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On the Linearity of Order-isomorphisms

Bas Lemmens, Onno van Gaans, andHendrik van Imhoò

Abstract. Abasicproblemin the theory ofpartially ordered vector spaces is to characterise those cones
on which every order-isomorphism is linear. We show that this is the case for every Archimedean
cone that equals the inf-sup hull of the sum of its engaged extreme rays. his condition is milder than
existing ones and is satisûed by, for example, the cone ofpositive operators in the space of bounded self-
adjoint operators on aHilbert space. We also give a general formof order-isomorphisms on the inf-sup
hull of the sum of all extreme rays of the cone, which extends results of Artstein–Avidan and Slomka
to inûnite-dimensional partially ordered vector spaces, and prove the linearity of homogeneous order-
isomorphisms in a variety of new settings.

1 Introduction

A fundamental problem in the study of partially ordered vector spaces is to under-
stand the structure of their order-isomorphisms, i.e., order preserving bijections
whose inverses are also order preserving. In particular, onewould like to characterise
those partially ordered vector spaces on which all order-isomorphisms are aõne.

Pioneering research on this problem was motivated by special relativity theory
where the causal order is considered on theMinkowski spacetime. During the 1950s
and 1960s, several results were obtained in ûnite dimensional spaces by Alexandrov
and Ovčinnikova [3] and Zeeman [15], who showed that the order-isomorphisms
from the causal cone onto itself are linear. Later, Alexandrov [2] extended his re-
sult to order-isomorphisms on ûnite dimensional ordered vector spaces, where every
extreme ray of the cone is engaged; that is to say, each extreme ray of the cone lies in
the linear span of the other extreme rays. Rothaus [11] obtained a similar resultwhere
the domain of the order-isomorphism could also be the interior of the cone, but he
assumes that the cone does not have any isolated extreme rays, which is a stronger
assumption than the one used by Alexandrov. In the 1970s, Noll and Schäòer made
numerous contributions to this area in a series of papers [9, 10, 12, 13]. Like Alexan-
drov, they considered the case where the cone is the sum of its engaged extreme rays,
but they do not require the partially ordered vector spaces to be ûnite dimensional.
More recently, Artstein-Avidan and Slomka [5] obtained a complete description of
the order-isomorphisms between ûnite dimensional partially ordered vector spaces.

In many natural inûnite dimensional settings, the results of Noll and Schäòer are
not applicable. A case in point is the space B(H)sa consisting of bounded self-adjoint
operators on a Hilbert H, ordered by the cone of positive (semi-deûnite) operators.
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Even though the cone B(H)+sa contains many engaged extreme rays, namely the rays
through the rank-one projections, it does not satisfy the condition ofNoll and Schäf-
fer. Even so Molnár [7] showed, by using operator algebra techniques, that every
order-isomorphism on B(H)+sa is linear. In this paper we obtain a generalisation of
[10,heoremA] byNoll and Schäòer that is suõciently strong to yieldMolnár’s result.
Before we outline the main results in the paper, we point out that the domain on

which the order-isomorphisms are considered plays a key role. In the paper we will
work on so called upper sets, i.e., sets which contain all upper bounds of its elements.
Such domains include cones, the interiors of cones, and the whole vector space. It
turns out thatwithout this assumption order-isomorphisms can bemore complicated.
Indeed, Šemrl [14] gave a complete characterisation of the order-isomorphisms on
order intervals of B(H)sa, which includemaps that are not aõne.

Our generalisation of [10,heoremA] exploits the fact that inûma and suprema in
a partially ordered vector space are preserved under order-isomorphisms. Instead of
the conditions imposed by Noll and Schäòer, we assume that the cone, C, is equal to
the inf-suphull of the positive spanof its engaged extreme rays,which ismuchweaker.
In other words, we require that each x ∈ C can be written as x = inf α∈A(supβ∈B xα ,β),
where each xα ,β belongs to

[0,∞)RE = {r1 + ⋅ ⋅ ⋅ + rn ∶ r i ∈ C is an engaged extreme vector of C for all i},

A and B arbitrary index sets, and for the inûmum and supremum we only consider
lower bounds and upper bounds in C. hemain result can be formulated as follows.

heorem 1.1 Suppose U ⊆ (X ,C) and V ⊆ (Y ,K) are upper sets in Archimedean
partially ordered vector spaces, and f ∶U → V is an order-isomorphism. If (X ,C) is
directed and C equals the inf-sup hull of [0,∞)RE , then f is aõne.

Here f ∶U → V is aõne if it is the restriction of an aõnemap F∶ aò(U)→ Y .
A key step in our argument is heorem 3.10, which says that every order-

isomorphism f from [a,∞) = {a + x∶ x ∈ C} onto [b,∞) = {b + y∶ y ∈ K} is the
restriction of an aõnemap on the aõne span of [a,∞)RE = a + [0,∞)RE . he proof
requires a careful reworking of some of the ideas in [10].

Of course not every order-isomorphism is aõne. Simply consider the space C(K),
consisting of continuous real functions on a compactHausdorò space K, and themap
f ↦ f 3. On C(K) Schäòer [12] showed that each order-isomorphism, which is ho-
mogeneous (of degree one), is linear. In [13] he strengthened this result to general
order unit spaces. In ûnite dimensional spaces the existence of a disengaged extreme
ray in the cone is necessary and suõcient to yield a nonlinear order-isomorphism.
his follows from [5,heorem 1.7] by Artstein-Avidan and Slomka, who showed that
any order-isomorphism in a ûnite dimensional space has a particular diagonal form.
In Section 5we obtain an inûnite dimensional analogue of this result. We also give an
alternative condition that guarantees that all homogeneous order-isomorphisms are
linear, which can be applied in partially ordered vector spaces without an order unit
such as ℓp(N) spaces.
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2 Preliminaries

Let X be a real vector space and C be a cone in X, so C is convex, λC ⊆ C for all λ ≥ 0,
and C∩−C = {0}. he cone C induces a partial order on X by x ≤C y if y−x ∈ C. he
pair (X ,C) is called a partially ordered vector space. For simplicity we write ≤ instead
of ≤C if C is clear from the context, and we write x < y if x ≤ y and x ≠ y.
A partially ordered vector space (X ,C) is said to be Archimedean if for each x ∈ X

and y ∈ C with nx ≤ y for all n ≥ 1 we have that x ≤ 0. A subset G of X is said to be
directed if for each x , y ∈ G, there exists z ∈ G such that x ≤ z and y ≤ z. It is well
known that X is directed if and only if C is generating, i.e., X = C − C. Given x ≤ y
we deûne the order interval by [x , y] = {z ∈ X ∶ x ≤ z ≤ y}. We denote the cone with
apex a by

[a,∞) = {a + x∶ x ∈ C}.

Extreme rays of the cone play an important role in this paper. A vector e ∈ X∖{0}
is called an extreme vector if 0 ≤ e, and 0 ≤ x ≤ e implies that x = λe for some λ ≥ 0,
or, if e ≤ 0, and e ≤ x ≤ 0 implies x = λe for some λ ≥ 0. For an element x ∈ C∖{0}we
deûne the ray through x asRx = {λx ∶ λ ≥ 0}. If e ∈ C is an extreme vector, Re is said to
be an extreme ray. he notion of an extreme ray coincides with the ray being extreme
in the convex sense. A ray R in C is extreme if and only if for any r ∈ R∖{0}, and any
two rays R1 and R2 in C with r1 ∈ R1 ∖ {0}, r2 ∈ R2 ∖ {0} satisfying r = αr1 + (1− α)r2
for some α ∈ (0, 1), we have that R1 = R2; see [4, Lemma 1.43]. Given an extreme ray
R, we call z + R an extreme half-line with apex z. he following elementary property
of extremal vectors will be used frequently in the sequel; see [4, Lemma 1.44].

Lemma 2.1 In a partially ordered vector space (X ,C), any three extremal vectors in
C that generate three distinct extremal rays are linearly independent.

Another useful basic observation is the following lemma.

Lemma 2.2 Let (X ,C) be Archimedean. If x , y ∈ X are such that 0 ≤ y ≤ x, and
for each 0 ≤ λ ≤ 1, we have that y ≤ λx or λx ≤ y, then there exists a µ ≥ 0 such that
y = µx.

Proof Let x , y ∈ X be as in the statement. We can assume without loss of generality
that x and y are non-zero. Now deûne µ = sup{λ ≥ 0∶ λx ≤ y}. By assumption, µ is
well deûned and 0 ≤ µ ≤ 1.

Note that µx ≤ y. Indeed, for n ≥ 1,we have that (µ−1/n)x ≤ y, so that n(µx−y) ≤
x, which implies that µx ≤ y, as (X ,C) is Archimedean.

To show that y ≤ µx we distinguish two cases: 0 ≤ µ < 1 and µ = 1. In the case
0 ≤ µ < 1, we have that y ≤ (µ+ 1/n)x for all n suõciently large. hus, n(y− µx) ≤ x,
which shows that y ≤ µx, as the space is Archimedean. If µ = 1, then x = y, since
y ≤ x by assumption, and x = µx ≤ y as shown before. ∎

Given vector spaces X and Y , a map f ∶X → Y is called aõne if it is a translation
of a linear map; that is, there is a ∈ X such that x ↦ f (x + a) − f (a) is linear.

401

https://doi.org/10.4153/S0008414X1900066X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X1900066X


B. Lemmens, O. van Gaans, andH. van Imhoò

Let (X ,C) and (Y ,K) be partially ordered vector spaces. A set U ⊆ X is called
an upper set if x ∈ U and y ≥ x imply y ∈ U . So, X, C, and translations thereof
are all upper sets in (X ,C). Let U ⊆ X be an upper set. A map f ∶U → Y is called
aõne or linear if it is the restriction of an aõne map F∶ aò(U) → Y or a linear map
F∶ span(U) → Y , respectively. If C is generating, then we have aò(U) = span(U) =
X. Amap f ∶U → Y is aõne if and only if f (λ1x1+⋅ ⋅ ⋅+λnxn) = λ1 f (x1)+⋅ ⋅ ⋅+λn f (xn)
for all x1 , . . . , xn ∈ U and λ1 , . . . , λn ∈ Rwith λ1+⋅ ⋅ ⋅+λn = 1 such that λ1x1+⋅ ⋅ ⋅+λnxn ∈
U . It is a well known fact that if the upper set U is convex, then f ∶U → Y is aõne
if and only if f is convex-linear; that is, for each x , y ∈ U and 0 ≤ λ ≤ 1 we have that
f (λx + (1 − λ)y) = λ f (x) + (1 − λ) f (y).
An element u in a partially ordered vector space (X ,C) is an order unit if for all

x ∈ X, there exists a λ ≥ 0 such that −λu ≤ x ≤ λu. If C is generating, then u ∈ C is
an order unit if and only if for every x ∈ C, there exists λ ≥ 0 with x ≤ λu. If (X ,C)
is Archimedean and u ∈ C is an order unit, then the formula

∥x∥u ∶= inf{λ ≥ 0∶ −λu ≤ x ≤ λu}

deûnes a norm on X, called the order unit norm. A triple (X ,C , u), where (X ,C) is
an Archimedean partially ordered vector space and u is an order unit in (X ,C), is
called an order unit space. In an order unit space, we denote the interior of the cone
C with respect to the order unit norm by C○. he set C○ is an upper set and consists
of all order units of (X ,C).

3 Linearity of Order-isomorphisms

In the sequel (X ,C) and (Y ,K)will be Archimedean partially ordered vector spaces.
Initially we only consider order-isomorphisms f ∶ [a,∞) → [b,∞), where a ∈ X and
b ∈ Y . However, themain result,heorem 1.1, holds for more general domains.
A key role in the analysis of order-isomorphisms is played by extreme half-lines.

his idea has been exploited to analyse order-isomorphisms on ûnite dimensional
partially ordered vector spaces [5] as well as in inûnite dimensions in [10]. In inû-
nite dimensions, however, the extreme half-lines are not as useful, as there are cones
that have no or only very few extreme rays. he following order theoretic character-
ization of extreme half-lines is due to Noll and Schäòer; see [10, Proposition 1]. For
completeness, we provide a proof.

Proposition 3.1 If (X ,C) is Archimedean and x ∈ X, then H ⊆ [x ,∞) is an extreme
half-line with apex x if and only if H is maximal among subsets G ⊆ [x ,∞) with x ∈ G
that satisfy the following.

(P1) G is directed.
(P2) For any y ∈ G the order interval [x , y] is totally ordered.
(P3) G contains at least two distinct points.

Proof Suppose H ⊆ X is maximal among subsets G ⊆ [0,∞) that satisfy properties
(P1)–(P3). We ûrst argue that H is contained in a half-line. Let y,w ∈ H be given, so
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x ≤ y,w. Due to (P1), there exists a z ∈ H such that y,w ≤ z. Since ≤ is preserved
under addition, (P2) guarantees that the order interval [0, z − x] is totally ordered.
Moreover, it contains y − x, w − x, and λ(z − x) for all 0 ≤ λ ≤ 1. herefore, by
Lemma 2.2, there exist α, β ≥ 0 such that y − x = α(z − x) and w − x = β(z − x).
his shows that y andw are on the half-line through z with apex x. We conclude that
any pair of points in H lie on a half-line with apex x, and hence H is contained in a
half-line with apex x. Let R be a ray in C such that H ⊆ x + R.
By (P3), there exists an r ∈ C ∖{0} such that x + r ∈ H and x +R = {x + λr∶ λ ≥ 0}.

Note that x+R satisûes properties (P1) and (P3). We now show that x+R also satisûes
(P2). Consider y = x + λr with λ > 0. hen [x , y] = [x , x + λr] equals the interval
[x , r] up to dilation. We know that [x , x + r] is totally ordered, as x + r ∈ H and H
satisûes property (P2). Hence, [x , y] is also totally ordered. It now follows from the
maximality assumption on H that H = x + R.

To see that x + R is an extreme half-line, we note that [0, r] is totally ordered, as
[x , x + r] is totally ordered. It follows from Lemma 2.2 that r is an extreme vector.
Conversely, suppose H = x + R is an extreme half-line. Clearly, H satisûes proper-

ties (P1)–(P3). Suppose G ⊇ H also satisûes (P1)–(P3) and y ∈ G. Since G is directed,
there exists a z ∈ G with z ≥ y, x + r. Moreover, [x , z] is totally ordered by (P2), and
hence, [0, z − x] is totally ordered and y − x , r ∈ [0, z − x]. If y − x ≤ r, then there is
a µ ≥ 0 such that y − x = µr, as r is extreme, so that y = x + µr ∈ H. Otherwise, we
have r ≤ y − x and for each 0 ≤ λ ≤ 1, we have λ(y − x) ∈ [0, z − x], so r ≤ λ(y − x)
or λ(y − x) ≤ r. By Lemma 2.2, it follows that there is a σ ≥ 0 such that r = σ(y − x).
hen σ ≠ 0 and y = x + σ−1r ∈ H. ∎

We note that property (P3) is only a necessary condition if C does not have any
extreme rays and can be dropped otherwise.
As a direct corollary we obtain the following result.

Corollary 3.2 If f ∶ [a,∞) → [b,∞) is an order-isomorphism, then f maps an ex-
treme half-linewith apex x ∈ [a,∞) onto an extreme half-linewith apex f (x) ∈ [b,∞).

Proof Suppose that R is an extreme ray of C. hen f (x + R) ⊆ [ f (x),∞) and
satisûes properties (P1)–(P3), as f is an order-isomorphism. So by Proposition 3.1,
we ûnd that f (x + R) = f (x) + S, where S is an extreme ray of K. ∎

Our next step is to show that order-isomorphisms f ∶ [a,∞) → [b,∞) possess an
additive property on extreme half-lines, which was proved in [10, Lemma 1]. For the
reader’s convenience, we include the proof.

Lemma 3.3 Let R and S be distinct extreme rays of C and f ∶ [a,∞)→ [b,∞) be an
order-isomorphism. For each x ∈ [a,∞), r ∈ R, and s ∈ S, we have that

(3.1) f (x + r + s) − f (x + s) = f (x + r) − f (x).

Proof he equality in the statementholds trivially if either r or s equals zero. Assume
r ≠ 0 and s ≠ 0. hen R j = x+ js+R for j ∈ {0, 1, 2} are three distinct parallel extreme
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half-lines. Due to Corollary 3.2, their images f (R j) are extreme half-lines in Y , and
they are distinct as f is injective. For each λ ≥ 0, the set x + S + λr is an extreme
half-line that intersects R j for each j ∈ {0, 1, 2}, so, by Corollary 3.2, f (x + S + λr) is
an extreme half-line and

(3.2) f (x + S + λr) intersects f (R j) for each j ∈ {0, 1, 2} and λ ≥ 0.

We obtain that f (x+S+ λr) is not parallel to any of the f (R j), as R and S are distinct
and f is injective.

We aim to show that f (R0), f (R1), and f (R2) are parallel. We do so in two steps.
As a ûrst step, we show that if two of them are parallel, then all three of them are
parallel. Indeed, assume that f (R j) and f (Rk) are parallel, with j, k ∈ {0, 1, 2}, j ≠ k.
Since f (R j) and f (Rk) are distinct parallel half-lines, it follows from (3.2) that the
half-line f (x + S + λr) is in their aõne span for every λ ≥ 0. hen the half-line f (R i)
with i ∈ {0, 1, 2}∖{ j, k} is in that aõne span too, as it intersects f (x + S+ λr) for two
distinct values of λ. hus, f (x + S), f (R i), and f (R j) are three extreme half-lines in
the aõne plane spanned by f (R j) and f (Rk). By Lemma 2.1, it follows that at least
two of the half-lines f (x + S), f (R i), and f (R j) must be parallel, which yields that
f (R i) and f (R j) must be parallel. hus, f (R i), f (R j), and f (Rk) are parallel.
As a second step,we argue by contradiction that at least two of the half-lines f (R0),

f (R1), and f (R2) are parallel. For i ∈ {0, 1, 2}, take w i ∈ Y such that

f (R i) = { f (x + is) + λw i ∶ λ ≥ 0}.

Suppose that no two of the three extreme half-lines f (R0), f (R1), and f (R2) are
parallel. A�er translation they correspond to three distinct extremal rays, so that
Lemma 2.1 yields that w0, w1, and w2 are linearly independent. Deûne

W0 = f (x) + span{w0 ,w2},
W2 = f (x + 2s) + span{w0 ,w2},
ℓ1 = { f (x + s) + λw1∶ λ ∈ R}.

f (x + S)●

f (x)
●

f (x + s)
●

f (x + 2s)

f (R0) f (R1)
f (R2)
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We observe that W0 andW2 are parallel and distinct planes. Moreover, f (R0) ⊆ W0,
f (R2) ⊆ W2, and f (R1) ⊆ ℓ1. he aõne span aò(W0 ,W2) of W0 and W2 is three
dimensional and contains ℓ1. Indeed, for every z ∈ f (R1), there is λ ≥ 0 with z =
f (x + s + λr), and by (3.2), aò(W0 ,W2) contains the half-line f (x + S + λr). his
shows that f (R1) ⊆ aò(W0 ,W2), and hence ℓ1 ⊆ aò(W0 ,W2). Since w1 is linearly
independent of w0 and w2, we conclude that ℓ1 intersects W0 andW2.

We proceed by showing that the half-line f (R1) intersects W0 or W2. Loosely
speaking, the point f (x + s) on ℓ1 lies betweenW0 andW2, and, therefore, the points
where ℓ1 intersects W0 andW2 cannot be both at the same side of f (x + s). To make
this idea precise, let v ∈ Y be such that

f (x + S) = { f (x) + λv∶ λ ≥ 0}.

Observe that v ∈ K, as f (x + S) ⊆ [ f (x),∞). hen

aò(W0 ,W2) = { f (x + s) + λw0 + µw2 + σv∶ λ, µ, σ ∈ R}.

As f (x + s) + w1 ∈ f (R1) ⊆ aò(W0 ,W2), there are λ, µ, σ ∈ R such that w1 = λw0 +
µw2+σv. By linear independence ofw0,w1, andw2,we have σ ≠ 0. Consider the case
σ < 0. hen f (R1) intersects W0, so there is a t > 0 such that f (x + s + tr) ∈ W0. As
f (x+R) = f (R0) ⊆W0, it follows that the half-line f (x+S+ tr) contains two distinct
points ofW0, so that f (x + S + tr) ⊆ W0. herefore, f (x + 2s + tr) ∈ W0 ∩ f (R2) ⊆
W0∩W2,which is a contradiction. Otherwise, in case σ > 0, f (R1) then intersectsW2,
and we similarly arrive at a contradiction. Hence, at least two of the half-lines f (R0),
f (R1), and f (R2) are parallel, so by the ûrst step, all three of them are parallel.

Now we complete the proof. As f (R0) and f (R1) are parallel, we have that the
vectors f (x + r) − f (x) and f (x + s + r) − f (x + s) have the same direction. By
interchanging the roles of R and S, we obtain that the vectors f (x + s) − f (x) and
f (x + s + r) − f (x + r) have the same direction. hus, f (x), f (x + r), f (x + s +
r), and f (x + s) are the consecutive corners of a parallellogram, which concludes
the proof. ∎

It is interesting to note that the proof of Lemma 3.3 does not work if the do-
main of the order-isomorphism is bounded. In fact, there exist examples of order-
isomorphisms on bounded order intervals for which equation (3.1) does not hold;
see, for example, [14] where order-isomorphisms on order intervals in B(H)sa are
studied.

he following observation is a simple consequence of the previous lemma.

Corollary 3.4 Suppose r, s ∈ X are extreme vectors with r ≠ λs for all λ ∈ R and
f ∶ [a,∞) → [b,∞) is an order-isomorphism. If x ∈ [a,∞) is such that x + r + s, x +
r, x + s ∈ [a,∞), then

f (x + r + s) − f (x + r) = f (x + s) − f (x).

Proof We only discuss the proof for the case r ≤ 0 and s ≤ 0, and leave the two
remaining cases to the reader, as they are proved in a similar way. By writing y =
x + r + s, we get
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f (x + r + s)− f (x + s) = f (y)− f (y − r) = f (y − s)− f (y − r − s) = f (x + r)− f (x)

by Lemma 3.3. ∎

Using this corollary, we now show the following lemma.

Lemma 3.5 Let f ∶ [a,∞)→ [b,∞) be an order-isomorphism. Suppose s1 , . . . , sn , r ∈
X are extreme vectors such that r ≠ λs i for all λ ∈ R and i = 1, . . . , n. If x , x + s1 + ⋅ ⋅ ⋅ +
sn + r, x + s1 + ⋅ ⋅ ⋅ + sn , x + r ∈ [a,∞), then

f (x + r +
n

∑
i=1

s i)− f (x +
n

∑
i=1

s i) = f (x + r) − f (x).

Proof By relabelling, we can assume that there exists k ∈ {0, . . . , n} such that s i > 0
for all i ≤ k and s i < 0 for all i > k. hen x+r+∑m

i=1 s i ∈ [a,∞) and x+∑m
i=1 s i ∈ [a,∞)

for m = 1, . . . , n. By Corollary 3.4, we have

f ((x +
n−1

∑
i=1

s i)+ sn + r)− f ((x +
n−1

∑
i=1

s i)+ sn) =

f (x +
n−1

∑
i=1

s i + r)− f (x +
n−1

∑
i=1

s i).

Repeating this argument yields the desired conclusion. ∎

We can use Lemma 3.5 to get the following identity.

Lemma 3.6 Let f ∶ [a,∞) → [b,∞) be an order-isomorphism. Suppose x ∈ [a,∞)
and s1 , . . . , sn are extreme vectors in X such that s i ≠ λs j for all λ ∈ R and i ≠ j,
x + s1 + ⋅ ⋅ ⋅ + sn ∈ [a,∞), and x + s i ∈ [a,∞) for all i = 1, . . . , n; then

f (x +
n

∑
i=1

s i)− f (x) =
n

∑
i=1

( f (x + s i) − f (x)).

Proof By relabelling, we can assume that there exists k ∈ {0, . . . , n} such that s i > 0
for all i ≤ k and s i < 0 for all i > k. hen x +∑m

i=1 s i ∈ [a,∞) for m = 1, . . . , n. Using
a telescoping sum and Lemma 3.5, we obtain

f (x +
n

∑
i=1

s i)− f (x)

= f (x +
n

∑
i=1

s i)− f (x +
n−1

∑
i=1

s i)+ ⋅ ⋅ ⋅ + f (x + s1) − f (x)

=
n

∑
m=1

( f (x + sm) − f (x)). ∎

Let R denote the collection of all extreme rays in C, and deûne

[a,∞)R = {a + r1 + ⋅ ⋅ ⋅ + rn ∈ [a,∞)∶ r i ∈ C is an extreme vector for all i}.
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Lemma 3.7 Let f ∶ [a,∞) → [b,∞) be an order-isomorphism and x , y ∈ [a,∞)R.
Suppose that y−x = s1+⋅ ⋅ ⋅+sn ,where s i ∈ X is an extreme vector for i = 1, . . . , n. If r ∈ X
is an extreme vectorwith r ≠ λs i for all λ ∈ R and i = 1, . . . , n, and x+ r, y+ r ∈ [a,∞),
then

f (x + r) − f (x) = f (y + r) − f (y).

Proof Note that

f (y + r) − f (y) = f (x + (y − x) + r) − f (x + (y − x))
= f (x + s1 + ⋅ ⋅ ⋅ + sn + r) − f (x + s1 + ⋅ ⋅ ⋅ + sn)
= f (x + r) − f (x)

by Lemma 3.5. ∎

In the setting of Lemma 3.7, if r = λs i for some λ and i, and r ∈ span{s∶ s ∈
S and S ∈ R ∖ {R}} where R = {λr∶ λ ≥ 0}, then one could replace s i by a linear
combination of extreme vectors not contained in R ∪ −R and thus obtain y − x =
s′1 + ⋅ ⋅ ⋅ + s′m with r ≠ λs′j for all λ and j. hen the conclusion of Lemma 3.7 still holds.
his motivates the following deûnition from [10].

Deûnition 3.8 Let S be a collection of rays in a cone C in a vector space X. A ray
R ∈ S is called engaged (in S) whenever

R ⊆ span(S ∖ {R}) = span{s∶ s ∈ S and S ∈ S/{R}}

holds, and R is called disengaged (in S) otherwise.

It can be shown that an extreme ray of a ûnite dimensional cone is disengaged (in
the set of extreme rays) if and only if the cone equals the Cartesian product of the ray
and another subcone. Cones that do not allow such a decomposition are considered
in [2].

Recall that R denotes the collection of all extreme rays of C. We denote the col-
lection of all engaged extreme rays in R by RE and the collection of all disengaged
extreme rays in R by RD . We remark that being an engaged ray is relative to the col-
lection it is viewed in. Nevertheless,we have that the elements ofRE are again engaged
in RE . For simplicity, we say that an extreme vector r ∈ R ∪ −R is engaged if R ∈ RE .

Lemma 3.9 If r ∈ X is an extreme vector, then the following assertions hold.
(i) f (x + λr)− f (x) is a scalar multiple of f (x + r)− f (x) for every x ∈ [a,∞) and

λ ∈ R such that x + r, x + λr ∈ [a,∞).
(ii) If r is engaged and x , y, x + r, y + r ∈ [a,∞) and y − x ∈ spanR, then

f (x + r) − f (x) = f (y + r) − f (y).

Proof Assertion (i) follows from Corollary 3.2. Remark that if r is engaged, then
there exist extreme vectors s1 , . . . , sn with y − x = s1 + ⋅ ⋅ ⋅ + sn such that r ≠ λs i for all
λ ∈ R and i = 1, . . . , n, so (ii) follows from Lemma 3.7. ∎
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he following result is an extension of [10,heoremA]. Recall thatRE denotes the
collection of engaged extreme rays in R. We deûne

[a,∞)RE = {a + r1 + ⋅ ⋅ ⋅ + rn ∈ [a,∞)∶ r i ∈ C
is an engaged extreme vector for all i}.

heorem 3.10 If f ∶ [a,∞) → [b,∞) is an order-isomorphism, then f is aõne on
[a,∞)RE .

Proof Let R be an engaged extreme ray of C and ûx r ∈ R/{0}. Let λ ∈ R and take
x ∈ [a,∞)R such that x + λr ≥ a. hen x , x + r, x + λr ∈ [a,∞). So, by Lemma 3.9(i),
there exists a unique gr ,x(λ) ∈ R such that

(3.3) f (x + λr) − f (x) = gr ,x(λ)( f (x + r) − f (x)).

As r is engaged, it follows from Lemma 3.9(ii) that gr ,x(λ) does not depend on x.
hus, there exists a unique function gr ∶R → R such that for every λ ∈ R and x ∈
[a,∞)R with x + λr ≥ a, we have

(3.4) f (x + λr) − f (x) = gr(λ)( f (x + r) − f (x)).

Clearly, gr(1) = 1 and gr is amonotone increasing function. For λ, µ ∈ R, there exists
an x ∈ [a,∞)R such that x + λr ≥ a, x + µr ≥ a, and x + λr + µr ≥ a. Moreover,

gr(λ + µ)( f (x + r) − f (x))
= f (x + (λ + µ)r) − f (x)
= f (x + λr + µr) − f (x + λr) + f (x + λr) − f (x)
= gr(µ)( f (x + λr + r) − f (x + λr))+ gr(λ)( f (x + r) − f (x)).

Since r is engaged, Lemma 3.9(ii) gives f (x + λr + r) − f (x + λr) = f (x + r) − f (x).
Note that f (x + r) − f (x) ≠ 0, as r ≠ 0 and f is injective, and hence

gr(λ + µ) = gr(λ) + gr(µ).

As gr is monotone increasing, additive, and gr(1) = 1, a result by Darboux (see [1,
heorem 1 in Section 2.1]) yields that gr(λ) = λ for all λ ∈ R.

To show that f is aõne, it suõces to show that f is convex-linear on [a,∞)RE . Let
x , y ∈ [a,∞)RE and 0 ≤ t ≤ 1. hen x = a+∑n

i=1 λ ir i and y = a+∑n
i=1 µ ir i ,where each

r i ∈ C is an engaged extreme vector and r i ≠ λr j for all λ ∈ R and i ≠ j. Moreover,
λ i , µ i ≥ 0 and λ i + µ i ≠ 0 for all i. Put s i = (tλ i + (1 − t)µ i)r i . As a + s i ∈ [a,∞) for
all i, we can apply Lemma 3.6 to get
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f (tx + (1 − t)y) − f (a)

= f (a +
n

∑
i=1

s i)− f (a)

=
n

∑
i=1

( f (a + s i) − f (a))

=
n

∑
i=1

( f (a + (tλ i + (1 − t)µ i)r i)− f (a))

=
n

∑
i=1

(tλ i + (1 − t)µ i)( f (a + r i) − f (a))

= t
n

∑
i=1

λ i( f (a + r i) − f (a))+ (1 − t)
n

∑
i=1

µ i( f (a + r i) − f (a))

= t
n

∑
i=1

( f (a + λ ir i) − f (a)) + (1 − t)
n

∑
i=1

( f (a + µ ir i) − f (a))

= t( f (a +
n

∑
i=1

λ ir i)− f (a))+ (1 − t)( f (a +
n

∑
i=1

µ ir i)− f (a))

= t f (x) + (1 − t) f (y) − f (a),

where we have used (3.4) and the fact that each r i is engaged in the forth and sixth
equality, and Lemma 3.6 in the seventh one. his completes the proof. ∎

Remark 3.11 It is interesting to note that in the proof of heorem 3.10, we have
only used the assumption that r is an engaged extreme vector to show that the map
gr ∶R → R satisfying (3.3) is independent of x and additive. However, if r is a disen-
gaged extreme vector, then (3.3) still holds. In Section 5, we will exploit this observa-
tion. Moreover, we remark that it is necessary to work with the positive linear span
of engaged extreme vectors, [a,∞)RE . Indeed, to apply Lemma 3.6, we need a+ s i to
be in the domain of f for each i.

Let us now see how we can use heorem 3.10 to generalise [10, heorem A]. Fix
a ∈ X. For V ⊆ [a,∞) and x ∈ [a,∞), we say that x = inf V in [a,∞) if x is the
inûmumof V in [a,∞), that is, x ∈ [a,∞) is a lower bound of V , and for every other
lower bound z ∈ [a,∞) ofV ,we have x ≥ z. Note thatwe only consider lower bounds
in [a,∞) here. An inûmum where all lower bounds in X instead of all lower bounds
in [a,∞) are consideredmay be diòerent. Similarly, we write x = supV in [a,∞) if
x is the least upper bound of V in [a,∞).
As order-isomorphisms preserve inûma and suprema, the following deûnitionwill

be useful.

Deûnition 3.12 Given a ∈ X and V ⊆ [a,∞), the inf-sup hull of V in [a,∞) is the
set

{x ∈ [a,∞)∶ there exist vα ,β ∈ V for α ∈ A and β ∈ B such that

x = inf
α∈A

(sup
β∈B

vα ,β) in [a,∞)},
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where A and B are arbitrary index sets. he deûning condition is understood to
include the existence of the inûmum and supremum.

Note that the inf-sup hull of a set D ⊆ [a,∞) in [a,∞) can be obtained by trans-
lating the inf-sup hull of D − a in C over a.

IfV ⊆ C and x and y are in the inf-sup hull ofV inC, then x = inf α∈A(supβ∈B xα ,β)
and y = inf σ∈S(supτ∈T yσ ,τ) inC,with all xα ,β and yσ ,τ inV , and hence for all λ, µ ≥ 0,
we have, in C, that

λx + µy = inf
α∈A

(sup
β∈B

λxα ,β) + inf
σ∈S

(sup
τ∈T

µyσ ,τ)(3.5)

= inf
α∈A

( sup
β∈B

λxα ,β + inf
σ∈S

(sup
τ∈T

µyσ ,τ))

= inf
α∈A

( inf
σ∈S

(sup
β∈B

λxα ,β + sup
τ∈T

µyσ ,τ))

= inf
α∈A

( inf
σ∈S

( sup
β∈B

(sup
τ∈T

λxα ,β + µyσ ,τ)))

= inf
(α ,σ)∈A×S

( sup
(β ,τ)∈B×T

λxα ,β + µyσ ,τ),

which shows that λx + µy is also in the inf-sup hull of V in C. In particular, we see
that the inf-sup hull in C of a convex subset of C is again a convex set.

Lemma 3.13 Let f ∶ [a,∞) → [b,∞) be an order-isomorphism and let D ⊆ [a,∞)
be convex. If f is aõne on D, then f is aõne on the inf-sup hull of D in [a,∞).

Proof We ûrst assume that a = 0 and b = 0. Suppose V ⊆ C and v ∈ C are such
that v = sup(V). hen f (v) is an upper bound of f (V) in K. Moreover, if w ∈ K is
another upper bound of f (V), then f −1(w) ∈ C is an upper bound of V , since f −1 is
order preserving. As v = sup(V) in C, we deduce that v ≤ f −1(w) so that f (v) ≤ w.
his implies that f (v) = sup( f (V)) in K. In the same way, it can be shown that if
W ⊆ C and w ∈ C are such that w = inf(W) in C, then f (w) = inf( f (W)) in K. In
short, f preserves inûma and suprema in the cone.

To complete the proof in this case, it suõces to show that f is convex-linear on the
inf-sup hull E of D in C. Indeed, E is a convex set by (3.5). Suppose that x , y ∈ E and
0 ≤ t ≤ 1. Write x = inf α supβ xα ,β and y = inf σ supτ yσ ,τ in C, with xα ,β , yσ ,τ ∈ D for
all α, β, σ and τ. By repeatedly using the fact that f preserves inûma and suprema in
the cone, we get

f (tx + (1 − t)y) = inf
α∈A

( sup
β∈B

( inf
σ∈S

(sup
τ∈T

f (txα ,β + (1 − t)yσ ,τ))))

= inf
α∈A

( sup
β∈B

( inf
σ∈S

(sup
τ∈T

t f (xα ,β) + (1 − t) f (yσ ,τ))))

= t f ( inf
α∈A

(sup
β∈B

xα ,β))+ (1 − t) f ( inf
σ∈S

(sup
τ∈T

yσ ,τ))

= t f (x) + (1 − t) f (y),
where all the inûma and suprema are taken in C or K.
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To deal with the general case, consider the translations S(x) = x + a, x ∈ C, and
T(y) = y − b, y ∈ [b,∞). hen S∶C → [a,∞) and T ∶ [b,∞) → K are both aõne
order-isomorphisms. Hence, f̃ = T ○ f ○ S∶C → K is an order-isomorphism, and,
therefore, it is aõne by the ûrst part of the proof. It follows that f = T−1 ○ f̃ ○ S−1 is
aõne. ∎

Combining heorem 3.10 and Lemma 3.13 yields the next conclusion.

Proposition 3.14 Every order-isomorphism f ∶ [a,∞) → [b,∞) is aõne on the inf-
sup hull of [a,∞)RE in [a,∞).

We can now prove our main result heorem 1.1.

Proof of Theorem 1.1 Let a ∈ U be given. As C is the inf-sup hull of [0,∞)RE in
C, we get that the interval [a,∞) equals the inf-sup hull of [a,∞)RE in [a,∞). So it
follows from Proposition 3.14 that f is aõne on [a,∞). As X is directed the cone C
is generating, and hence C −C = X. his implies that there exists a unique aõnemap
g ∶ X → Y such that g restricted to [a,∞) coincides with f .

In the same way, we ûnd that for any b ∈ U , the map f is aõne on [b,∞). Using
that C is directed, we know that there exists c ∈ U such that c ≥ a, b. We remark
that the intersection [a,∞)∩ [b,∞) contains the interval [c,∞). herefore, f and g
coincide on [b,∞) for all b ∈ U . SinceU = ⋃b∈U[b,∞),we conclude that g coincides
with f on U , which completes the proof. ∎

heorem 1.1 is a generalisation of [10, heorem A] by Noll and Schäòer. It would
be interesting to have a complete characterisation of the (inûnite-dimensional) di-
rected, Archimedean, partially ordered vector spaces (X ,C) for which every order-
isomorphism f ∶C → C is linear. To our knowledge, heorem 1.1 is the most general
result at present. It can, however, not be applied in a variety of settings such as the
space C([0, 1])⊕R with cone {( f , α)∶ ∥ f ∥∞ ≤ α}. In this space, the cone has exactly
two disengaged extreme rays: {λ(1, 1)∶ λ ≥ 0} and {λ(−1, 1)∶ λ ≥ 0}, where 1(x) = 1
for all x ∈ [0, 1], but it has no engaged extreme rays. We believe, however, that each
order-isomorphism on the cone is linear in this space.

We end this sectionwith a simple observation concerningdirect sums. Let (X1 ,C1)
and (X2 ,C2) be directed Archimedean partially ordered vector spaces. hen the di-
rect sum X1 ⊕ X2 is a directed Archimedean partially ordered vector space with cone
C1 × C2. Moreover, (r, s) ∈ C1 × C2 is an (engaged) extreme vector if and only if r
is an (engaged) extreme vector and s = 0, or, s is an (engaged) extreme vector and
r = 0. It is straightforward to infer that if (X1 ,C1) and (X2 ,C2) satisfy the conditions
on (X ,C) in heorem 1.1, then so does (X1 ⊕ X2 ,C1 × C2).

4 Self-adjoint Operators on a Hilbert Space

LetH be aHilbert space and let B(H)sa be the space of bounded self-adjoint operators
on H, ordered by the cone B(H)+sa of positive semi-deûnite operators. In this section,
we show that B(H)sa satisûes the conditions ofheorem 1.1.
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It is easy to show that the extreme rays of B(H)+sa are the rays spanned by rank-
one projections. We will denote the collection of all extreme rays of B(H)+sa by R.
Furthermore, for a closed subspace V of H we denote the orthogonal projection onto
by V by PV , and for x ∈ H we write Px = Pspan({x}).

heorem 4.1 If H is aHilbert space, with dimH ≥ 2, and U ,W ⊆ B(H)sa are upper
sets, then every order-isomorphism f ∶U →W is aõne.

Proof We verify that B(H)sa satisûes the conditions of heorem 1.1. Evidently,
B(H)sa is directed and Archimedean. We ûrst show that all extreme rays of B(H)+sa
are engaged. So, suppose P ∈ R. hen there exists an x ∈ H such that P = Px . As
dimH ≥ 2 we can ûnd non-zero y, z ∈ H such that y and z are orthogonal and x , y, z
lie in a two-dimensional subspace V . hen PV = Py + Pz , so that

Px = PV − (I − Px)PV = Py + Pz − P{x}⊥PV = Py + Pz − Pw ,

where w ∈ {x}⊥ ∩ (V/{0}). We conclude that Px can be written as a linear combi-
nation of rank-one projections diòerent from Px , and hence, the ray spanned by Px is
engaged in R.

It follows from [6, Corollary 3] that for each 0 ≤ A ≤ I, we have

A = sup{λPx ∶ λ ≥ 0 and x ∈ H such that λPx ≤ A}.
Note that for each B ∈ B(H)+sa, there exists µ > 0 such that 0 ≤ µB ≤ I, and hence
the inf-sup hull (or indeed the sup hull) of the engaged extreme rays of B(H)+sa equals
B(H)+sa. ∎

We remark thatheorem4.1was ûrst proved, using diòerent arguments, byMolnár
[7] for order-isomorphisms from B(H)sa onto itself, and in this situation, one cannot
apply [10,heoremA]. It is also interesting to note that inheorem4.1we only require
U and V to be upper sets in B(H)sa. In fact, this can be exploited to recover another
result byMolnar [8],which says that there exists no order-isomorphism from B(H)sa
onto the interior of B(H)+sa; as such, an order-isomorphism would need to be aõne
by heorem 4.1. here are potentially other interesting upper sets, such as the set
{A ∈ B(H)sa∶ ⟨Ax , x⟩+ ⟨Ay, y⟩ ≥ α} for x , y ∈ H and α ∈ R towhich heorem 4.1 can
be applied.

5 Order-isomorphisms in Related Problems

In this section,we proceed the discussion of Section 3 and relate to results byArtstein-
Avidan and Slomka and Schäòer in settings somewhat diòerent than in heorem 1.1.
We obtain three results. First, we present a “diagonalization formula” for order-
isomorphisms between cones; see (5.1). Second, we apply the results of Section 3
to positively homogeneous order-isomorphisms between cones and obtain that they
must be linear if one of the cones equals the inf-sup hull of the positive span of its ex-
treme rays. hird, we consider separable complete order unit spaces, in one of which
the inf-sup hull of the positive linear span of the engaged extreme rays is big enough
to intersect the interior of the cone. In that case, we derive from heorem 1.1 that
every order-isomorphism between upper sets must be aõne.
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We beginwith the following inûnite-dimensional analogue of a result byArtstein-
Avidan and Slomka [5,heorem 1.7].

Proposition 5.1 Let (X ,C) and (Y ,K) be Archimedean partially ordered vector
spaces and suppose that f ∶C → K is an order-isomorphism. Let (vα)α∈A be a collection
of linearly independent extreme vectors in C. hen there exist corresponding monotone
increasing bijections gα ∶ [0,∞) → [0,∞), for α ∈ A, such that for all λ1 , . . . , λn ≥ 0
and α1 , . . . , αn ∈ A, we have

(5.1) f (
n

∑
i=1

λ ivα i) =
n

∑
i=1

gα i (λ i) f (vα i ).

Proof Note that f (0) = 0. Let r ∈ C be an extreme vector. According to Corol-
lary 3.2, f maps the extreme ray through r bijectively onto the extreme ray through
f (r). Hence, there exists a nonnegative scalar gr(λ) such that f (λr) = gr(λ) f (r),
for all λ ≥ 0. Moreover, the function gr ∶ [0,∞) → [0,∞) is a monotone increasing
bijection. Equation (5.1) now follows from Lemma 3.6. ∎

In [5,heorem 1.7], the ûnite dimensional cases f ∶X → X and f ∶C○ → C○ are also
considered. In the situation of Proposition 5.1, if f is an order-isomorphism from X to
Y and f (0) = 0, then one can easily verify that themaps gr are actually deûned on R
and that (5.1) holds for all λ ∈ R. he inûnite-dimensional version of the case where
f ∶C○ → K○ is not as strong. Indeed, if (X ,C) and (Y ,K) are inûnite dimensional
order unit spaces, then one can adapt the proof ofProposition 5.1 to show that for each
order-isomorphism f ∶C○ → K○ and each collection (vα)α∈A of linearly independent
extreme vectors of C, there are linearly independent extreme vectors (wα)α∈A of K
and monotone increasing bijections gα ∶ [0,∞) → [0,∞), α ∈ A, such that for all
λ1 , . . . , λn ≥ 0 and α1 , . . . , αn ∈ A we have (5.1) where f (vα i ) is replaced by wa i ,
provided that ∑n

i=1 λ ivα i ∈ C○. However, in general, inûnite dimensional order unit
spaces most elements of the interior of the cone cannot be written as a positive linear
combination of ûnitelymany positive extreme vectors, and, thus, the use of this result
is limited.

Let us next consider positively homogeneous order-isomorphisms. If U ⊆ X and
V ⊆ Y are such that λu ∈ U and λv ∈ V for every u ∈ U , v ∈ V , and λ > 0, then
a map f ∶U → V is called positively homogeneous if f (λu) = λ f (u) for every u ∈ U
and λ > 0. IfU and V are generatingArchimedean cones, then this condition implies
that f (0) = 0, which yields the more common deûnition that includes λ = 0. he
deûnition given here also applies to maps on interiors of cones.

In [13,heorem B], Schäòer provides the next result.

heorem 5.2 (Schäòer) Let (X ,C , u) and (Y ,K , v) be order unit spaces. hen every
positively homogeneous order-isomorphism f ∶C○ → K○ is linear.

he results of Section 3 yield the following alternative statement, in which the re-
quirement of an order unit is replaced by a condition involving extreme rays.
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heorem 5.3 Let (X ,C) and (Y ,K) be Archimedean partially ordered vector spaces
such that (X ,C) is directed and C equals the inf-sup hull of [0,∞)R in C. hen every
positively homogeneous order-isomorphism f ∶C → K is linear.

Proof We ûrst show that f is additive on [0,∞)R. Let s1 , . . . , sn be extreme vectors
in C. It suõces to show that f (∑n

i=1 s i) = ∑n
i=1 f (s i). In order to apply Lemma 3.6,we

combine termsof s i that lieon the same ray. Indeed, for j = 1, . . . ,m, let I j ⊆ {1, . . . , n}
be disjoint with ⋃m

j=1 I j = {1, . . . , n} such that for every i , k ∈ {1, . . . , n}, we have
s i = λsk for some λ ≥ 0 if and only if there exists j ∈ {1, . . . ,m} with i , k ∈ I j . Denote
r j = ∑i∈I j

s i and for every i ∈ I j , let λ i be such that s i = λ ir j . hen ∑i∈I j
λ i = 1 for

j = 1, . . . ,m. With the aid of Lemma 3.6 and the positive homogeneity of f we obtain

f (
n

∑
i=1

s i) = f (
m

∑
j=1

r j) =
m

∑
j=1
f (r j) =

m

∑
j=1
∑
i∈I j

λ i f (r j)

=
m

∑
j=1
∑
i∈I j

f (λ ir j) =
n

∑
i=1
f (s i).

As f is positively homogeneous, it follows that f is linear on [0,∞)R. Due to
Lemma 3.13 we obtain that f is linear on the inf-sup hull of [0,∞)R in C, which
equals C. ∎

If in heorem 5.3 f is an order-isomorphism from X to Y and f is homogeneous
instead of only positively homogeneous, then it can be shown along similar lines that
f is aõne.

It is useful to compareheorem 5.2 andheorem 5.3 and identify the diòerences.
Let (X ,C , u) and (Y ,K , v) be order unit spaces. Suppose that f ∶C → K is a positively
homogeneous order-isomorphism. hen straightforward veriûcation yields f (C○) =
K○. Hence, it follows by heorem 5.2 that f is linear on C○. As C is the inf hull
in C of the convex set C○, it follows from Lemma 3.13 that f is linear on C. hus,
any homogeneous order-isomorphism between cones of order unit spaces is linear.
heorem 5.3 provides a condition, alternative to having an order unit, that yields the
same conclusion. For example, the space ℓp(N) for 1 ≤ p ≤ ∞ with coordinate-wise
order satisûes the conditions of heorem 5.3 but fails to have an order unit. Hence,
Schäòer’s heorem 5.2 does not imply our heorem 5.3.

Our third interest in this section is an intermediate result by Schäòer, which has
a milder homogeneity condition than heorem 5.2. In [13, Corollary A1], Schäf-
fer shows for order unit spaces (X ,C , u) and (Y ,K , v), where either (X , ∥ ⋅ ∥u) or
(Y , ∥ ⋅ ∥v) is separable and complete, that any order-isomorphism f ∶C○ → K○ is lin-
ear, provided there exists a w ∈ C○ such that f (λw) = λ f (w) for all λ ≥ 0. Compared
to [13, heorem B], the positively homogeneous condition of f is weakened to only
being positively homogeneous on a ray through the interior of the cone, at the cost
of one of the order unit spaces being separable and complete. In conjunction with
heorem 1.1, this yields the following theorem.

heorem 5.4 Let (X ,C , u) and (Y ,K , v) be order unit spaces, and let U ⊆ X and
V ⊆ Y be upper sets. Suppose that the inf-sup hull of [0,∞)RE in C has a non-empty
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intersection with C○, and that either (X , ∥ ⋅ ∥u) or (Y , ∥ ⋅ ∥v) is separable and complete.
hen every order-isomorphism f ∶U → V is aõne.

Proof First,we consider the caseU = C○ andV = K○. LetCE denote the inf-sup hull
inC of the positive linear span of the engaged extreme rays ofC. By assumption, there
exists x ∈ CE ∩ C○. We recall that an order unit space is directed and Archimedean.
Hence, Proposition 3.14 says that f is aõne on CE∩C○. As f is an order-isomorphism
mapping C○ onto K○, it is straightforward to infer that f is in fact linear on CE ∩ C○.
In particular, f (λx) = λ f (x) for all λ > 0. Now [13, Corollary A1] yields that f is
linear on C○.

Next, we consider the case U = C and V = K. As in the previous paragraph, there
exists an x ∈ C○ such that f (λx) = λx for all λ ≥ 0. We infer that f (C○) = K○.
Indeed, let y ∈ K. As x ∈ C○, there exists λ ≥ 0 such that λx ≥ f −1(y). his yields that
λ f (x) = f (λx) ≥ y. herefore, f (x) is an order unit in (Y ,K) and hence f (x) ∈ K○.
Now let y ∈ C○. hen there exists m > 0 such that mx ≤ y. We get m f (x) = f (mx) ≤
f (y). In particular, f (y) is an order unit and we conclude that f (y) ∈ K○. Hence,
f (C○) ⊆ K○. We remark that for all λ ≥ 0, we have f −1(λ f (x)) = λx = λ f −1( f (x));
in otherwords, f −1 is positively homogeneous along the ray through f (x). herefore,
the previous steps applied to f −1 instead of f yield the converse inclusionK○ ⊆ f (C○).
By the ûrst part of the proof, we obtain that f is linear on C○. Since C is the inf hull
of the convex set C○, it follows from Lemma 3.13 that f is linear on C.

Suppose a ∈ X and b ∈ Y are such that U = [a,∞) and V = [b,∞). he order-
isomorphism f̂ deûned by f̂ (c) = f (c + a) − b maps C to K. By the previously
considered case, f̂ is linear, and hence f is aõne.

he general case where U ⊆ X and V ⊆ Y are upper sets follows by arguments
similar to those made in the proof of heorem 1.1. Indeed, for every a ∈ U , f is
an order-isomorphism from [a,∞) to [ f (a),∞), so that f is aõne on [a,∞) by
the previous case. hen f ∣[a ,∞) extends to a unique aõne map F∶X → Y , which is
independent of a ∈ U , as (X ,C) is directed. ∎

To conclude the paper we provide an example to which heorem 5.4 applies, but
not heorem 1.1. Consider the order unit space (X ,C , u) consisting of the real vector
space X = C([0, 1] ∪ [2, 3])⊕R, the Archimedean cone

C = {( f , λ)∶ ∥ f ∥∞ ≤ λ}
and the order unit u = (0, 1) ∈ C. hen (X , ∥ ⋅ ∥u) is complete and separable. he unit
ball

B = { f ∈ C([0, 1] ∪ [2, 3])∶ ∥ f ∥∞ ≤ 1}
has four extreme points: ±1[0,1] and ±1[2,3], where 1[0,1] and 1[2,3] denote the indi-
cator functions of [0, 1] and [2, 3], respectively. herefore, C has four extreme rays,
namely the rays through (±1[0,1] , 1) and (±1[2,3] , 1). As

(1[0,1] , 1) + (−1[0,1] , 1) = 2u = (1[2,3] , 1) + (−1[2,3] , 1),
all four extreme rays are engaged, and u, which lies in C○, is contained in the posi-
tive linear span of the engaged extreme rays. We conclude that the order unit space
(X ,C , u) satisûes the conditions of heorem 5.4. However, the inf-sup hull in C of
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the sum of the engaged extreme rays consists only of elements of the form (λ1[0,1] +
µ1[2,3] , ν), with λ, µ ≥ 0 and ∣λ∣, ∣µ∣ ≤ ν, and hence (X ,C) does not satisfy the con-
ditions ofheorem 1.1.
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