave energies (normalised by the initial mean energy) are shown as functions of time
in figure 3. As in the slice model, the increase of NIW energy is compensated by a
loss of mean-flow energy. Using (5.2) and ε= 0.1, we can estimate the relative mean
energy change to be about 0.05, in agreement with the numerical results. The initial
and final streamfunction ψ and wave amplitude |ϕ| are shown in figure 4. This also
shows the trajectories of the vorticity maximum and minimum as an indication of the
dipole’s trajectory. The NIWs, which partly concentrate in the anticyclonic core of
the dipole through a well-established mechanism (e.g. Danioux, Vanneste & Bühler
2015, and references therein), have an obvious impact on the mean flow: instead of
propagating in a straight line x = const., the dipole deforms and is deflected to the
left. This illustrates the irreversible nature of the wave–mean-flow interactions when,
unlike in the slice model, the PV is not constant. The phenomenon is reminiscent
of the deflection of dipoles observed by Snyder et al. (2007) in simulations of
the spontaneous generation of inertia–gravity waves by dipoles; there is a possible
connection that might be worth exploring.

7. Discussion
In this paper we derive and study a model of the interactions between slow

balanced motion and fast NIWs in the ocean. The model is obtained within the GLM
framework (e.g. Bühler 2009) or, more precisely, its glm variant (Soward & Roberts
2010), and neglects dissipative effects. In its simplest form (2.7), the model consists
of the YBJ model of NIW propagation (Young & Ben Jelloul 1997) coupled with a
modified QG equation. As expected from general GLM theory (Bühler & McIntyre
1998; Bühler 2009; Salmon 2013), the modification consists solely in a change in
the relation between streamfunction and PV which adds to the standard QGPV a
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FIGURE 4. (Colour online) NIW-dipole interaction: initial (a,c) and final (b,d)
streamfunction ψ (a,b) and NIW amplitude |ϕ| (c,d). Both ψ and |ϕ| have been
normalised by their maximum value at the initial time. The trajectories of the vorticity
maximum and minimum shown by the thick black lines in (b) indicate the motion of the
dipole during the simulation.

quadratic wave contribution. (A comparison between averaging formalisms – glm,
GLM and others – in appendix C shows that this wave contribution arises as the sum
of the curl of a pseudomomentum, a wave-induced mean-stratification change and a
mean-density change, with the exact form of each term depending on the formalism.)
Thus NIWs impact the dynamics of PV by changing its advection in what is, in
general, an irreversible manner. The assumption that the waves are near-inertial leads
to drastic simplifications, reducing the wave part of the dynamics to the YBJ equation
for a single (complex) amplitude χ evolving on the same time scale as the balanced
flow.

Our YBJ–QG coupled model can be thought of as providing a parametrisation
of NIW effects, with the fast NIWs regarded as a subgrid phenomenon in time. In
this view, the YBJ is an asymptotically motivated closure for the NIWs: it provides
enough information about the NIWs to compute their impact on the balanced flow.
We emphasise that the derivation relies on a scale separation in time only and does
not assume that the waves have small spatial scales, unlike previous applications of
GLM (Gjaja & Holm 1996; Bühler & McIntyre 1998). This is crucial for NIWs
since they are forced by atmospheric winds at horizontal scales that are much larger
than the oceanic mesoscales. It is also practically convenient since the YBJ and QG
equations can be solved numerically on the same grid, so that the coupled model
requires only about three times as much computational effort as the standard QG
equation.

As discussed in § 2, the model is not fully consistent asymptotically. This is because
the different aspect ratios it assumes for NIWs and balanced motion, specifically
m/k = ε−1N/f0 � N/f0 and L/H = O(N/f0), cannot be expected to persist: the
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feedback of the NIWs implies that their aspect ratio is imprinted onto the balanced
flow, leading to an increase in L/H and potentially to a breakdown of the assumption
of order-one Burger number that underlies the QG approximation. In practice this
may not be significant: the NIWs contribute to the QG velocity ∇⊥ψ through a term
that is twice as smooth in the vertical than the NIW amplitude χz itself (because
of the Helmholtz inversion in (2.9)). As a result, short vertical fluctuations in χz
have a limited impact on ∇⊥ψ . Furthermore, in the case of locally planar NIWs,
it is the envelope scale that is imprinted onto ∇⊥ψ rather than the (much shorter)
wavelength. Finally, the existence of a coupled YBJ–primitive-equation model with
conservations of PV, energy and action analogous to those of the YBJ–QG model
suggests that conclusions inferred from the latter model are robust. Nonetheless, it
might be desirable to treat the difference in the vertical scales H and m−1 in a fully
consistent way by applying a multiscale method in space as well as in time. It is
unclear, however, whether a model derived in this manner would be significantly
different from the YBJ–QG model.

In this paper we discuss some qualitative aspects of the interactions between
balanced flow and NIWs in the ocean, mostly based on the remarkably simple
action and energy conservation laws of the YBJ–QG model. The conservation of
action implies the complete absence of spontaneous NIW generation in the model,
consistent with the expected exponentially small size of this phenomenon (Vanneste
2013). The conservation laws further indicate that NIWs forced at large scales by
atmospheric winds provide an energy sink for the oceanic balanced motion through
a mechanism that can be termed ‘stimulated wave generation’. This is potentially
significant: several mechanisms have been proposed to explain the dissipation of
mesoscale energy but it is far from clear whether they are efficient enough to balance
the flux imposed by the energy source (mainly baroclinic instability). We offer a
rough estimate of the power extracted from the mean flow by the mechanism we
have identified; this suggests that further consideration is worthwhile. More reliable
estimates would require intensive numerical simulations of the YBJ–QG or of the
primitive equations and are well beyond the scope of this paper.
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Appendix A. glm average
In glm, the map from mean to perturbed positions is written in terms of a

divergence-free vector field, ν(X, t) say, as

X+ ξ(X, t)= eνX. (A 1)

Here the exponential denotes the flow map generated by ν, that is, defining x(s) as
the solution of

d
ds

x(s)= ν(x(s), t), where x(0)=X (A 2)
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and t is regarded as a fixed parameter, eνX = x(1). The glm average is then defined
by the condition

〈ν〉 = 0, (A 3)

which replaces GLM’s condition 〈ξ〉 = 0 (Soward & Roberts 2010; note that we use
the symbol ν for the vector field denoted by η in their paper). The divergence-free
property of ν ensures that (A 1) preserves volume. For small perturbations α � 1,
it is easy to relate ξ to ν order-by-order in α. Expanding ξ according to (3.5) and,
similarly, ν according to ν = ν(1) + ν(2) + · · · , we can use (A 1) to write

ξ = ν + 1
2ν · ∇3ν + · · · = ν(1) + ( 1

2ν
(1)
· ∇3ν

(1) + ν(2)
)+ · · · . (A 4)

Identifying the first two orders in α yields

ν(1) = ξ (1) and ν(2) = ξ (2) − 1
2ν

(1)
· ∇3ν

(1). (A 5a,b)

The condition (A 3) then becomes

〈ξ (2)〉 = 1
2 〈ν(1) · ∇3ν

(1)〉 = 1
2 〈ξ (1) · ∇3ξ

(1)〉. (A 6)

Appendix B. Mean dynamics
Following Salmon (2013), the equations governing the mean dynamics are derived

from the energy–momentum equations

∂

∂Xj

(
ai

R
∂〈L〉
∂ai

Xj

)
= ∂〈L〉

∂R
− ∂〈L〉

∂R

∣∣∣∣χ
expl

(B 1)

applied to the density 〈L〉 associated with the Lagrangian equation (3.10) (i.e. 〈L〉
is the integrand in the expression of 〈L 〉). In the energy–momentum equations,
(X0, X1, X2, X3) = (T, X, Y, Z), (a1, a2, a3) = (a, b, θ) and Einstein’s summation
convention is used; R can be taken to be T , leading to an energy equation, or X, Y
or Z, leading to the corresponding momentum equations. The sub- and superscript
‘expl’ and χ attached to the last term in (B 1) indicate derivatives of the terms that
depend explicitly on R, treating the dependence introduced by χ as such an explicit
dependence; in other words, the right-hand side of (B 1) collects derivatives associated
with the mean flow only.

To keep expressions compact, we make the following definitions:

A ≡ 1
J
δ〈L 〉
δU
=U −

(
f0Y + 1

2
βY2

)
+ A′

= U −
(

f0Y + 1
2
βY2

)
− if0

4
(χZχ

∗
ZX − χ∗ZχZX)− f0Y〈ξ (2)〉X − f0〈η(2)〉, (B 2a)

B ≡ 1
J
δ〈L 〉
δV
= V + B′

= V − if0

4
(χZχ

∗
ZY − χ∗ZχZY)− f0Y〈ξ (2)〉Y, (B 2b)

C ≡ 1
J
δ〈L 〉
δW
=C′

= − if0

4
(χZχ

∗
ZZ − χ∗ZχZZ)− f0Y〈ξ (2)〉Z, (B 2c)
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E ≡ δ〈L〉
δJ
= 1

2
(U2 + V2)−

(
f0Y + 1

2
βY2

)
U + θZ + P+ E′

= 1
2
(U2 + V2)−

(
f0Y + 1

2
βY2

)
U + θZ + P

− if0

4
(χZDTχ

∗
Z − χ∗Z DTχZ)− 1

2
f0βY|χZ|2

− f0YDT〈ξ (2)〉 − f0〈η(2)〉U + θ〈ζ (2)〉, (B 2d)

where A′, B′, C′ and E′ group the NIW contributions. Note that (A′, B′, C′) is the
wave pseudomomentum. The terms in the energy–momentum tensor (B 1) for R= T
can then be written as

ai
R
∂〈L〉
∂ai

T
= ai

R
∂Uj

∂ai
T

∂〈L〉
∂Uj

= −1
J
∂〈L〉
∂U

∂(a, b, θ)
∂(R, Y, Z)

− 1
J
∂〈L〉
∂V

∂(a, b, θ)
∂(X, R, Z)

− 1
J
∂〈L〉
∂W

∂(a, b, θ)
∂(X, Y, R)

= −A
∂(a, b, θ)
∂(R, Y, Z)

− B
∂(a, b, θ)
∂(X, R, Z)

−C
∂(a, b, θ)
∂(X, Y, R)

(B 3)

when (3.4) is used. Similarly, for R= X, Y, Z, we obtain

ai
R
∂〈L〉
∂ai

X
=−B

∂(a, b, θ)
∂(R, T, Z)

−C
∂(a, b, θ)
∂(R, Y, T)

+ (E−UA− VB−WC)
∂(a, b, θ)
∂(R, Y, Z)

,

(B 4a)

ai
R
∂〈L〉
∂ai

Y
=−A

∂(a, b, θ)
∂(T, R, Z)

−C
∂(a, b, θ)
∂(X, R, T)

+ (E−UA− VB−WC)
∂(a, b, θ)
∂(X, R, Z)

,

(B 4b)

ai
R
∂〈L〉
∂ai

Z
=−A

∂(a, b, θ)
∂(T, Y, R)

− B
∂(a, b, θ)
∂(X, T, R)

+ (E−UA− VB−WC)
∂(a, b, θ)
∂(X, Y, R)

.

(B 4c)

Using (B 3) and (B 4), the momentum equations are derived from (B 1) with R =
X, Y, Z in the form

−DTA+ EX = AUX + BVX +CWX + (Z + 〈ζ (2)〉)θX, (B 5a)
−DTB+ EY = AUY + BVY +CWY + (Z + 〈ζ (2)〉)θY, (B 5b)
−DTC+ EZ = AUZ + BVZ +CWZ + (Z + 〈ζ (2)〉)θZ. (B 5c)

Introducing the explicit forms (B 2) of A, B, C and D leads, after simplifications, to
(3.14).

Appendix C. Alternative derivation

In this appendix we show that the QGPV equation (2.7b) can be obtained directly
from PV conservation. In this procedure GLM, glm and indeed any definition of the
average 〈ξ (2)〉 gives the same leading-order dynamics because the associated mean-
flow maps are O(α2) close. The wave contributions to the mean dynamics come from
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different sources depending on the definition of the average, but their total effect is
the same.

We start from the general Lagrangian equation (3.6). Taking δP variation we obtain

J = 1+∇3 ·
(〈ξ (2)〉 − 1

2 〈ξ (1) · ∇ξ (1)〉) . (C 1)

The relabelling symmetry of Lagrangian equation (3.6) gives PV conservation

DT

(
∇θ · ∇×A

J

)
= 0, (C 2)

where A = (A, B, C) are defined as in (B 2) but with the Lagrangian equation (3.6)
in place of (3.10) (Salmon 2013).

Under QG scaling and using the buoyancy equation (3.24) to replace W in the above
equation, we obtain

D0
T

(
N2(BX − AY)+ f0θ

′
Z

J

)
− f0

N2
D0

T(θ
′(N2)Z)= 0, (C 3)

where θ follows the definition (3.21). By substituting

BX − AY = f0 + βY +∇2ψ + if0

2
∂(χ∗Z , χZ)+ f0〈∂xξ

(2) + ∂yη
(2)〉, (C 4)

and (C 1), we obtain the modified QGPV equation

D0
T

(
f0 + βY +∇2ψ + ∂Z

(
f 2
0

N2
∂Zψ

)
+ if0

2
∂(χ∗Z , χZ)+ f0

2
∇·〈ξ (1) · ∇3ξ

(1)〉
)
= 0, (C 5)

identical to (2.7b) since the last term is equal to fG(χ∗, χ). Note that the cancellation
of the second-order mean displacements (term ∇3 · 〈ξ (2)〉) indicates that this equation
is independent of the specific averaging used to define the Lagrangian mean. In
contrast, the individual wave contributions to the QGPV, namely the curl of the
pseudomomentum (wave terms in (C 4)), the buoyancy term N2f0〈∂Zζ

(2)〉 and the
density correction (divergence in (C 1)) depend on the averaging used. A relation
reducing to (C 5) for NIWs was derived by Holmes-Cerfon et al. (2011, their (3.10))
using GLM theory.
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