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Abstract

The paper introduces fuzzy linguistic logic programming, which is a combination of fuzzy

logic programming, introduced by P. Vojtáš, and hedge algebras in order to facilitate the

representation and reasoning on human knowledge expressed in natural languages. In fuzzy

linguistic logic programming, truth values are linguistic ones, e.g., VeryTrue, VeryProbablyTrue

and LittleFalse, taken from a hedge algebra of a linguistic truth variable, and linguistic hedges

(modifiers) can be used as unary connectives in formulae. This is motivated by the fact that

humans reason mostly in terms of linguistic terms rather than in terms of numbers, and

linguistic hedges are often used in natural languages to express different levels of emphasis.

The paper presents: (a) the language of fuzzy linguistic logic programming; (b) a declarative

semantics in terms of Herbrand interpretations and models; (c) a procedural semantics which

directly manipulates linguistic terms to compute a lower bound to the truth value of a query,

and proves its soundness; (d) a fixpoint semantics of logic programs, and based on it, proves

the completeness of the procedural semantics; (e) several applications of fuzzy linguistic logic

programming; and (f) an idea of implementing a system to execute fuzzy linguistic logic

programs.

KEYWORDS: fuzzy logic programming, hedge algebra, linguistic value, linguistic hedge,

computing with words, databases, querying, threshold computation, fuzzy control

1 Introduction

People usually use words (in natural languages), which are inherently imprecise,

vague and qualitative in nature, to describe real world information, to analyse, to

reason, and to make decisions. Moreover, in natural languages, linguistic hedges

are very often used to state different levels of emphasis. Therefore, it is necessary

to investigate logical systems that can directly work with words, and make use of

linguistic hedges since such systems will make it easier to represent and reason on

knowledge expressed in natural languages.
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Fuzzy logic, which is derived from fuzzy set theory, introduced by L. A. Zadeh,

deals with reasoning that is approximate rather than exact, as in classical predicate

logic. In fuzzy logic, a truth value domain is not the classical set {False,True} or

{0, 1}, but a set of linguistic truth values (Zadeh 1975b) or the whole unit interval

[0,1]. Moreover, in fuzzy logic, linguistic hedges play an essential role in the

generation of the values of a linguistic variable and in the modification of fuzzy

predicates (Zadeh 1989). Fuzzy logic provides us with a very powerful tool for

handling imprecision and uncertainty, which are very often encountered in real

world information, and a capacity for representing and reasoning on knowledge

expressed in linguistic forms.

Fuzzy logic programming, introduced in Vojtáš (2001), is a formal model of an

extension of logic programming without negation working with a truth functional

fuzzy logic in narrow sense. In fuzzy logic programming, atoms and rules, which are

many-valued implications, are graded to a certain degree in the interval [0,1]. Fuzzy

logic programming allows a wide variety of many-valued connectives in order to

cover a great variety of applications. A sound and complete procedural semantics

is provided to compute a lower bound to the truth value of a query. Nevertheless,

no proofs of extended versions of the mgu and lifting lemmas are given. Fuzzy

logic programming has applications such as threshold computation, a data model

for flexible querying (Pokorný and Vojtáš 2001) and fuzzy control (Gerla 2005).

The theory of hedge algebras (HAs), introduced in Nguyen and Wechler (1990,

1992), forms an algebraic approach to a natural qualitative semantics of linguistic

terms in a term domain. The hedge-algebra-based semantics of linguistic terms is

qualitative, relative and dependent on the order-based structure of the term domain.

HAs have been shown to have a rich algebraic structure to represent linguistic

domains (Nguyen et al. 1999), and the theory can be effectively applied to problems

such as linguistic reasoning (Nguyen et al. 1999) and fuzzy control (Nguyen et al.

2008). The notion of an inverse mapping of a hedge is defined in Dinh-Khac et al.

(2006) for monotonic HAs, a subclass of linear HAs.

In this work, we integrate fuzzy logic programming and HAs to build a logical

system that facilitates the representation and reasoning on knowledge expressed in

natural languages. In our logical system, the set of truth values is that of linguistic

ones taken from an HA of a linguistic truth variable. Furthermore, we consider

only finitely many truth values. On the one hand, this is due to the fact that

normally, people use finitely many degrees of quality or quantity to describe real

world applications which are granulated (Zadeh 1997). On the other hand, it is

reasonable to provide a logical system suitable for computer implementation. In

fact, the finiteness of the truth domain allows us to obtain the Least Herbrand

model for a finite logic program after a finite number of iterations of an immediate

consequences operator. Moreover, we allow the use of linguistic hedges as unary

connectives in formulae to express different levels of accentuation on fuzzy predicates.

The procedural semantics in Vojtáš (2001) is extended to deduce a lower bound to

the truth value of a query by directly computing with linguistic terms.

The paper is organised as follows: the next section gives a motivating example

for the development of fuzzy linguistic logic programming; Section 3 presents

linguistic truth domains taken from HAs of a truth variable, inverse mappings of
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hedges, many-valued modus ponens w.r.t. such domains; Section 4 presents the

theory of fuzzy linguistic logic programming, defining the language, declarative

semantics, procedural semantics and fixpoint semantics and proving the soundness

and completeness of the procedural semantics; Section 5 and Section 6, respectively,

discuss several applications and an idea for implementing a system where such logic

programs can be executed; the last section summarises the paper.

2 Motivation

Our motivating example is adapted from the hotel reservation system described

in Naito et al. (1995). Here, we use logic programming notation. A rule to find a

convenient hotel for a business trip can be defined as follows:

convenient hotel(Business location, T ime,Hotel)←
∧(near to(Business location,Hotel),

reasonable cost(Hotel, T ime),

fine building(Hotel)).with truth value=VeryTrue

That is, a hotel is regarded to be convenient for a business trip if it is near the

business location, has a reasonable cost at the considered time, and is a fine building.

Here, fine building(Hotel) is an atomic formula (atom), which is a fuzzy predicate

symbol with a list of arguments, having a truth value. There is an option that

the truth value of fine building of a hotel is a number in [0,1] and is calculated

by a function of its age as in Naito et al. (1995). However, in fact, the age of

a hotel may not be enough to reflect its fineness since the fineness also depends

on the construction quality and the surroundings. Similarly, the truth value of

reasonable cost can be computed as a function of the hotel rate at the time.

Nevertheless, since the rate varies from season to season, the function should be

modified accordingly to reflect the reasonableness for a particular time. Thus, a more

realistic and appropriate way is to assess the fineness and the reasonableness of the

cost of a hotel using linguistic truth values, e.g., ProbablyTrue, after considering all

possible factors.

Note that there can be more than one way to define the convenience of a hotel,

and the above rule is only one of them. Furthermore, since any of such rules may

not be absolutely true for everybody, each rule should have a degree of truth (truth

value). For example, VeryTrue is the truth value of the above rule.

In addition, since linguistic hedges are usually used to state different levels of

emphasis, we desire to use them to express different degrees of requirements on the

criteria. For example, if we want to emphasise closeness, we can use the formula Very

near to(Business location,Hotel) instead of near to(Business location,Hotel) in the

rule, and if we do not care much about the cost, we can relax the criterion by using the

hedge Probably for the atom reasonable cost(Hotel,Time). Thus, the rule becomes:

convenient hotel(Business location, T ime,Hotel)←
∧(Very near to(Business location,Hotel),

P robably reasonable cost(Hotel, T ime),

fine building(Hotel)).with truth value=VeryTrue
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In our opinion, in order to model knowledge expressed in natural languages, a

formalism should address the twofold usage of linguistic hedges, i.e., in generating

linguistic values and in modifying predicates. To the best of our knowledge, no

existing frameworks of logic programming have addressed the problem of using

linguistic truth values as well as allowing linguistic hedges to modify fuzzy predicates.

3 Hedge algebras and linguistic truth domains

3.1 Hedge algebras

Since the mathematical structures of a given set of truth values play an important role

in studying the corresponding logics, we present here an appropriate mathematical

structure of a linguistic domain of a linguistic variable Truth in particular, and that

of any linguistic variable in general.

In an algebraic approach, values of the linguistic variable Truth such as True,

VeryTrue, ProbablyFalse, VeryProbablyFalse and so on can be considered to be

generated from a set of generators (primary terms) G = {False,True} using hedges

from a set H = {Very,More, P robably, . . .} as unary operations. There exists a

natural ordering among these values, with a � b meaning that a indicates a degree of

truth less than or equal to b. For example, True < VeryTrue and False < LittleFalse,

where a < b if a � b and a �= b. The relation � is called the semantically ordering

relation (SOR) on the term domain, denoted by X.

There are natural semantic properties of linguistic terms and hedges that can be

formulated in terms of the SOR as follows. Let V, M, L, P and A stand for the

hedges Very, More, Little, Probably and Approximately, respectively.

(i) Hedges either increase or decrease the meaning of terms they modify, so they

can be regarded as ordering operations, i.e., ∀h ∈ H, ∀x ∈ X, either hx � x or hx � x.

The fact that a hedge h modifies terms more than or equal to another hedge k, i.e.,

∀x ∈ X, hx � kx � x or x � kx � hx, is denoted by h � k. Note that since the sets H

and X are disjoint, we can use the same notation � for different ordering relations

on H and on X without any confusion. For example, we have L > P (h > k if h � k

and h �= k) since, for instance, LTrue < PTrue < True and LFalse > PFalse > False.

(ii) A hedge has a semantic effect on others, i.e., it either strengthens or weakens the

degree of modification of other hedges. If h strengthens the degree of modification

of k, i.e., ∀x ∈ X, hkx � kx � x or x � kx � hkx, then it is said that h is positive

w.r.t. k; if h weakens the degree of modification of k, i.e., ∀x ∈ X, kx � hkx � x or

x � hkx � kx, then it is said that h is negative w.r.t. k. For instance, V is positive

w.r.t. M since, e.g., VMTrue > MTrue > True; V is negative w.r.t. P since, e.g.,

PTrue < VPTrue < True.

(iii) An important semantic property of hedges, called semantic heredity, is that

hedges change the meaning of a term a little, but somewhat preserve the original

meaning. Thus, if there are two terms hx and kx, where x ∈ X, such that hx � kx, then

all terms generated from hx using hedges are less than or equal to all terms generated

from kx. This property is formulated by: (a) if hx � kx, then H(hx) � H(kx), where

H(u) denotes the set of all terms generated from u by means of hedges, i.e.,
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H(u) = {σu|σ ∈ H∗}, where H∗ is the set of all strings of symbols in H including the

empty one. For example, since MTrue � VTrue, we have VMTrue � LVTrue and

H (MTrue) � H (VTrue); (b) if two terms u and v are incomparable, then all terms

generated from u are incomparable to all terms generated from v. For example, since

AFalse and PFalse are incomparable, VAFalse and MPFalse are incomparable too.

Two terms u and v are said to be independent if u /∈ H(v) and v /∈ H(u). For

example, VTrue and PMTrue are independent, but VTrue and LVTrue are not

since LVTrue ∈ H (VTrue).

Definition 1 (Hedge algebra; Nguyen and Wechler 1990 )

An abstract algebra X = (X,G,H,�), where X is a term domain, G is a set of

primary terms, H is a set of linguistic hedges and � is an SOR on X, is called an

HA if it satisfies the following:

(i) Each hedge is either positive or negative w.r.t. the others, including itself;

(ii) If terms u and v are independent, then, for all x ∈ H(u), we have x /∈ H(v). In

addition, if u and v are incomparable, i.e., u �< v and v �< u, then so are x and y, for

every x ∈ H(u) and y ∈ H(v);

(iii) If x �= hx, then x /∈ H(hx), and if h �= k and hx � kx, then h′hx � k′kx, for all

h, k, h′, k′ ∈ H and x ∈ X. Moreover, if hx �= kx, then hx and kx are independent;

(iv) If u /∈ H(v) and u � v (resp. u � v), then u � hv (resp. u � hv) for any h ∈ H .

Axioms (ii)–(iv) are a weak formulation of the semantic heredity of hedges.

Given a term u in X, the expression hn · · · h1u is called a representation of x w.r.t.

u if x = hn · · · h1u, and, furthermore, it is called a canonical representation of x w.r.t.

u if hnhn−1 · · · h1u �= hn−1 · · · h1u.

The following proposition shows how to compare any two terms in X. The

notation xu|j denotes the suffix of length j of a representation of x w.r.t. u, i.e., for

x = hn · · · h1u, xu|j = hj−1 · · · h1u, where 2 � j � n + 1, and xu|1 = u. Let I /∈ H be

an artificial hedge called the identity on X defined by the rule ∀x ∈ X, Ix = x.

Proposition 1 (Nguyen and Wechler 1992 )

Let x = hn · · · h1u, y = km · · · k1u be two canonical representations of x and y w.r.t.

u, respectively. Then, there exists the largest j � min(m, n) + 1 (here, as a convention

it should be understood that if j = min(m, n) + 1, then hj = I , for j = n + 1, and

kj = I , for j = m + 1) such that ∀i < j, hi = ki, and

(i) x = y iff n = m and hjxu|j = kjxu|j;

(ii) x < y iff hjxu|j < kjxu|j;

(iii) x and y are incomparable iff hjxu|j and kjxu|j are incomparable.

3.2 Linear symmetric hedge algebras

Since we allow hedges to be unary connectives in formulae, there is a need to be able

to compute the truth value of a hedge-modified formula from that of the original.

To this end, the notion of an inverse mapping of a hedge is utilised. In order to define

this notion, we restrict ourselves to linear HAs.
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The set of primary terms G usually consists of two comparable ones, denoted

by c− < c+. For the variable Truth, we have c− = False < c+ = True. Such

HAs are called symmetric ones. For symmetric HAs, the set of hedges H can be

divided into two disjoint subsets H+ and H− defined as H+ = {h|hc+ > c+} and

H− = {h|hc+ < c+}. Two hedges h and k are said to be converse if ∀x ∈ X, hx � x

iff kx � x, i.e., they are in different subsets; h and k are said to be compatible if

∀x ∈ X, hx � x iff kx � x, i.e., they are in the same subset.

Two hedges in each of sets H+ and H− may be comparable, e.g., L and P , or

incomparable, e.g., A and P . Thus, H+ and H− become posets.

Definition 2 (Linear symmetric HA)

A symmetric HA X = (X,G = {c−, c+}, H,�) is said to be a linear symmetric HA

(lin-HA, for short) if the set of hedges H is divided into H+ = {h|hc+ > c+} and

H− = {h|hc+ < c+}, and H+ and H− are linearly ordered.

Example 1

Consider an HA X = (X,G = {c−, c+}, H = {V ,M, P , L},�). X is a lin-HA as

follows. V and M are positive w.r.t. V , M and L, and negative w.r.t. P ; P is positive

w.r.t. P , and negative w.r.t. V , M and L; L is positive w.r.t. P , and negative w.r.t. V ,

M and L. H is decomposed into H+ = {V ,M} and H− = {P , L}. Moreover, in H+,

we have M < V , and in H−, we have P < L.

Definition 3 (Sign function; Nguyen and Wechler 1990 )

A function Sign : X → {−1, 0,+1} is a mapping defined recursively as follows,

where h, h′ ∈ H and c ∈ {c−, c+}:
(a) Sign(c−) = −1, Sign(c+) = +1;

(b) Sign(hc) = −Sign(c) if either h ∈ H+ and c = c− or h ∈ H− and c = c+;

(c) Sign(hc) = Sign(c) if either h ∈ H+ and c = c+ or h ∈ H− and c = c−;

(d) Sign(h′hx) = −Sign(hx), if h′hx �= hx, and h′ is negative w.r.t. h;

(e) Sign(h′hx) = Sign(hx), if h′hx �= hx, and h′ is positive w.r.t. h;

(f) Sign(h′hx) = 0 if h′hx = hx.

Based on the function Sign , we have a criterion to compare hx and x as follows:

Proposition 2 (Nguyen and Wechler 1990 )

For any h and x, if Sign(hx) = +1, then hx > x, and if Sign(hx) = −1, then hx < x.

In Nguyen and Wechler (1992), HAs are extended by augmenting two artificial

hedges Φ and Σ defined as Φ(x) = infimum(H(x)) and Σ(x) = supremum(H(x)), for

all x ∈ X. An HA is said to be free if ∀x ∈ X and ∀h ∈ H , hx �= x. It is shown

that, for a free lin-HA of the variable Truth with H �= ∅, Φ(c+) = Σ(c−), Σ(c+) = 1

(AbsolutelyTrue), and Φ(c−) = 0 (AbsolutelyFalse). Let us put W = Φ(c+) = Σ(c−)

(called the middle truth value); we have 0 < c− < W < c+ < 1.

Definition 4 (Linguistic truth domain)

A linguistic truth domain X taken from a lin-HA X = (X, {c−, c+}, H,�) is defined

as X = X ∪ {0,W , 1}, where 0,W and 1 are the least, the neutral and the greatest

elements of X, respectively.
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Proposition 3 (Nguyen and Wechler 1992 )

For any lin-HA X = (X,G,H,�), the linguistic truth domain X is linearly ordered.

The usual operations are defined on X as follows: (i) negation: given x = σc, where

σ ∈ H∗ and c ∈ {c+, c−}, y is called the negation of x, denoted by y = −x, if y = σc′

and {c, c′} = {c+, c−}. For example, hc+ is the negation of hc− and vice versa. In

particular, −1 = 0, −0 = 1 and −W = W ; (ii) conjunction: x ∧ y = min(x, y);

(iii) disjunction: x ∨ y = max(x, y).

Proposition 4 (Nguyen and Wechler 1992 )

For any lin-HA X = (X,G,H,�), the following hold: (i) −hx = h(−x) for any

h ∈ H; (ii) −− x = x; (iii) x < y iff −x > −y.

It is shown that the identity hedge I is the least element of the sets H+ ∪ {I} and

H− ∪ {I}, i.e., ∀h ∈ H , h � I .

Definition 5 (Extended ordering relation)

An extended ordering relation on H ∪ {I}, denoted by �e, is defined based on the

ordering relations on H+ ∪{I} and H− ∪{I} as follows. Given h, k ∈ H ∪{I}, h �e k

if: (i) h ∈ H−, k ∈ H+; or (ii) h, k ∈ H+ ∪ {I} and h � k; or (iii) h, k ∈ H− ∪ {I} and

h � k. We denote h <e k if h �e k and h �= k.

Example 2

For the HA in Example 1, in H ∪ {I} we have L <e P <e I <e M <e V .

It is straightforward to show the following:

Proposition 5

For all h, k ∈ H ∪ {I}, if h <e k, then hc+ < kc+.

3.3 Inverse mappings of hedges

In fuzzy logic, knowledge is usually represented in terms of pairs consisting of a

vague sentence and its degree of truth, which is also expressed in linguistic terms. A

vague sentence can be represented by an expression u(x), where x is a variable or a

constant, and u is a fuzzy predicate. For example, the assertion ‘It is quite true that

John is studying hard ’ can be represented by a pair (study hard (john),QuiteTrue).

According to Zadeh (1975a, 1979), the following assessments can be considered to

be approximately semantically equivalent: ‘It is very true that Lucia is young ’ and

‘It is true that Lucia is very young ’. That means if we have (young(lucia),VeryTrue),

we also have (Very young(lucia),True). Thus, the hedge ‘Very ’ can be moved from

the truth value to the fuzzy predicate. This is generalised to the following rule:

(R1) (u(x), hT rue)⇒ (hu(x), T rue)

However, the rule is not complete, i.e., in some cases we cannot use it to deduce

the truth value of a hedge-modified fuzzy predicate from that of the original.

For instance, given (young(lucia),VeryTrue), we cannot compute the truth value of

Probably young(lucia) using the above rule. The notion of an inverse mapping of a

hedge, which is an extension of Rule (R1), provides a solution to this problem.
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The idea behind this notion is that the truth value of a hedge-modified fuzzy

predicate can be a function of that of the original. In other words, if we modify a

fuzzy predicate by a hedge, its truth value will be changed by the inverse mapping

of that hedge. Now, we will work out the conditions that an inverse mapping of

a hedge should satisfy. We denote the inverse mapping of a hedge h by h−. First,

since h− is an extension of Rule (R1), we should have h−(hTrue) = True. Second,

intuitively, the more true a fuzzy predicate is, the more true is its hedge-modified

one, so h− should be monotone, i.e., if x � y, then h−(x) � h−(y).

Third, it seems to be natural that by modifying a fuzzy predicate using a hedge

in H+ such as Very or More, we accentuate the fuzzy predicate, so the truth value

should decrease. For example, the truth value of Very young(lucia) should be less

than that of young(lucia). Similarly, by applying a hedge in H− such as Probably or

Little, we deaccentuate the fuzzy predicate; thus, the truth value should increase. For

example, the truth value of Probablyhigh income(tom) should be greater than that of

high income(tom). This is also in accordance with the fuzzy-set-based interpretation

of hedges (Zadeh 1972), in which hedges such as Very are called accentuators and

can be defined as Very x = x1+α, where x is a fuzzy predicate expressed by a fuzzy

set and α > 0, and hedges such as Probably are called deaccentuators and can be

defined as Probably x = x1−α (note that the degree of membership of each element

in x is in [0,1]). In summary, this can be formulated as: for all h, k ∈ H ∪ {I} such

that h �e k and for all x, we should have h−(x) � k−(x). As a convention, we always

assume that for all x, I−(x) = x.

Definition 6 (An inverse mapping of a hedge)

Given a lin-HA X = (X, {c+, c−}, H,�) and a hedge h ∈ H , a mapping h− : X → X

is called an inverse mapping of h if it satisfies the following conditions:

h−(hc+) = c+ (1)

x � y ⇒ h−(x) � h−(y) (2)

h �e k ⇒ h−(x) � k−(x) (3)

where k− is an inverse mapping of another hedge k ∈ H ∪ {I}.

Since 0, W and 1 are fixed points, i.e., ∀x ∈ {0,W , 1} and ∀h ∈ H , hx = x (Nguyen

and Wechler 1992), it is reasonable to assume that ∀h ∈ H , h−(0) = 0, h−(W ) = W ,

and h−(1) = 1.

We show why we have to use lin-HAs in order to define the notion of an

inverse mapping of a hedge. Consider an HA containing two incomparable hedges

P (Probably), A (Approximately) ∈ H−. We can see that since Ac+ and Pc+ are

incomparable, P−(Ac+) and P−(Pc+) = c+ should be either incomparable or equal.

The two values cannot be incomparable since every truth value is comparable to c+

and c−, and it might not be very meaningful to keep both P and A in the set of

hedges if we have P−(Ac+) = P−(Pc+) = c+.

Inverse mappings of hedges always exist; in the following, we give an example of

inverse mappings of hedges for a general lin-HA.
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Example 3

Consider a lin-HA X = (X, {c+, c−}, H,�) with H− = {h−q, h−q+1, . . . , h−1} and

H+ = {h1, h2, . . . , hp}, where p, q � 1. Let us denote h0 = I . Without loss of

generality, we suppose that h−q > h−q+1 > · · · > h−1 and h1 < h2 < · · · < hp.

Therefore, we have h−q <e h−q+1 <e · · · <e h−1 <e h0 <e h1 <e h2 <e · · · <e hp, and

thus h−qc
+ < · · · < h−1c

+ < c+ < h1c
+ < · · · < hpc

+. We always assume that, for all

k1, k2 ∈ H and c ∈ {c+, c−}, k2k1c �= k1c, i.e., Sign(k2k1c) �= 0.

First, we build inverse mappings of hedges h−r (x), for all x ∈ H(c+), as follows:

(i) x = c+. For all r such that −min(p, q) � r � min(p, q), we put h−r (c+) = h−rc
+.

In particular, h−0 (c+) = h0c
+ = c+. If p > q, for all q + 1 � r � p, h−r (c+) = W . If

p < q, for all −(p + 1) � r � −q, h−r (c+) = 1. It can be easily verified that, for all

h ∈ H ∪ {I}, h−(c+) satisfies Condition (3).

(ii) x = σhsc
+, where σ ∈ H∗ and hs �= I , i.e., s �= 0. If r = s, we put h−r (σhrc

+) = c+;

hence, Condition (1) is satisfied. Otherwise, we have r �= s. If s − r < −q, we

put h−r (σhsc
+) = W ; if s − r > p, we put h−r (σhsc

+) = 1. Otherwise, we have

−q � s− r � p.

For a certain hedge k, Sign(hpkc
+) can be either −1 or +1 . If Sign(hpkc

+) = +1,

by Proposition 2, we have kc+ < hpkc
+. Thus, it follows that h−qkc

+ < · · · <
h−1kc

+ < kc+ < h1kc
+ < · · · < hpkc

+. For example, we have Sign(VPc+) = +1

and LPc+ < PPc+ < Pc+ < MPc+ < VPc+. Similarly, if Sign(hpkc
+) = −1, we

have h−qkc
+ > · · · > h−1kc

+ > kc+ > h1kc
+ > · · · > hpkc

+. For instance, we have

Sign(VLc+) = −1 and LLc+ > PLc+ > Lc+ > MLc+ > VLc+. In summary, the

ordering of the elements in the set {htkc+ : −q � t � p} can have one of the two

above reverse directions. Therefore, for a pair (s, s− r), there are two cases:

(a) The orderings of the elements in the sets {hthsc+ : −q � t � p} and {hths−rc+ :

−q � t � p} have the same direction, i.e., we have h−qhsc
+ < · · · < h−1hsc

+ < hsc
+ <

h1hsc
+ < · · · < hphsc

+ and h−qhs−rc
+ < · · · < h−1hs−rc

+ < hs−rc
+ < h1hs−rc

+ <

· · · < hphs−rc
+, or h−qhsc

+ > · · · > h−1hsc
+ > hsc

+ > h1hsc
+ > · · · > hphsc

+ and

h−qhs−rc
+ > · · · > h−1hs−rc

+ > hs−rc
+ > h1hs−rc

+ > · · · > hphs−rc
+. In this case, we

put h−r (σhsc
+) = σhs−rc

+.

(b) The orderings have reverse directions, i.e., we have h−qhsc
+ < · · · < h−1hsc

+ <

hsc
+ < h1hsc

+ < · · · < hphsc
+ and h−qhs−rc

+ > · · · > h−1hs−rc
+ > hs−rc

+ >

h1hs−rc
+ > · · · > hphs−rc

+, or h−qhsc
+ > · · · > h−1hsc

+ > hsc
+ > h1hsc

+ > · · · >
hphsc

+ and h−qhs−rc
+ < · · · < h−1hs−rc

+ < hs−rc
+ < h1hs−rc

+ < · · · < hphs−rc
+. We

put h−r (σhsc
+) = δhs−rc

+, where δ is obtained as follows. If σ is empty, then so is δ.

Otherwise, suppose that σ = σ′ht, where t �= 0. If −q � −t � p, we put δ = h−t; if

−t < −q, then δ = h−q; if −t > p, then δ = hp. It can be seen that what we have

done here is to make inverse mappings of hedges monotone.

In particular, if r = 0, then s = s − r. Thus, (b) is not the case, and by (a), we

have h−0 (σhsc
+) = σhsc

+; this complies with the assumption I−(x) = x, for all x.

Second, for x ∈ H(c−), we define h−r (x) based on the above case as follows. Note

that from x ∈ H(c−), we have −x ∈ H(c+). If −min(p, q) � r � min(p, q), we put

h−r (x) = −h−−r(−x); if p > q, for all q + 1 � r � p, h−r (x) = −h−−q(−x); if p < q, for

all −(p + 1) � r � −q, h−r (x) = −h−p (−x).
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Finally, as usual, h−(1) = 1, h−(W ) = W , and h−(0) = 0, for all h.

It can be easily seen that, for all x ∈ H(c+) and h ∈ H∪{I}, h−(x) ∈ H(c+)∪{W, 1},
and, for all x ∈ H(c−) and h ∈ H ∪ {I}, h−(x) ∈ H(c−) ∪ {W, 0}.

It has been shown in the above example that the inverse mappings satisfy Condition

(1). In the following, we prove that they also satisfy Conditions (2) and (3).

Proposition 6

The mappings defined above satisfy Condition (3), i.e., h �e k ⇒ h−(x) � k−(x).

Proof

We prove that if h <e k, then h−(x) � k−(x). Assume that h = hr1
, k = hr2

, where

r1 < r2.

First, we prove the case x ∈ H(c+). The case x = c+ has been shown to satisfy

Condition (3) in Example 3. Consider the case x = σhsc
+, where s �= 0. From r1 < r2

we have s − r1 > s − r2. The case s − r2 < −q, i.e., h−r2
(σhsc

+) = W , is trivial; so is

the case s − r1 > p, i.e., h−r1
(σhsc

+) = 1. Otherwise, −q � s − r2 < s − r1 � p; thus,

h−(x) = δ1hs−r1
c+ and k−(x) = δ2hs−r2

c+, for some δ1 and δ2. Since hs−r1
c+ > hs−r2

c+,

by Proposition 1, we have h−(x) > k−(x).

Second, consider the case x ∈ H(c−). Since −x ∈ H(c+), from the above case,

we have, for all t, h−p (−x) � h−t (−x) � h−−q(−x), and by Proposition 4, −h−p (−x) �
−h−t (−x) � −h−−q(−x). If −r1 > p, then h−r1

(x) = −h−p (−x); if −r2 < −q, then h−r2
(x) =

−h−−q(−x), thus, we always have h−r1
(x) � h−r2

(x). Otherwise, p � −r1 > −r2 � −q;

thus, h−r1
(x) = −h−−r1

(−x) and h−r2
(x) = −h−−r2

(−x). We have h−−r1
(−x) � h−−r2

(−x);

thus, −h−−r1
(−x) � −h−−r2

(−x), i.e., h−r1
(x) � h−r2

(x).

Finally, for x ∈ {0,W , 1}, we have h−(x) = k−(x) = x. �

Proposition 7

The mappings defined above satisfy Condition (2), i.e., x � y ⇒ h−(x) � h−(y).

Proof

Suppose x > y. Consider h−r (x) and h−r (y), for some r.

First, we prove the case x, y ∈ H(c+). There are three possible cases:

(1) x = c+ and y = σhtc
+, where t < 0. If t− r < −q, then h−r (y) = W � h−r (x); if

−r > p, then h−r (x) = 1 � h−r (y). Otherwise, −q � t−r < −r � p, thus h−r (x) = h−rc
+

and h−r (y) = δht−rc
+. Since h−rc

+ > ht−rc
+, we have h−r (x) > h−r (y).

(2) y = c+ and x = σhtc
+, where t > 0. The proof is similar to that of (1).

(3) x = σhtc
+ and y = δhsc

+, where t � s. If s− r < −q, then h−r (y) = W � h−r (x),

and if t − r > p, then h−r (x) = 1 � h−r (y). Otherwise, −q � s − r � t − r � p; thus,

h−r (x) = σ′ht−rc
+ and h−r (y) = δ′hs−rc

+. There are two cases:

(3.1) t− r > s− r. Since ht−rc
+ > hs−rc

+, by Proposition 1, h−r (x) > h−r (y).

(3.2) t = s. Suppose x = σ1hmhsc
+ and y = δ1hnhsc

+, where if m = 0, then σ1 is

empty, and if n = 0, then δ1 is empty. There are two cases:

(3.2.1) m �= n. Since x > y, by Proposition 1, hmhsc
+ > hnhsc

+. If hmhs−rc
+ >

hnhs−rc
+, by (a), h−r (x) = σ1hmhs−rc

+ and h−r (y) = δ1hnhs−rc
+. By Proposition 1,

h−r (x) > h−r (y). Otherwise, hmhs−rc
+ < hnhs−rc

+. We prove the case m > n, and the

case m < n can be proved similarly. Since m > n and hmhs−rc
+ < hnhs−rc

+, we
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can see that the values hzhs−rc
+, where z = p, p − 1, · · · ,−q, are increasing while

the index z is decreasing. Thus, for all z, hphs−rc
+ � hzhs−rc

+ � h−qhs−rc
+. If

−m < −q, then by (b), h−r (x) = h−qhs−rc
+. In any case, h−r (y) = hzhs−rc

+, for some

z. Therefore, h−r (x) � h−r (y). Similarly, if −n > p, then by (b), h−r (y) = hphs−rc
+;

thus, h−r (x) � h−r (y). Otherwise, −q � −m < −n � p. By (b), h−r (x) = h−mhs−rc
+

and h−r (y) = h−nhs−rc
+. Since −m < −n, we have h−mhs−rc

+ > h−nhs−rc
+, i.e.,

h−r (x) > h−r (y).

(3.2.2) m = n. Since x > y, by Proposition 1, there exist k1, k2 ∈ H∪{I} and k1 �= k2,

and σ2, δ2, γ ∈ H∗ such that x = σ2k1γhmhsc
+, y = δ2k2γhmhsc

+ and k1γhmhsc
+ >

k2γhmhsc
+. Also, since x > y, we have m = n �= 0 (as a convention, all hedges

appearing before h0 = I in a representation of a value have no effect). There are

two cases: either hmhsc
+ > hsc

+ or hmhsc
+ < hsc

+. We prove the case hmhsc
+ > hsc

+,

and the other can be proved similarly. Since hmhsc
+ > hsc

+, by Proposition 2,

Sign(hmhsc
+) = +1. There are two cases:

(3.2.2.1) hmhs−rc
+ < hs−rc

+. By (b), in any case, h−r (x) = h−r (y).

(3.2.2.2) hmhs−rc
+ > hs−rc

+. By (a), h−r (x) = σ2k1γhmhs−rc
+ and h−r (y) = δ2k2γhmhs−rc

+.

Since hmhs−rc
+ > hs−rc

+, Sign(hmhs−rc
+) = +1 = Sign(hmhsc

+). By Definition

3, Sign(k1γhmhs−rc
+) = Sign(k1γhmhsc

+) and Sign(k2γhmhs−rc
+) = Sign(k2γhmhsc

+).

Since k1γhmhsc
+ > k2γhmhsc

+, there are three cases:

(3.2.2.2.1) k1γhmhsc
+ > k2γhmhsc

+ � γhmhsc
+. Thus, by definition, k1 > k2. More-

over, by Proposition 2, Sign(k1γhmhsc
+) = +1 and Sign(k2γhmhsc

+) ∈ {0,+1}. Thus,

Sign(k1γhmhs−rc
+) = +1, i.e., k1γhmhs−rc

+ > γhmhs−rc
+. Since k1 > k2, k1γhmhs−rc

+ �
k2γhmhs−rc

+ � γhmhs−rc
+; thus, h−r (x) � h−r (y).

(3.2.2.2.2) γhmhsc
+ � k1γhmhsc

+ > k2γhmhsc
+. The proof is similar to that of

(3.2.2.2.1).

(3.2.2.2.3) k1γhmhsc
+ � γhmhsc

+ � k2γhmhsc
+. By Proposition 2, Sign(k1γhmhsc

+) =

Sign(k1γhmhs−rc
+) ∈ {0,+1} and Sign(k2γhmhsc

+) = Sign(k2γhmhs−rc
+) ∈ {0,−1}.

Thus, k1γhmhs−rc
+ � γhmhs−rc

+ and k2γhmhs−rc
+ � γhmhs−rc

+. Since k1γhmhsc
+ >

k2γhmhsc
+, one of Sign(k1γhmhs−rc

+) and Sign(k2γhmhs−rc
+) must differ from 0; thus

k1γhmhs−rc
+ > k2γhmhs−rc

+. Therefore, h−r (x) > h−r (y).

Second, consider the case x, y ∈ H(c−). In any case, h−r (x) = −h−z (−x) and

h−r (y) = −h−z (−y), for some z. Since x, y ∈ H(c−), we have −x,−y ∈ H(c+). By the

above case, x > y ⇒ −x < −y ⇒ h−z (−x) � h−z (−y)⇒ h−r (x) � h−r (y).

Finally, if x ∈ H(c+) ∪ {W, 1} and y ∈ H(c−) ∪ {0,W }, then h−(x) � W � h−(y);

and if x = 1 or y = 0, then h−(x) � h−(y). �

3.4 Limited hedge algebras

In the present work, we only deal with finite linguistic truth domains. The rationale

for this is as follows.

First, in daily life, humans only use linguistic terms with a limited length. This

is due to the fact that it is difficult to distinguish the different meaning of terms

with many hedges such as Very Little Probably True and More Little Probably

True. Hence, we can assume that applying any hedge to truth values that have a

certain number l of hedges will not change their meaning. In other words, canonical

representations of all terms w.r.t. primary terms have a length of at most l + 1.
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Second, according to Zadeh (1975b), in most applications to approximate rea-

soning, a small finite set of fuzzy truth values would, in general, be sufficient

since each fuzzy truth value represents a fuzzy set rather than a single element of

[0,1].

Third, more importantly, it is reasonable for us to consider only finitely many

truth values in order to provide a logical system that can be implemented for

computers. In fact, we later show that with a finite truth domain, we can obtain the

Least Herbrand model for a finite program after a finite number of iterations of an

immediate consequences operator.

Definition 7 (l-limited HA)

An l-limited HA, where l is a positive integer, is a lin-HA in which canonical

representations of all terms w.r.t. primary terms have a length of at most l + 1.

For an l -limited HA X = (X,G,H,�), since the set of hedges H is finite, so is the

linguistic truth domain X.

In the following, we give a particular example of inverse mappings of hedges for

a 2-limited HA.

Example 4

Consider a 2-limited HA X = (X, {c+, c−}, {V ,M, P , L},�) with L <e P <e I <e

M <e V . We have a linguistic truth domain X = {v0 = 0, v1 = VVc−, v2 =

MVc−, v3 = Vc−, v4 = PVc−, v5 = LVc−, v6 = VMc−, v7 = MMc−, v8 = Mc−, v9 =

PMc−, v10 = LMc−, v11 = c−, v12 = VPc−, v13 = MPc−, v14 = Pc−, v15 = PPc−, v16 =

LPc−, v17 = LLc−, v18 = PLc−, v19 = Lc−, v20 = MLc−, v21 = VLc−, v22 = W, v23 =

VLc+, v24 = MLc+, v25 = Lc+, v26 = PLc+, v27 = LLc+, v28 = LPc+, v29 = PPc+, v30 =

Pc+, v31 = MPc+, v32 = VPc+, v33 = c+, v34 = LMc+, v35 = PMc+, v36 = Mc+, v37 =

MMc+, v38 = VMc+, v39 = LVc+, v40 = PVc+, v41 = Vc+, v42 = MVc+, v43 =

VVc+, v44 = 1}. Note that the values appear in an ascending order.

Based on the inverse mappings defined in Example 3, we can build the inverse

mappings for this 2-limited HA with some modifications. Since we are working

with the 2-limited HA, if h−(x) = W , for x ∈ H(c+), we can put h−(x) = VLc+, the

minimum value of H(c+); if h−(x) = 1, for x ∈ H(c+), we can put h−(x) = VVc+, the

maximum value of H(c+); if h−(x) = W , for x ∈ H(c−), we can put h−(x) = VLc−,

the maximum value of H(c−); and if h−(x) = 0, for x ∈ H(c−), we can put

h−(x) = VVc−, the minimum value of H(c−). Changes are also made to the inverse

mappings of hedges with a value in {c−, c+}. This means that inverse mappings

of hedges are not unique. This is acceptable since reasoning based on fuzzy logic

is approximate, and inverse mappings of hedges should be built according to

applications.

Inverse mappings of hedges for the 2-limited HA are shown in Table 1, in

which the value of an inverse mapping of a hedge h−, appearing in the first

row, of a value x, appearing in the first column, is in the corresponding cell. For

example, M−(PPc+) = MLc+. Note that the values of x appear in an ascending

order.
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Table 1. Inverse mappings of hedges

V− M− P− L−

0 0 0 0 0

kVc− VVc− VVc− kMc− c− a

kMc− VVc− kVc− c− kPc− a

c− Vc− Mc− Pc− Lc−

VPc− VMc− PMc− LLc− VLc−

MPc− MMc− LMc− PLc− VLc−

Pc− Mc− c− Lc− VLc−

PPc− PMc− VPc− MLc− VLc−

LPc− LMc− VPc− VLc− VLc−

LLc− LMc− VPc− VLc− VLc−

PLc− LMc− MPc− VLc− VLc−

Lc− c− Pc− VLc− VLc−

MLc− VPc− PPc− VLc− VLc−

VLc− PPc− LPc− VLc− VLc−

W W W W W

VLc+ VLc+ VLc+ LPc+ PPc+

MLc+ VLc+ VLc+ PPc+ VPc+

Lc+ VLc+ VLc+ Pc+ c+

PLc+ VLc+ VLc+ MPc+ LMc+

LLc+ VLc+ VLc+ VPc+ LMc+

LPc+ VLc+ VLc+ VPc+ LMc+

PPc+ VLc+ MLc+ VPc+ PMc+

Pc+ VLc+ Lc+ c+ Mc+

MPc+ VLc+ PLc+ LMc+ MMc+

VPc+ VLc+ LLc+ PMc+ VMc+

c+ Lc+ Pc+ Mc+ Vc+

kMc+ kPc+ c+ kVc+ VVc+ a

kVc+ c+ kMc+ VVc+ VVc+ a

1 1 1 1 1

ak is any of the hedges, including the identity I .

3.5 Many-valued modus ponens

Our logic is truth-functional, i.e., the truth value of a compound formula, built from

its components using a logical connective, is a function, which is called the truth

function of the connective, of the truth values of the components.

Our procedural semantics is developed based on many-valued modus ponens. In

order to guarantee the soundness of many-valued modus ponens, the truth function

of an implication, called an implicator, must be residual to the t-norm, a commutative

and associative binary operation on the truth domain, evaluating many-valued

modus ponens (Hájek 1998). The many-valued modus ponens syntactically looks

like:

(B, b), (A← B, r)

(A,C(b, r))
.
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Its soundness semantically states that whenever f is an interpretation such that

f(B) � b, i.e., f is a model of (B, b), and f(A ← B) =←• (f(A), f(B)) � r, i.e., f is

a model of (A ← B, r), then f(A) � C(b, r), where ←• is an implicator, and C is a

t-norm. This means the truth value of A under any model of (B, b) and (A ← B, r)

is at least C(b, r). More precisely, let r be a lower bound to the truth value of the

implication h← b, let C be a t-norm, and let←• be its residual implicator; we have:

C(b, r) � h iff r �←• (h, b). (4)

According to Hájek (1998), from (4), we have:

(∀b)(∀h) C(b,←• (h, b)) � h, (5)

(∀b)(∀r) ←• (C(b, r), b) � r. (6)

Note that t-norms are not necessary to be a truth function of any conjunction in

our language.

Recall that in many-valued logics, there are several prominent sets of connectives

called �Lukasiewicz, Gödel and product logic ones. Each of the sets has a pair of

residual t-norm and implicator. Since our truth values are linguistic, we cannot use

the product logic connectives.

Given a linguistic truth domain X, since all the values in X are linearly ordered, we

assume that they are v0 � v1 � · · · � vn, where v0 = 0 and vn = 1. The �Lukasiewicz

t-norm and implicator can be defined on X as follows:

CL(vi, vj) =

{
vi+j−n if i + j − n > 0

v0 otherwise
,

←•L (vj , vi) =

{
vn if i � j

vn+j−i otherwise
.

Those of Gödel can be:

CG(vi, vj) = min(vi, vj),

←•G (vj , vi) =

{
vn if i � j

vj otherwise
.

Clearly, each of the implicators is the residuum of the corresponding t-norm. It

can also be seen that t-norms are monotone in all arguments, and implicators are

non-decreasing in the first argument and non-increasing in the second.

4 Fuzzy linguistic logic programming

4.1 Language

Like Vojtáš (2001), our language is a many sorted (typed) predicate language. Let

A denote the set of all attributes. For each sort of variables A ∈ A, there is a

set CA of constant symbols, which are names of elements of the domain of A. In

order to achieve the Least Herbrand model after a finite number of iterations of an

immediate consequences operator, we do not allow any function symbols. This is
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not a severe restriction since in many database applications, there are no function

symbols involved.

Connectives can be: conjunctions ∧ (also called Gödel) and ∧L (�Lukasiewicz);

the disjunction ∨; implications ←L (�Lukasiewicz) and ←G (Gödel); and linguistic

hedges as unary connectives. For any connective c different from hedges, its truth

function is denoted by c•, and for a hedge connective h, its truth function is its

inverse mapping h−. The only quantifier allowed is the universal quantifier ∀.
A term is either a constant or a variable.

An atom or atomic formula is of the form p(t1, . . . , tn), where p is an n-ary predicate

symbol, and t1, . . . , tn are terms of corresponding attributes A1, . . . , An.

A body formula is defined inductively as follows: (i) an atom is a body formula;

(ii) if B1 and B2 are body formulae, then so are ∧(B1, B2), ∨(B1, B2) and hB1, where

h is a hedge. Here, we use the prefix notation for connectives in body formulae.

A rule is a graded implication (A← B.r), where A is an atom called rule head, B

is a body formula called rule body and r is a truth value different from 0. (A← B)

is called the logical part of the rule.

A fact is a graded atom (A.b), where A is an atom called the logical part of the

fact, and b is a truth value different from 0.

Definition 8 (Fuzzy linguistic logic program)

A fuzzy linguistic logic program (program, for short) is a finite set of rules and facts,

where truth values are from the linguistic truth domain of an l-limited HA, hedges

used in body formulae (if any) belong to the set of hedges of the HA, and there are

no two rules (facts) having the same logical part, but different truth values.

We follow Prolog conventions where predicate symbols and constants begin with a

lower-case letter, and variables begin with a capital letter.

Example 5

Assume we use the truth domain from the 2-limited HA in Example 4, that is,

X = (X, {False,True}, {V ,M, P , L},�), and we have the following knowledge base:

(i) The sentence ‘If a student studies very hard, and his/her university is probably

high-ranking, then he/she will be a good employee’ is Very More True.

(ii) The sentence ‘The university where Ann is studying is high-ranking ’ is Very True.

(iii) The sentence ‘Ann is studying hard ’ is More True.

Let gd em, st hd, hira un and T stand for ‘good employee’, ‘study hard ’, ‘high-

ranking university ’ and ‘True’, respectively. Then, the knowledge base can be repre-

sented by the following program:

(gd em(X)←G ∧(V st hd(X), P hira un(X)).VMT )

(hira un(ann).VT )

(st hd(ann).MT )

Note that the predicates st hd(X) and hira un(X) in the only rule are modified by

the hedges V and P , respectively.

We assume as usual that the underlying language of a program P is defined by

constants (if no such constant exists, we add some constant such as a to form ground
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terms) and predicate symbols appearing in P . With this understanding, we can now

refer to the Herbrand universe of sort A, which consists of all ground terms of A,

by UA
P , and to the Herbrand base of P , which consists of all ground atoms, by BP

(Lloyd 1987).

A program P can be represented as a partial mapping:

P : Formulae→ X \ {0}

where the domain of P , denoted by dom(P ), is finite and consists only of logical

parts of rules and facts, and X is a linguistic truth domain. The truth value of a

rule (A← B.r) is r = P (A← B), and that of a fact (A.b) is b = P (A).

Since in our logical system we only want to obtain the computed answers for

queries, we do not look for 1-tautologies to extend the capabilities of the system

although we can have some due to the fact that our connectives are classical

many-valued ones (Hájek 1998).

4.2 Declarative semantics

Since we are working with logic programs without negation, it is reasonable to

consider only fuzzy Herbrand interpretations and models. Given a program P ,

let X be the linguistic truth domain; a fuzzy linguistic Herbrand interpretation

(interpretation, for short) f is a mapping f : BP → X. The ordering � in X can be

extended to the set of interpretations as follows. We say f1 � f2 iff f1(A) � f2(A) for

all ground atoms A. Clearly, the set of all interpretations of a program is a complete

lattice under �. The least interpretation called the bottom interpretation, denoted by

⊥, maps every ground atom to 0.

An interpretation f can be extended to all ground formulae, denoted by f, using

the unique homomorphic extension as follows: (i) f(A) = f(A), if A is a ground

atom; (ii) f(c(B1, B2)) = c•(f(B1), f(B2)), where B1, B2 are ground formulae, and c is

a binary connective; (iii) f(hB) = h−(f(B)), where B is a ground body formula, and

h is a hedge.

For non-ground formulae, since all the formulae in the language are considered

universally quantified, the interpretation f is defined as

f(ϕ) = f(∀ϕ) = infϑ{f (ϕϑ) |ϕϑ is a ground instance of ϕ},

where ∀ϕ means universal quantification of all variables with free occurrence in ϕ.

An interpretation f is a model of a program P if for all formulae ϕ ∈ dom(P ),

we have f(ϕ) � P (ϕ). Therefore, P (ϕ) is understood as a lower bound to the truth

value of ϕ.

A query is an atom used as a question ?A prompting the system.

Definition 9 (Correct answer)

Given a program P , let X be the linguistic truth domain. A pair (x; θ), where x ∈ X,

and θ is a substitution, is called a correct answer for P and a query ?A if for any

model f of P , we have f(Aθ) � x.
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4.3 Procedural semantics

Given a program P and a query ?A, we want to compute a lower bound for the

truth value of A under any model of P . Recall that in the theory of many-valued

modus ponens (Hájek 1998), given (A ← B.r) and (B.b), we have (A.C(b, r)). As in

Vojtáš (2001), our procedural semantics utilises admissible rules.

We denote by Le
P , the disjoint union of the alphabet of the language of dom(P )

augmented by the truth functions of the connectives (except ←i and ←•i ) symbols

Ci and the linguistic truth domain. Admissible rules act on tuples of words in Le
P

and substitutions.

Definition 10 (Admissible rules)

Admissible rules are defined as follows:

Rule 1. From ((XAmY ); ϑ) infer ((XC(B, r)Y )θ; ϑθ) if

(1) Am is an atom (called the selected atom)

(2) θ is an mgu of Am and A

(3) (A← B.r) is a rule in the program.

Rule 2. From (XAmY ) infer (X0Y ). This rule is usually used for situations where

Am does not unify with any rule head or logical part of facts in the program.

Rule 3. From (XhBY ) infer (Xh−(B)Y ) if B is a non-empty body formula, and h is

a hedge.

Rule 4. From ((XAmY ); ϑ) infer ((XrY )θ; ϑθ) if

(1) Am is an atom (also called the selected atom)

(2) θ is an mgu of Am and A

(3) (A.r) is a fact in the program.

Rule 5. If there are no more predicate symbols in the word, replace all connectives

∧’s and ∨’s with ∧• and ∨•, respectively. Then, since this word contains only

some additional C’s, h−’s and truth values, evaluate it. The substitution remains

unchanged.

Note that our rules except Rule 3 are the same as those in Vojtáš (2001).

Definition 11 (Computed answer)

Let P be a program and ?A a query. A pair (r; θ), where r is a truth value, and θ is

a substitution, is said to be a computed answer for P and ?A if there is a sequence

G0, . . . , Gn such that

(1) every Gi is a pair consisting of a word in Le
P and a substitution

(2) G0 = (A; id)

(3) every Gi+1 is inferred from Gi by one of the admissible rules (here we also utilise

the usual Prolog renaming of variables along derivation)

(4) Gn = (r; θ′) and θ = θ′ restricted to variables of A,

and we say that the computation has a length of n.

Let us give an example of a computation.
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Example 6

We take the program in Example 5, that is:

(gd em(X)←G ∧(Vst hd(X), P hira un(X)).VMT )

(hira un(ann).VT )

(st hd(ann).MT )

Given a query ?gd em(ann), we can have the following computation (since the query

is ground, the substitution in the computed answer is the identity):

?gd em(ann)

CG(∧(V st hd(ann), P hira un(ann)),VMT )

CG(∧(V−(st hd(ann)), P hira un(ann)),VMT )

CG(∧(V−(st hd(ann)), P−(hira un(ann))),VMT )

CG(∧(V−(MT ), P−(hira un(ann))),VMT )

CG(∧(V−(MT ), P−(VT )),VMT )

CG(∧•(V−(MT ), P−(VT )),VMT )

Using the inverse mappings of hedges in Table 1, we have CG(∧•(V−(MT ), P−(VT )),

VMT ) = CG(min(PT ,VVT ), VMT ) = CG(PT ,VMT ) = PT . Hence, the sentence

‘Ann will be a good employee’ is at least Probably True. This result is reasonable as

follows: one of the conditions constituting the result is the one saying that ‘The

student studies very hard ’; since ‘Ann is studying hard ’ is MT (More True), the truth

value of ‘Ann is studying very hard ’ is V−(MT ); and since MT < VT , we have

V−(MT ) < V−(VT ) = T , and V−(MT ) = PT is acceptable.

If we use the �Lukasiewicz implication instead of the Gödel implication in the

rule, then in the computation, the Gödel t-norm will be replaced by the �Lukasiewicz

t-norm, and, finally, we have an answer (gd em(ann).MLT ).

From the definition of the procedural semantics, we can see that in order to increase

the chances of finding a good computed answer which has a better truth value along

a computation, we should do the following:

(i) If there is more than one rule or fact whose rule heads or logical parts can

be unifiable with the selected atom, and of such rules or facts there is only one to

which the highest truth value is assigned, then we choose it for the next step.

(ii) If there is one fact among such rules or facts which are associated with the

highest truth value, then we choose the fact for the next step since the t-norm

evaluating such a rule always yields a lower truth value than that of the fact.

(iii) If there is more than one such a rule, but no facts, which have the highest

truth value, then we choose the one with the Gödel implication for the next step

since in this case, the Gödel t-norm usually, but not always (since it also depends

on the bodies of the rules), yields a better truth value than the �Lukasiewicz t-norm.

In Example 6, it has been shown that with the same body formula, the rule with

the Gödel implication yields a better result (PT ) than the rule with the �Lukasiewicz

implication (MLT ).
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4.4 Soundness of the procedural semantics

Theorem 1

Every computed answer for a program P and a query ?A is a correct answer for P

and ?A.

Proof

Assume that a pair (r; θ) is a computed answer for P and ?A. Let f be any model

of P ; we will prove that f(Aθ) � r.

The proof is by induction on length n of computations.

First, suppose that n = 1. Hence, either Rule 2 or Rule 4 has been applied. The

case of Rule 2 is obvious since r = 0. The case of Rule 4 implies that P has a fact

(C.r) such that Aθ = Cθ. Therefore, f(Aθ) = f(Cθ) � f(C) � P (C) = r.

Next, suppose that the result holds for computed answers coming from computa-

tions of length � k − 1, where k > 1. We prove that it also holds for a computation

of length k.

Assume that the sequence of the substitutions in the computation is θ1, . . . , θk
(some of them are the identity), where θ = θ1 · · · θk restricted to variables of A.

Since the length of the computation k > 1, the first admissible rule to be applied is

Rule 1. This means there exists a rule (C ←i B.c) in P such that Aθ1 = Cθ1. For

each atom D in the rule body Bθ1, there exists a computation of length � k − 1

for it. Suppose d is the computed truth value for D in that computation; by

the induction hypothesis, we have d � f(Dθ2 · · · θk). Furthermore, since the truth

functions of the conjunctions, the disjunction, and inverse mappings of hedges are

non-decreasing in all their arguments, if b is the computed truth value for the

whole rule body Bθ1, which is calculated from all the d for each atom D using

the truth functions of the connectives, then b � f(Bθ1θ2 · · · θk). Therefore, we have:

r = Ci(b, c) � Ci(f(Bθ1 · · · θk), c) �(∗) Ci(f(Bθ1 · · · θk), f(Cθ1 · · · θk ←i Bθ1 · · · θk)) =

Ci(f(Bθ1 · · · θk),←•i (f(Cθ1 · · · θk), f(Bθ1 · · · θk))) �(∗∗) f(Cθ1 · · · θk) = f(Aθ1 · · · θk) =

f(Aθ), where (*) holds since f is a model of P , and (**) follows from (5). �

4.5 Fixpoint semantics

Similar to Krajči et al. (2004), the immediate consequences operator, introduced by

van Emden and Kowalski, can be generalised to the case of fuzzy linguistic logic

programming as follows.

Definition 12 (Immediate consequences operator)

Let P be a program. The operator TP mapping from interpretations to interpre-

tations is defined as follows. For every interpretation f and every ground atom

A ∈ BP ,

TP (f)(A) = max{sup{Ci(f(B), r) : (A←i B.r) is a ground instance of a rule in P },
sup{b : (A.b) is a ground instance of a fact in P }}.

Since P is function-free, each Herbrand universe UA
P of a sort A is finite, and so is

its Herbrand base BP . Hence, for each A ∈ BP , there are a finite number of ground
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instances of rule heads and logical parts of facts which match A. Therefore, the

suprema in the definition of TP are in fact maxima.

Similar to Medina et al. (2004), we have the following results.

Theorem 2

The operator TP is monotone.

Proof

Let f1 and f2 be two interpretations such that f1 � f2; we prove that TP (f1) �
TP (f2).

First, let us prove f1(B) � f2(B) for all ground body formulae B by induction

on the structure of the formulae. In the base case where B is a ground atom, we

have f1(B) = f1(B) � f2(B) = f2(B). For the inductive case, consider a ground body

formula B. By case analysis and the induction hypothesis, we have B = ∧(B1, B2),

or B = ∨(B1, B2), or B = hB1 such that f1(B1) � f2(B1) and f1(B2) � f2(B2).

By definition, we have f1(B) = ∧•(f1(B1), f1(B2)) � ∧•(f2(B1), f2(B2)) = f2(B),

or f1(B) = ∨•(f1(B1), f1(B2)) � ∨•(f2(B1), f2(B2)) = f2(B), or f1(B) = h−(f1(B1)) �
h−(f2(B1)) = f2(B), respectively. Thus, f1(B) � f2(B) for all ground body formulae B.

Now, let A be any ground atom. If A does not unify with any rule head or logical

part of facts in P , then TP (f1)(A) = TP (f2)(A) = 0. Otherwise, since the value of the

second sup in Definition 12 does not depend on the interpretations, what we need to

consider now is the first sup. For any ground instance (A←i B.r) of a rule in P , since

B is ground, we have Ci(f1(B), r) � Ci(f2(B), r). By taking suprema for all ground

instances (A ←i B.r) on both sides, we have sup{Ci(f1(B), r)} � sup{Ci(f2(B), r)}.
Therefore, TP (f1)(A) � TP (f2)(A) for all ground atoms A. �

Theorem 3

The operator TP is continuous.

Proof

Recall that a mapping f : L → L, where L is a complete lattice, is said to be

continuous if for every directed subset X of L, f(sup(X)) = sup{f(x)|x ∈ X}.
Let us prove that for each directed set X of interpretations, TP (sup(X)) =

sup{TP (f) | f ∈ X}.
Since TP is monotone, we have sup{TP (f)|f ∈ X} � TP (sup(X)). On the other

hand, since the Herbrand base BP and the truth domain are finite, the set of all

Herbrand interpretations of P is finite. Therefore, for each finite directed set X

of interpretations, we have an upper bound of X in X. This, together with the

monotonicity of TP , leads to TP (sup(X)) � sup{TP (f) : f ∈ X}. �

Theorem 4

An interpretation f is a model of a program P iff TP (f) � f.

Proof

First, assume that f is a model of P ; we prove that TP (f) � f.

Let A be any ground atom. Consider the following cases:
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(i) If A is neither a ground instance of a logical part of facts nor a ground instance

of a rule head in P , then TP (f)(A) = 0 � f(A).

(ii) For each ground instance (A.b) of a fact, say (C.b), in P , since f is a model

of P , and A is a ground instance of C , we have b = P (C) � f(C) � f(A). Hence,

f(A) � sup{b|(A.b) is a ground instance of a fact in P }.
(iii) For each ground instance (A ←i B.r) of a rule, say (C.r), in P , we have:

Ci(f(B), r) = Ci(f(B), P (C)) �(∗) Ci(f(B), f(A←i B)) = Ci(f(B),←•i (f(A), f(B))) �(∗∗)

f(A), where (*) holds since (A ←i B) is a ground instance of C , and (**) follows

from (5). Therefore, f(A) � sup{Ci(f(B), r)|(A←i B.r) is a ground instance of a rule

in P }.
Thus, by definition, TP (f)(A) � f(A) for all A ∈ BP .

Finally, let us show that if TP (f) � f, then f is a model of P .

Let C be any formula in dom(P ). There are two cases:

(i) (C.c), where c is a truth value, is a fact in P . For each ground instance A of

C , by hypothesis and definition, we have f(A) � TP (f)(A) � sup{b|(A.b) is a ground

instance of a fact in P } � c = P (C). Therefore, f(C) = inf{f(A)|A is a ground

instance of C} � P (C).

(ii) (C.c) is a rule in P . For each ground instance A ←j D of C , by hypothesis

and definition, we have f(A) � TP (f)(A) � sup{Ci(f(B), r)|(A ←i B.r) is a ground

instance of a rule in P } � Cj(f(D), c) = Cj(f(D), P (C)). Hence, f(A ←j D) =←•j
(f(A), f(D)) �(∗)←•j (Cj(f(D), P (C)), f(D)) �(∗∗) P (C), where (*) holds since ←•i
is non-decreasing in the first argument, and (**) follows from (6). Consequently,

f(C) = inf{f(A←j D)|(A←j D) is a ground instance of C} � P (C). �

Since the given immediate consequences operator TP satisfies Theorem 3 and

Theorem 4, and the set of Herbrand interpretations of the program P is a complete

lattice under the relation �, due to Knaster and Tarski (Tarski 1955), the Least

Herbrand model of P is exactly the least fixpoint of TP and can be obtained by

iterating TP from the bottom interpretation ⊥ after ω iterations, where ω is the

smallest limit ordinal (apart from 0). Furthermore, since the truth domain X and

the Herbrand base BP are finite, the least model of P can be obtained after at most

O(|P ||X|) steps, where |A| denotes the cardinality of the set A. This is an important

tool for dealing with recursive programs, for which computations can be infinite.

4.6 Completeness of the procedural semantics

The following theorem shows that Tn
P (⊥) in fact builds computed answers for ground

atoms.

Theorem 5

Let P be a program and A a ground atom. For all n, there exists a computation for

P and the query ?A such that the computed answer is (Tn
P (⊥)(A); id).

Proof

Note that since A is ground, the substitutions in all computed answers are always

the identity.
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We prove the result by induction on n.

Suppose first that n = 0. Since T 0
P (⊥)(A) = 0, there is a computation for P and

?A in which only Rule 2 is applied with the computed answer (0; id).

Now suppose that the result holds for n − 1, where n � 1; we prove that it also

holds for n. There are two cases:

(i) A does not unify with any rule head or logical part of facts in P . Then,

Tn
P (⊥)(A) = 0, and the computation is the same as the case n = 0.

(ii) Otherwise, since the suprema in the definition of TP are in fact maxima, there

exists either a ground instance (A.b) of a fact in P such that Tn
P (⊥)(A) = b or a

ground instance (A ←i B.r) of a rule in P such that Tn
P (⊥)(A) = Ci(T

n−1
P (⊥)(B), r).

For the former case, there is a computation for P and ?A in which only Rule

1 is applied, and the computed answer is (b; id). For the latter, by the induction

hypothesis, for each ground atom Bj in B, there exists a computation such that

Tn−1
P (⊥)(Bj) is the computed truth value for Bj . Therefore, the computed truth

value of the whole body B is Tn−1
P (⊥)(B), calculated from all Tn−1

P (⊥)(Bj) along

the complexity of B using the truth functions of the connectives. Clearly, there is

a computation for P and ?A in which the first rule to be applied is Rule 1 carried

out on the rule in P which has (A ←i B.r) as its ground instance, and the rest is

a combination of the computations of each Bj in B. It is clear that the computed

truth value for ?A in this computation is Tn
P (⊥)(A). �

The completeness result for the case of ground queries is shown as follows.

Theorem 6

For every correct answer (x; id) of a program P and a ground query ?A, there exists

a computed answer (r; id) for P and ?A such that r � x.

Proof

Since (x; id) is a correct answer of P and ?A, for every model f of P , we have

f(A) � x. In particular, let MP be the Least Herbrand model of P ; MP (A) =

Tω
P (⊥)(A) � x. Recall that Tω

P (⊥)(A) = sup{Tn
P (⊥)(A) : n < ω}. Since ω is a finite

number, the sup operator is in fact a maximum. Hence, there exists n < ω such that

Tn
P (⊥)(A) = Tω

P (⊥)(A). By Theorem 5, there exists a computation for P and ?A such

that the computed answer is (Tn
P (⊥)(A); id); thus, the theorem is proved. �

The completeness for the case of non-ground queries can be obtained by employing

some extended versions of the mgu and lifting lemmas (Lloyd 1987) as follows.

We define several more notions. Consider a computation of length n for a

program P and a query ?A; we call each Gi, i = 0 · · · (n − 1), in the sequence

of the computation an intermediate query, and the part of the computation from

Gi to Gn an intermediate computation of length n − i. Thus, a computation is a

special intermediate computation with i = 0. Similar to Lloyd (1987), we define an

unrestricted computation (an unrestricted intermediate computation) as a computation

(an intermediate computation) in which the substitutions θi in each step are not

necessary to be most general unifiers (mgu), but only required to be unifiers.

In the following proofs, since it is clear for which program a computed answer

is, we may omit the program and state that the computed answer is for the
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(intermediate) query, or the query has the computed answer. The same convention

is applied to (unrestricted) (intermediate) computations and correct answers.

Lemma 1 (Mgu lemma)

Let P be a program and Gi an intermediate query. Suppose that there is an unre-

stricted intermediate computation for P and Gi. Then, there exists an intermediate

computation for P and Gi with the same computed truth value and length such

that, if θi+1, . . . , θn are the unifiers from the unrestricted intermediate computation,

and θ′i+1, . . . , θ
′
n are the mgu’s from the intermediate computation, then there exits a

substitution γ such that θi+1 · · · θn = θ′i+1 · · · θ′nγ.

Proof

The proof is by induction on the length of the unrestricted intermediate computation.

Suppose first that the length is 1, i.e., n = i + 1. Since, if either Rule 2 or Rule 5

is applied, the unifier is the identity (an mgu), and Rule 1 and Rule 3 cannot

be the last rule to be applied in an unrestricted intermediate computation, the

rule to be applied here is Rule 4. Since Rule 4 is the last rule to be applied in

the unrestricted intermediate computation, it can be shown that the unrestricted

intermediate computation is also an unrestricted computation of length 1. This

means i = 0. Suppose that G0 = (Am; id), where Am is an atom. Then, there exists a

fact (A.b) in P such that θ1 is a unifier of Am and A, and b is the computed truth

value. Assume that θ′1 is an mgu of Am and A. Then, θ1 = θ′1γ for some γ. Clearly,

there is a computation for P and ?Am carried out on the same fact (A.b) with length

1, the computed truth value b, and the mgu θ′1.

Now suppose that the result holds for length � k − 1, where k � 2; we prove

that it also holds for length k. Assume that there is an unrestricted intermediate

computation for P and Gi of length k with the sequence of unifiers θi+1, . . . , θn,

where n = i + k. Consider the transition from Gi to Gi+1. Since k � 2, it cannot be

an application of Rule 5 and thus is one of the following cases:

(i) Either Rule 2 or Rule 3 is applied. Then, θi+1 = id. By the induction hypothesis,

there exists an intermediate computation for P and Gi+1 of length k − 1 with

mgu’s θ′i+2, . . . , θ
′
n such that θi+2 · · · θn = θ′i+2 · · · θ′nγ for some γ. Thus, there is an

intermediate computation for P and Gi of length k with mgu’s θ′i+1 = id, θ′i+2, . . . , θ
′
n

and θi+1 · · · θn = θ′i+1 · · · θ′nγ.

(ii) Either Rule 1 or Rule 4 is applied. Hence, θi+1 is a unifier for the selected

atom A in Gi and an atom A′, which is either a rule head (if Rule 1 is applied) or a

logical part of a fact (if Rule 4 is applied) in P . There exists an mgu θ′i+1 for A and

A′ such that θi+1 = θ′i+1ϑ for some ϑ. Therefore, if we use θ′i+1 instead of θi+1 in the

transition, we will obtain an intermediate query G′i+1 such that Gi+1 = G′i+1ϑ since

Gi+1 and G′i+1 are all obtained from Gi by replacing A with the same expression,

then applying θi+1 or θ′i+1, respectively. Now consider the transitions from Gi+1 to

Gn−1. Since they cannot be an application of Rule 5, there are two possible cases:

(a) All the transitions use only Rule 2 or Rule 3. Thus, all the unifiers are the

identity. If we apply the same rule on the corresponding atom (for the case of Rule

2) or on the corresponding body formula (for the case of Rule 3) for each transition

from the intermediate query G′i+1, we will obtain a sequence G′i+1, . . . , G
′
n−1, and it
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can be shown that for all i + 1 � l � n− 1, Gl = G′lϑ. Since the last transition from

Gn−1 to Gn uses Rule 5, Gn−1 does not have any predicate symbols, and neither

does G′n−1. Thus, they are identical. As a result, Gi has an intermediate computation

Gi, G
′
i+1, . . . , G

′
n−1, Gn with mgus θ′i+1 and the identities.

(b) There exists the smallest m such that i + 1 � m � n − 2, and the transition

from Gm to Gm+1 uses either Rule 1 or Rule 4. Hence, all the transitions from Gi+1

to Gm use only Rule 2 or Rule 3. As above, we can have a sequence G′i+1, . . . , G
′
m

such that for all i + 1 � l � m, Gl = G′lϑ. Now we will prove the result for

the case that Rule 1 is applied in the transition from Gm to Gm+1, and the case

for Rule 4 can be proved similarly. The application of Rule 1 in the transition

implies that there exists a rule (A′′ ←j B.r) in P such that θm+1 is a unifier of

the selected atom Am in Gm and A′′. Since we utilise the usual Prolog renaming

of variables along derivation, we can assume that ϑ does not act on any variables

of A′′ or B. Suppose that A′m is the corresponding selected atom in G′m, we have

Am = A′mϑ. Therefore, ϑθm+1 is a unifier for A′m and A′′ since A′mϑθm+1 = Amθm+1 =

A′′θm+1 = A′′ϑθm+1. Now applying Rule 1 to G′m on the selected atom A′m and

the rule (A′′ ←j B.r) with the unifier ϑθm+1, we obtain an intermediate query

G′m+1. Since (Cj(B, r))θm+1 = (Cj(B, r))ϑθm+1 and Gm = G′mϑ, we have G′m+1 =

Gm+1. Thus, Gi has an unrestricted intermediate computation with the sequence

Gi, G
′
i+1, . . . , G

′
m, Gm+1, . . . , Gn and the unifiers θ′i+1, θi+2, . . . , θm, ϑθm+1, θm+2, . . . , θn. By

the induction hypothesis, G′m has an intermediate computation with the sequence

G′m, G
′
m+1, . . . , G

′
n, the mgu’s θ′m+1, . . . , θ

′
n, and the same computed truth value such

that ϑθm+1θm+2 · · · θn = θ′m+1 · · · θ′nγ for some γ. Since θi+2, . . . , θm are the identity,

Gi has an intermediate computation with the sequence Gi, G
′
i+1, . . . , G

′
m, G

′
m+1, . . . , G

′
n

and the mgu’s θ′i+1, θi+2, . . . , θm, θ
′
m+1, . . . , θ

′
n, and we have θi+1 · · · θmθm+1θm+2 · · · θn =

θ′i+1θi+2 · · · θmϑθm+1θm+2 · · · θn = θ′i+1θi+2 · · · θmθ′m+1 · · · θ′nγ. �

Lemma 2 (Lifting lemma)

Let P be a program, ?A a query, and θ a substitution. Suppose there exists a

computation for P and the query ?Aθ. Then there exists a computation for P

and ?A of the same length and the same computed truth value such that, if

θ1, . . . , θn are mgu’s from the computation for P and ?Aθ, and θ′1, . . . , θ
′
n are mgu’s

from the computation for P and ?A, then there exists a substitution γ such that

θθ1 · · · θn = θ′1 · · · θ′nγ.

Proof

The proof is similar to that in Lloyd (1987). Suppose that the computation for P

and ?Aθ has a sequence G0 = (Aθ; id), G1, . . . , Gn. Consider the admissible rule to be

applied in the transition from G0 to G1. We will prove the result for the case of Rule

1, and it can be proved similarly for the others. The application of Rule 1 implies

that there exists a rule (A′ ←j B.r) in P such that θ1 is an mgu of Aθ and A′. We

assume that θ does not act on any variables of A′ or B; thus, θθ1 is a unifier for

A and A′. Now applying Rule 1 to G′0 = (A; id) on the rule (A′ ←j B.r) with the

unifier θθ1, we have G′1 = G1. Therefore, we obtain an unrestricted computation for

P and ?A, which looks like the given computation for P and ?Aθ, except that the
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first intermediate query G′0 is different, and the first unifier is θθ1. Now applying the

mgu lemma, we obtain the result. �

We also have a lemma which is an extension of Lemma 8.5 in Lloyd (1987).

Lemma 3

Let P be a program and ?A a query. Suppose that (x; θ) is a correct answer for P

and ?A. Then there exists a computation for P and the query ?Aθ with a computed

answer (r; id) such that r � x.

Proof

The proof is similar to that in Lloyd (1987). Suppose that Aθ has variables x1, . . . , xn.

Let a1, . . . , an be distinct constants not appearing in P or A, and let θ1 be the

substitution {x1/a1, . . . , xn/an}. Since for any model f of P , f(Aθθ1) � f(Aθ) � x,

and Aθθ1 is ground, (x; id) is a correct answer for P and ?Aθθ1. By Theorem 6,

there exists a computation for P and ?Aθθ1 with a computed answer (r; id) such

that r � x. Since the ai do not appear in P or A, by replacing ai with xi (i = 1, . . . , n)

in this computation, we obtain a computation for P and ?Aθ with the computed

answer (r; id). �

The completeness of the procedural semantics is stated as follows.

Theorem 7

Let P be a program, and ?A a query. For every correct answer (x; θ) for P and ?A,

there exists a computed answer (r; σ) for P and ?A, and a substitution γ such that

r � x and θ = σγ.

Proof

Since (x; θ) is a correct answer for P and ?A, by Lemma 3, there exists a computation

for P and the query ?Aθ with a computed answer (r; id) such that r � x. Suppose

the sequence of mgu’s in the computation is θ1, . . . , θn. Then Aθθ1 · · · θn = Aθ. By the

lifting lemma, there exists a computation for P and ?A with the same computed truth

value r and mgu’s θ′1, . . . , θ
′
n such that θθ1 · · · θn = θ′1 · · · θ′nγ′, for some substitution

γ′. Let σ be θ′1 · · · θ′n restricted to the variables in A. Then θ = σγ, where γ is an

appropriate restriction of γ′. �

Clearly, the proofs of the mgu and lifting lemmas here can be similarly applied

to fuzzy logic programming and the frameworks of logic programming developed

based on it such as multi-adjoint logic programming (see, e.g., Medina et al. 2004).

4.7 More examples

Example 7

Assume that we use the truth domain from the 2-limited HA in Example 4, that is,

X = (X, {False,True}, {V ,M, P , L},�), and have the following knowledge base:

(i) The sentence ‘A hotel is convenient for a business trip if it is very near to the

business location, has a reasonable cost at the time, and is a fine building ’ is Very

True.

https://doi.org/10.1017/S1471068409003779 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003779


334 V. H. Le et al.

(ii) The sentence ‘A hotel has a reasonable cost if either its dinner cost or its hotel

rate at the time is reasonable’ is Very True.

(iii) The sentence ‘Causeway hotel is near Midtown Plaza ’ is Little More True.

(iv) The sentence ‘Causeway hotel is a fine building ’ is Probably More True.

(v) The sentence ‘Causeway hotel has a reasonable dinner cost in November ’ is Very

More True.

(vi) The sentence ‘Causeway hotel has a reasonable hotel rate in November ’ is Little

Probably True.

Let cn ht, ne to, re co, fn bd, re di, re rt, Bu lo, mt, cw and T stand for ‘convenient

hotel’, ‘near to’, ‘reasonable cost’, ‘fine building’, ‘reasonable dinner cost’, ‘reason-

able hotel rate’, ‘business location’, ‘Midtown Plaza’, ‘Causeway hotel’, and ‘True’,

respectively. Then, the knowledge base can be represented by the following program:

(cn ht(Bu lo, T ime,Hotel)←G

∧(V ne to(Bu lo,Hotel), re co(Hotel, T ime), fn bd(Hotel)).VT )

(re co(Hotel, T ime)←L ∨(re di(Hotel, T ime), re rt(Hotel, T ime)).VT )

(ne to(mt, cw).LMT )

(fn bd(cw).PMT )

(re di(cw, nov).VMT )

(re rt(cw, nov).LPT )

Note that although the conjunctions and disjunction are binary connectives, they

can be easily extended to have any arity greater than 2.

Given a query ?cn ht(mt, nov, cw), we can have the following computation (the

substitution in the computed answer is the identity):

?cn ht(mt, nov, cw)

CG(∧(V ne to(mt, cw), re co(cw, nov), fn bd(cw)),VT )

CG(∧(V−(ne to(mt, cw)), re co(cw, nov), fn bd(cw)),VT )

CG(∧(V−(LMT ), re co(cw, nov), fn bd(cw)),VT )

CG(∧(V−(LMT ), re co(cw, nov),PMT ),VT )

CG(∧(V−(LMT ),CL(∨(re di(cw, nov), re rt(cw, nov)), VT ),PMT ),VT )

CG(∧(V−(LMT ),CL(∨(VMT , re rt(cw, nov)), VT ),PMT ),VT )

CG(∧(V−(LMT ),CL(∨(VMT ,LPT ), VT ),PMT ),VT )

CG(∧•(V−(LMT ),CL(∨•(VMT ,LPT ), VT ),PMT ),VT )

Using the inverse mappings of hedges in Table 1, we have CG(∧•(V−(LMT ),CL(∨•(
VMT ,LPT ),VT ),PMT ),VT ) = CG(∧•(V−(LMT ),CL(VMT ,VT ),PMT ),VT ) =

CG(∧•(LPT ,PMT ,PMT ),VT ) = CG(LPT ,VT ) = LPT . Thus, the computed an-

swer is (LPT ; id), and the sentence ‘Causeway hotel is convenient for a business trip

to Midtown Plaza in November ’ is at least Little Probably True.

Now, if we want to relax the first condition in the sentence (i), we can replace the

phrase ‘very near to’ by a phrase ‘probably near to’. Then, similarly, we can have a
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similar program and the following computation:

?cn ht(mt, nov, cw)

CG(∧(P ne to(mt, cw), re co(cw, nov), fn bd(cw)),VT )

· · ·
CG(∧•(P−(LMT ),CL(∨•(VMT ,LPT ),VT ),PMT ),VT )

Using the inverse mappings in Table 1, we have a computed answer (PMT ; id).

Similarly, if we remove the hedge for the first condition in the sentence (i), we can

have a similar program and the following computation:

?cn ht(mt, nov, cw)

CG(∧(ne to(mt, cw), re co(cw, nov), fn bd(cw)),VT )

· · ·
CG(∧•(LMT ,CL(∨•(VMT ,LPT ),VT ),PMT ),VT )

Thus, we have a computed answer (LMT ; id).

It can be seen that with the same hotel (Causeway), the time (November), and

the business location (Midtown Plaza), by similar computations, if we put a higher

requirement for the condition ‘near to’, we obtain a lower truth value. More precisely,

with the conditions ‘very near to’, ‘near to’, and ‘probably near to’, we obtain the

truth values LPT , LMT and PMT , respectively, and LPT < LMT < PMT . This is

reasonable and in accordance with common sense.

5 Applications

5.1 A data model for fuzzy linguistic databases with flexible querying

Information stored in databases is not always precise. Basically, two important

issues in research in this field are representation of uncertain information in a

database and provision of more flexibility in the information retrieval process,

notably via inclusion of linguistic terms in queries. Also, the relationship between

deductive databases and logic programming has been well established. Therefore,

fuzzy linguistic logic programming (FLLP) can provide a tool for constructing fuzzy

linguistic databases equipped with flexible querying.

The model is an extension of Datalog (Ullman 1988) without negation and

possibly with recursion, which is similar to that in Pokorný and Vojtáš (2001), called

fuzzy linguistic Datalog (FLDL). It allows one to find answers to queries over a

fuzzy linguistic database (FLDB) using a fuzzy linguistic knowledge base (FLKB).

An FLDB is a (crisp) relational database in which an additional attribute is added

to every relation to store a linguistic truth value for each tuple, and an FLKB is

a fuzzy linguistic Datalog program (FLDL program). Here, we also work on safe

rules, i.e., every variable appearing in the head of a rule also appears in the rule

body. An FLDL program consists of finite safe rules and facts. Moreover, in an

FLDL program, a fuzzy predicate is either an extensional database (EDB) predicate,
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the logical part of a fact, whose relation is stored in the database, or an intensional

database (IDB) predicate which is defined by rules, but not both.

We can extend the monotone subset, consisting of selection, Cartesian product,

equijoin, projection and union, of relational algebra (Ullman 1988) for the case

of our relations and create a new operation called hedge modification. We call

this collection of operations fuzzy linguistic relational algebra (FLRA). Based on

the operations, we can convert rules with the same IDB predicate in their heads

to an expression of FLRA; the expression yields a relation for the predicate.

Furthermore, it can be observed that the way the expression calculates the truth

value for a tuple in the relation for the IDB predicate is the same as the way

the immediate consequences operator TP does for the corresponding ground atom

(Pokorný and Vojtáš 2001). Thus, similar to the classical case, the FLRA augmented

by the immediate consequences operator is sufficient to evaluate recursive FLDL

programs, and every query over an FLKB represented by an FLDL program can

be exactly evaluated by finitely iterating the operations of FLRA from a set of

relations for the EDB predicates.

5.2 Threshold computation

This is the case when one is interested in looking for a computed answer to a query

with a truth value not less than some threshold t.

Assume that at a certain point in a computation we need to find an answer to

the selected atom Am with a threshold tm. Since Cc(x, y) � min(x, y), for c ∈ {L,G},
the selected rule or fact which will be used in the next step must have a truth value

not less than tm. If there is no such rule or fact, we can cut the computation branch.

For the case that Am will be unified with the head of such a rule, the truth value

of the whole body of the rule must not be less than tm+1 = inf{b|C(b, r) � tm},
where r is the truth value of the rule and r � tm. If the implication used in the

rule is the Gödel implication, then tm+1 = tm; if it is the �Lukasiewicz implication,

then tm+1 = vn+k−j , where r = vj , tm = vk are two values in the truth domain X, and

vn = 1. Since n � j � k, we have tm+1 � tm, and if r < 1, we have tm+1 > tm.

Recall that a rule body can be built from its components using the conjunctions,

the disjunction, and hedge connectives. Therefore, we have: (i) For the case of

Gödel conjunction, tm+1 is the next threshold for each of its components, and if

tm+1 > tm, for all m (this will happen if all the implications are �Lukasiewicz, and all

the truth values of rules are less than 1), we can estimate the depth of the search tree

according to the threshold t and the highest truth value of rules. (ii) For the case

of �Lukasiewicz conjunction, if all the truth values of the facts in the program are

less than 1 (thus the computed truth value of any component in any body formula

is less than 1), the next threshold for each of the components is greater than tm+1.

Hence, similar to the above case, we can also work out the depth of the search tree.

(iii) For the case of disjunction, one of the components of the rule body must have a

computed truth value at least tm+1. (iv) Finally, the problem of finding a computed

truth value for a hedge-modified formula hB with a threshold u can be reduced to

that of B with a new threshold u′ = inf{v|h−(v) � u}.
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5.3 Fuzzy control

Control theory is aimed at determining a function f : X → Y whose intended

meaning is that given an input value x, f(x) is the correct value of control signal.

A fuzzy approach to control employs an approximation of such a (ideal) function

by a system of fuzzy IF-THEN rules of the form ‘IF x is A THEN y is B’, where A

and B are labels of fuzzy subsets.

In the literature, there have been several attempts to reduce fuzzy control to fuzzy

logic in narrow sense. Gerla (2001, 2005) proposed an interesting reduction in which

a fuzzy IF-THEN rule ‘IF x is A THEN y is B’ is translated into a fuzzy logic

programming rule (good(x, y)← A(x) ∧ B(y).λ), where A and B are now considered

as fuzzy predicates. The truth value λ is understood as the degree of confidence of

the experts in such a rule, and by default, λ = 1. The intended meaning of the new

predicate good(x, y) is that given an input value x, y is a good value for the control

variable. Therefore, the information carried by a system of fuzzy IF-THEN rules

can be represented by a fuzzy logic program.

More precisely, a system of fuzzy IF-THEN rules:

IF x is A1 THEN y is B1

· · · (7)

IF x is An THEN y is Bn

can be associated with the following program P :

(good(x, y)← A1(x) ∧ B1(y).1)

· · ·
(good(x, y)← An(x) ∧ Bn(y).1) (8)

(Ai(r).rAi
), for r ∈ X, i = 1 · · · n

(Bj(t).tBj
), for t ∈ Y , j = 1 · · · n

where rAi
is the degree of truth to which an input value r satisfies a predicate Ai,

and tBj
is the degree of truth to which an output value t satisfies a predicate Bj .

Each element r ∈ X or t ∈ Y is considered as a constant. Thus, the language of P

is a two-sorted predicate one, and we have two Herbrand universes UX
P = X and

UY
P = Y . Since the truth values of the rules are all equal to 1, �Lukasiewicz and

Gödel t-norms yield the same results in computations; therefore, without loss of

generality we can use the same notation for the implications.

By iterating the TP operator from the bottom interpretation ⊥, we obtain the

Least Herbrand model MP of P . In fact, it can be shown that MP = T 2
P (⊥). Let

us put G(r, t) = MP (good(r, t)). Indeed, G(r, t) can be interpreted as the degree of

preference on the output value t ∈ Y , given the input value r ∈ X. Therefore, the

purpose of the program P is not to compute the ideal function f : X → Y , but

to define a fuzzy predicate good expressing a graded opinion on a possible control

value t w.r.t. a given input value r. Clearly, given an input value r, it should be

better to take a value t that maximises G(r, t). Note that the value G(r, t) is not a
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true value, but a lower bound to the truth value of good(r, t). In other words, we

can say that given r, t can be proved to be good at least at the level G(r, t).

It is worth noticing that in fuzzy control, it is quite often that the labels of fuzzy

subsets in a system of fuzzy IF-THEN rules, i.e., Ai and Bi in the system (7), are

hedge-modified ones, e.g., Verylarge and Veryfast. Thus, our language can be used

to represent the associated program in a very natural way since we allow using

linguistic hedges to modify fuzzy predicates. Clearly, in such a program, all the facts

(Ai(r).rAi
) and (Bj(t).tBj

) we need are only for primary predicates (predicates without

hedge modification) such as large or fast, but not for all predicates as in the case of

fuzzy logic programming.

6 Implementation

In the literature, there has been research on multi-adjoint logic programming

(MALP) (see, e.g., Medina et al. 2004), which is an extension of fuzzy logic

programming in which truth values can be elements of any complete bounded lattice

instead of the unit interval. Also, there have been several attempts to implement

systems where multi-adjoint logic programs can be executed. Due to the similarity

between MALP and FLLP, the implementation of a system for executing fuzzy

linguistic logic programs can be carried out based on the systems built for multi-

adjoint ones. In the sequel, we sketch an idea for implementing such a system, which

is inspired by the FLOPER (Fuzzy LOgic Programming Environment for Research)

system described in Morcillo and Moreno (2008).

The main objective is to translate fuzzy linguistic logic programs into Prolog ones

which can be safely executed inside any standard Prolog interpreter in a completely

transparent way. We take the following program as an illustrative example:

(gd em(X)←G ∧L(V st hd(X), P hira un(X)).VMT )

(hira un(ann).VT )

(st hd(ann).MT )

For simplicity, instead of computing with the truth values, we can compute with

their indexes in the truth domain. Thus, the program can be coded as:

gd em(X) < godel &luka(hedge v(st hd(X)), hedge p(hira un(X))) with 38.

hira un(ann) with 41.

st hd(ann) with 36.

where 38, 41 and 36 are respectively the indexes of the truth values VMT , VT and

MT in the truth domain in Example 4.

During the parsing process, the system produces Prolog code as follows:

(i) Each atom appearing in a fuzzy rule is translated into a Prolog atom extended

by an additional argument, a truth variable of the form TVi, which is intended to

store the truth value obtained in the subsequent evaluation of the atom.
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(ii) The truth functions of the binary connectives and the t-norms can be easily

defined by standard Prolog clauses as follows:

and godel(X,Y , Z) : − (X =< Y ,Z = X;X > Y ,Z = Y ).

and luka(X,Y , Z) : − H is X + Y − n, (H =< 0, Z = 0;H > 0, Z = H).

or godel(X,Y , Z) : − (X =< Y ,Z = Y ;X > Y ,Z = X).

where n is the index of the truth value 1 in the truth domain (in Example 4,

n = 44). Note that and godel is the t-norm CG as well as the truth function of the

conjunction ∧ (∧G) while and luka is the t-norm CL and also the truth function of

the conjunction ∧L, and or godel is the truth function of the disjunction ∨.

Inverse mappings of hedges can be defined by listing all cases in the form of

ground Prolog facts (except inverse mappings of 0, W and 1). More precisely, the

inverse mappings in Table 1 can be defined as follows:

inv map(H, 0, 0).

· · ·
inv map(l, 17, 21).

· · ·
inv map(v, 33, 25).

· · ·
inv map(H, 44, 44).

where 33, 25, 17 and 21 are indexes of the values c+, Lc+, LLc− and VLc−,

respectively; the fact inv map(v, 33, 25). defines the case V−(c+) = Lc+ while the fact

inv map(l, 17, 21). defines the case L−(LLc−) = VLc−. The facts inv map(H, 0, 0).,

inv map(H, 22, 22)., and inv map(H, 44, 44)., where H is a variable of hedges, define

the mappings: for all h, h−(0) = 0, h−(W ) = W , and h−(1) = 1.

(iii) Each fuzzy rule is translated into a Prolog clause in which the calls to the

atoms appearing in its body must be in an appropriate order. More precisely, the

call to the atom corresponding to an operation must be after the calls to the atoms

corresponding to its arguments in order for the truth variables to be correctly

instantiated, and the last call must be to the atom corresponding to the t-norm

evaluating the rule. For example, the rule in the previous program can be translated

into the following Prolog clause:

gd em(X, TV0) : − st hd(X, TV1), inv map(v, TV1, TV2),

hira un(X, TV3), inv map(p, TV3, TV4),

and luka( TV2, TV4, TV5), and godel( TV5, 38, TV0).

(iv) Each fuzzy fact is translated into a Prolog fact in which the additional argument

is just its truth value instead of a truth variable. For the above program, the two

fuzzy facts are translated into Prolog facts hira un(ann, 41). and st hd(ann, 36) ..

(v) A query is translated into a Prolog goal that is an atom with an additional

argument, a truth variable to store the computed truth value. For instance, the query

?gd em(X) is translated into the Prolog goal: ?− gd em(X,Truth value). Given the
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above program and the above query, a Prolog interpreter will return a computed

answer [X = ann, T ruth value = 29], i.e., we have (gd em(ann).PPT ).

7 Conclusions and future work

We have presented fuzzy linguistic logic programming as a result of integrating fuzzy

logic programming and hedge algebras. The main aim of this work is to facilitate the

representation and reasoning on knowledge expressed in natural languages, where

vague sentences are often assessed by a degree of truth expressed in linguistic terms

rather than in numbers, and linguistic hedges are usually used to indicate different

levels of emphasis. It is well known that in order for a formalism to model such

knowledge, it should address the twofold usage of linguistic hedges, i.e., in generating

linguistic values and in modifying predicates. Hence, in this work we use linguistic

truth values and allow linguistic hedges as predicate modifiers. More precisely, in

a fuzzy linguistic logic program, each fact or rule is graded to a certain degree

specified by a value in a linguistic truth domain taken from an hedge algebra of a

truth variable, and hedges can be used as unary connectives in body formulae.

Besides the declarative semantics, a sound and complete procedural semantics

which directly manipulates linguistic terms is provided to compute a lower bound to

the truth value of a query. Thus, it can be regarded as a method of computing with

words. A fixpoint semantics of logic programs is defined and provides an important

tool to handle recursive programs, for which computations can be infinite.

It has been shown that knowledge bases expressed in natural languages can

be represented by our language and the procedural semantics returns reasonable

computed answers to queries. The theory has several applications such as a data

model for fuzzy linguistic databases with flexible querying, threshold computation,

and fuzzy control.

Finding more applications for the theory and implementing a system where fuzzy

linguistic logic programs can be executed are directions for our future work.
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Vojtáš, P. 2001. Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370.

Zadeh, L. A. 1972. A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of

Cybernetics 2, 3, 4–34.

Zadeh, L. A. 1975a. The concept of a linguistic variable and its application in approximate

reasoning. Information Sciences 8, 9, 199–249, 301–357, 43–80.

Zadeh, L. A. 1975b. Fuzzy logic and approximate reasoning. Synthese 30, 407–428.

Zadeh, L. A. 1979. A theory of approximate reasoning. In Machine Intelligence, J. E. Hayes,

D. Michie and L. I. Mikulich, Ed. Vol. 9. Wiley, 149–194.

Zadeh, L. A. 1989. Knowledge representation in fuzzy logic. IEEE Transactions on Knowledge

and Data Engineering 1, 1, 89–99.

Zadeh, L. A. 1997. Toward a theory of fuzzy information granulation and its centrality in

human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127.

https://doi.org/10.1017/S1471068409003779 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003779

