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Resolvent analysis of the linearized Navier—Stokes equations provides useful insight into
the dynamics of transitional and turbulent flows and can provide a model for the dominant
coherent structures within the flow, particularly for flows where the linear operator
selectively amplifies one particular force component, known as the optimal force mode.
Force and response modes are typically obtained from a singular-value decomposition of
the resolvent operator. Despite recent progress, the cost of resolvent analysis for complex
flows remains considerable, and explicit construction of the resolvent operator is feasible
only for simplified problems with a small number of degrees of freedom. In this paper
we propose two new matrix-free methods for computing resolvent modes based on the
integration of the linearized equations and the corresponding adjoint system in the time
domain. Our approach achieves an order of magnitude speedup when compared with
previous matrix-free time-stepping methods by enabling all frequencies of interest to be
computed simultaneously. Two different methods are presented: one based on analysis of
the transient response, providing leading modes with fine frequency discretization; and
another based on the steady-state response to periodic forcing, providing optimal and
suboptimal modes for a discrete set of frequencies. The methods are validated using a
linearized Ginzburg—Landau equation and applied to the three-dimensional flow around a
parabolic body.

Key words: transition to turbulence, computational methods

1. Introduction

Resolvent analysis constitutes an input-output framework between forces and their
responses in the frequency domain. This approach has attracted the attention of the fluid
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mechanics community after McKeon & Sharma (2010) used it to model a turbulent
channel flow, showing that if forcing terms show no preferential direction, the flow
response is dominated by the optimal response mode. In this case, Towne, Schmidt &
Colonius (2018) showed that these optimal response modes provide an approximation
of coherent structures within the flow as defined by spectral proper orthogonal
decomposition. Several studies applied the same ideas to other flows (Beneddine et al.
2016; Abreu, Cavalieri & Wolf 2017; Schmidt et al. 2018; Lesshafft er al. 2019; Yeh &
Taira 2019), and to develop estimation methods (Gomez et al. 2016a; Beneddine et al.
2017; Sasaki et al. 2017; Symon 2018; Martini et al. 2020; Towne, Lozano-Durdn & Yang
2020).

If the flow has one non-homogeneous direction, resolvent modes and gains can be
obtained by direct manipulation of the matrix that represents the discretized system
(McKeon & Sharma 2010). When a direct matrix decomposition is not possible, iterative
methods are needed. These can typically be divided into two parts: (a) obtaining the effect
of the resolvent operator acting on a vector, and (b) algorithms that use (a) to approximate
singular values and vectors. To distinguish these, we will refer to (a) as ‘methods’ and to
(b) as ‘algorithms’.

Different methods have been used in the literature. The effect of the resolvent operator
on a vector can be obtained by solving a linear system of equations. An LU factorization
has been used to solve the linear system and obtain resolvent modes iteratively (Sipp &
Marquet 2013; Schmidt er al. 2018; Ribeiro, Yeh & Taira 2020). Brynjell-Rahkola et al.
(2017) solved the linear problem using a GMRES method, which was accelerated with the
use of preconditioners on flows with low Reynolds numbers. Monokrousos et al. (2010)
used a matrix-free approach, using time marching of the direct and adjoint equations. On
each iteration, the system was harmonically forced with the previous iteration result until
the steady-state response was reached, repeating the method until convergence provides
optimal force and response modes for a given frequency. Gémez, Sharma & Blackburn
(2016b) obtained an 80 % reduction of the total integration time for this method by
considering complex-valued periodic functions and using improved initial conditions.
However, the approach can only recover the leading mode at each frequency.

The power iteration algorithm is popular (Monokrousos et al. 2010; Gémez et al. 2016bD),
but it only provides the leading mode. Alternatively, the Arnoldi algorithm (Arnoldi 1951)
is able to recover optimal and suboptimal modes (Jeun, Nichols & Jovanovié 2016; Schmidt
et al. 2018; Lesshafft et al. 2019). Another approach is the randomized singular-value
decomposition, first used for resolvent analysis by Moarref et al. (2013) and further
explored by Ribeiro et al. (2020), where an algebraic convergence rate with the number of
random vectors used was observed.

Alternatively, reduced-order models (ROMs) have been used to approach such systems,
e.g. ROMS based on the system eigenmodes (Akervik et al. 2008; Alizard, Cherubini
& Robinet 2009; Schmid & Henningson 2012). However, a truncated set of eigenmodes
does not necessarily provide an effective basis for the system (Trefethen 1997; Rodriguez,
Tumin & Theofilis 2011; Lesshafft 2018). In general, it is not clear how to choose an
effective set of modes. If forces of interest are sufficiently low dimensional, an expansion in
an orthogonal basis can provide an effective description for optimization (Shaabani-Ardali,
Sipp & Lesshafft 2020), but for three-dimensional flows with high-rank forcing this
approach becomes costly.

In this study we propose two matrix-free methods, one being an improvement on
the method proposed by Monokrousos et al., and another an adaptation of methods
used in a previous study (Martini et al. 2020), to compute resolvent gains and modes
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for several frequencies simultaneously. The solutions of the system’s frequency-domain
representation are obtained for several frequencies simultaneously via time marching of
the system’s linearized equations. Resolvent modes for multiple frequencies are computed
simultaneously, providing a substantial reduction of the computational cost.

The paper is organized as follows. Section 2.1 provides the basic equations for resolvent
analysis. The proposed methods are presented in §§2.2 and 2.3, with a discussion of
their costs and best practices in §2.4. An application to a Ginzburg-Landau problem,
illustrating expected trends, is presented in § 3. Resolvent analysis of the flow around a
parabolic body and a comparison with other methods are presented in § 4, and conclusions
are drawn in § 5.

2. Frequency-domain iterations using time marching
2.1. Basic equations

We work with a stable linear system given, in discretized form, by

%u(z) + Au(t) = Bf (1),

y(@®) = Cu(1),

where u, f and y are column vectors representing the system state, driving force and
observations, with sizes n, , ny and ny, respectively. The matrix A (n, x n,) defines the
system dynamics, i.e. the linearized Navier-Stokes equations. The matrices B (n, x ny)
and C (ny x ny) correspond to forcing and observation matrices, respectively.

The solution of such a system can be obtained as a combination of the inhomogeneous
solution, a given u(?) that satisfies (2.1), to which a linear combination of homogeneous
solutions is added to satisfy a prescribed initial condition. The inhomogeneous solution
can be expressed in the frequency domain as

(2.1)

(w) = R(®)Bf (0), (@) = CR(w)Bf (») = Ryf (), (2.2a,b)

where hats denote the Fourier transform,
+o0

O=Fwn=[ Gea 23)
—00
The resolvent operator is defined as R(w) = (—iwl + A~ land Ry, = CRB.

Different scenarios in which the system response is dominated by the inhomogeneous
solution, given by (2.2a,b), are explored by the two methods presented in this work to
compute optimal force and response modes. The first is the stationary response to a
periodic forcing, and the second is when forces and responses are square integrable. The
restriction to stable systems comes from the fact that, for unstable systems, the response is
rapidly dominated by the exponentially growing homogeneous solution, so the response is
typically not square integrable.

Resolvent analysis consists of finding optimal force components, which maximize gains
defined as

@_wmw_mﬂwu
If (@) If (@)l
Such gains and modes can be obtained via a singular-value decomposition (SVD) of the

weighed resolvent, F't'y = W;/ 2F:'y ij 1/ 2, where Wy, and Wy are the weight matrices for

(2.4)
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response and forcing, e.g. containing quadrature weights. The SVD reads as f?y =uxv',
where U and V are unitary matrices, U = w, 20 and v = Wf_ 2¥ contain response
(U;) and force (V;) modes in their columns, and ¥ is a diagonal matrix containing the
non-negative singular values ¥;, with o1 > 09 > --- > o, (Towne et al. 2018). Due to
their physical interpretation, left and right singular vectors will be respectively referred to
as response and forcing modes, and singular values will be referred to as gains. McKeon
& Sharma (2010) used B = I and C = I, with the physical interpretation that forces and
responses anywhere in the flow have the same weight. Using different B and C matrices
allows for localization and weighting of forces and responses in space.
The adjoint equations corresponding to (2.1) are

d ¥ _ At
— 520 + Alz() = Cy(), 2.5)

w(t) = B'z(1),

were ‘i’ represents the adjoint operator for a suitable inner product. As non-uniform
meshes are typically necessary for studies of complex flows, we assume generic inner
product weights for the response (W), force (Wy) and observation (W,) spaces, such that

(w1, wa)y = u Wyu, (2.6)

where ‘H’ denotes the Hermitian transpose. Analogous expressions for force and
observation spaces are used. The discrete adjoints are given by

Al =w,'Aw, B = Wf_lBHWu, c =w;'c"w, (2.7a—c)
The frequency-domain representation of (2.5) is given by
2() = R'(@)C'H@). Ww) = B'R"(0)CH(w) = Rjy(w). (2.8a.,b)

For a given system reading component (), the adjoint equation provides sensitivities (W)
of this reading to applied forces.

Explicit construction of Ry, requires the storage and inversion of matrices, which can
be infeasible for large systems. Instead, matrix-free methods to obtain the results of
Ry, applied to a given vector are used. To obtain such results for several frequencies
simultaneously, the relation between the time and frequency domains is explored.

From a given forcing f(¢), the corresponding response is obtained from a time
integration of (2.1). For a stable system, using as initial condition u(t - —oo) =0,
(2.2a,b) provides the full solution to (2.1), as all homogeneous solutions diverge for
t — —oo. Likewise, (2.8a,b) provides a solution for the adjoint problem, (2.5), when
the terminal conditions f(# — o0o) = 0 are used. The input and output vectors of the
frequency-domain representation of the problem can be obtained from a Fourier transform
of the time-domain signals.

The time integration of (2.1) and (2.5) will be referred to as the direct and adjoint runs,
respectively. Using readings y of the direct run as forcing terms of the adjoint run, (2.8a,b)
and (2.2a,b) give w = Rylj/ = (R)T,Ry)}', i.e. the action of (R;Ry) on a given vector is
computed from a pair of direct and adjoint runs. As (Fn’; I~?y) = VX2V7, the singular values
and right singular vectors of ﬁy can be obtained from an eigenvalue decomposition of
(Fn’;f?y). Using the algorithms presented in Appendix A, eigenvalues of (ﬁ; fi’y), and, thus,
singular values of ﬁ'y, are obtained.
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Figure 1. Illustration of the transient-response method (TRM) and steady-state-response method (SSRM).
Plots (a,b) illustrate input and outputs of a time integration. The shaded area corresponds to the time interval
used by each method to estimate Fourier coefficients of the output, which will be used to construct the inputs
of the next iteration. Input and output of the direct (adjoint) run correspond to forces (readings) and readings
(sensitivities).

Two methods to compute the action of (R Ry) on a vector are presented next: the
transient-response method (TRM), detailed in §V 2.2; and the steady-state-response method
(SSRM), detailed in § 2.3. An illustration of these methods is shown in figure 1.

2.2. Transient-response method (TRM)

This method uses the full response obtained from time marching (2.1) and (2.5) to compute
solutions of (2.2a,b) and (2.8a,b). Using a force compact in time in (2.1) provides a
compact response, where compact here is used in the sense that these functions are
exponentially decaying for large times. This response, when used as an external force in
(2.5), again prov1des a compact response. Takmg the Fourier transform of these signals
provides w and f that satisfy w = (RT Ry) f The approach is illustrated in figure 1.

It is important to guarantee that the Fourler transforms of the signals are all well defined.
A compact forcing f in (2.1) guarantees that u(r) ~ e~ for large 7, where w; is the
imaginary part of the least-stable eigenvalue of A. Extending the solution to the whole
real-time line is obtained by setting u(t < f9) = 0, where tj is the time at which the null

initial condition was imposed. This function is thus clearly in the L* space and, thus, has
a well-defined Fourier transform. A similar argument holds for the adjoint system.

As will be illustrated in § 3, for finite-precision numerical computations it is important
that the frequency content of f(¢) is normalized, ensuring that signals from frequencies
with larger gains do not contaminate other frequencies due to round-off errors and
finite sampling rates. Normalization is performed using a temporal filter that flattens
the power-spectral density of the signal energy over the desired frequency range. In this
work finite impulse response (FIR) filters are used (Press et al. 2007). Finite impulse
response filters guarantee that the exponential decay present in the signals described above
is maintained. An overview of this class of filters and trends obtained for spectra flattening
are presented in Appendix B.

Snapshots from the previous runs need to be saved to disk and later read and used to
construct the forcing terms for the next iteration. This can be accomplished in two different
ways: checkpoints can be interpolated or used as an initial condition for a time marching
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to reconstruct the solution for the desired time interval. The latter approach provides
more flexibility for saving the snapshots, e.g. lower sampling rates, and can be more
accurate, as in principle the exact snapshot is recovered. It does, however, add significant
computational costs. We focus instead on the strategy of interpolating the snapshots. In
this approach, the time interval between the checkpoints needs to be small enough to allow
an accurate reconstruction of the field. However, a high sampling rate leads to extra read
and write operations (input-output) and the need for higher-order filters, as discussed in
Appendix B. To obtain an accurate representation of the field while minimizing costs,
a higher-order interpolation scheme should be used. Some options are discussed in

Appendix C, and the use of the C? interpolation is recommended.

Both the time integration of the equations and signal filtering are performed until the
energy norm of the response becomes smaller than a given tolerance, after which the
time series is truncated. Spectral leakage, which is an expected consequence of the signal
truncation in time, is proportional to the signal’s value at its edge. As the signals here
show an exponential decay for large ||, such error decreases exponentially with the total
integration time.

Using the power iteration algorithm, described in Appendix A, readings of the adjoint
run, w, are used as forcing terms of a new pair of direct and adjoint runs. Upon iteration, y
and w converge to the leading response and force modes.

2.3. Steady-state-response method (SSRM)

In contrast with the TRM, where the solutions of the direct and adjoint equations to
excitations localized in time are used, the SSRM is based on the system’s steady-state
response to periodic excitations. In the approach, an initial periodic force with period T is
constructed as

Re(f(a)o)) +2 szzl Re (f"(a)k)e_i“’k’) for real f,
Yo f (@p)eont for complex f,

S = (2.9)

where wy = 27k/T, corresponding to a Fourier series with ny coefficients. Fourier series
coefficients for y(wy) are obtained via the steady-state time-periodic response of (2.1)
and are used to construct an excitation term for (2.5) with an expression similar to (2 9).

Combining the steady-state response of (2.1) and (2.5), the action of (F:’T Ry) on f is

obtained. The terms f (t) and w(z) are the iteration input and output.

The time scale at which the transient responses vanishes, and, thus, the state converges
to the steady-state response, can be estimated from a prior run. It corresponds to the time
necessary for the norm of the flow to reach a prescribed small value from a random initial
condition. Fourier series coefficients for forces and responses are obtained via Fourier
transforming a time block of length T after transients have vanished, as illustrated in
figure 1.

The SSRM provides the action of (R;Ry) on a given vector, which can be used for
computation of gains and modes for a discrete set of frequencies, with frequency resolution
given by Aw = 27n/T, using the algorithms presented in Appendix A. The normalization
of amplitudes, needed for the power iteration algorithm, and orthogonalization of inputs,
needed for the Arnoldi algorithm, can be performed on the Fourier series components,
avoiding the need of saving and filtering checkpoints.
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Method Recommended if Recommended algorithm Key parameters

TRM Fine frequency discretization Power iteration/ Nyquist frequency
is required Krylov sub-space and filter order

SSRM  Suboptimal modes and gains Arnoldi Frequency resolution and
are required transient relaxation time

Table 1. Summary of the recommended choice of methods and algorithms.

2.4. Relevant parameters and added costs

The TRM and SSRM have different characteristics that make them suitable for different
applications. These differences and guidelines for the choice of method and algorithm are
presented here. We focus on two classical algorithms: power iteration and Arnoldi. These
are briefly reviewed in Appendix A.

The main parameters in the TRM are the sampling rate, which needs to be defined
in terms of the cut-off frequency and the filter order. Below the cut-off frequency, all
frequencies can be resolved simultaneously, which can be obtained either by zero padding
the time series prior to using an fast Fourier transform (FFT) algorithm, or by using (2.3)
directly. The approach is thus better suited if a fine frequency discretization is desired.
The filter order should be chosen as to keep the amplitude of the different frequencies
approximately the same. The asymptotic amplification at each frequency is given by o1 (),
and is therefore system dependent and unknown a priori. The filter order needs thus to be
determined by trial and error and increased if the ratio of the amplitudes of the signal at
different frequencies becomes large. The highest allowable ratio depends on the system’s
gain separation and desired accuracy. In all cases explored in this work ratios smaller than
103, after the application of the filters, were sufficient to prevent contamination between
different frequencies. As discussed in Appendix B, higher sampling rates will require
higher filter orders.

While frequency normalization of inputs can be obtained using only one filter
application, their orthogonalization to n previous inputs requires » filtering operations.
This can increase computational costs considerably, particularly due to significant
input-output operations, and is prone to numerical issues, as low-order filters can lead to
imprecise orthogonalizations. This hinders the application of the Arnoldi algorithm with
the TRM for large systems. The TRM is better suited for the power iteration algorithm,
which is thus applicable to problems in which only the leading resolvent mode is of
interest.

The main parameter of the SSRM is the time length used to characterise the steady-state
response. This length is given by the periodicity of the signal, 2rt/Aw, where Aw is
the desired frequency discretization. This method is better suited if coarser frequency
discretization can be used and, in particular, if one is interested in higher frequencies,
which have a negligible impact on the cost for this approach. The use of either the power
iteration or Arnoldi algorithms are straightforward, but due to higher convergence rates
and the ability to compute suboptimals, the Arnoldi algorithm is preferable. Table 1
summarises the recommended choice of method and algorithm for different scenarios,
as well as the key parameters to be set in each case.

An implementation of the proposed methods on top of an existing solver requires the
computation of extra operations. The TRM method requires Fourier transforms to compute
the spectral amplitudes used to construct the temporal filters, the filtering operation and the
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interpolation of checkpoints to construct the forcing term. The Fourier transforms can be
computed during run time by explicitly computing the Fourier integral for each frequency
or a posteriori using an FFT algorithm. In similar fashion, filtering can be applied via
a time-domain convolution or using the convolution theorem, i.e. Fourier transforming
both signals, multiplying them on the frequency domain, and transforming back to the
time domain. These frequency-domain approaches typically require all of the snapshots
to be stored in memory simultaneously, and the time-domain approaches are better suited
for the application to large problems. The SSRM method requires the construction of the
periodic forcing term, a Fourier transform of the steady state and the orthogonalization of
the current input with respect to the previous inputs.

Note also that the formulation derived here can be implemented on top of any code
that solves the direct and adjoint linearized Navier—Stokes equations. As all the extra
required computations scale linearly with the number of degrees of freedom (DOF) and
their parallelization is straightforward, the cost scaling and parallelization efficiency of the
resulting code is not affected by these added operations, depending only on the original
code used.

3. Validation and trends for the Ginzburg-Landau equation

We explore the properties of the method using a linearized Ginzburg—Landau model,
for which resolvent gains and modes can be directly obtained by manipulation of the
system matrices. The model qualitatively mimics the behaviour of some complex flows
and has been widely used to explore tools and methods (Chomaz, Huerre & Redekopp
1991; Couairon & Chomaz 1999; Bagheri et al. 2009; Cavalieri, Jordan & Lesshafft 2019;
Martini et al. 2020). The model is given by
du(x, 1) 9 9*

G FAu ) = [0, A= U —u() —y .
and we here use the parameters U = 6, y = 1 and u(x) = Buc(1 —x/20), where p. =
U2Re(y) /1y |? is the critical value for onset of absolute instability (Bagheri et al. 2009).
The parameters are similar to those used by Lesshafft (2018), but here we choose to keep y,
and, therefore, the equation and its solution, real. The terms in A correspond to advection,
growth/decay and diffusion, respectively. Dirichlet boundary conditions are considered
at x = 0 and 40, u(0, 1) = u(40, r) = 0, and the initial condition u(x, 0) = O is used. We
consider a system with § = 0.1, leading to a moderate gain separation between optimal
and suboptimal modes, evaluated via SVD of the resolvent operator. For simplicity, we
assume that B= C = I.

Starting from an impulse-like in time and random in space force vector, f(f) = f6(1),
which was implemented as an initial condition, direct and adjoint runs were performed
using a time step of 10~2 using a second-order Crank—Nicolson scheme. Time marching
was carried out until the state norm was lower than 10~2. Gains and modes for frequencies
up to w = 15 were computed.

Figure 2 illustrates the evolution of gain estimation using the power iteration algorithm
when normalization is not performed. Gains for low frequencies converge to the true
values, while for larger frequencies, gains seem to approach them, but after further iteration
diverge and oscillate around the maximum gain. Figure 3(a) shows the evolution of the
norm of each spectral component: it is apparent that each spectral component has its
own amplification trend until the ratio between its amplitude and the largest amplitude
becomes A 107!, This is confirmed by the condition number, defined as the ratio
between the largest and the smallest Fourier component amplitudes, shown in figure 3(b),
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Figure 2. Leading resolvent gains obtained using the power iteration algorithm and the TRM without
regularization. (a) Leading resolvent estimated gains (¢) for different frequencies as a function of iteration
count, with solid lines representing estimated gains and dashed lines the true optimal gains. (b) Gain error,
|1 — &1 /01]. (a) Estimated gain. (b) Estimated gain error.
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Figure 3. (a) Evolution of the amplitudes of different spectral components of the unregularized iteration
scheme. (b) Condition number, given by the ratio between the largest and smallest spectral components.
(a) Spectral amplitude. (b) Condition number.
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Figure 4. Same as figure 3 with frequency normalization at each iteration. (a) Spectral amplitude.
(b) Condition number.

which saturates at 10'%. At this point, numerical errors from the larger components
dominate the signal at these frequencies.

A FIR filter of order 3000, with a frequency resolution of Aw = 1/(2n15) = 0.2, is
constructed. Although the filter order can be considerably smaller if the data are down
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Figure 5. Estimation of the leading resolvent gains, &, (a) and errors (b) obtained with the power iteration

(dotted with crosses) and Arnoldi (solid with circles) algorithms. Errors are defined as |61,; — o1|. (a) Gains.
(b) Errors.
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Figure 6. Absolute values of the estimated optimal force and response modes for different frequencies after 5
(blue) and 10 (red) iterations using the power iteration algorithm. Black dashed lines correspond to the exact
optimal modes.

sampled, which is mandatory for large systems, due to the small size of this model this
is an unnecessary complication. Figure 4 shows that the filter regularizes the problem,
yielding similar magnitudes for all frequency components.

We proceed with a comparison of the power iteration and Arnoldi algorithms. As
discussed in § 2.4, the Arnoldi algorithm is not well suited for use with the TRM; for
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Figure 7. Same as figure 6 for the Arnoldi algorithm.

the number of iterations used here, its computational costs are 20 times larger than
those for the power iteration algorithm. However, as the small size of the problem
studied here allows its application, it is used to provide a direct comparison between
the two algorithms. Figure 5 shows the convergence of gains observed with both
algorithms. Similar convergence trends are observed for the lower frequencies, w < 5.
For higher frequencies, where gain separation is smaller, the Arnoldi algorithm shows
faster convergence rates. The asymptotic error is related to the time marching scheme and
can be decreased by reducing the time step. The convergence rates at each frequency are
associated with the respective gain separation. This trend is derived analytically for the
power iteration method in Appendix A.

Modes obtained using the power iteration and Arnoldi algorithms are shown in figures 6
and 7, respectively. Modes for lower frequencies (w < 5) are converged for both methods
with only five iterations. For w = 9 and 10, the Arnoldi algorithm can already provide a
good approximation for the optimal modes with five iterations, although with significant
noise in the force modes, while the power iteration still shows significant discrepancies.
With 10 iterations the Arnoldi method converged modes for all frequencies, while
convergence is yet to be obtained with the power iteration algorithm for modes at v = 15.
This highlights the accelerated convergence obtained with the Arnoldi algorithm when
gain separation is small.

Finally, figure 8 shows the convergence of optimal and suboptimal gains for w = 15,
illustrating the capability of the algorithm to compute suboptimal gains. The optimal
gain is seen to converge before the suboptimals. Although this ordering is not necessarily
followed, it is almost always observed in practice.
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Figure 9. Streamwise velocity field (colour scale) and element mesh for investigation of the flow around
a parabolic body. The discretization uses seventh-order polynomials within each element. The black circle
represents a circle with a diameter of 0.5, tangent to the leading edge. (@) Leading-edge and boundary layer
detail. (b) Full domain.

4. Resolvent modes of the incompressible flow around a parabolic body
4.1. Discretization and base flow computation

The incompressible flow around a parabolic body is used to demonstrate both of the
recommended approaches: the power iteration algorithm using TRM and the Arnoldi
algorithm using SSRM.

The Reynolds number based on the free stream velocity and leading-edge curvature
radius is 200. The viscous base flow was taken as the stable laminar solution obtained
by marching the Navier—Stokes equations in time until the norm of the velocity time
derivative becomes smaller than 108, No-slip boundary conditions were applied at the
body surface, with outflow conditions on the rightmost edge of the domain and inflow
velocities obtained from an analytical solution of the potential flow, derived next, on the
remaining boundaries. The mesh and the resulting base flow are illustrated in figure 9. The
domain has a spanwise length of 10 non-dimensional units, discretized with six uniformly
spaced spectral elements.
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Integration of the linear and nonlinear Navier—Stokes equations was performed with
the Nek5000 open-source code, which uses a spectral-element approach (Fischer & Patera
1989; Fischer 1998) based on nth-order Lagrangian interpolants. The model contains 3060
elements discretized with seventh-order polynomials, corresponding to 1.5 million grid
points (4.5 million DOF).

The geometry of the body suggests the use of parabolic coordinates for obtaining
the potential flow solution used as inflow conditions. The transformation between the
Cartesian (x, y) and parabolic (o, T) coordinates is given by

x+iy = —(o +i1)%. 4.1)

By inspection, x = 72 — 0% and y = 27t0. The solid surface is located at x = y* + 1/4,

corresponding to a constant value of o, g = 0.5. The flow streamfunction is obtained by
a solution of the Laplace equation

Vo ¥ =0, 4.2)

with the following boundary conditions: no penetration condition at the body surface,
¥ = 0ato = op; convergence to the uniform, right moving flow, away from the body, ¥ =
20t =y ato — oo. The potential is then written as 1 = 2(o — op)t, which satisfies the
boundary conditions.

4.2. Computation of resolvent modes

Leading modes and gains were computed using the ‘Nek5000 resolvent tools’ package, an
implementation of the proposed approaches within the Nek5000 open-source code (https://
nek5000.mcs.anl.gov), available as a Git repository at https://github.com/eduardomartini/
Nek5000_ResolventTools. A validation of the code is presented in Appendix D. Dirichlet
boundary conditions were used on all boundaries for the perturbation fields.

No restrictions on the force or response terms were imposed, i.e. B=1land C = I. As
three-dimensional simulations of the linearized system are performed, resolvent modes for
all spanwise wavenumbers matching the domain size are obtained simultaneously. Inner
products were computed using the integration quadrature as weights.

For the TRM, a Dirac pulse with random spatial distribution was used in the first
iteration. Time integration was carried out until the norm became 10~ of the maximum
obtained during the run. For flattening the spectra, filters with frequency resolution of
0.057 and cut-off frequency of m were obtained, resulting in a filter order of 136. The
filter gains for each iteration were constructed based on the norm of 96 frequencies, which
are non-uniformly spaced between 0 and 0.57. For the SSRM, 140 time units were used for
the vanishing of the initial conditions, an interval for which a random initial perturbation
reached a norm of 1073, Results for all these frequencies were obtained.

Figure 10 shows gains as a function of frequency and their convergence with iteration
count. In total 5 iterations were performed with the TRM and 31 with the SSRM. The
highest gains are found at w = 0, with responses dominated by streamwise velocity
components and force terms exciting streamwise vortices. The mechanism is consistent
with the lift-up effect in transitional boundary layers (Monokrousos et al. 2010; Schmid
& Henningson 2012). At higher frequencies this mechanism becomes less efficient, and
free stream structures near the wall dominate the system. It can also be noted that four
modes converge approximately to the same value. These consist of cosine and sine
components in the z direction, which should provide exactly the same gains, as z is a
homogeneous direction, and to symmetric and asymmetric modes with respect to the x—z
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Figure 10. Leading gain for the parabolic body: (a) gains as a function of frequency, (b,c) gain convergence
with iteration count. Results from the SSRM using the Arnoldi algorithm in coloured lines, and results from the
TRM with the power iteration algorithm in black. (a) Frequency dependency of gains. (b) Gain convergence
for @ = 0.00. (¢) Gain convergence for w = 0.25.

plane, which have similar gains due to the small interaction between both sides of the
body. Numerical errors from spatial-temporal discretization, remaining transient effects
(SSRM), or truncation of the time series (TRM) can generate small differences between
cosine and sine modes and mask the distinction of symmetric and asymmetric modes.
Here the distinction between these gains is negligible, and they effectively span an optimal
subspace. Figure 11 shows the upper half-domain of the leading modes for different
frequencies. Figure 12 shows suboptimal modes for « = 0. Vectors describing the optimal
subspace were chosen to better represent the symmetries of the problem.
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Figure 11. Real part of optimal force (red and green) and response modes (blue and grey) for the flow around
a parabolic body. On each subplot, forces and responses in the x (a,c,e) and y (b,d,f) directions are shown.
Results for (a,b) @ = 0.00; (¢,d) v = 0.13; (e,f) @ = 0.25.

Figure 13 shows a comparison of the integration time required by each method. For the
SSRM, an integration of 140 time units was used for eliminating transient effects, with
another 40 units required to compute resolvent modes for the desired set of frequencies.
All integrations have thus the same time length. Note, however, that the time needed to
characterise the frequency responses increases with the inverse of frequency resolution.
The TRM shows increasing integration times for each iteration, reaching ~ 3.5 times the
initial time integration length at the last iteration. This cost, however, does not scale with
the frequency discretization, which is an advantage of the TRM.

4.3. Cost comparisons

In this section we compare the costs of performing resolvent analysis with the
proposed approach and previous methods. A quantitative comparison to state-of-the-art
matrix-forming methods and a qualitative comparison with previous matrix-free methods
are presented.

Matrix-forming methods are particularly effective for low-dimensional systems and are
ubiquitous in studies of one-dimensional (1-D) problems. Their cost, however, increases
rapidly with the number of points, and typically cannot by applied to three-dimensional
(3-D) flows. We thus use the two-dimensional (2-D) flow over the same parabolic body
considered in the previous sections. Compared with the 3-D case reported in § 4.2, the
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Figure 13. Total integration time using the different approaches. Half-integer/integer values refer to the
direct/adjoint runs.

mesh was considerably refined, using 112 x 38 seventh-order spectral elements. The
transient time used is the same as used in § 4.2.

The method was compared with a matrix-forming method obtained using a high-order
finite difference method for the construction of a sparse matrix A. The matrix-forming
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Method Wall time RAM used
Matrix forming  Eigenmode-based ROM 36 h 48.7 GB
Iterative 6.4h 30.8 GB
Present SSRM 4.0@30)h 2.8 (16) GB

Table 2. Wall time and memory requirement comparisons between the SSRM and matrix-forming methods
for the 2-D problem discretized with ~ 272 thousand grid points (0.5 million DOF). The values in parenthesis
correspond to the 3-D problem described in § 4.2, with & 1.5 grid points (4.5 million DOF).

code has been extensively validated and used (e.g. Rodriguez, Gennaro & Souza (2021)
and references therein); the numerical details can be found in Gennaro efr al. (2013)
and Rodriguez & Gennaro (2017). Two approaches were used. In the first one, an
eigenvalue-based ROM was constructed and gains obtained from it, similar to the
approaches used by Akervik et al. (2008) and Alizard ef al. (2009). In the second approach,
an iterative method was also used, solving the linear problems (2.2a,b) and (2.8a,b), one
frequency at a time. The linear problem is solved using the open-source sparse linear
algebra package MUMPS (multifrontal parallel solver — Amestoy, Davis & Duff 1996).
Prior to the LU factorization, row ordering is applied using METIS (Karypis & Kumar
1998). This approach is similar to the one used by Sipp & Marquet (2013) and Schmidt
et al. (2018). The 2-D problem was discretized using a grid with 900 x 301 points resulting
in approximately 272 000 grid points, roughly the same number of grid points used for the
proposed approach.

The eigenmode-based ROM was constructed using 4000 eigenmodes, and 100 iterations
were computed using the matrix-forming iterative method. With the SSRM, 10 iterations
were computed for 26 frequencies simultaneously, resulting in a total of 260 frequency
iterations. Note that since the SSRM performs iterations simultaneously for all the
frequencies, the iteration count will be determined by the frequency with the slowest
convergence rate. To compensate this, a higher iteration count was used with the SSRM.

The wall time and memory requirement of each method are reported in table 2. The
costs for the 3-D problem studied in § 4.2 is added as reference. Note that the costs for the
3-D and 2-D problems scale roughly linearly with the number of grid points, which is a
feature of the Nek5000’s scalability and of the low added costs of the method, as discussed
in the end of § 2.4.

The proposed method obtained the results faster than the benchmarks, with a
considerably lower memory requirement. It is worth mentioning that a direct comparison
between the approaches is not straightforward. Reduced-order models based on
eigenmodes can be effective (Lesshafft et al. 2019) or show an extremely low convergence
rate (Alizard et al. 2009), and the scaling of sparse matrix methods is problem dependent.
The costs of the proposed approach depend not only on the relaxation time of the transient
effects, which is problem dependent, but also on details of the solver used. Nevertheless,
table 2 illustrates that memory requirements of matrix-forming methods can be prohibitive
in applications to complex 3-D flows.

Comparing with the matrix-free method proposed by Monokrousos et al. (2010), the
SSRM has roughly the same cost, i.e. the costs associated with the time stepping of the
linear system, but provides modes and gains for several frequencies simultaneously: if
ne, frequencies are desired then the SSRM is approximately n,, times cheaper. Assuming
ne > 10, total costs can be reduced by more than an order of magnitude, making the
method comparable to the preconditioned approach used by Brynjell-Rahkola et al. (2017),
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but contrary to the latter, the present method is not limited to cases with low Reynolds
numbers. As an improvement on the method of Monokrousos et al. (2010), Gémez et al.
(2016b) used lower accuracy solutions for the first iterations and an initial condition
based on the current estimation of optimal force/response modes to reduce the total
computational costs by &~ 80 %. The approach, however, recovers only the leading gains
and modes, and has higher cost than the SSRM approach for n, > 5.

5. Conclusions

With the rising popularity of the resolvent analysis framework for modelling turbulent
flows, several methods for obtaining optimal forcing and response modes have been
proposed. The construction of full matrices describing the problem using spectral and
pseudo-spectral methods are ubiquitous in 1-D problems. For 2-D problems, the approach
can be extended by using high-order finite difference schemes and tools developed for
manipulation of sparse matrices. However, these approaches are typically limited to simple
geometries and become too expensive for 3-D problems. For complex, higher-dimensional
problems, matrix-free methods are the natural choice.

In this study two novel methods that allow the computation of gains and modes
for several frequencies simultaneously were presented. The TRM allows for a fine
frequency discretization in the computation of leading modes and gains. The SSRM allows
suboptimal gains and modes to be computed with the use of the Arnoldi algorithm.
When implemented on an existing solver, the computation costs added scale linearly
with the number of DOF, allowing for their use in virtually any problem for which the
Navier—Stokes equations can be integrated.

The methods were validated in a linearized Ginzburg—Landau system, for which a direct
SVD can be obtained and used as a benchmark. Geometric convergence rates with the
number of iterations performed were observed with the proposed methods. As expected
from analytical results presented in Appendix A, the convergence rates for the power
iteration algorithm are proportional to the ratio of the first and second singular value.
The Arnoldi algorithm provides suboptimal modes and an accelerated convergence rate,
particularly when there is a small gain separation.

Gains and modes for the flow around a parabolic body were computed using an
open-source implementation of the proposed methods within the Nek5000 code. When
compared with a state-of-the-art matrix-forming tool (Rodriguez & Gennaro 2017,
Rodriguez et al. 2021), the proposed approaches require similar CPU time but a fraction
of the memory. When applied to the 3-D problem with 4.5 million DOF, the increase
in costs of the proposed method is roughly proportional to the increase in the number
of DOF. For this configuration, the application of the matrix-forming tools is unfeasible.
Compared with other matrix-free methods (Monokrousos et al. 2010; Gémez et al. 2016b;
Brynjell-Rahkola er al. 2017), the current approach has considerably lower costs when
computation of several frequencies is required.
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Appendix A. Algorithms

Here, an overview of the iterative algorithms used in this work to compute singular values
is presented. We focus on practical aspects that will be necessary for the development of
the codes and methods used. For a more complete review of algorithms applicable to large
systems, we refer the reader to Saad (2003).

The leading singular value and associated modes can be obtained via the power iteration
algorithm, for which convergence can be easily derived analytically. First, define a test
vector

ny
fo=) aVi. (A1)
i=1

Using (2.2a,b) and (2.8a,b) to form an iterative scheme,
n = (RLR)f, (A2)

and choosing fn = Wy_1, for non-zero ay, the term fn can be written as
ny a o2
A N N s
fo=RIRY'fo=VE"V i =aiocl (Vi+ ) aomVil- (A3)
i=2 1

Assuming that o1 > o>, for large n, }'n /012" — V1, i.e. it converges to the leading force
mode, and the leading gain can be estimated as

|mwm
If et (@)

Asymptotically, the power iteration algorithm has a geometrical convergence rate, with

error reducing by a factor of (o7/02)% on each iteration. In general, fn converges to
the subspace spanned by the first m force modes with a rate given by o,,/0y,+1. This is

o n(w) = (A4)

particularly relevant if o7 = --- = 0,,. In such case f, converges to one singular mode
in the m-dimensional subspace, with rate o1/0y,+1. This ratio will be referred to as gain
separation.

If gain separation is small, i.e. close to 1, many iterations might be needed for
convergence of the power iteration algorithm. Alternatively, gains can be estimated based

on a low-rank representation of (R; Ry) in the subspace spanned by a sequence of vectors

]n, with 1 < n < m. We consider a set of vectors f’n and w,, that satisfy
(RIR)f, = W, (AS)

where f'n are considered as inputs and w, as outputs. Using fn = wy_1, the subspace
spanned by f, is the Krylov subspace. From (A3), it is clear that, for large n, this
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subspace asymptotically includes the leading force mode. Defining F = []"1, cees fn] and
W = [w, ..., wy], (AS) can be written as
(RR)F =W, (A6)
\ivhere F= Wfl/zF, W= W}/2W and F‘.’y = W)l,/zRyW]fl/z. From a QR decomposition,
F = QjRj, where Q. is a unitary matrix and Ry, is upper triangular, (A6) can be rewritten
as
BB YA. — wp-l — A 7 o1 5 7 o1
(RJR))Q; = WR_' = @; @ WR_' + <I — QFQ‘;’) WR_'. (A7)
——
H
1727

Since Qj forms an orthonormal basis for the space spanned by w, [, a low-rank

representation of (ﬁ;ﬁy) in this space is given by
QY (R}R))Q; = H, (A8)

where Qg Q; = I was used. The components of f'n orthogonal to this space are restricted

to the rightmost term. The eigenvalues and vectors of (ﬁn’; I~?y) can then be estimated from
an eigen-decomposition of H,

HY = I’v, (A9)
where I' is diagonal with entries y; > y2 > --- >y, and ¥ is unitary, with the jth

column represented by ¥;. Force and response modes, and gains associated with them,
can be estimated as

Vi=Qry;, U=y 'RQr¥;, o;=v. (A10a—c)

If j"n = Wy_1, the rightmost term can be shown to have rank one, (A7) is an Arnoldi
factorization of (ﬁ;ﬁy), and the matrix H is Hessenberg and Hermitian. For large n, fn

approximates the leading force mode, and, thus, the last vectors in the sequence become
approximately linearly dependent. This leads to an ill-conditioning of the inversion of Rj.

To avoid this problem, the Arnoldi algorithm can be used. It consists of using as f“n the

component of w,,_| which is orthogonal to all previous forces fj, with j < i — 1. This can
be obtained as

Sn=Wn-1—Fo,..n10, (A1l)

where
Fo. n1= [on, . ,fAH] : (A12)
;= (Fgm,n_l W¢F. ..., n—l) Fo o Wit (A13)

Note, however, that such ill-posedness only occurs once fn has converged to the leading
force mode; thus, if only the leading gain and modes are of interest, either the inversion of
Rj. is well conditioned, or the leading modes and gains can be accurately obtained from
the power iteration algorithm. The use of the Arnoldi algorithm is therefore only necessary
if suboptimal gains and modes are of interest. Figure 14 reproduces figure 8 adding the
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Figure 14. Convergence of the five leading gains for @ = 15. Error defined as in figure 5. Solid lines reproduce
results from figure 8, while dotted lines show results obtained with the Krylov-subspace algorithm. (a) Gains.
(b) Errors.

trend observed with the Krylov algorithm. Krylov-subspace has the same convergence
trend as the Arnoldi algorithm for the first iterations, and accurately captures the optimal
gain before the algorithm becomes ill conditioned, and, thus, is a viable alternative to
accelerate the computation of the leading mode if convergence rates are low due to small
gain separations.

Appendix B. Temporal filter overview

Finite impulse response filters are a class of filters that can be applied to uniformly spaced
time sequences. Given a signal sampled x(jA?) and a filter ¢ (jA?), the filtered signal
X' (jAr) is obtained as

¥ =¢xx, (BD)

where * is a discrete convolution. In the frequency domain the filtered signal can be
expressed as

¥ = ¢z (B2)

If ¢ is bounded, that is ¢ (¢) = 0 for sufficiently large |z, the filter is a FIR filter. The
filter order is related to the number of points at which ¢ (jAf) is non-zero: a nth order
filter has n + 1 non-zero points. Higher-order filters have better frequency resolution, with
low-order filters having resolution only for frequencies close to the Nyquist frequency,
Wpyg = T/ (AD).

Figure 15 shows an example of spectral flattening. Finite impulse response filters
obtained with Matlab function fir2 are used to flatten the spectral content of x(f) =
1/(#> + 1). The filter gain is chosen as 1/|%(w)| for w < 7, smoothly going to zero at
higher frequencies: this is the approach used in the TRM to regularize the problem
and reduce aliasing effects. It can be seen that a filter with too low order has a poor
performance, with the spectra of the filtered signal not being flat in the frequency range
of interest, as illustrated in figure 15(a,b). Better performance is obtained with high-order
filters, as can be seen in figures 15(c,d) and 15(e, f). The observed signal delay is given by
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Figure 15. Spectral flattening of the signal x using different filter orders resulting in the signals x". Time and
frequency-domain representations of the signal are shown, respectively, in the (a,c,e) and (b,d,f). Results for
(a,b) ny = 6; (c,d) ny = 505 (e, f) ny = 100.

ngAt/2 and is a consequence of the filters that are obtained with the fir2 function. These
delays are compensated by timeshifting the signal.

The frequency resolution of a FIR filter is proportional to AT /ns. Figure 16 shows
results using the same filter order as figure 15, but with a sampling rate five times higher,
i.e. AT and frequency resolution five time larger. In this case, the spectra are successfully
flattened only when higher-order filters are used. This highlights the importance of the
cut-off frequency for TRM, as discussed in § 2.4, as the use of high frequencies increases
not only storage requirement, but also the cost of signal filtering.

Appendix C. Interpolation algorithms and their spectral properties

For the TRM, described in § 2.2, simulation checkpoints need to be saved to disk for later
use as an external force. As saving all time steps can require large storage, interpolation
between different time steps is typically necessary. Three different interpolation methods
between flow snapshots are investigated, and named after their smoothness:

(i) CO: linear interpolation;

(i) C': cubic interpolation; and
(iii) CZ: fifth-order interpolation.

For the C? interpolation method, coefficients of a first-order polynomial are chosen to
match the function value at the interval limits. For the C! method, coefficients of a cubic
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10

Figure 16. Same as 15, with a sampling rate five times higher. Results for (a,b) ny = 6; (c,d) ny = 50;
(e.f) ny = 100.
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Figure 17. Interpolation of a sinusoidal signal with the three proposed methods. (a,c) Three points per cycle.
(b,d) Four points per cycle.

polynomial are chosen to match desired values and first derivatives at the interval limits,
with the derivatives estimated via a second-order finite difference scheme. Finally, for the
C? method, coefficients of a fifth-order polynomial are chosen to match values up to the
second derivatives at the interval limits, with first and second derivatives obtained with a
five-point centred scheme. At the edges, the following are used:

(i) C': first-order non-centred differentiation is used at the edge points;
(ii) C?: second-order centred differentiation scheme is used to compute the first and
second derivatives.
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Figure 18. Interpolation error norm, and error of the first Fourier coefficient. (@) Error norm. (b) First
harmonic error.
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Figure 19. Spectral content of the interpolated signals. (a) Interpolation leakage using 2.5 points per cycle.
(b) Interpolation leakage using 4.0 points per cycle.

For the C? interpolation, a first-order non-centred differentiation is used for the first
derivative at the edge points, with the second derivative set to zero. The lower accuracy
obtained at the edges has a limited impact on the method, as in these regions forcing and
responses have vanishingly small amplitudes, so the absolute errors introduced are not
relevant.

Figure 17 shows the performance of each approach for the interpolation of a sinusoidal
signal, which reflects errors expected in the Fourier components of the signal. Figure 18
presents errors associated with each method, and figure 19 shows the spectral content of
the interpolated functions. This parameter is important as large errors in the first harmonic
create an artificial increase/decrease of resolvent gains. To obtain errors of the order 1072,
approximately 4.5 points per cycle should be used. Interpolated signals with n points per
cycle are seen to generate the first spurious frequency peak at a frequency n — 1 times the
frequency of the original signal.

Appendix D. Code validation

The ‘Nek5000 resolvent tools’ package uses the Nek5000 open-source code for the
integration of the linearized direct and adjoint Navier—Stokes equations. The package is
validated on a channel flow with a Reynolds number 50, based on the centreline velocity
and the channel half-width, for 2-D and 3-D configurations. Domain lengths of 47 in the
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Figure 20. Code validation on a laminar channel flow. Gains obtained with explicit construction of the system
matrices (back lines) are closely matched by those obtained with the open-source code (coloured lines).
(a) Two dimensions; (b) three dimensions.

streamwise direction and 0.01 in the spanwise directions, for 3-D simulations, were used,
with periodic conditions in the streamwise and spanwise directions. With such a narrow
spanwise length, the dominant spanwise wavenumber is 8 = 0 at all frequencies. Results
obtained with 20 iterations using the code were compared against standard tools based on
the decomposition of perturbations in spanwise and streamwise wavenumbers, previously
used by Nogueira et al. (2021). Wavenumbers were looped over to search for the dominant
gains at each frequency.

Figure 20 compares the gains obtained with the explicit construction of the system
matrices with those obtained with the implementation of the matrix-free method
described in this work. Both approaches produce the same gains, validating the current
implementation to two- and three-dimensional problems. Files for reproducing the
validation of these results are available in the ‘examples’ branch of the Git repository
at https://github.com/eduardomartini/Nek5000_ResolventTools.
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