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ABSTRACT

Objectives: To identify novel associations between modifiable physical and health variables, Alzheimer’s disease (AD)
biomarkers, and cognitive function in a cohort of older adults with Mild Cognitive Impairment (MCI). Methods:
Metrics of cardiometabolic risk, stress, inflammation, neurotrophic/growth factors, AD, and cognition were assessed in
154 MCI participants (Mean age= 74.1 years) from the Alzheimer’s Disease Neuroimaging Initiative. Partial Least
Squares analysis was employed to examine associations among these physiological variables and cognition. Results:
Latent variable 1 revealed a unique combination of AD biomarkers, neurotrophic/growth factors, education, and stress
that were significantly associated with specific domains of cognitive function, including episodic memory, executive
function, processing speed, and language, representing 45.2% of the cross-block covariance in the data. Age, body mass
index, and metrics tapping basic attention or premorbid IQ were not significant. Conclusions: Our data-driven analysis
highlights the significant relationships between metrics associated with AD pathology, neuroprotection, and
neuroplasticity, primarily with tasks tapping episodic memory, executive function, processing speed, and verbal fluency
rather than more basic tasks that do not require mental manipulation (basic attention and vocabulary). These data also
indicate that biological metrics are more strongly associated with episodic memory, executive function, and processing
speed than chronological age in older adults with MCI.
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INTRODUCTION

Age and Alzheimer’s disease (AD)-related neural decline
negatively affect multiple aspects of cognition, such as epi-
sodic memory (memory for specific personal past events),
executive function (ability to plan, inhibit responses, and
sustain attention), and processing speed (Buckner, 2004;
Salthouse, 2010; Tromp, Dufour, Lithfous, Pebayle, &

Després, 2015). Yet, there is substantial variability in aging,
and multiple factors have been shown to accelerate or mit-
igate cognitive decline. For instance, studies have shown
that cardiometabolic variables such as body mass index
(BMI; Farooqui, Farooqui, Panza, & Frisardi, 2012; Yaffe
et al., 2004), inflammatory indicators such as c-reactive
protein (CRP; Yaffe et al., 2004), neurotrophic/growth fac-
tors such as brain-derived neurotrophic factor (BDNF;
Lista & Sorrentino, 2010; Miranda, Morici, Zanoni, &
Bekinschtein, 2019), and blood and cerebrospinal fluid
(CSF) biomarkers such as plasma tau and CSF Aß1–42
are associated with cognition and AD risk (Chiu et al.,
2014; Diniz, Pinto, & Forlenza, 2008; Matura et al., 2019).

These variables and their link to cognition are typically
examined in isolation, rather than simultaneously within
the same study. Therefore, there is limited knowledge of
the relative strength of associations between cognition and
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cardiometabolic, inflammation, neurotrophic/growth factors,
and AD biomarkers. One exception is a study conducted by
Meyer and colleagues (2019), which assessed neurotrophic/
growth factors, inflammatory indicators, and AD biomarkers
in cognitively normal, Mild Cognitive Impairment (MCI),
and AD participants. Machine learning techniques were used
to create predictor weights for both CSF proteins and AD bio-
markers, which were subsequently used in three separate
regression models predicting general cognitive function.
They found that CSF protein and AD biomarkers accounted
for 31% and 26% of the variance in cognitive scores, respec-
tively (P.-F. Meyer, Savard, Poirier, Morgan, & Breitner,
2019). However, this study did not examine metrics associ-
ated with cardiometabolic risk, which are linked to cognition
and dementia risk, and did not assess specific domains of cog-
nitive function, which are known to be differentially impacted
by aging and AD.

The goal of the current study was to address a gap in the
literature by using a multivariate analysis to map associations
between domain-specific cognitive function and multiple AD
biomarkers, neurotrophic/growth factors, inflammatory
markers, and cardiometabolic metrics in older adults with MCI.
The Alzheimer’s Disease Neuroimaging Initiative Phase 1
(ADNI1) was used to obtain data on modifiable health factors
(such as those associated with cardiometabolic health: BMI
and cholesterol), stress (e.g., cortisol), inflammation (e.g.,
CRP), neuroprotection (e.g., BDNF), and AD biomarkers
(e.g., CSFAß1–42, plasma tau) in a cohort of older adults diag-
nosed with MCI. We implemented a Partial Least Squares
Correlational (PLSC) analysis, an unbiased and flexible
multivariate technique for defining latent variables in a data-
set, that does not require assigned predictor and outcome var-
iables, but rather maps shared covariance between two sets of
data (Abdi & Williams, 2013). Broadly, latent variables are
linear combinations of variables from a data table optimized
for a specific goal. In the case of PLSC, latent variables are
optimized to maximize covariance between two sets of data
with the goal of finding shared information between them
(Abdi & Williams, 2013). PLSC analysis was preferred to
other multivariate or data-driven statistical approaches because
it does not attempt to predict an outcome, making it an ideal fit
for this cross-sectional data and the exploratory nature of our
research question. Additionally, unlike multiple linear regres-
sion, PLSC analysis is well equipped to deal with a large num-
ber of variables orwithmultiple collinear variables (VanRoon,
Zakizadeh, & Chartier, 2014) and data do not need to be nor-
mally distributed (VanRoon et al., 2014). Thus, PLSC analysis
was employed to identify and parse novel relationships across
these identified physiological domains and cognition in a
cohort of older adults with MCI.

METHODS

Participants

Participants with a diagnosis of MCI from the ADNI1
cohort were included in the current study. Full participant

inclusion/exclusion criteria are available in the ADNI
Procedures Manual, 2010, and are summarized here: 6th
grade or higher education, fluent in English or Spanish,
Mini Mental State Examination (MMSE) � 24, Clinical
Dementia Rating of .5, subjective memory complaint by sub-
ject or study partner, impaired episodic memory, and suffi-
ciently preserved general cognition and functional
performance not meeting criteria for AD. Participants with
missing data for any variables of interest were excluded, as
complete data were necessary for PLSC analysis. One partici-
pant classified as MCI with an MMSE score of 23 and one
participant with an extremely high and improbable triglycer-
ides value (2084.0mg/dL) were excluded. The final analysis
sample included 154 MCI participants (age: 54.4–88.3
years; Mean = 74.1 years; SD = 7.5 years; education:
6–20 years; Mean = 16.0 years; SD = 2.9 years; 51
females; 150 White, 2 Asian, 2 Black; 67 APOE "4 nega-
tive). Other ADNI cohorts (ADNIGO, ADNI2, and
ADNI3) were excluded from the analysis as these cohorts
did not assess neurotrophic and growth factors. Study pro-
cedures were approved by site-specific Institutional
Review Boards, and all participants and/or authorized rep-
resentatives provided written informed consent consistent
with the Declaration of Helsinki.

Neuropsychological Assessment

Neuropsychological data were obtained from screening
(WMS-R Logical Memory and MMSE) and baseline visits
(all other tests). Average time between appointments was
41.3 days. Nineteen raw scores from the assessment were
included in the PLS analysis (see Table 1).
Episodic Memory – WMS-R Logical Memory I (immediate

recall; number of story details correctly recalled), WMS-R
LogicalMemory II (delayed recall; number of story details cor-
rectly recalled), Rey Auditory Verbal Learning Test List 1
(RAVLT; number of words correctly recalled), RAVLT List
B (number of words correctly recalled on the interference list);
RAVLTList 6 (number ofwords correctly recalled on the origi-
nal list after interference); and RAVLT 30-minute delay recall
(number of words correctly recalled on the original list).

Working Memory – Digit Span Forward (length of the longest
digit span correctly recalled).

Executive Function –Digit Span Backward (length of the longest
digit span correctly recalled), Trail Making Test (Trail B;
number of seconds to correctly complete the trail).

Processing Speed – Trail Making Test (Trail A; number of sec-
onds to correctly complete the trail), Digit Symbol
Substitution Test (number of correctly drawn symbols).

Visuospatial Ability – Clock Drawing Test (Clock Drawing
[number of details correctly drawn based on verbal command]
and Clock Copy [number of clock details correctly drawn/
copied when a visual clock stimulus is present]).

Language –Category Fluency (number of words produced in the
correct category for animals and vegetables), The Boston
Naming Test (number of drawings correctly named).

Premorbid IQ –American National Adult Reading Test (number
of words incorrectly pronounced).
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Table 1. Participant Demographic, Neuropsychological, Physical, Health, and AD Biomarker Data
Entered into the PLS Analysis. KEY = ADAS-COG = Alzheimer’s disease Assessment Scale,
Cognitive Subsection; ANART = American National Adult Reading Test; MMSE = Mini Mental
State Exam; CSF = Cerebrospinal Fluid; RAVLT = Rey Auditory Verbal Learning Test; WMS-R =
Weschler Memory Scale – Revised
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Global Cognition – MMSE (total score), Alzheimer’s disease
Assessment Scale (ADAS-COG; total score).

Cardiometabolic, Stress, and Inflammation
Variables

BMI (kg/m2), systolic blood pressure (mmHg), diastolic
blood pressure (mmHg), pulse rate (per minute), cholesterol
(mg/dL), triglycerides (mg/dL), and serum glucose (mg/dL)
data were obtained. Insulin (uIU/mL), cortisol (ng/mL), CRP
(ug/mL), and interleukin-6 receptor (ng/mL) data were
assessed from fasting plasma blood samples; these data were
normalized and checked for the defined least detectable dose
during the quality control process.

Growth Factors and Neurotrophic Factors

Insulin-like growth factor binding protein (ng/mL), epider-
mal growth factor (pg/mL), heparin-binding epidermal-
growth-factor-like growth factor (HB-EGF-like-GF; pg/mL),
hepatocyte growth factor (ng/mL), platelet-derived growth
factor BB (PDGF; pg/mL), BDNF (ng/mL), and vascular-
endothelial growth factor (pg/mL) were analyzed. Data were
normalized and checked for the defined least detectable dose
during the quality control process.

AD Biomarkers

Plasma Apolipoprotein E (apoE; ug/mL), plasma tau
(pg/mL), CSF total tau (t-tau; pg/mL), CSF phospho-tau
(181; p-tau181; pg/mL), and CSF Aß1–42 (pg/mL) were also
examined. Only values within the given ranges were included
for analyses: Aß1–42 200–1700 pg/mL, p-tau181 8–120 pg/mL,
and t-tau 80–1300 pg/mL, as these are the reported technical
limits.

Data Processing and Analysis

ADNI1 data were scrubbed using RStudio (Version 1.2.5001;
R version 3.6.1). Raw data files for all blood- and CSF-based
biomarkers were checked for imputed values. To ensure data
integrity, all analytes with >10% imputed values were
removed. Participants who had missing data or invalid data
as indicated by the ADNI manual were excluded.

The PLS Command line package (Version 6, 2013) was
downloaded from the open-source PLS User Guide: http://
pls.rotman-baycrest.on.ca/source/ and run in MATLAB
(Version 2019b). A cross-covariance matrix between demo-
graphic (age and education), physical, health, and AD data
(matrix 1) and cognitive data (matrix 2) was created and fac-
torized using singular value decomposition into mutually
orthogonal singular vectors (Abdi & Williams, 2013). The
PLSC algorithm uses these singular vectors to create latent
variables that express the largest amount of information
common to both input matrices (Krishnan, Williams,
McIntosh, & Abdi, 2011). Thus, these latent variables refer

to the pattern of covariance between physical, health, and
AD variables (matrix 1) and cognitive function (matrix 2).
The PLSC command line outputs as many latent variables
as there are behavioral variables (19), the sum of which total
to 100% of the cross-block covariance.

The p-value for all 19 latent variables was determined
using permutation analyses. Permutation samples are created
using our input dataset. Matrix 2 variables are randomly
shuffled within participants, while matrix 1 variables remain
intact. The PLSC model is re-run on each of these permuta-
tion samples, creating a distribution that can be used to deter-
mine a p-value for each latent variable (Krishnan et al., 2011).
Latent variables were determined as statistically significant if
the latent variable had a p-value of < .05 after 1500 permu-
tations of the data (Abdi & Williams, 2013). Reliability of a
latent variable was assessed through split-half resampling, a
procedure that determines the reliability of the associations
described between the two matrices of data (physical, health,
AD, and cognitive) within a given latent variable (Kovacevic,
Abdi, Beaton, & McIntosh, 2013). To compute this, the full
study sample was randomly split into half, and each half was
independently analyzed. Latent variables were considered
reliable if both sides of the data met criteria for significance
(p < .05; Kovacevic et al., 2013). Physical, health, and AD
variables with a bootstrap ratio (BSR) with an absolute value
greater than or equal to 1.96 (corresponding to p< .05), deter-
mined by 1000 resamplings with replacement of the data,
were considered reliable contributors to the latent variables.
Cognitive measures were considered to significantly contrib-
ute to the latent variable if their correlation with the latent var-
iable was significantly different than zero (p < .05). Using
these cutoffs, patterns of physical, health, AD variables,
and cognitive scores that account for significant amounts
of covariance in the data were determined (see Table 1 for
variables included in the analysis).

RESULTS

Three significant latent variables (all values p < .01) were
identified. Latent variable 1 (LV1; Figure 1) accounted for
45.2% of the cross-block covariance. LV1 was considered
reliable, as it met criteria for split-half reliability (all values
p < .05; Kovacevic et al., 2013). For LV1, neurotrophic/
growth factors, AD biomarkers, a stress biomarker, and edu-
cation were significantly associated with performance across
multiple cognitive domains. Specifically, HB-EGF-like-GF,
PDGF, BDNF, plasma tau, CSF t-tau, CSF p-tau181, CSF
Aß1–42, cortisol, and education were significantly associated
with performance on measures of episodic memory (WMS-R
Logical Memory immediate and delayed recall, RAVLT List
1 and List B), processing speed (Trail A and Digit Symbol
Substitution Test), executive function (Trail B), visuospatial
ability (Clock Drawing and Copy), verbal fluency (Category
Fluency Animals, Category Fluency Vegetables), language
(Boston Naming Test), and global cognition (MMSE,
ADAS-COG). All significant cognitive tests had statistically
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Fig. 1. Correlation profile and bootstrap ratios for Latent variable 1. (A) The correlation between each cognitive test variable to the identified
physical, health, and AD variables listed in panel B. Significant variables have 95% confidence intervals (error bars) that do not cross the x-axis
(0). (B) Each Physical, Health, and AD Variable’s contribution to LV1 represented by their bootstrap ratios, indicating directionality with sig-
nificant cognitive tests represented in A (for instance, performance on logical memory immediate was positively correlated with levels of brain-
derived neurotrophic factor, and had a negative correlationwith CSF tau). Error bars represent 95% confidence intervals. Variables with bootstrap
ratios> |1.96| (equivalent to a p-value of< .05) are considered significant contributors to the LV and are indicated by *. (KEYPANELA:ADAS-
COG=Alzheimer’s Disease Assessment Scale, Cognitive Subsection; ANART=American National Adult Reading Test; MMSE=Mini
Mental State Examination; RAVLT=Rey Auditory Verbal Learning Test; KEY PANEL B: APOE= apolipoprotein E; BDNF= brain-derived
neurotrophic factor; BMI= body mass index; CSF= cerebrospinal fluid; HB-EGF-like-GF= heparin-binding epidermal growth factor-like
growth factor; IGF= insulin-like growth factor; p-tau= phospho-tau 181; VEGF= vascular endothelial growth factor).
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equal contributions to LV1 as all had error bars (representing
95% confidence intervals) overlapping with one another
(Figure 1). Better performance on this subset of cognitive
measures was associated with increased neurotrophic/growth
factor levels, less AD pathology, lower levels of stress, and
higher education (for individual BSRs, see Figure 1). Of these
variables, CSF AD biomarkers and education had the highest
BSRs, revealing that these variables had the strongest associ-
ations with cognition, followed by growth factors such as
HB-EGF-like-GF, PDGF, and BDNF, as well as a stress bio-
marker, cortisol. To further visualize LV1,we plotted the rela-
tionship between the physical/health/AD scores for LV1
(representing how well an individual’s physical/health/AD
variables contribute to the LV1 pattern) and two cognitive
tests (raw scores on Digit Symbol Substitution (Figure 2A)
and WMS-R Logical Memory delayed recall (Figure 2B)).

LV2 and LV3 were also significant, accounting for 17.2%
and 11.9% of the cross-block covariance, respectively. For
LV2, IL-6 receptor, neurotrophic/growth factors, and AD
biomarkers were significantly associated with performance
in measures of delayed episodic memory. Specifically, lower
IL-6 receptor, BDNF, PDGF, CSF t-tau, and CSF p-tau181,
and higher hepatocyte growth factor and CSF Aß1–42 were
associated with better performance on WMS-R Logical
Memory delayed recall and RAVLT 30-minute delayed recall
(see Supplemental Figure 1 for details). However, LV2 did
not meet criteria for split-half reliability (matrix 2 had a value
of p > .05) and thus should be interpreted with caution. For
LV3, lower levels of cardiometabolic variables and higher
insulin-like growth factor binding protein, age, and education
were associated with better performance in executive func-
tion (longest digit span backward length), basic attention
(longest digit span forward length), premorbid IQ
(ANART), and worse performance in episodic memory
(RAVLT List B; see Supplemental Figure 2 for details).
LV3 met criteria for split-half reliability (all values
p < .05). However, the three significant cognitive outcomes
in LV3 have correlations with 95% confidence intervals close
to crossing the x-axis (0), and LV3 accounts for a relatively
low percentage of the overall cross-block covariance; thus,
the relationships reported within LV3 should be interpreted
with abundant caution (see Supplemental Figure 2 for
details).

DISCUSSION

To summarize, we identified a latent variable (LV1) that
accounted for a large amount of cross-block covariance,
revealing a pattern in the data suggesting that increased
neurotrophic/growth factor levels, less AD pathology, lower
stress, and higher education are associated with better perfor-
mance largely on tasks associated with episodic memory,
executive function, processing speed, language as well as
metrics of global cognition (Figure 1). Basic attention (e.g.,
longest sequence recalled for digit span forward) and premor-
bid IQwere not significantly associated with this pattern. This

pattern suggests that markers of neuroprotection, neuroplas-
ticity, stress, and AD pathology may hold relatively less
importance for cognitive metrics that do not require mental
manipulation. Interestingly, modifiable cardiometabolic risk
factors (such as BMI, cholesterol, etc.), which are often asso-
ciated with cognition in older adults (Farooqui et al., 2012;
Yaffe et al., 2004), did not contribute to the pattern described.
Chronological age also did not significantly contribute to the
pattern described for LV1. This discussion mainly focuses on
LV1, which accounted for the most cross-block covariance
and met criteria for split-half reliability.

Our results extend the literature by showing a novel
association between HB-EGF-like-GF and cognition.
Specifically, better cognitive performance was associated

Figure 2. For display purposes, scatterplots of each participant’s
Digit Symbol Substitution raw score (Panel A) and WMS-R
Logical Memory Delayed Recall raw score (Panel B) are plotted
against their individual physical/health/AD score (representing
how well an individual’s physical/health/AD variables contribute
to the overall pattern in LV1).
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with higher levels of plasma HB-EGF-like-GF in LV1.
Previous research has shown that this growth factor may have
neuroprotective properties, as infusions of HB-EGF-like-GF
in rats 1-day post-stroke were associated with neuroprotec-
tion against cell death (Shim & Madsen, 2018). Moreover,
in rats with cypermethrin exposure (a pesticide associated
with AD neuropathology), exogenous administration of
HB-EGF-like-GF inhibited cypermethrin-induced accumula-
tion of Aß1–42 and p-tau in the frontal cortex and hippocam-
pus and led to decreases in learning and memory deficits
caused by cypermethrin exposure (Maurya, Mishra, Abbas,
& Bandyopadhyay, 2016). Our finding is consistent with ani-
mal models demonstrating HB-EGF-like-GF’s potential neu-
roprotective role (Maurya et al., 2016; Shim & Madsen,
2018). To our knowledge, a link between HB-EGF-like-GF
and human cognition has not been reported. However, in
one study exploring older adults who were cognitively nor-
mal or hadMCI, higher levels of CSF HB-EGF-like-GF were
associated with decreased levels of CSFAß1–42 and increased
levels of CSF t-tau, which is contrary to our finding (P. F.
Meyer et al., 2018), as our results suggest that HB-EGF-
like-GF may be associated with potential cognitive benefits.
This unique finding necessitates additional research in order
to clarify the role of HB-EGF-like-GF in human cognition.

Our LV1 findings for two other neurotrophic/growth fac-
tors, BDNF and PDGF, support previous research showing
positive associations between these two neurotrophic/growth
factors and cognition. Higher levels of BDNF were associ-
ated with better cognitive performance (on WMS-R
Logical Memory immediate and delayed recall, RAVLT
List 1 and List B, Trail A and Digit Symbol Substitution
Test, Trail B, Clock Drawing, Category Fluency Animals
and Vegetables, Boston Naming Test, MMSE, and ADAS-
COG), consistent with the putative role of BDNF in neuro-
protection (Lista & Sorrentino, 2010; Miranda et al.,
2019). For LV1, higher PDGF was also related to better cog-
nitive performance, which is consistent with studies showing
higher levels of PDGF were associated with reduced cogni-
tive decline (Taipa et al., 2019). However, it should be noted
that the relationship between PDGF and cognition was not
entirely consistent. For LV2, lower levels of PDGF were
associated with better performance on WMS-R Logical
Memory delayed recall and RAVLT delayed recall (although
LV2 should be interpreted with caution).

AD biomarkers exhibited some of the strongest associa-
tions with cognition in LV1. Lower levels of plasma tau were
associated with higher cognitive performance, supporting
previous research demonstrating that plasma tau levels in
those with MCI were negatively associated with episodic
memory and verbal fluency performance (Chiu et al.,
2014). Lower levels of CSF t-tau and CSF p-tau181 were asso-
ciated with better cognitive performance, consistent with
recent work (Nathan et al., 2017). Lower levels of CSF
Aß1–42 were correlated with lower cognitive scores, a pattern
similar to recent findings revealing that low CSF Aß1–42 lev-
els were associated with cognitive impairment in participants

with MCI (Matura et al., 2019). Increased levels of CSF t-tau
and CSF p-tau181 and decreased levels of CSFAß1–42 in those
with MCI are all associated with increased risk of converting
to dementia (Diniz et al., 2008). These associations between
AD biomarkers and cognition contribute to our understand-
ing of cognitive decline in MCI, demonstrating that AD bio-
markers are associated with a broad range of cognitive
domains (see Figure 1).

Our results also demonstrate that cortisol, a marker of
stress or hypothalamic–pituitary–adrenal–axis activity, had
negative associations with cognition. Lower levels of cortisol
were associated with higher cognitive performance, which is
consistent with recent research demonstrating that cogni-
tively normal older adults with elevated cortisol and CSF
Aß1–42 were at a higher risk of clinical progression to MCI
or AD (Udeh-Momoh et al., 2020). Interestingly, this rela-
tionship remained even when controlling for cognitive
reserve (Udeh-Momoh et al., 2020). Our results align with
this finding and contribute to the literature by demonstrating
that cortisol was significantly associated with positive cogni-
tive outcomes in an MCI group.

Regarding demographic variables, higher education was
associated with superior cognitive performance in LV1,
consistent with the well-documented role of education as a
source of cognitive reserve (Stern, 2013). Surprisingly,
chronological age did not significantly contribute to the pat-
tern of covariance in LV1. This null finding was unexpected
as multiple episodic memory and executive function tasks
significantly contributed to LV1, and these cognitive
domains typically decline with age (Buckner, 2004; Tromp
et al., 2015). However, cognitive aging studies often do
not include any array of physiological and health metrics.
These data suggest neurotrophic/growth factors, AD bio-
markers, a marker of stress, and education may better predict
performance on tasks of episodic memory, executive func-
tion, processing speed, visuospatial ability, verbal fluency,
language, and global cognition than chronological age.

The current study had limitations. Some variables such as
Insulin-like Growth Factor 1 and Interleukin-6 did not pass
ADNI’s internal quality control processes, precluding inclu-
sion in our analysis. Other variables, such as sex or APOE "4
status, were not included in the analysis because it is gener-
ally not recommended to include binarized variables (sex) or
those with limited variability (APOE "4 genotype: only 3 pos-
sible values: 0, 1, or 2 alleles) in a PLS analysis (a variable
with low variance is problematic for the calculation of corre-
lation coefficients and the unequal distribution of these mea-
sures across the sample can lead to instability in the BSR
estimates, which could lead to misinterpretation of the data,
making the findings less generalizable).

Overall, these findings emphasize that markers of neuro-
protection, neuroplasticity, stress, and AD significantly con-
tribute to episodic memory, executive function, and
processing speed in older adults with MCI. Our results sug-
gest that modifiable variables, such as BDNF and cortisol,
which research has shown can be changed with physical
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exercise, may serve as potential targets for future interven-
tions to slow cognitive impairment and progression to demen-
tia (Lista & Sorrentino, 2010; Baker et al., 2011).

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit
https://doi.org/10.1017/S1355617721001041
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