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A SOLUTION METHOD FOR LINEAR
RATIONAL EXPECTATION MODELS
UNDER IMPERFECT INFORMATION

KATSUYUKI SHIBAYAMA
University of Kent at Canterbury

This article presents a solution algorithm for linear rational expectation models under
imperfect information, in which some decisions are made based on smaller information
sets than others. In our solution representation, imperfect information does not affect the
coefficients on crawling variables, which implies that, if a perfect-information model
exhibits saddle-path stability, for example, the corresponding imperfect-information
models also exhibit saddle-path stability. However, imperfect information can
significantly alter the quantitative properties of a model. Indeed, this article demonstrates
that, with a predetermined wage contract, the standard RBC model remarkably improves
the correlation between labor productivity and output.
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1. INTRODUCTION

This article presents a solution algorithm for linear rational expectation models
under imperfect information. “Imperfect information” in this article signifies that
some decisions are made before observing some shocks, whereas others are made
after observing them. For example, we can consider a variant of the standard
RBC model, in which households predetermine wage (and commit themselves to
accommodating any labor demand) before observing today’s productivity shock.
In this variant, the equations that define the equilibrium are the same as in the
standard RBC model, except for the information structure; i.e., the first-order
condition (FOC) on labor supply has an expectation operator.

Imperfect information is an interesting consideration for several reasons. First,
imperfect information plays an important role in many important classes of mod-
els, such as the sticky information model of Mankiw and Reis (2001). Second,
researchers often do not know a priori what information is available when each
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decision is made; hence, they may want to estimate the information structure
by parameterizing it, or they may want to experiment on a model under several
patterns of information structure. It is easy to implement such exercises with our
algorithm; once structural equations under the corresponding perfect information
are obtained, then the additional input to the algorithm is only the information
structure in a model. Third, the obtained numerical result may not be robust
for a small change in information structure. Indeed, we present a variant of the
RBC model with a predetermined wage contract to demonstrate that changing
information structure remarkably improves the model performance in terms of the
correlation between labor productivity and output.

This article offers a set of easy-to-use Matlab codes to solve a general class of
linear models under imperfect information.1 The solution method is an extension
of the QZ method of Sims (2002). The algorithm solves the system of linear
difference equations in the form

0 = Ẽt [Ayt+1 + Byt ] + Cξt , (1)

where A, B, and C are proper coefficient matrices, and yt and ξt are the vectors of
endogenous and exogenous variables, respectively. The expectation operator Ẽt [ ]
is nonstandard because the information set in each equation can differ from each
other (imperfect information).

The algorithm provides the solution of a model in the form of

κt+1 = Hκt + Jξ t,S,

φt = Fκt + Gξt,S,

ξ t,S : = (
ξT
t · · · ξT

t − S

)
,T

where κt and φt are the vectors of crawling and jump variables, respectively,2 and
ξt−s is the vector of innovations at time t − s, for s = 0, . . . , S, where S is such
that the minimum information set in the model includes all information up to time
t − S − 1. The superscript T indicates transposition, and hence ξ τ,S is the vertical
concatenation of {ξτ−s}Ss=0. H , J , F and G are the solution matrices provided by
the algorithm.

It is important to note that the state variables in this solution are κt and ξ t,S .
Imperfect information requires expansion of the state space, but this can be done
either by expanding the innovation vector or by expanding the set of crawling vari-
ables; i.e., representation of the state space is not necessarily unique. Our choice of
state variables works, intuitively, because, if past innovations are recorded, we can
recover the past crawling variables and hence recover the information available in
past periods.

By keeping the number of crawling variables unchanged, it can be shown that
the dynamic parts of the solution (i.e., the H and F matrices) are the same as in the
corresponding perfect information model.3 Thus, it is clear that if the correspond-
ing perfect model is saddle-path stable (sunspot, explosive), then an imperfect
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information model is also saddle-path stable (sunspot, explosive, respectively).
That is, the information structure does not alter the dynamic stability property.
In this sense, we can say that qualitatively an imperfect-information model in-
herits key properties of the corresponding perfect-information model. However,
quantitatively imperfect information can have significant effects, as shown in
Section 5.

Moreover, invariant H and F matrices imply that the direct effects of imperfect
information on impulse response functions (IRFs) last for only S periods after an
impulse. In subsequent periods, IRFs follow essentially the same process as in the
perfect information counterpart. More specifically, suppose that an endogenous
variable at is determined S periods in advance (observing κt−S and ξt−S). In this
case, the IRFs are directly affected by the information imperfection from time t

to t + S − 1. At t + S, however, the IRFs show sudden jumps because at+S starts
reacting to innovations at t . Let κt+S be the values of the crawling variables at
the beginning of t + S. Then the following IRFs follow exactly the same time
path as those under perfect information that start with κt+S (without innovations).
One such example can be found in Dupor and Tsuruga (2005), who argue that
the hump-shaped IRFs found in Mankiw and Reis (2001) critically hinge on the
assumption of Calvo-style information updating, in which some agents, though
their population decreases over time, cannot renew their information forever.
By instead constructing Taylor-style staggered information renewal, Dupor and
Tsuruga (2005) show that IRFs jump to zero right after the last cohort renews its
information set. We show, however, that such sudden jumps in IRFs are rather
common observations in imperfect information models.

There are, at least allegedly, three existing treatments of imperfect information.4

The first remedy for imperfect information is to define dummy variables.5 For
example, consider a variant of the standard RBC model, in which labor supply
Lt is determined without observing today’s innovations. Then the optimal labor
supply is determined by

0 = Et−1 [ηLt + σCt − Wt ] , (2)

where Ct and Wt are consumption and wage at time t , η and σ are parameters
provided by the theory, and Et−1[ ] is the expectation operator with all information
up to time t − 1. Define a dummy variable L∗

t such that

0 = Et [ηL∗
t+1 + σCt+1 − Wt+1],

Lt+1 = L∗
t .

In this method, having the additional crawling variable Lt , the set of crawling
variables is expanded. The problem with this method is that it cannot solve the
model if some endogenous variables are determined before some (not all) of
today’s innovations are observed but after the others are observed.

https://doi.org/10.1017/S1365100509990897 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509990897


468 KATSUYUKI SHIBAYAMA

The second method developed by Wang and Wen (2006) is more closely related
to our method, in the sense that they also chose to expand expectation error instead
of crawling variables. Apart from the difference in the bases of the algorithm (they
employ the method of undetermined coefficients, while we use QZ method), how-
ever, there are three major differences. First, our algorithm allows more flexible
specification; with our method, an endogenous variable can be determined observ-
ing some innovations but not observing the others at t , whereas their method deals
with lagged expectations such as the dummy variable method mentioned above.
Second, our method only requires two indicator matrices (see the next paragraph),
which specify whether each variable is decided with or without observation of
each innovation, whereas they require researchers to solve for their �i and �i

matrices (i = 1, . . . , S). Third and most importantly, our method reveals sharper
analytical results (see note 3, for example).

The other possibility is a modification of the method of undetermined coeffi-
cients. According to Christiano (1998), his version of method of undetermined
coefficients, like ours, can deal with models in which some endogenous variables
are determined before some (not all) of today’s innovations are observed but after
the others are observed. The most salient difference between his method and ours
is in the specification of information structure; Christiano (1998) requires a user
to provide only one matrix R that specifies which innovations are to be included in
the information set of each expectation operator. Roughly speaking, his R relates
equations to observable innovations. In contrast, in the algorithm developed in this
paper, a researcher must specify two indicator matrices; one relates innovations to
equations [like Christiano (1998)], and the other relates innovations to variables.
To understand why the latter matrix is necessary, consider the above example
(2). Certainly, it is clear that a researcher must specify the information set of
the expectation operator in (2). However, in a given information set, there are
generically three possibilities, namely that (a) the representative household fixes
labor supply before observing some of today’s innovations, (b) it determines wage
before innovations (sticky wage), or (c) it decides consumption before innovations.
Hence, one more matrix is necessary in our algorithm to specify which of Ct , Wt,

or Ht is chosen while not having full information. In general, the quantitative
behavior of a model is completely different, depending on which variables are
assumed to be decided before observing some information. Indeed, Section 5
shows that the difference between (a) and (b) is very crucial.

The plan of this article is as follows. In Section 2, we define the problem and
derive the solution, and show two key observations: (i) if the kth time t variable
yk,t is determined without observing the ith time t − s innovations ξi,t−s , then yk,t

cannot respond to ξi,t−s ; and (ii) if the expectation operator in the j th equation
has an information set that includes ξi,t−s , then ξi,t−s cannot be the source of the
expectation error in the j th equation. It turns out that these two restrictions are
enough to determine the unique solution coefficients. In Section 3, we discuss
the assumptions that are necessary for guaranteeing the existence of a solution.
Each of them has some economic meaning, and the existence condition is slightly
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tighter under imperfect information than under perfect information. In Section
4, the main features of the solution of imperfect information models are briefly
discussed. Most of them are direct consequences of the invariant H and F matrices.
In Section 5, we demonstrate the effects of imperfect information on the standard
RBC model as an example. The final section concludes the discussion.

2. DERIVATION OF THE SOLUTION

Essentially, our algorithm is an extension of the QZ method used in Sims (2002).
Our objective is to obtain the state space representation of a solution that satisfies
two key zero restrictions. For the details of the matrix notation, see the Appendix.

2.1. Definition of the Problem

This section defines the inputs and outputs of the algorithm.

Given models. Instead of using expectation operators such as (1), following
Sims (2002), we formulate the linear rational models with expectation errors as
follows:

0 = Ayt+1 + Byt + Cξt + Dξt+1 + Eξt,S, (3)

where

yt =
(

κt

φt

)
, ξ t,S =

⎛
⎜⎝

ξt

...

ξt−S

⎞
⎟⎠ ,

E := [ E0 E1 · · · Es · · · ES ]

:=

⎡
⎢⎣

E0,11 · · · E0,1N

...
. . .

...

E0,M1 · · · E0,MN

· · ·
Es,11 · · · Es,1N

...
. . .

...

Es,M1 · · · Es,MN

· · ·
ES−1,11 · · · ES,1N

...
. . .

...

ES−1,M1 · · · ES,MN

⎤
⎥⎦.

yt is the vector of all endogenous variables, in which κt is the vector of crawling
variables and φt is that of jump variables. Stock variables are all recorded at the
beginning of each period. M is the number of equations, which is equal to the
number of endogenous variables; N is the number of innovations; and S is such
that the minimum information set includes ξt−S−1.

ξt−s is a column vector of i.i.d. innovations at time t − s. Limiting ξt to be i.i.d.

is not restrictive, because we can add the law of motions of serially correlated
shocks to the system of equations and treat the shocks themselves as crawling
variables.6

Only two sets of inputs are required: (i) coefficient matrices A, B, and C, which
are typically the same as in perfect-information models; and (ii) indicator matrices
IndE and IndV (their elements are either zero or one).7 The size of IndE is the
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same as that of E in (3), and, if the (i, j)th element of E is zero, then the (i, j)th
element of IndE is also zero. Essentially, IndE specifies the information set in each
equation in (3). The size of IndV is the same as that of the vertical concatenation
[J T GT ]T (see the next section), and its zero elements represent variables that do
not observe each innovation. The values of the nonzero elements in J , G, and E

are computed by the algorithm, whereas (the positions of) their zero elements are
provided by a user.

Goal of the algorithm. Our objective is to obtain the state space representation
of (3),

κt+1 = Hκt + Jξ t,S, (4a)

φt = Fκt + Gξt,S, (4b)

where

J := [
J0 J1 · · · Js · · · JS

]

:=

⎡
⎢⎣

J0,11 · · · J0,1N

...
. . .

...

J0,Mκ 1 · · · J0,MκN

· · ·
Js,11 · · · Js,1N

...
. . .

...

Js,Mκ 1 · · · Js,MκN

· · ·
JS,11 · · · JS,1N

...
. . .

...

JS,Mκ 1 · · · JS,MκN

⎤
⎥⎦

G := [
G0 G1 · · · Gs · · · GS

]

:=

⎡
⎢⎣

G0,11 · · · G0,1N

...
. . .

...

G0,Mφ1 · · · G0,MφN

· · ·
Gs,11 · · · Gs,1N

...
. . .

...

Gs,Mφ1 · · · Gs,MφN

· · ·
GS,11 · · · GS,1N

...
. . .

...

GS,Mφ1 · · · GS,MφN

⎤
⎥⎦.

2.2. Two Key Observations

This section shows two zero restrictions. The algorithm seeks the solution that
satisfies them.

Repeated substitutions. To obtain the representation of κt+1 and φt as functions
of κt−S and ξt−τ for τ = 0, . . . , 2S − 1, repeat the substitution of the vertically
concatenated guess of solution (4) into itself. Defining Ȟ := [HT FT ]T ,

(
κt+1

φt

)
= Ȟκt + �̃ξ t,S = Ȟ

(
HSκt−S +

S∑
k=1

Hk−1Jξ t−k,S

)
+ �̃ξ t,S (5)

= ȞHSκt−S + (�0ξt−0 + �1ξt−1 + · · · + �Sξt−S)

+ Ȟ

⎛
⎜⎝

H 0 (J0ξt−1 + J1ξt−2 + · · · + JSξt−1−S)

+H 1 (J0ξt−2 + J1ξt−3 + · · · + JSξt−2−S) + · · ·
+HS−1 (J0ξt−S + J1ξt−S−1 + · · · + JSξt−S−S)

⎞
⎟⎠
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= ȞHSκt−S + 	0ξt + 	1ξt−1 + · · · + 	sξt−s + · · · + 	Sξt−S

+ terms with ξt−τ for τ ≥ S + 1,

where �̃ := [ �0 · · · �s · · · �S ] with �s := [ J T
s GT

s ]T , and

	0 := �0 =
[

J0

G0

]
,

	1 := �1 +
[

H

F

]
J0 =

[
J1 + HJ0

G1 + FJ0

]
,

	2 := �2 +
[

H

F

]
(J1 + HJ0) =

[
J2 + H (J1 + HJ0)

G2 + F (J1 + HJ0)

]
, · · · ,

	s := �s +
[

H

F

](∑s−1

k=0
Hs−1−kJk

)
=
[

Js + H
∑s−1

k=0 Hs−1−kJk

Gs + F
∑s−1

k=0 Hs−1−kJk

]
, · · · ,

	S := �S +
[

H

F

](∑S−1

k=0
HS−1−kJk

)
=
[

JS + H
∑S−1

k=0 HS−1−kJk

GS + F
∑S−1

k=0 HS−1−kJk

]
.

In the recursive representation,

	0 = �0 =
[

J0

G0

]
, (6)

	s = �s + H̃	s−1 for s = 1, . . . , S,

where

H̃ :=
[

H 0

F 0

]
.

Intuitively, equation (6) shows that the (j, k)th element of 	s is the effect of ξk,t−s

(the kth innovation at time t − s) on yj,t (the j th endogenous variable at time t).
Thus, given κt−S , 	s,jk , which is defined as the (j, k)th element of 	s , is zero if
yj,t is determined without observing ξk,s .

In the matrix representation, (7) becomes

� = M�		, (7)

where

� := [
�T

0 · · · �T
s · · · �T

S

]T
, (8a)

	 := [
	T

0 · · · 	T
s · · · 	T

S

]T
, (8b)
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M�	 :=

⎡
⎢⎢⎢⎢⎣

I 0

−H̃ I 0
. . .

. . .

0 −H̃ I

⎤
⎥⎥⎥⎥⎦ . (8c)

M�	 is clearly invertible, and plays a key role in the following.

Zero restrictions. Throughout this paper, we exploit the following two obser-
vations.

(1) If the kth set of variables yk,t does not observe the ith set of time t − s innovations
ξi,t−s , then ∂yk,t /∂ξt−s = 	s,ki = 0, given κt−S and ξt−τ for τ = s + 1, . . .. Simply
put, no decision can respond to unobserved innovations.

(2) If the information set of the expectation operator in the j th equation includes the ith
time t − s innovation ξi,t−s , then the realization of the j th equation must hold for any
realisation of the ith innovation. The expectation error in each expectation operator
occurs only due to innovations that are not included in its information sets. Thus,
Es,ji = 0.

For example, suppose that labor supply Lt (kth variable, yk,t ) is decided on
before observing today’s technology shock (ith shock, ξi,t ), but after today’s
preference shock (lth shock, ξl,t ), both of which are i.i.d. If the FOC with respect
to Lt is the j th equation, then

	0,ki = 0(ξi,t−0 does not affect yk,t )

E0,j l = 0(ξl,t−0 does not cause expectation error in j th equation).

Roughly speaking, E0,j l = 0 means that if the expectation operator of the j th
equation were eliminated from the j th equation, it would still hold in terms of ξ0,l .
It is the duty of a user to specify the positions of these zero elements in 	 and E

(by providing IndV and IndE).

2.3. Sketch of Derivation and Key Equations for Computation

The fully detailed derivation is provided in the Appendix. This section briefly
describes the skeleton of the derivation and lists the minimum results necessary
for computation.

QZ Decomposition. To introduce notations, this section briefly reviews the
QZ decomposition (or generalized Schur decomposition). For matrices A and B

(∈ Cn×n), there exist unitary matrices Q and Z such that

QHAZ = �A,

QHBZ = �B,
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where �A and �B are both upper triangular matrices, and superscript H indicates
a conjugate transpose. Any unitary matrix U satisfies UHU = UUH = I . Let akk

and bkk be the kth diagonal elements in �A and �B , respectively. Assuming that
akk and bkk are not zero at the same time, then λk := bkk/akk for k = 1, . . . , n are
the generalized eigenvalues of the matrix pencil B − λkA.8

The basic idea is that, by applying the QZ decomposition to (3), the algorithm
separates unstable roots ut from stable roots st , as in Sims (2002):

0 = Ayt+1 + Byt + Cξt + Dξt+1 + Eξt,S

= �AZHyt+1 + �BZH yt + QHCξt + QHDξt+1 + QHEξt,S

=
[

�A
ss �A

su

0 �A
uu

](
st+1

ut+1

)
+
[

�B
ss �B

su

0 �B
uu

](
st

ut

)

+
[

QH
s.

QH
u.

]
Cξt +

[
QH

s.

QH
u.

]
Dξt+1 +

[
QH

s.

QH
u.

]
Eξt,S,

where (
st

ut

)
:= ZH

(
κt

φt

)
.

By using TVCs, the expected values of all unstable roots ut+1 are set equal to
zero.9

Notations for the outputs of QZ decomposition. For later use, we define sub-
matrices as follows:

ZH :=
[

ZH
s.

ZH
u.

]
:=

[
ZH

sκ ZH
sφ

ZH
uκ ZH

uφ

]
, Z :=

[
Zκs Zκu

Zφs Zφu

]
, QH :=

[
QH

s.

QH
u.

]
, (9a)

�A :=
[

�A
ss �A

su

0 �A
uu

]
, �B :=

[
�B

ss �B
su

0 �B
uu

]
, (9b)

where subscripts u and s imply unstable and stable roots, respectively. Note that
�A

ss and �B
uu are both invertible by construction.

Additionally, we define four matrices as

�A
sκ := �A

ssZ
H
sκ + �A

suZ
H
uκ, (10a)

�A
sφ := �A

ssZ
H
sφ + �A

suZ
H
uφ, (10b)

�B
sκ := �B

ssZ
H
sκ + �B

suZ
H
uκ, (10c)

�B
sφ := �B

ssZ
H
sφ + �B

suZ
H
uφ. (10d)

Note that all the matrices defined by (10a) are obtained from the outputs of the
QZ decomposition.
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Matrix subscripts. We introduce the following notation rule for subscripts on
matrices. For a matrix A,

A.x is columns x of a matrix A,
Ax. is rows x of a matrix A,
A.¬x is the columns remaining after the elimination of columns x, and
A¬x. is the rows remaining after the elimination of rows x,

where x is the name of a set of columns or rows. This notation makes certain
matrix operations extremely simple. See the Appendix for further details.

Zero restrictions. As a result of manipulating the matrix equations, it is shown
that

0 = 	 + M	E(E + C), (11)

M	E := (My�M�	)\Q, (12)

where

� :=

⎛
⎜⎝

�0
...

�S−1

⎞
⎟⎠ , E :=

⎛
⎜⎝

E0
...

ES−1

⎞
⎟⎠ , C :=

(
C0

0

)
, Q :=

⎡
⎢⎣
Q 0

. . .

0 Q

⎤
⎥⎦, (13a)

My�:=

⎡
⎢⎢⎢⎣
 �0A 0

. . .

 �0A

0 

⎤
⎥⎥⎥⎦,  :=

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
, �0A :=

[
0 �A

sφ

0 �A
uuZ

H
uφ

]
,

(13b)

and X\Y = X−1Y . Our immediate objective is to find E and 	. Bear in mind that,
although My� is computable solely from the outputs of the QZ decomposition, we
can obtain M�	 only after finding H and F (see equation (8c)).

Given M�	, E and 	 are computed column by column (i.e., innovation by
innovation) in (11). Because some elements in 	 and E are zero due to the two
zero restrictions, for the ith column (or equivalently for the ith innovation) of
(11),

0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

	1,i

...

	k,i (= 0)
...

	M(S+1),i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ M	E

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

Eji

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

C.i

0
...
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

, (14)

where M in subscripts is the number of equations and hence M (S + 1) is the
number of rows in 	.
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From the kth set of equations in (14),

0 = [ M	E ]kjEji + [ M	E ]kj Cji + [ M	E ]k¬j C¬ji , (15)

which gives the values of the nonzero elements of E. From the remaining equations
in (14),

0 = 	¬ki + [ M	E ]¬kj Cji + [ M	E ]¬k¬j C¬ji

−[ M	E ]¬kj ([ M	E ]kj\[ M	E ]k¬j C¬ji + Cji), (16)

which gives the nonzero elements of 	.
Here we assume that [M	E]kj is invertible, which, however, is not necessar-

ily true in general. The economic meaning of its invertibility is discussed in
Section 3.

Solution. The solution algorithm computes key matrices sequentially. The
basic structure is as follows:

(1) Obtain submatrices from the outputs of the QZ decomposition (9a) and (10a).
(2) Obtain H and F from (17a).
(3) Obtain My� , M�	, and M	E from (13b), (8c), and (12), respectively.
(4) Obtain E and 	 from (18) and (19).
(5) Obtain G and J from (20).

H and F. As in Sims (2002), it turns out that the H and F matrices are derived
independently from the G and J matrices, based on the coefficient on κt−S in
(6) (see the Appendix for details). Therefore, they are exactly the same as in
perfect-information models:

F = −ZH
uφ\ZH

uκ = Zφs/Zκs, (17a)

H = −Zκs

(
�A

ss\�B
ss

)
/Zκs. (17b)

E and Π. From (15) and (16), the nonzero elements of E and 	 are

Eji = −[ M	E ]kj\[ M	E ]k¬j C¬ji − Cji , (18)

	¬ki = − [
M−1

	E

]
¬j¬k

\C¬ji , (19)

where M	E can be obtained from (8c) and (13a) with the solution of H and F .
Note that H and F can be computed without referring to E, 	, or M	E . Because
[M	E]kj is assumed to be invertible,

[
M−1

	E

]
¬j¬k

is also invertible.
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J and G. From the definition of � (8a),

� :=

⎡
⎢⎢⎢⎢⎢⎣

J0

G0
...

JS

GS

⎤
⎥⎥⎥⎥⎥⎦ = M�		. (20)

Note that, with H and F matrices, M�	 are recovered from (8c).

D. From a given economic model (3) it is obvious that

D = −A

[
0

G0

]
. (21)

3. ASSUMPTIONS

In this section, we discuss three assumptions. Assumptions 1 and 2 in the following
are the same as in the solution method for perfect-information models, whereas
Assumption 3 is specific to imperfect-information models. This section omits
discussion of the Blanchard–Kahn condition, which is automatically satisfied by
Assumption 1.

3.1. Assumption 1: ZH
uφ Is Invertible

Klein (2000) shows that this assumption is a generalization of the condition
derived in Blanchard and Kahn (1980). Boyd and Dotsey (1990) make it clear
that the Blanchard–Kahn condition, which counts and compares the numbers of
unstable roots and jump variables, is a necessary but not sufficient condition for
the existence of a unique solution; they provide a counterexample that satisfies the
Blanchard–Kahn counting condition but does not have a stable solution. Intuitively,
an invertible ZH

uφ means that we can always find the values of jump variables such
that the expectation of ut+1 is a zero vector in any states (TVCs). Heuristically,
ZH

uφ maps jump variables φt to unstable roots ut , and its inverse maps ut to φt . See
King and Watson (1998) for an intuitive exposition.

The existence of the right inverse of ZH
uφ entails the existence of jump variables,

whereas the nonexistence of its left inverse implies the nonuniqueness of jump
variables.10 Note that typically nonuniqueness causes sunspot equilibria.

3.2. Assumption 2: akk and bkk Are Not Zero at the Same Time

If akk and bkk are zero at the same time, there exist row vectors X such that 0 = Xξ ;
indeed, X is (a scalar multiple of) the kth row of Q [see also Sims (2002)]. The
existence of such row vectors generically implies one of the following:
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(a) If Xξ is indeed zero, then some equations are not linearly independent of the others.
Essentially, there are fewer equations than endogenous variables. At least one equation
can be expressed as a linear combination of others, and such a linear combination is
X.

(b) If Xξ is nonzero, clearly there is an internal contradiction. One such example is a
two-equation, two-variable nondynamic model with no state variables:

φ1,t = αφ2,t + ξt

φ1,t = αφ2,t + ξt + ηt .

Obviously, both do not hold at the same time for nonzero ηt . Because the QZ
decomposition is merely a linear transformation, there is an internal inconsistency in
the original system of equations (3).

3.3. Assumption 3: [M�E ]k j Is Invertible

This condition is specific to imperfect information models, though it is analogous
to equation (40) in Sims (2002).11 Intuitively, if it is not invertible, then the
information structure is not consistent. Note that the inverse of [M	E]kj , if it
exists, maps the j th set of expectation errors to the kth set of innovations to which
some endogenous variables cannot respond. Hence, if the inverse of [M	E]kj
exists, then expectation errors can equate both sides of the equations for any
realization of innovations.

A noninvertible [M	E]kj appears in the following example. Suppose that all
production factors and all demand components are decided before today’s tech-
nology shock is observed. In this case, output varies depending on the realization
of technology, whereas demand cannot respond to it. Thus, the goods market does
not clear at any price. One important lesson from this is that a researcher must
construct consistent models; an arbitrarily specified information structure may
have internal inconsistencies.

4. PROPERTIES OF THE SOLUTION

By construction, of course, any solution generated by the algorithm satisfies the
following two solution principles (two zero restrictions): (i) if the kth time-t
variable yk,t is determined without observing the ith time-(t − s) innovations
ξi,t−s , then yk,t cannot respond to ξi,t−s (i.e., ∂yk,t /∂ξi,t−s = 0 given κt−S), and (ii)
if the expectation operator in the j th equation has an information set that includes
ξi,t−s , ξi,t−s cannot be the source of the expectation error in the j th equation.
In addition, as mentioned in the Introduction, invariant dynamic parts, H and F

matrices, imply that imperfect information models inherit the qualitative nature
of the corresponding perfect-information model: specifically, (a) the dynamic
stability property is not affected by information structure, and (b) the direct effect
of imperfect information on IRFs lasts for only the first S periods after an impulse,
and then IRFs show sudden jumps.
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The rest of this section briefly discusses other interesting features.

4.1. Inference

First, the maximum possible information set at time t (perfect information) is
{ κt−j , ξt−j } ∞

j=0 (not including {φt−j }∞j=0). Importantly, the algorithm does not
allow inference. If the information set of economic agents in a model includes
all current and past jump variables {φt−j }∞j=0, then the economic agents can infer
most hidden information, which reduces an imperfect-information model to the
corresponding perfect-information model in most cases. Hence, one natural inter-
pretation of imperfect information is that agents have to make future decisions in
the current period, as in sticky-price models.

4.2. Noisy-Information Models

Second, the algorithm can easily deal with noisy-information models. Suppose an
AR(1) shock process At follows

ln At+1 = ρ ln At +
√

1 − ηξob
t + √

ηξuo
t , (22)

where ξob
t and ξuo

t are the observable and unobservable components of innovation,
respectively, and (1 − η)/η is the signal-to-noise ratio. This technique allows us
to parameterize the extent of imperfect information.

5. AN EXAMPLE STANDARD RBC MODEL

To demonstrate the quantitative effects of imperfect information, we consider the
standard RBC model under imperfect information, focusing on impulse response
functions (IRFs) and second moments.

The main economic motivation is to address an overly high Corr (Yt − Ht, Yt )

in the standard RBC model. In the plausible parameter range, the standard RBC
model predicts an almost perfect correlation between labor productivity Yt − Ht

and output Yt , but the correlation is only slightly positive in the data.
Hence, we modify the standard RBC model by adding imperfect information

related to the labor market. The relevant equations are

0 = bHt − Wt − λt , (23a)

0 = Yt − Ht − Wt, (23b)

where Yt , Ht , Wt , and λt are output, working hours, wage, and the marginal
utility of consumption, respectively. All endogenous variables are measured as
deviations from their steady-state values in percentage terms. b is a constant,
which represents (a multiple of) the elasticity of marginal disutility of labor. The
first equation is for the representative household (HH)—the FOC with respect to
labor supply—whereas the second is for firms—it equates the marginal product
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of labor Yt − Ht to wage.12 The set of state variables under perfect information
is {Kt,At , ξt }, where Kt and At are capital and technology at the beginning of
time t , respectively, and ξt represents the innovation on technology. Note that
At is regarded as an endogenous crawling variable, and there is only one i.i.d.
exogenous variable ξt . That is, At is treated as a stock variable.

Assuming that today’s innovation affects today’s output,

Yt = At+1K
α
t H 1−α

t ,

ln At+1 = ρ ln At + ξt ,

where ρ is a parameter that governs the persistence of technology shock.

5.1. Case I: HH Decides Labor Supply before Observing Innovations

In this case, (23a) does not hold. Instead, the labor supply decision is governed
by13

0 = E[ bHt − Wt − λt | Kt−S−1, At−S−1, ξt−S−1].

Because Ht cannot react to past innovations, for s = 0, 1, . . . , S,

∂Ht

∂ξt−s

= 0 given Kt−S, At−S.

Figure 1 shows the impulse response functions where S = 5, which means that
the household decides its labor supply five quarters in advance.

There are several points worth noting here:

Labor hours do not move for the first S periods. That is, ∂Ht/∂ξt−s = 0 for s =
0, 1, . . . , S.
Labor productivity (Yt − Ht ) and investment show unusual movements for the first
S periods. However, after S + 1 periods, all endogenous variables follow (linear
combinations of) AR(1) processes. This is one example of the proposition that the
direct effect of imperfect information lasts for only S periods after an impulse.
Corr (Yt − Ht, Yt ) is lower than under perfect information (around 0.91), but only
slightly.

5.2. Case II: Firms Decide Labor Demand before Observing Innovations

In this case, (23b) does not hold. Instead, the labor demand decision is governed
by

0 = E[ Yt − Ht − Wt | Kt−S−1, At−S−1, ξt−S−1].

Because Ht cannot react to the innovations, for s = 0, 1, . . . , S,

∂Ht

∂ξt−s

= 0 given Kt−S, At−S.

The results are not very interesting in terms of economics.
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–0.2–0.2

–0.5–0.5

–0.5–0.5

IRFs: HHs prefix labor supply five periods in advance

FIGURE 1. Impulse response functions for a positive technology innovation in the standard
RBC model, in which labor supply is determined five periods in advance.

The IRFs are almost the same as in Case I, except for wage (hence, the figure is
omitted).
Corr (Yt − Ht, Yt ) is lower than under perfect information, but only slightly.

However, this experiment demonstrates that, to find a solution, it is not enough to
specify which endogenous variables are determined with imperfect information; a
researcher must also specify which information sets are imperfect. This is evident
in that the results of Cases I and II are not the same.

5.3. Case III: HH Decides Wage before Observing Innovations
but Accommodates Labor Demand

This case can be regarded as a version of the sticky wage model. The representa-
tive household fixes wage before observing innovations, and it commits itself to
supplying labor to accommodate labor demand.

In this case, (23a) does not hold. Instead, the labor supply decision is governed
by

0 = E[ bHt − Wt − λt | Kt−S−1, At−S−1, ξt−S−1].

Since Wt cannot react to the innovations, for s = 0, 1, . . . , S,

∂Wt

∂ξt−s

= 0 given Kt−S, At−S.
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The results are interesting:

The volatility of labor is much higher, and Corr (Yt − Ht, Yt ) is much lower than
under perfect information.
Given the standard deviation of the innovation, both output and labor are more
volatile.
The variance–covariances of most variables other than labor and labor productivity
do not change significantly.

The intuition behind these results is quite simple. Without imperfect infor-
mation, when there is a positive productivity innovation, wage increases, which
discourages firms from hiring more labor. As a result, labor does not increase
significantly. Indeed, another failure of the standard RBC model is that it predicts
too low labor volatility relative to output volatility. During a boom both Yt and Ht

increase, whereas Yt −Ht increases because the increase in Ht is not large enough.
Consequently, both Yt and Yt −Ht increase in a boom, which is the (one possible)
mechanism behind a high Corr (Yt − Ht, Yt ) in the standard RBC model.

However, if wage is determined without positive innovation being seen, it does
not change quickly; hence, firms are not discouraged from using more labor.
Consequently, in a boom both Yt and Ht increase, whereas Yt − Ht does not
increase very much because the increase in Ht is large enough. Hence, the model
predicts a low Corr (Yt − Ht, Yt ). Indeed, in the otherwise standard RBC model
with one-period wage stickiness, the predicted relative volatility of labor almost
matches the data. Under the standard parameter set, Corr (Yt − Ht, Yt ) is negative
for S ≥ 2.

Table 1 shows a summary of the selected second moments for one-period wage
stickiness (S = 1). One-period wage stickiness significantly improves the labor
volatility and the correlation between labor productivity and output, whereas it
slightly diminishes the model performance in terms of the relative volatility of
investment.

TABLE 1. Comparison between perfect and imperfect information RBC models

Corr(Output,
Output Hours Consumption Investment Output/Hours)

Data
S.d. 1.72 1.59 0.86 8.24 .41

Relative 1.00 0.92 0.50 4.79
Standard RBC

S.d. 1.35 0.47 0.33 5.95 .98
Relative 1.00 0.35 0.24 4.41

Imperfect information (RBC with predetermined wage)
S.d. 2.15 2.10 0.53 7.92 .25

Relative 1.00 0.98 0.25 3.69

Note. Figures for “data” and “standard RBC” are cited from Cooley and Prescott (1995).
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–0.5 –0.5

IRFs: HHs prefix wages in one-periods advance

output
labor

labor

wage

wage
outputwage

wage

capital

capital

FIGURE 2. Comparison of selected impulse response functions for a positive technology
innovation between standard RBC and RBC with wage stickiness.

Figure 2 shows a comparison of selected impulse response functions between
perfect- and imperfect-information models. The salient differences appear only in
the first period. In the sticky wage model, both labor and output jump in the first
period, and the sizes of the jumps are the same; hence, the labor productivity does
not change in the first period. Note that the Cobb–Douglas production function
implies that the labor productivity is always equal to the wage.

Figure 3 shows the relative volatilities and correlations for different degrees of
imperfect information (i.e., for different values of S). As S increases, Corr(Yt −
Ht,Ht) decreases.

Case III again reveals one computational requirement; simply specifying the
information set in each equation is not enough to find a solution. A researcher must
also specify which variables are determined without observing perfect information.
This is evident in that the results of Cases I and III are not the same.

5.4. Conclusion for RBC under Imperfect Information

Adding one-period wage stickiness is quantitatively enough to overcome the two
drawbacks of the standard RBC model—where (a) labor volatility is too small

–0.2

–0.4

–0.6

–0.8

Second moments: HHs prefix wages in S-periods advance

FIGURE 3. Effect of different degrees of imperfect information on selected second moments.
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and (b) the correlation between labor productivity and output is too high—without
deteriorating other dimensions of the model performance. This example shows the
possibility that the information structure has significant quantitative effects.

6. CONCLUSIONS

This article has developed an algorithm for linear rational models under imper-
fect information. Imperfect information is important because it includes many
interesting classes of models, such as sticky-information and noisy-signal models.

The algorithm exploits two observations: (1) if an endogenous variable yk,t is
decided without observing an innovation ξi,t−s , then yk,t is not affected by ξi,t−s

(i.e., ∂yk,t /∂ξi,t−s = 0 given κt−S); (2) if the information set in the j th equation
includes ξi,t−s , then ξi,t−s cannot be the source of expectation error in the j th
equation (Es,ji = 0). The solution is defined by these two zero restrictions, and it
turns out that they are enough to determine unique solutions.

The state space representation chosen in this algorithm is the set of crawling
variables and current and past innovations. This representation reveals that the
dynamic parts of the solution (i.e., the H and F matrices) are the same as under
the corresponding perfect-information models. Invariant H and F matrices imply
that (a) the dynamic property, such as sunspot or saddle-path stability, is not altered
by the information structure, and (b) impulse response functions are not (directly)
affected by the information structure after the first S periods, where S is such that
the minimum information set in a model has all the information up to time S.
These findings show that qualitatively imperfect information models inherit the
properties of their perfect information counterparts.

However, as the RBC example demonstrates, quantitatively imperfect informa-
tion may be important. Hence, it is desirable to check for robustness in terms of
the information structure, and our Matlab program offers an easy way to conduct
such experiments. Once structural equations are obtained, the additional inputs to
the algorithm are only two zero–one matrices.

NOTES

1. The codes and a manual for them are available at http://www.kent.ac.uk/economics/
papers/papers07.html.

2. Crawling and jump variables are essentially the same concepts as predetermined and nonpre-
determined variables in the literature. Indeed, they are interchangeable under perfect information,
which is a special case of imperfect information. However, the traditional terminologies predeter-
mined/nonpredetermined could be misleading, in the sense that typical nonpredetermined variables
such as consumption and wage can be already determined before the current period under imperfect
information.

3. See Wang and Wen (2006). They point out that the dynamic parts under imperfect information
have the same roots as those under perfect information, which is a corollary of our result.

4. There are three types of methods for perfect information models.

1. King and Watson’s method (1998 and 2002) [see also Woodford (undated)] implements
a two-stage substitution. First, nondynamic jump variables are substituted out, and then,
dynamic jump variables are substituted out from the system of equations.
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2. In the QZ method of Sims (2002) [see also Klein (2000)], the QZ decomposition is applied to
matrices on endogenous variables. Recognizing that (1) roots that correspond to nondynamic
jump variables are infinite, and (2) roots that correspond to dynamic jump variables are larger
than one in absolute terms, the transversality conditions (TVCs) eliminate both types of jump
variables at once.

3. The method of undetermined coefficients of Uhlig (1999) [see also Christiano (1998)] substi-
tutes a guessed solution into the given system of equations; the resulting matrix polynomial is
solved directly. In principle, this method does not require that given equations be first-order
difference equations. Higher-order matrix polynomials can be numerically solved (see the
Appendix).

5. See Uhlig (1999), for example.
6. See Woodford (undated). This technique simplifies the algebra and computation significantly.
7. See the manual for further details. Note that we do not explicitly mention these two indicator

matrices in the rest of this article.
8. The generalized eigenvalues have properties similar to those of forward operators F ; xt+1 = Fxt .
9. Remember that all innovations are assumed to be i.i.d. Note also that, if the expectations of

ut+1 must be zero under perfect information, they must be also zero under imperfect information. This
can be shown by simply applying the iterated linear projection. See the Appendix for more extensive
discussion.

10. See Uhlig (1999) for a treatment of nonuniqueness.
11. Note, however, that Sims’s condition is related to time-(t + 1) expectation errors, whereas our

discussion in the following is related to time-τ expectation errors (τ < t).
12. Note that because all endogenous variables are represented as log-deviations from their steady

state, Yt − Ht is the deviation of “output per labor hour” (i.e., labor productivity). The Cobb–Douglas
production function implies that the marginal product of labor is (1 − α) times labor productivity,
which means that the percent change of labor productivity is exactly the same as that of the marginal
product of labor. In other words, in the Cobb–Douglas production function, Yt − Ht represents both
the percent deviation of labor productivity and the marginal product of labor.

13. Exactly speaking, the information set is {Kt−j , At−j , ξt−j }∞j=S+1, but only {Kt−S−1, At−S−1,

ξt−S−1} suffices to determine the state of the economy.
14. There are two comments. First, (A.4) must hold for any realization of κt−1 and ξt−s for

s = 0, 1, . . .. Hence, it is not possible that TVCs hold under imperfect information but not under
perfect information. Second, if an information set does not include, for example, ξi,t−s , then the
relevant expected value of ut+s is the RHS with setting ξi,t−s = 0. Hence, if TVCs hold for the full
information set, they hold for nonfull information sets as well.

15. Remember that an invertible ZH
uφ implies an invertible ZH

sκ .
16. For the F matrix, note that

ZH Z =
[
ZH

sκ ZH
sφ

ZH
uκ ZH

uφ

] [
Zκs Zκu

Zφs Zφu

]
=
[
ZH

sκZκs + ZH
sφZφs ZH

sκZκu + ZH
sφZφu

ZH
uκZκs + ZH

uφZφs ZH
uκZκu + ZH

uφZφu

]
=
[
I 0
0 I

]
.

Looking at the lower left element,

ZH
uκZκs + ZH

uφZφs = 0

−ZH
uκZκs = ZH

uφZφs

−ZH
uφ\ZH

uκ = Zφs/Zκs .

Also, remember that
Z−1

κs = ZH
sκ − ZH

sφ

(
ZH

uφ\ZH
uκ

)
and that �A

ss is invertible by the reordering of QZ decomposition.
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17. Though this process is not necessary, it reduces the computational burden.
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APPENDIX
A.1. EXTENSION OF UHLIG’S THEOREM 3

PROPOSITION 1 (Extension of Uhlig’s Theorem 3). To find a m × m matrix X that
solves the matrix polynomial

�nX
n − �n−1X

n−1 − · · · − �1X − �0 = 0, (A.1)

given m × m coefficient matrices {�n′ }n
n′=0, define the nm × nm matrices � and � by

� =

⎡
⎢⎢⎢⎣

�n−1 · · · �1 �0

I 0 0
. . .

...

0 I 0

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

�n 0 · · · 0
0 I 0
...

. . .

0 0 I

⎤
⎥⎥⎥⎦ ,
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and obtain the generalized eigenvalues λ and the generalized eigenvector s such that
λ�s = �s. Then s can be written as

s =

⎛
⎜⎜⎜⎝

λn−1x

...

λx

x

⎞
⎟⎟⎟⎠

for some x ∈ Rm, and
X = ���−1,

where � = [x1, . . . , xm] and � = diag(λ1, . . . , λm).

Proof. Almost identical to Uhlig (1999).

A.2. MATRIX OPERATIONS

To pick up and drop out columns and rows from a matrix, as in the main text, we define
(i) [A].x as columns x of a matrix A, (ii) [A]x. as rows x of a matrix A, (iii) [A].¬x as
the columns remaining after the elimination of columns x, and (iv) [A]¬x. as the rows
remaining after the elimination of rows x, where x is the name of a set of columns or rows.
The brackets are used simply because they often clarify notation, and often can be omitted
(i.e., [B].¬y = B.¬y). The dot . implies all rows or columns (e.g., B.. = B). It is quite easy
to show the following formulae:

[AB] = [A].¬x [B]¬x. + [A].x [B]x. ,

[AB].¬y = [A] [B].¬y ,

[AB]¬x. = [A]¬x. [B] ,

[AB]¬x¬y = [A]¬x. [B].¬y .

An example for the first formula is[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
=
[

a11

a21

]
[b11 b12] +

[
a12

a22

]
[b21 b22]

=
[
a11b11 a11b12

a21b11 a21b12

]
+
[
a12b21 a12b22

a22b21 a22b22

]
=
[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
,

where x = 2.
Note that this notation is consistent with other matrix subscripts; for example, the rows

of Zsκ are related to stable roots s and its columns are related to crawling variables κ .

A.3. INVERTIBLE ZH
uφ IMPLIES INVERTIBLE ZH

sκ

PROPOSITION 2. For an invertible matrix Z, which is partitioned as

Z =
[
Z11 Z12

Z21 Z22

]
,

if Z11 is invertible, then [Z−1]22 is also invertible.
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Proof. Define

ZL :=
[

I 0
−Z21Z

−1
11 I

]
,

ZR :=
[
I −Z−1

11 Z12

0 I

]
.

Note that ZLZZR has full rank because all of ZL, Z, and ZR have full rank, and note that

[
I 0

−Z21Z
−1
11 I

] [
Z11 Z12

Z21 Z22

] [
I −Z−1

11 Z12

0 I

]
=
[
Z11 0
0 Z22 − Z21Z

−1
11 Z12

]
.

Hence, G := Z22 − Z21Z
−1
11 Z12 must have full-rank.

For a full-rank matrix with an invertible upper left submatrix, the well-known formula
tells us that

[
Z11 Z12

Z21 Z22

]−1

=
[
Z−1

11 + Z−1
11 Z12G

−1Z21Z
−1
11 −Z−1

11 Z12G
−1

−G−1Z21Z
−1
11 G−1

]
.

Note that the RHS exists because we know that both Z11 and G are invertible. Thus,
[
Z−1

]
22

is invertible.

Since Z is unitary, Z−1 = ZH , which implies G−1 = [Z−1]22 = ZH
22. Since ZH

22 has full
rank, its conjugate transpose Z22(= [ZH

22]H ) also has full rank. This proposition is very
useful; e.g., some final results in Klein (2000) can be significantly simplified.

A.4. FULL DERIVATION

This section provides the full derivation. For the notation, see the main text.
Applying the QZ decomposition to (3),

0 = �AZH yt+1 + �BZH yt + QH Cξt + QH Dξt+1 + QH Eξt,S

=
[
�A

ss �A
su

0 �A
uu

](
st+1

ut+1

)
+
[
�B

ss �B
su

0 �B
uu

](
st

ut

)

+
[

QH
s.

QH
u.

]
Cξt +

[
QH

s.

QH
u.

]
Dξt+1 +

[
QH

s.

QH
u.

]
Eξt,S, (A.2)

where st and ut are stable and unstable roots, respectively, such that

(
st

ut

)
:=

[
ZH

sκ ZH
sφ

ZH
uκ ZH

uφ

](
κt

φt

)
.

Imperfect information requires a slightly careful treatment of TVCs. Focusing on the
lower half of (A.2)

0 = �A
uuut+1 + �B

uuut + QH
u.Cξt + QH

u.Dξt+1 + QH
u.Eξ t,S . (A.3)
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Iterating it forward,

lim
l→∞

{ (−�B
uu\�A

uu

)l
ut+l

+∑l−1
s=1

(−�B
uu\�A

uu

)s (
�B

uu\QH
u.

) (
Cξt+s + Dξt+1+s + Eξ̃ t+s,S

)
}

= −ut − (
�B

uu\QH
u.

)
Cξt −

S∑
l=0

(−�B
uu\�A

uu

)l (
�B

uu\QH
u.

)
Eξ̂ t+l,S , (A.4)

where

ξ t+l,S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξt+l

...

ξt+1

ξt

...

ξt+l−S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ξ̂ t+l,S + ξ̃ t+l,S :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
ξt

...

ξt+l−S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξt+l

...

ξt+1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where A\B = A−1B and A/B = AB−1.
There are many information sets, under each of which TVCs must be satisfied—that

is, TVCs are (seemingly) tighter under imperfect information. However, if the perfect-
information counterpart satisfies TVCs, corresponding imperfect-information models also
satisfy them automatically due to the law of iterated linear projection.14 Thus, the same
logic holds as in the perfect-information case; because

(−�B
uu\�A

uu

)l → 0 as l → 0 by
construction, the expected value of ut+l explodes for any nonzero value of the RHS of (A.4),
which contradicts the TVCs. Note that the inside the limit operator in the LHS shows the
expected value of ut+l (the realisation of ut+l plus expectation errors) times

(−�B
uu\�A

uu

)l
.

Hence, the RHS of (A.4) must be zero.
Therefore,

−�B
uuut = −�B

uuZ
H
uκκt − �B

uuZ
H
uφφt

= QH
u.Cξt + �B

uu

S∑
l=0

(−�B
uu\�A

uu

)l (
�B

uu\QH
u.

)
Eξ̂ t+l,S

= QH
u.Cξt +

S∑
l=0

(−�A
uu/�B

uu

)l
QH

u.Eξ̂ t+l,S . (A.5)

Substituting our “guess solution” (4) into (A.5),

0 = (
�B

uuZ
H
uκ + �B

uuZ
H
uφF

)
κt + �B

uuZ
H
uφGξ t,S + QH

u.Cξt

+
S∑

l=0

(−�A
uu/�B

uu

)l
QH

u.Eξ̂ t+l,S . (A.6)

Similarly, from the upper half,

0 = �A
ss

(
ZH

sκκt+1 + ZH
sφφt+1

) + �A
su

(
ZH

uκκt+1 + ZH
uφφt+1

)
+ �B

ss

(
ZH

sκκt + ZH
sφφt

) + �B
su

(
ZH

uκκt + ZH
uφφt

)
+ QH

s. Cξt + QH
s. Dξt+1 + QH

s. Eξ t,S . (A.7)
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Again, by substituting (A.4) into (A.7), after some manipulation,

0 = (
�A

sφFH + �A
sκH + �B

sφF + �B
sκ

)
κt

+ �A
sφGξ t+1,S + QH

s. Dξt+1 + QH
s. Cξt

+ (
�A

sφFJ + �A
sκJ + �B

sφG + QH
s. E

)
ξ t,S . (A.8)

Though the definitions of �A
sκ , �A

sφ , �B
sκ , and �B

sφ are (10a) in the main text, the following
definition may be more useful:[

�A
sκ �A

sφ

�B
sκ �B

sφ

]
:=

[
�A

ss �A
su

�B
ss �B

su

] [
ZH

sκ ZH
sφ

ZH
uκ ZH

uφ

]
. (A.9)

Expanding ξ t+1,S and ξ t,S in (A.8) and (A.6),

0 = (
�A

sφFH + �A
sκH + �B

sφF + �B
sκ

)
κt

+ (
�A

sφG0 + QH
s. D

)
ξt+1

+ (
�A

sφG1 + (
�A

ss/Zκs

)
J0 + �B

sφG0. + QH
s. E0. + QH

s. C
)
ξt

+ (
�A

sφG2 + (
�A

ss/Zκs

)
J1 + �B

sφG1. + QH
s. E1.

)
ξt−1 + · · ·

+ (
�A

sφGS + (
�A

ss/Zκs

)
JS−1 + �B

sφGS−1. + QH
s. ES−1.

)
ξt−(S−1)

+ ((
�A

ss/Zκs

)
JS + �B

sφGS. + QH
s. ES.

)
ξt−S,

0 = (
�B

uuZ
H
uκ + �B

uuZ
H
uφF

)
κt

+
S∑

s=1

{
�B

uuZ
H
uφGs +

[
S−s∑
k=0

(−�A
uu/�B

uu

)k
QH

u.Ek+s

]}
ξt−s

+
{

QH
u.C + �B

uuZ
H
uφG0 +

[
S∑

k=0

(−�A
uu/�B

uu

)k
QH

u.Ek

]}
ξt .

Because these matrix equations must hold for any realization of κt , ξt−τ for τ =
−1, 0, 1, . . . , S,

0 = �A
sφFH + �A

sκH + �B
sφF + �B

sκ , (A.10a)

0 = �B
uuZ

H
uκ + �B

uuZ
H
uφF, (A.10b)

0 = �A
sφG0. + QH

s. D, (A.11a)

0 = 0, (A.11b)

0 = �A
sφG1 + (

�A
ss/Zκs

)
J0 + �B

sφG0 + QH
s. ES. + QH

s. C, (A.12a)

0 = �B
uuZ

H
uφG0 +

[
S∑

s=0

(−�A
uu/�B

uu

)s
QH

u.Es

]
+ QH

u.C, (A.12b)
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0 = �A
sφGs+1 + (

�A
ss/Zκs

)
Js + �B

sφGs + QH
s. Es, (A.13a)

0 = �B
uuZ

H
uφGs +

[
S−s∑
k=0

(−�A
uu/�B

uu

)k
QH

u.Ek+s

]
, (A.13b)

for s = 1, . . . , S − 1,

0 = (
�A

ss/Zκs

)
JS + �B

sφGS + QH
s. ES, (A.14a)

0 = �B
uuZ

H
uφGS + QH

u.ES. (A.14b)

Since (A.10a) and (A.10b) do not include G, J , D, E, or 	, these two matrix equations
can be solved for H and F independently. Thus, assuming ZH

uφ has a (right) inverse,15

F = −ZH
uφ\ZH

uκ = Zφs/Zκs,

H = −Zκs

(
�A

ss\�B
ss

)
./Zκs

Note that the H and F matrices are the same as in the corresponding perfect-information
model.16

Vertically concatenating matrix equations (A.12a)–(A.14b) in pairs,

0 =
[

0 �A
sφ

0 0

]
�1 +

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�0

+
S∑

k=0

[
0 0

0 −�A
uu/�B

uu

]k

QH (Ek + C) , (A.15a)

0 =
[

0 �A
sφ

0 0

]
�s+1 +

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�s

+
S−s∑
k=0

[
0 0

0 −�A
uu/�B

uu

]k

QH Ek+s for s = 1, . . . , S − 1, (A.15b)

0 =
[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�S + QH ES. (A.15c)

Note that

0 =
[

0 0

0 −�A
uu/�B

uu

]
⎛
⎜⎜⎜⎜⎜⎝

[
0 �A

sφ

0 0

]
�s+2 +

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�s+1

+∑S−(s+1)

k=0

[
0 0

0 −�A
uu/�B

uu

]k

QH Ek+s+1

⎞
⎟⎟⎟⎟⎟⎠

=
[

0 0

0 −�A
uuZ

H
uφ

]
�s+1 +

S−s∑
k=1

[
0 0

0 −�A
uu/�B

uu

]k

QH Ek+s . (A.16)
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Subtracting (A.16) from each of (A.15a–c),17

0 =
[

0 �A
sφ

0 �A
uuZ

H
uφ

]
�1 +

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�0 + QH Ek + QH C, (A.17a)

0 =
[

0 �A
sφ

0 �A
uuZ

H
uφ

]
�s+1 +

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�s + QH Ek+s , (A.17b)

for s = 1, . . . , S − 1,

0 =
[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
�S + QH ES, (A.17c)

and again vertically concatenating these equations,

0 = My�� + Q (E + C),

� :=

⎛
⎜⎝

�0

...

�S

⎞
⎟⎠ , E :=

⎛
⎜⎝

E0

...

ES

⎞
⎟⎠ , C :=

(
C0

0

)
, Q :=

⎡
⎢⎣

Q 0
. . .

0 Q

⎤
⎥⎦,

My� :=

⎡
⎢⎢⎢⎣

 �0A

. . .
. . .

0  �0A



⎤
⎥⎥⎥⎦ ,  :=

[
�A

ss/Zκs �B
sφ

0 �B
uuZ

H
uφ

]
,

�0A :=
[

0 �A
sφ

0 �A
uuZ

H
uφ

]
.

Note that because  is invertible, My� is also clearly invertible. Hence,

0 = � + My�\Q (E + C)

= M�		 + My�\Q (E + C),

where (7) is used to derive the second line. Hence,

0 = 	 + M	E(E + C), (A.18a)

M	E := (
My�M�	

) \Q. (A.18b)

In the following, we compute E and 	 column by column:

	.i = M	E (E.i + C.i ).
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Remember that some elements in 	.i are zero due to imperfect information, whereas some
elements in E.i are nonzero. For example,

0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

	1,i

...

	k,i (= 0)

...

	M(S+1),i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ M	E

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

Eji

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

C.i

0
...

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.19)

From the kth set of equations in (A.19),

0 = [
M	E

]
kj

Eji + [
M	E

]
kj

Cji + [
M	E

]
k¬j

C¬ji .

Hence, assuming [M	E]kj is invertible,

Eji = − [
M	E

]
kj

\ [M	E

]
k¬j

C¬ji − Cji .

From the other equations in (A.19), we eliminate the expectation errors Eji :

	¬ki = [M	E]¬kj

(
[M	E]kj \ [M	E]k¬j C¬ji + Cji

)
− [M	E]¬kj Cji − [M	E]¬k¬j C¬ji

= (
[M	E]¬kj

(
[M	E]kj \ [M	E]k¬j

) − [M	E]¬k¬j

)
C¬ji

= − [
M−1

	E

]
¬j¬k

\C¬ji .

The vector 	¬ki and 	ki = 0 can be vertically merged to recover 	.i , and the vectors 	.i

are horizontally concatenated to recover the full 	 matrix. Note that an invertible [M	E]kj
implies an invertible

[
M−1

	E

]
¬j¬k

. Not surprisingly, Cji does not affect the coefficient matrix
	.i , because the j th set of equations does not hold for the ith innovation in any case; it
only affects the expectation error Eji .

To obtain the J and G matrices, from (7),

� :=

⎡
⎢⎢⎢⎢⎢⎣

J0

G0

...

JS

GS

⎤
⎥⎥⎥⎥⎥⎦ = M�		.

From the A matrix in a given model (3),

D = −A

[
0

G0

]
,

which always satisfies (A.11a). It can be shown that the j th rows in D are zeros if the j th
equation does not include t + 1 dynamic jump variables (see the next section).

https://doi.org/10.1017/S1365100509990897 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509990897


SOLUTION METHOD FOR IMPERFECT INFO MODELS 493

A.5. A COMMENT ON THE D MATRIX

The direct derivation of the D matrix from (A.11a) is a bit tricky, and requires careful
attention concerning the nonsquare matrices �A

sφ and QH
s. . Also, it is perhaps not intuitive.

In this article, we exploit an ex post relationship (21), and here we show that it always
satisfies (A.11a), which, in turn, reveals an important intuition.

First, we define dynamic and nondynamic jump variables: φt+1 = [(φd
t+1)

T (φn
t+1)

T ]T .
Note that the coefficients on the nondynamic jump variables φn

t+1 in A matrix must be zero
by the definition of “nondynamic”.

Ayt+1 :=
⎡
⎣Aκκ Aκφd 0

Aφdκ Aφdφd 0
Aφnκ Aφnφd 0

⎤
⎦
⎛
⎝ κt+1

φd
t+1

φn
t+1

⎞
⎠,

where φd
t+1 is the vector of dynamic variables, such as consumption in the Euler equation.

The submatrices in G0 and QH are defined as

G̃0 :=
[

0
G0

]
:=

⎡
⎣ 0

G0,φd .

G0,φn.

⎤
⎦,

QH :=
[

QH
s.

QH
φ.

]
, QH

s. :=
[
QH

sκ QH

sφd QH
sφn

]
, QH

u. :=
[
QH

uf κ
QH

uf φd QH

uf φn

QH

uiκ
QH

uiφd QH

uiφn

]
,

where uf and ui imply finite and infinite unstable roots, respectively.
Focusing on the second term of (A.11a)

QH
s. D = QH

s. AG̃0 =
[
QH

sκ QH

sφd QH
sφn

]⎡⎢⎢⎣
Aκκ Aκφd 0

Aφdκ Aφdφd 0

Aφnκ Aφnφd 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0

G0,φd .

G0,φn.

⎤
⎥⎥⎦

=
(

QH
sκAκφd + QH

sφd Aφdφd + QH
sφnAφnφd

)
G0,φd . (A.24)

For the first term of (A.11a) note that �A
sφ is the sφth elements in �AZH ; i.e.,

�A
sφ = [

�AZH
]
sφ

= [
QQH �AZH

]
sφ

= [QA]sφ

=

⎡
⎢⎢⎣
⎡
⎢⎢⎣

QH
sκ QH

sφd QH
sφn

QH

uf κ
QH

uf φd QH

uf φn

QH

uiκ
QH

uiφd QH

uiφn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Aκκ Aκφd 0

Aφdκ Aφdφd 0

Aφnκ Aφnφd 0

⎤
⎥⎥⎦
⎤
⎥⎥⎦

sφ

=

⎡
⎢⎢⎣
⎡
⎢⎢⎣

∗
(
QH

sκAκφd + QH

sφd Aφdφd + QH
sφnAφnφd

)
0

∗ ∗ 0

∗ ∗ 0

⎤
⎥⎥⎦
⎤
⎥⎥⎦

sφ

=
[(

QH
sκAκφd + QH

sφd Aφdφd + QH
sφnAφnφd

)
0
]
,
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where ∗ elements are irrelevant to our current concern. Hence,

�A
sφG0 =

[(
QH

sκAκφd + QH

sφd Aφdφd + QH
sφnAφnφd

)
0
] [G0,φd .

G0,φn.

]

=
(

QH
sκAκφd + QH

sφd Aφdφd + QH
sφnAφnφd

)
G0,φd . (A.25)

(A.24) and (A.25) show that (A.11a) satisfies (21). The key to the solution is a sort of zero
restriction: the A matrix has zero columns by the definition of “nondynamic” variables.

A further question is the consistency of D (i.e., whether the computed D always has
zeros at the proper positions). Specifically, if the j th equation does not have φd

t+1, it should
not have an expectation error due to ξt+1, and hence the row vector Dj. must be zero; this
zero restriction on D is analogous to that on E. This is surely satisfied because the rows
corresponding to nondynamic equations in D (= AG̃0) are always zero by the construction
of A; i.e., the j th row in A is zero if the j th equation does not include dynamic jump
variables φd

t+1. For example, in the standard RBC model, all but the Euler equation have
zero rows in A and hence in D.

What this section discusses is the correspondence between expectation errors and the
source of such errors. If, for example, expectation errors with respect to full information
up to time t appear in the equations without dynamic jump variables, then it is a logical
contradiction (expectation errors without their causes), and hence (A.11a) is not satisfied.
Conceptually, the consistency of the D matrix is parallel to the invertibility of [M	E]kj . As
mentioned in the main text, the noninvertibility of [M	E]kj implies an incorrect specification
of the information structure with respect to ξt+τ (τ = 0, 1, . . . , S). Similarly, an inconsistent
D (or the nonexistence of a consistent D) implies an incorrect specification of information
structure with respect to ξt+1. Such inconsistency/nonexistence happens, for example, if
a researcher puts an expectation operator on the evolution of capital, rather than on the
consumption Euler equation.
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