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SUMMARY

In this paper, finding the maximum load carrying capacity
of mobile manipulators for a given two-end-point task is
formulated as an optimal control problem. The solution
methods of this problem are broadly classified as indirect
and direct. This work is based on the indirect solution
which solves the optimization problem explicitly. In fixed-
base manipulators, the maximum allowable load is limited
mainly by their joint actuator capacity constraints. But
when the manipulators are mounted on the mobile bases,
the redundancy resolution and nonholonomic constraints
are added to the problem. The concept of holonomic and
nonholonomic constraints is described, and the extended
Jacobian matrix and additional kinematic constraints are
used to solve the extra DOFs of the system. Using the
Pontryagin’s minimum principle, optimality conditions for
carrying the maximum payload in point-to-point motion
are obtained which leads to the bang-bang control. There
are some difficulties in satisfying the obtained optimality
conditions, so an approach is presented to improve the
formulation which leads to the two-point boundary value
problem (TPBVP) solvable with available commands in
different softwares. Then, an algorithm is developed to find
the maximum payload and corresponding optimal path on
the basis of the solution of TPBVP. One advantage of the
proposed method is obtaining the maximum payload
trajectory for every considered objective function. It means
that other objectives can be achieved in addition to maximize
the payload. For the sake of comparison with previous results
in the literature, simulation tests are performed for a two-
link wheeled mobile manipulator. The reasonable agreement
is observed between the results, and the superiority of the
method is illustrated. Then, simulations are performed for
a PUMA arm mounted on a linear tracked base and the
results are discussed. Finally, the effect of final time on
the maximum payload is investigated, and it is shown that
the approach presented is also able to solve the time-optimal
control problem successfully.
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1. Introduction

Fixed-based manipulators, currently used in applications,
have limited workspace. But some applications need to
carry loads between two long-distance positions, i.e., in
construction, farming, forestry, military, and hazardous work
sites, such as nuclear power plants or chemical production
plants.1−2 For such dangerous or unfeasible tasks, mobile
manipulators are an ideal choice. They have a compact
structure, large workspace, and high maneuverability and
are cost-effective. One of the main usages of mobile
manipulators is handling heavy loads from one place to
another. Therefore, finding the full-load motion between the
two given points in workspace can maximize the productivity
and economic usage of these type of robots.

End-effector motion is a superposition of the base and
the manipulator motions in mobile manipulators. Moreover,
the addition of base and manipulator degrees of freedom
causes the overall system to have extra degrees of freedom in
its motion. Therefore, there may exist infinite solutions for
motion planning of the system between two given end points.
These extra DOFs can be used to accomplish one or more
additional tasks besides the payload maximization purpose.
Therein, the maximum payload motion of the redundant
manipulator is given as a primary task and the subtasks
can be achieved by choosing the proper constraint functions.
The arbitrary subtasks can be considered as the limitation
of workspace, avoidance of singularities or obstacles, or
optimization criteria. Seraji presented an online approach
for motion control of mobile manipulators using augmented
Jacobian matrices.3 He used additional kinematic constraints
for redundancy resolution to be met for the manipulator
configuration.

The maximum allowable load (MAL) of a manipulator
is often defined as maximum payload that the manipulator
can repeatedly lift in its fully extended configuration.4 If
the end-effector trajectory is prespecified, the MAL would
be defined as the maximum value of load which a robot
manipulator is able to carry on it.4 Finding the maximum
payload which a manipulator can carry between given initial
and final position of the end-effector is also another way
of obtaining the MAL. In this case, finding the maximum
payload and corresponding optimal path is formulated as
a trajectory optimization problem.5 For finding the MAL
of mobile manipulators, researchers are faced with a path-
planning problem. Due to the extra DOFs and nonholonomic
constraints, path-planning problem of mobile manipulators
is a challenging and complicated task and has received
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considerable attention in recent years. Generally, the problem
of motion planning becomes quite complex and requires
specific schemes for its treatment. Two main families for
solving this problem can be distinguished: direct and indirect
methods.6,7

Direct methods are based on a discretization of dynamic
variables (states, controls) leading to a parameter opti-
mization problem. Then, linear optimization,5 nonlinear
optimization,8 evolutionary,9 or classical stochastic
techniques10 are applied to obtain optimal values of the
parameters. In most of the previous works dealing with path
planning of mobile manipulators, the direct methods are
employed, and often the Spline or polynomial functions are
used as the motion profiles.11,12 Wang et al. have solved
the optimal control problem using the B-Spline functions
in order to determine the maximum payload of a fixed-base
manipulator.8 The basic idea of this work is to parameterize
the joint trajectories by the use of B-Spline functions, and
tuning the parameters in a nonlinear optimization until a local
minimum that satisfies the constraints is achieved. A weak
point of this method is limiting the solution to a fixed-order
polynomial. Another difficulty arises from the complexity
of differentiating torques with respect to joint parameters
and payload due to their constraints and discontinuity.

Iterative linear programming (ILP) is another direct
technique, in which the trajectory optimization problem
is converted into a liner programming problem. The first
formulation of this method for a simple robot manipulator
is presented by Wang and Ravani.5 Korayem and Ghariblu
used ILP method for the MAL calculation of mobile
manipulators.13,14 In these papers,13−16 the MAL for mobile
manipulators are determined subject to both actuator and
redundancy constraints. For motion planning and redundancy
resolution, additional constraint functions and the augmented
Jacobian matrix are used, while a typical DC motor speed–
torque characteristics curve is used to model the actuator
constraints. The linearizing procedure in ILP method and
its convergence is a challenging issue, especially when
the nonlinear terms are large. As it can be seen from
the simulation results,13 the final boundary conditions are
not satisfied exactly and the end-effector does not place
in desired goal point. Generally, direct methods result in
approximate solution of the problem. They are exhaustively
time-consuming and quite inefficient due to the large number
of parameters involved, especially for systems with a large
number of DOFs.17

On the other hand, indirect method is based on Pontryagin
maximum principle (PMP),18 which solves the optimal
control problem exactly. It was first used to solve the
minimum time motion problems along the specified paths.
Then, it was extended to handle free motions as well.19,20

PMP is also used to treat directly the optimal dynamic
motion-planning problem.21 The optimality conditions for
transfer modalities are expressed as a set of differential
equations. This boundary values problem is solved by
specific numerical techniques, such as shooting or relaxation
methods. This method is widely used as a powerful and
efficient tool in analyzing the nonlinear systems and path
planning of different types of systems.19−25 Mohri et al.
have used indirect method for trajectory planning of mobile

manipulators. They have proposed an approach to find
the optimal path for both mobile base and manipulator
links in order to achieve the minimum effort trajectory in
point-to-point motion.26 In the next works they have applied
this method for trajectory planning of mobile manipulators
with end-effector’s specified path.27,28 To solve the problem,
all the states are considered as the design parameters and they
have used a hierarchical gradient method which synthesizes
the gradient function in a hierarchical manner based on the
order of priority.

In this paper, determining the MAL of mobile manipulators
between two given points is solved by using the indirect
solution of optimal control problem. The extra DOFs arose
from base mobility are solved using the additional constraint
functions and the augmented Jacobian matrix, so the
formulation and solution algorithm presented in refs. [26]–
[28] will not be applicable here. Using the Pontryagin’s
minimum principle, optimality conditions for carrying the
maximum payload in point-to-point motion are derived. The
obtained conditions lead to a bang-bang control. The main
challenge of this method is solving the obtained TPBVP,
so formulation is improved and an algorithm is developed
to convert the optimization problem into a standard form
of TPBVP solvable with bvp4c commands in MATLAB.
In order to verify the proposed method, simulations are
performed for a two-link planar manipulator mounted on
a differentially driven mobile base used in ref. [13]. Another
simulation for a PUMA arm mounted on a linear tracked
base is performed and it is shown how to obtain the various
maximum payload trajectories via changing the objective
functions. In the last case study, the effect of final time on
the maximum payload value is studied, and it is shown that
the method presented is also applicable for solving the time-
optimal control problem efficiently.

2. Kinematic and Dynamic Modeling

2.1. Kinematic modeling and redundancy resolution
We denote q the generalized coordinates of the mechanical
system as q = [q1, . . , qn] = [qb, qm], where qb = q1, . . . , qnb

is the base configuration space vector, qm = qnb + 1, . . . , qn

is the manipulator space vector, nb is the number of mobile
base DOFs, nm is the number of manipulator DOFs, and
n= nm + nb is the overall system of degrees of freedom. By
considering X = [x, y, z]T as the end-effector position in the
world reference frame RFw, the end-effector velocity of the
mobile manipulator can be determined as

Ẋ = J q̇, (1)

where J = (Jb, Jm) and q̇ = (q̇b, q̇m)T . Ẋ ∈ Rm denotes the
end-effector velocity with respect to the RFw and q̇ ∈ Rn

is the joints velocity vector. If the end-effector degrees of
freedom in Cartesian space are denoted by m and mobility
plus manipulation DOFs of the system by n, it is well
known that in most mobile manipulator systems, we have
n > m. As a result, the system has kinematic redundancy or
extra degrees of freedom on its motion equal to R = n − m.
There are different methods for redundancy resolution of
robotic systems. Some of these methods are based on an
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optimization criterion, such as overall torque minimization,
minimum joint motion, and so on. But there is a well-known
method that applies additional suitable kinematic constraint
equations to system dynamics and results in simple and
online coordination of the mobile manipulator during the
motion. This method borrows from the extended Jacobian
matrix concept.3,29,30

Generally, the mobile manipulator may be subject to
number of either holonomic or nonholonomic constraints.
If the number of nonholonomic constraints of the system
is denoted by c, the generalized form of these constraint
equations is

Jc q̇ = 0, (2)

where q̇ ∈ Rn is the time derivative of motion variable
vector and Jc ∈ Rc×n is the corresponding coefficient. On
the other hand, the holonomic constraints have the general
form Xz =G(q) and differentiating it with respect to time
gives

Ẋz = Jzq̇, (3)

where Jz ∈ Rr×n is the corresponding coefficient and Xz is
the vector of additional kinematic constraints as a function
of system variables. As mentioned before, the extended
Jacobian matrix technique can be used for redundancy
resolution. Therefore, R extra degrees of freedom can be
solved using c nonholonomic constraints and r holonomic
constraints. By the other means for solvability, r additional
functions must be applied to relate joint vectors to each other
where r = R − c. By combining Eqs. (1), (2), and (3), the
kinematic equation of mobile manipulators becomes

[Ẋ Ẋz 0]T = [J Jz Jc]T q̇. (4)

Here Ja = (J, Jz, Jc)T is named the augmented Jacobian
matrix. However, as explained by Seraji [3], if r additional
user-specified constraints are selected properly, then Je

would be nonsingular or Det(Je) �= 0. These systems can be
kinematically evaluated as if they were nonredundant. At
this condition, the joint velocity and acceleration vectors are
found as below:

q̇ = J−1
a [Ẋ Ẋz 0]T (5)

q̈ = J−1
a �[Ẍ Ẍz 0]T − J̇aq̇�. (6)

2.2. Dynamic modeling
Consider an n DOFs mobile manipulator with generalized
coordinates q = [qi], i = 1, 2, . . . , n, and a task described
by m task coordinates rj , j = 1, 2, . . . , m with m < n. By
applying r holonomic constraints and c nonholonomic
constraints to the system, r + c redundant DOFs of the
system can be directly determined. Therefore, m DOFs of the
system remains to accomplish the desired task. As a result,
we can decomposed the generalized coordinate vector as
q = [qr qnr ]T , where qr∈ Rr+c is the redundant generalized
coordinates vector determined by applying the constraints
and qnr ∈ Rm is the remaining generalized coordinate vector.
The system dynamics can also be decomposed into two parts:

one is corresponding to a redundant set of variables, qr , and
another is corresponding to a nonredundant set of them, qnr .
That is,[

Ur

Unr

]
=

[
Mr,r Mr,nr

Mr,nr Mnr,nr

] [
q̈r

q̈nr

]
+

[
Cr + Gr

Cnr + Gnr

]
, (7)

where M ∈ Rn×n is the inertia matrix, C ∈ Rn is the Coriolis
and centrifugal forces, and G ∈ Rn is the vector of gravity
force, respectively. Considering the row associated with
nonredundant part leads to

Unr = Aq̈nr + B, (8)

where A= M̂nr,nr , B = M̂r,nr q̈r + Ĉnr + Ĝnr , M̂nr,nr =
Mnr,nr (t, qr , qnr ), M̂r,nr =Mr,nr (t, qr , qnr ), Ĉnr = Cnr

(t, qr , q̇r , qnr , q̇nr ), and Ĝnr = Gnr (t, qr , qnr ). Using redund-
ancy resolution, qr will be obtained as a known vector in
terms of the time (t). Therefore A is obtained as a function
of t and qnr , and B as a function of t , qnr , and q̇nr . M̂r,nr ,
M̂nr,nr , and Ĝr are the functions of t and qr , and Ĉnr is the
function of t , qnr , and q̇nr . By defining the state vector as

X = [X1 X2]T = [qnr q̇nr]T , (9)

Eq. (8) can be rewritten in state space form as

Ẋ = [Ẋ1 Ẋ2]T = [X2 N(X) + Z(X)U], (10)

where N ∈ Rmand Z ∈ Rm×m. Then optimal control
problem is to determine the position and velocity variable
X1(t) and X2(t), and the joint torque U (t) such that we
optimize a well-defined performance measure when the
model is given in Eq. (10).

3. Optimality Conditions for Carrying the Maximum

Payload

Let � be the set of the admissible control torques. The
optimization problem is to find control U (t) ∈ � and payload
mp, so that the manipulator in Eq. (10) can carry maximum
payload from an initial configuration to a final motion target.
Therefore, the objective function that must be minimized is
defined as

Minimize
U (t), mp

J0 =− 1

tf

tf∫
0

mpdt, (11)

where mp is the payload value, tf is the final time, and the
objective function will be equal to −mp. So minimizing the
objective function leads to maximizing the payload value.
For the maximum payload problem, the state departing from
initial conditions

X1(0) =X10, X2(0) =X20 (12)

must reach the final conditions

X1(tf ) =X1f , X2(tf ) =X2f (13)

https://doi.org/10.1017/S0263574708004578 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004578


150 Maximum load carrying capacity of mobile manipulators

in such a way that the maximum payload can be carried. The
control forces are bounded as

U−
i ≤ Ui ≤ U+

i , (14)

so according to the Pontryagin’s minimum principle, the
optimal solution (indicated here by *) must satisfy the
following conditions:

Ẋ∗ = ∂H/∂ψ, (15)

ψ̇∗ = −∂H/∂X, (16)

H (X∗, U ∗, ψ∗, m∗
p) ≤ H (X∗, ψ∗, Ū , m̄p) (17)

for all time t ∈ [t0 tf ], where U ∗ is optimal control, m∗
p is

maximum payload, Ū is all admissible control, and m̄p

is all admissible payload. The Hamiltonian H (X, ψ, U, mp)
is defined as

H (X, U, ψ, mp)

= −mp/tf + ψT
1 X2 + ψT

2 [N(X, mp) + Z(X, mp)U ], (18)

where ψ = [ψT
1 ψ

T

2 ]T is the vector of costates. Equa-
tion (17) shows that optimal solution must minimize
the Hamiltonian. Here, mp and U are two independent
parameters that must be determined to minimize the
Hamiltonian function, so the following conditions must be
satisfied:

∂H

∂U
= 0, (19)

∂H

∂mp

= 0. (20)

Equation (20) leads to an algebraic equation which must
be fulfilled for all t ∈ [t0 tf ]. Since Hamiltonian is a linear
function of U , condition (19) does not provide any useful
relation between the controls and the states. So, in order to
determine the optimal control law, substituting Eq. (18) into
Eq. (17) gives

−m∗
p/tf + ψ∗T

1 X∗
2 + ψ∗T

2 [N(X∗, m∗
p) + Z(X∗, m∗

p)U ∗]

≤ −m̄p/tf + ψ∗T
1 X∗

2 + ψ∗T
2 [N(X∗, m̄p)

+ Z(X∗, m̄p)Ū ]. (21)

For a specified payload mp, Eq. (21) reduces to

ψ∗T
2 Z(X∗)U ∗ ≤ ψ∗T

2 Z(X∗)Ū (22)

for all admissible controls Ū and for all t ∈ [t0 tf ]. This
equation states that the term ψ∗T

2 Z(X∗)Ū must be minimized
with respect to any control Ū . It forces the control Ū to take
its extremal values. Since the components of the controls are
independent of each other, the optimal controls Ui to satisfy
Eq. (21) must be assumed as

Ui =
{

U+
i for ψT

2 Zi(X) < 0

U−
i for ψT

2 Zi(X) > 0
. (23)

Here Zi(X) is the ith column of matrix Z(X). The function
Gi =ψT

2 Zi(X) is called the switch function corresponding
to the control Ui . This type of control (23) is referred to as
bang-bang control. The controls take their extremal values
throughout the whole motion to minimize the objective
function.

The actuators that are commonly used for medium- and
small-sizes manipulators are the permanent magnet DC
motor. The torque speed characteristic of such DC motors
may be represented by the following linear equation [4]:

U+ =K1 − K2X2

U− =−K1 − K2X2,
(24)

where K1 = [τs1 τs2 · · · τsm]T , K2 = dig[τs1/ω1 · · · τsm/ωm],
τs is the stall torque, and ω is the maximum no load speed of
the motor.

Here, we have 4m differential equations given in Eqs. (15),
(16), and one algebraic equation given in Eq. (20), to
determine the 4m state and costate variables, and one payload
value. The set of differential equations (15) and (16), the
requirements (20) and (23), and the boundary conditions
(12) and (13) construct a class of two-point boundary value
problem. In this formulation, some difficulties arise from
Eq. (20) and control law (23). In Eq. (23), when ψT Zi(X) = 0
for a period of time, the PMP is not able to define any optimal
control. If the switch functions Gi are zero at individual
points only, the sign of the control changes immediately and
a very significant variation takes place in control law, which
leads to infinite jerk in system. The other difficulty is due to
the algebraic equation (20). It makes the solution of TPBVP
very difficult and time-consuming, so that the convergence to
the optimal solution hardly takes place. Also because of the
presence of algebraic equation in TPBVP, it is not possible
to use the available commands in different software provided
to solve the boundary value problems.

In order to overcome the above-mentioned difficulties, in
the next section, the formulation presented is improved to
convert the optimization problem into a standard form of
TPBVP, and then an algorithm is proposed to determine the
maximum payload trajectory.

4. Improved Formulation for Maximum Payload

Calculation

4.1. Necessary condition for optimality
The basic idea to improve the formulation is to find the
optimal path for a specified payload, and then maximum
payload is obtained via an iterative algorithm. For the sake
of this, the following objective function is considered:

Minimize
U (t)

J0 =
tf∫

t0

L(X, U ) dt, (25)

where

L(X, U ) = 1

2
‖X1‖2

W1
+ 1

2
‖X2‖2

W2
+ 1

2
‖U‖2

R . (26)

Integrand L(.) is a smooth, differentiable function in the
arguments, ||X||2K = XT KX is the generalized squared norm,
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W1 and W2 are symmetric, positive semidefinite (m × m)
weighting matrices, and R is symmetric, positive definite
(m × m) matrices. The objective function specified by Eqs.
(25) and (26) is minimized over the entire duration of the
motion. The designer can decide on the relative importance
among the angular position, angular velocity, and control
effort by the numerical choice of W1, W2, and R that can also
be used to convert the dimensions of the terms to consistent
units.

According to the PMP, the following conditions must be
satisfied:

Ẋ = ∂H/∂ψ, ψ̇ =−∂H/∂X, 0 = ∂H/∂U, (27)

where the Hamiltonian function is defined as

H (X, U, ψ) = 0.5
(‖X1‖2

W1
+ ‖X2‖2

W2
+ ‖U‖2

R

)
+ ψT

1 X2 + ψT
2 [N(X) + Z(X)U ]. (28)

So, according to Eq. (27), the optimality conditions can be
obtained by differentiating the Hamiltonian function with
respect to states, costates, and control as follows:

[Ẋ1 Ẋ2]T = [X2 N(X) + Z(X)U ]T , (29)

[ψ̇1 ψ̇2]T = −[∂H/∂X1 ∂H/∂X2]T , (30)

RU + ZT ψ2 = 0. (31)

The control values are limited with upper and lower bounds,
so using Eq. (31), the optimal control is given by

U =
⎧⎨
⎩

U+ −R−1ZT ψ2 > U+

−R−1ZT ψ2 U− < −R−1ZT ψ2 < U+

U− −R−1ZT ψ2 < U−
. (32)

The bounds on the control input, U−and U+, can be
substituted from Eq. (24). As it can be seen, the optimal
control (32) does not have the problems mentioned for bang-
bang control (23). In this formulation, for a specified payload
value, 4m differential equations given in Eqs. (29) and (30)
are used to determine the 4m state and costate variables. The
set of differential equations (29) and (30), the control law
(32), and the boundary conditions (12) and (13) construct a
standard form of TPBVP, which is solvable with available
commands in different software, such as MATLAB, C++, or
FORTRAN.

4.2. Maximum payload calculation
The above equations represent three relation sets: (i) the
dynamical model, Eqs. (29) and (30), (ii) the optimality
condition, Eqs. (32) and (24), and (iii) the split boundary
condition, Eqs. (12) and (13). These conditions specify a
two-point boundary value problem which can be solved
numerically. An iterative algorithm for computing a solution
of this problem can be constructed by satisfying any two
of the three conditions in each iteration. Then the algorithm
will be repeated on the third condition awaiting the desired
degree of accuracy. Here, substituting Eqs. (32) and (24) into
Eqs. (29) and (30) establishes a set of 4m ordinary differential
equations in terms of the state and costate variables (X, ψ),

while Eqs. (12) and (13) describe 4m boundary value
conditions in which 2m of them are defined at t = t0, and
other 2m of them at t = tf . The algorithm iterates on the initial
values of the costate until the final boundary conditions are
satisfied. To put it another way, the following relation must
be fulfilled in TPBVP solving:

1

2
‖X1(tf ) − X1f ‖2

Wp
+ 1

2
‖X2(tf ) − X2f ‖2

Wv
≤ ε, (33)

where ε 	 1 is solution accuracy. Xf is the vector of desired
boundary conditions at t = tf and X(tf ) is the vector of
calculated states values at t = tf per costate initial value
obtained in TPBVP solution. Relative importance of position
and velocity errors of each joint can be specified via choosing
the component of Wp and Wv . For a known payload, the
obtained equations are in the standard form of TPBVP which
bvp4c command in MATLAB is used to solve it.

Up to now we suppose that the payload value is known
and the solution of optimal control problem was obtained.
Now, by using the solution of obtained TPBVP, an algorithm
is presented in Fig. 1 in order to find the maximum payload.
In this algorithm, e is the accuracy at maximum payload
calculation and s is the iterations number. With the aid
of this algorithm, the maximum payload for the supposed
penalty matrices can be found. The solution method is
based on increasing the payload from its minimum value,
mp min, until the maximum payload value can be found. The
solution algorithm presented has two loops. The loop index
(i) increases the payload at each iteration, while the other
one (k) adjusts the jump interval. Therefore, the accuracy in
payload calculation is guaranteed as well as the approaching
rate to final answer.

Desired accuracy ε in TPBVP solution for mp ≤ mp max is
achievable, thus Eq. (33) is satisfied and payload increases
in each step until the payload value becomes lager than its
maximum value (mp > mpmax). At this condition, Eq. (33)
will not be satisfied, because for carrying the payload more
than mpmax, the torque more than their limits is required.
But it is impossible, because the torque constraints are
satisfied at each iteration in TPBVP solution. Consequently,
the boundary conditions at final time could not be satisfied
and as soon as payload value becomes larger than mpmax,
the error value becomes large significantly. Thus the other
loop (k) is acted, payload decreases, and the jump interval
becomes smaller in loop (i) until the maximum payload be
obtained with the accuracy e.

The formulation presented in Section 4.1 and the proposed
algorithm in Fig. 1 can also be used for solving the time-
optimal control problem. In this case, algorithm iterates on
final time tf instead of payload value mp. By considering the
maximum final time tf max , in each step tf is decreased until
the minimum time duration can be found.

5. Simulation Results

5.1. Case 1: Two-arm planar wheeled mobile manipulator
5.1.1. Simulation conditions. A two-link planar manipulator
is mounted on a differentially driven mobile base at point
F on the main axis of the base as shown in Fig. 2. All of
the manipulator parameters and simulation conditions are
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Fig. 1. Algorithm of maximum payload calculation.

the same used in ref. [13]. Suppose that L0 is 40 cm. The
links’ parameters and their inertia properties are shown in
Table I. The load must be carried from an initial point with
coordinate (xe = 0.3 m, ye = 0.5 m) to the final point with
coordinate (xe = 2.45 m, ye = 0.5 m) during the overall time
tf = 1.9 s, such that the maximum allowable load can be
carried between these two points at the specified time. The
inertia property of the payload is ignored, and it is assumed
to be a point mass. It should be noted that final load position
is not feasible without the base motion. Simultaneously, the
mobile base is initially at point (xf = 0.75 m, yf = 0.25 m,
θ0 = 0) and moves to final position (xf = 1.6 m, yf = 0.5 m).
The actuator constants are given as follows:

K1 = [34.67 12.21]T N.m,

K2 = diag(6.45 2.4) N.m.s / Rad

It must be noticed that the formulation presented for
path planning of mobile manipulator in refs. [26]–[28] is
not applicable here. Here the extra DOFs are solved using

Fig. 2. Schematic view of wheeled mobile manipulator.

Table I. Links’ parameters and inertia properties.

Length Mass Moment of Link center
No (m) (kg) inertia (kg.m2) of mass (m)

1 0.5 5 0 0 0 −0.25
0 0.416 0 0
0 0 0.416 0

2 0.5 3 0 0 0 −0.25
0.0625 0 0
0 0 0.0625 0

holonomic constraints, so the generalized coordinates can be
selected in such a way that the nonholonomic constraints do
not appear in TPBVP directly. While in formulation obtained
in refs. [26]–[28], the dynamic equations are directly
dependent on nonholonomic constraints which increases the
order of system and complicates the solution of TPBVP
significantly.

5.1.2. Dynamics of the system. In order to define the mobile
manipulator, the mechanical system generalized coordinates
can be chosen as: q = [qb qm] = [xf yf θ0 θ1 θ2], where
qb = [xf yf θ0] are generalized coordinates of the mobile
base and qm = [θ1 θ2] are the generalized coordinates of the
arm as shown in Fig. 2. For this mobile manipulator the
center of mass of the base, arms and payload can be obtained
as follows:

rb = [xf − L0 cos(θ0) yf − L0 sin(θ0)]T

r1 = [xf + Lc1 cos(θ10) yf + Lc1 sin(θ10)]T

r2 = [xf + L1 cos(θ10) + Lc2 cos(θ210) yf + L1 sin(θ10)

+ Lc2 sin(θ210)]T , (34)

rmp = [xf + L1 cos(θ10) + L2 cos(θ210) yf + L1 sin(θ10)

+ L2 sin(θ210)]T
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where rb, r1, r2, and rmpare the center of mass vectors of
the base, first link, second link, and payload respectively,
Lc1 and Lc2 are the links center of mass, θ10 = θ0 + θ1 and
θ210 = θ0 + θ1 + θ2. By differentiating Eqs. (34) with respect
to time, velocity vectors can be obtained using which the total
kinematic energy of the system can be calculated as follows:

K = 0.5
(
mbṙ

2
b + m1ṙ

2
1 + m2ṙ

2
2 + mpṙ2

mp

)
+ 0.5

(
Ibθ̇

2
0 + I1(θ̇0 + θ̇1)2 + I2(θ̇0 + θ̇1 + θ̇2)2), (35)

where mb, m1, m2, and mp are the mass of base, first
link, second link, and payload, Ib, I1, and I2 are the
moment of inertia of base, first link, and second link,
respectively. Because the mobile manipulator movement is in
the horizontal plane, the potential energy is zero, therefore the
Lagrangian is equal to kinematic energy, L =K . Now, using
the Lagrange method, dynamic equations can be obtained as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

T0

U1

U2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 J12 J13 J14 J15

J12 J22 J23 J24 J25

J13 J23 J33 J34 J35

J14 J24 J34 J44 J45

J15 J25 J35 J45 J55

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ẍf

ÿf

θ̈0

θ̈1

θ̈2

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

C1

C2

C3

C4

C5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(36)

where, Jij i, j = 1, . . . , 5 are functions of q =
[xf yf θ0 θ1 θ2] and Ci i = 1, . . . , 5 are functions
of q and q̇. The details of these equations are given in
Appendix.

The position of the end-effector in the world reference
frame RFw can be specified with xe and ye as shown
in Fig. 2, therefore operational coordinated of the end-
effector can be chosen as pee = [xe ye] and the end-effector
degrees of freedom in the Cartesian coordinate system
will be m = 2. The system degree of freedom is equal to
n= 5, hence the system has redundancy of order R = n −
m = 3 and needs three additional kinematical constraints
for proper coordination. Meanwhile, the mobile base has
one nonholonomic constraint (c = 1) i.e., the rolling without
slipping condition for the driven wheels,

ẋf sin(θ0) − ẏf cos(θ0) + L0θ̇0 = 0. (37)

Hence, the number of kinematical constraints which must
be applied to the system for redundancy resolution is equal to
r = R − c = 2. In this case, with the previously specified base
trajectory during the motion, the user-specified additional
constraints can be considered as the base position coordinates
at point F (xf , yf ), which gives

xf = X1z; yf =X2z, (38)

where X1z and X2z are functions in terms of time, and by
differentiating them with respect to time, ẋf , ẏf , ẍf and
ÿf can also be obtained. A fifth-order polynomial function is
considered for the base trajectory along a straight-line path

from (0.75, 0.2) to (1.6, 0.5) during the overall time tf = 1.9 s.
Velocity at start and stop time is considered to be zero. From
the base motion, ẋf and ẏf are known, so by discretizing
the base path and using Eq. (37), the angular position and
velocity of the base in kth point can be obtained as

θ̇0k = (ẏf k cos(θ0k) − ẋf k sin(θ0k))/L0

θ0(k+1) = θ0k + hθ̇0k

, (39)

where h is the sample time. Here the initial base angle is
considered to be zero, θ0(0) = 0, therefore final base angle
will be obtained as θ0(1.9) = 0.304 Rad. Initial and final
configuration of the base and end-effector has been specified;
therefore the boundary conditions can be determined as

θ1(0) = 1.554 rad, θ2(0) = 1.998 rad, θ̇1(0) = 0,

θ̇2(0) = 0, θ1(tf ) =−0.858 rad, θ2(tf ) = 1.09 rad, (40)

θ̇1(tf ) = 0, θ̇2(tf ) = 0.

Now in Eq. (36), by considering the two last rows of equa-
tions associated with nonredundant part, and substituting the
known variables (xf , yf , θ0, ẋf , ẏf , θ̇0, ẍf , ÿf , θ̈0) in it, as
explained in Section 2.2, Eq. (36) is reduced to

[
U1

U2

]
=

[
J̄44 J̄45

J̄45 J̄55

] [
θ̈1

θ̈2

]
+

[
R̄1

R̄2

]
, (41)

where J̄ij i, j = 4, 5 and R̄i i = 1, 2 are

J̄44 = J44; J̄45 = J45; J̄55 = J55

R̄1 = J14ẍf + J24ÿf + J34θ̈0 + C4 (42)

R̄2 = J15ẍf + J25ÿf + J35θ̈0 + C5.

R̄i i = 1, 2are the functions of θ1, θ2, θ̇1, θ̇2, and t , so the
state vectors can be defined as follows:

X1 =
[

θ1(t)

θ2(t)

]
=

[
x1(t)

x3(t)

]
, X2 =

[
θ̇1(t)

θ̇2(t)

]
=

[
x2(t)

x4(t)

]
.

(43)

Using Eq. (10), the state space form of the dynamical
equation of motion becomes

ẋ1 = x2

ẋ2 = P (J̄22(U1 − R̄1) − J̄12(U2 − R̄2))

ẋ3 = x4

ẋ4 = P (−J̄12(U1 − R̄1) + J̄22(U2 − R̄2)),

(44)

where P = 1/(J̄ 11J̄22 − J̄ 2
12). For this two-link mobile

manipulator, the penalty matrices can be selected as follows:

W1 = diag(w1, w3); W2 = diag(w2, w4); R = diag(r1, r2).

(45)
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Fig. 3. Maximum payload trajectory.

To calculate the objective function, substituting Eq. (45)
into Eq. (26) results in

L = 0.5 × (
r1u

2
1 + r2u

2
2 + w1x

2
1 + w3x

2
3 + w2x

2
2 + w4x

2
4

)
.

(46)

Now, according to Eq. (28), by considering the costate
vector as ψ = [x5 x6 x7 x8], the Hamiltonian function can
be expressed as

H = L + x5ẋ1 + x6ẋ2 + x7ẋ3 + x8ẋ4, (47)

where L and ẋi , i = 1, . . . , 4 can be substituted from Eqs.
(46) and (44), respectively. Using Eq. (30), the costate
equations can be obtained by differentiating the Hamiltonian
function with respect to states as

ẋ5 = −∂H/∂x1 =−(w1x1 + x6f21 + x8f41)

ẋ6 = −∂H/∂x2 =−(w2x2 + x5 + x6f22 + x8f42)

ẋ7 = −∂H/∂x3 =−(w3x3 + x6f23 + x8f43)

ẋ7 = −∂H/∂x4 =−(w4x4 + x7 + x6f24 + x8f44)

, (48)

where fij = ∂ẋi/∂xj and ẋi can be replaced by Eq. (44).
Using Eq. (31), by differentiating the Hamiltonian with
respect to control and setting the derivative equal to zero,
control functions in the admissible interval, U− < U < U+,
can be obtained as follows:

U1 = P (x8J̄12 − x6J̄22)/r1

U2 = P (x6J̄12 − x8J̄11)/r2.
(49)

Then, by applying motors torque limitation, the optimal
control becomes

T Ui =

⎧⎪⎨
⎪⎩

U+
i Ui ≥ U+

i

Ui othewise; i = 1, 2,

U−
i Ui ≤ U−

i

(50)

where the extremal bounds of control for each motor are

U+
1 = k11 − k12x2, U−

1 = −k11 − k12x2,

U+
2 = k21 − k22x4, U

−
2 = −k21 − k22x4. (51)

Consequently, eight nonlinear ordinary differential
equations are obtained by substituting Eqs. (50) and (51) into

Eqs. (44) and (48), which with eight boundary conditions
given in Eq. (40), construct a two-point boundary value
problem.

The formulation of the problem is obtained, now using
the algorithm presented in Fig. 1 simulation is performed.
Accuracy values in payload calculation and TPBVP solution
are considered to be e = 0.1 and ε = 1e − 4, respectively.
The initial values of the costate vector are considered to
be zero, ψ(0) = 0 and the penalty matrices are chosen to
be: Wp = Wv = diag(1), W1 = [0], W2 = diag(0.01), and
R = diag(1e − 5). At this condition, maximum payload is
found to be 20.2 kg which has reasonable agreement with
obtained maximum payload (21.92 kg) in ref. [13]. In this
case study, the order of the equations is eight, and the runtime
of the TPBVP solution is approximately 10 s using the
computer with Pentium4, CPU 3GHz, and 512M of RAM.
Since 8 to 10 iterations are required to achieve the final
solution, the final runtime will be 100 s.

The obtained optimal path of the end-effector and the
prespecified base path are shown in Fig. 3. This figure also
demonstrates the system configurations at t = 0, tf /4, tf /2,
3tf /4, and tf . The angular positions and velocities of joints
are given in Figs. 4 and 5, respectively. Unlike the results
obtained by iterative linear programming method13 in which
the boundary conditions have not been exactly satisfied (e.g.,
the angular position of the second joint has an error of about
8 degree and the angular velocity of the first joint has an error
of about 14 degree/s), the results obtained in present paper
do not have this problem and there is no error in satisfying
the final boundary conditions. So the end-effector places in
desired position accurately with zero velocity at final time,
as shown in Figs. 4 and 5. Figures 6 and 7 are the optimal
controls to carry the maximum payload, which also show
the upper and lower bounds of the actuator torque capacity.
By increasing the payload from mpmin to mpmax, the required
torque becomes more and torque curves lay on their own
limits, until the payload reaches to its maximum value and
motors operate at their maximum capacities.

5.2. Case 2: Linear tracked PUMA
A spatial three-jointed PUMA robot mounted on a linear
tracked base is considered as shown in Fig. 8. All of the
manipulator parameters are the same used in ref. [15]. D-H
parameters and actuator constants are given in Tables II and
III. Suppose that initially the point-mass load is at a point with
coordinates p0(xe = 0.5 m, ye = 0, ze = −0.1 m) and it must
reach to final point with coordinates pf (xe = 0, ye = 1.2 m,
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Fig. 4. Angular positions of joints.

ze = 1.04 m)f at tf = 2.4 s. The base mass is assumed to
be 21 kg and the manipulator characteristics are shown in
Table IV.

In this case, the generalized coordinates can be considered
as q = [q1 θ1 θ2 θ3 ], where q1 is the linear motion of the
mobile base and θ1, θ2, θ3 are the links angles. The end-
effector degrees of freedom in the Cartesian coordinate
system is m = 3 and the system degree of freedom is equal
to n= 4, hence the system has 1 degree of redundancy and
needs one additional kinematical constraint for redundancy
resolution. For this purpose, the base is considered to move
with the prespecified rest-to-rest motion as a fifth-order
polynomial function from xbi = 0 to xbf = 0.437 m during
the overall time tf = 2.4 s. Consequently, the boundary
conditions can be determined as

qnr(0) = [0, 0, 90◦], qnr(tf ) = [90◦, 45◦, −10◦],

q̇nr(0) = q̇nr(tf ) = [0, 0, 0].

Fig. 5. Angular velocities of joints.

Fig. 6. Actuator torque at first joint.

According to the algorithm presented in Fig. 1, the initial
payload value, initial values of costate vector, accuracy
values, and penalty matrices are considered as follows:

mp min = 2 kg, ψ(0) = 0, e = 0.1, ε = 1e − 4,

Wp = Wv = diag(1), W1 = [0],

W2 = diag(0.2), and R = diag(1e − 3).

At this condition, maximum payload is found to be 12.6 kg.
Figure 9 shows the optimal trajectory of mobile manipulator
in Cartesian space. The end-effector movement starts from
point (0.5, 0, -0.1) and ends at point (0, 1.2, 1.04). In this
motion, the first link in addition to rotating 90◦ about own
axis, translates 0.437 m along the axis Y .

mp max = 12.6 kg is the maximum payload for the consi-
dered penalty matrices, while by choosing the other
penalty matrices, the other optimal trajectories with different
specifications can be obtained. To illustrate this aspect,

Fig. 7. Actuator torque at second joint.
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Fig. 8. A view of linear tracked mobile PUMA manipulator.

simulation is performed for W2 = diag(0.05). The other
penalty matrices remain the same. In this case, the maximum
payload is obtained to be 14 kg. The angular positions
and velocities of joints for these two cases are given in
Figs. 10 and 11, respectively. As expected, decreasing the W2

increases the magnitude of angular velocities and constructs
the other optimal path. Designer can select each of the
obtained optimal paths depends on the limitation on angular
velocities. The actuator torque and force are shown in
Figs. 12(a)–12(d). As it can be seen in Fig. 12, the actuator
curves in three joints are saturated and the mobile base force
is tangent to its upper bound. Therefore the base actuator
capacity determines the maximum payload value. In this case
study, the order of the equations is 12, and the runtime of the
TPBVP solution is approximately 16 s.

5.3. Case 3: Time-optimal control
In this section, at first, the effect of final time tf on
the maximum payload value is studied. Then, the time-
optimal control is solved for a two-link manipulator and

Table II. D-H parameters.

No. θi αi (m)ai (m)di

Base 0 π/2 0 q1

1 θ1 π/2 0 0.4
2 θ2 0 0.5 0
3 θ3 0 0.5 0

Table III. Actuators constants.

No. τsi ωsi k1i k2i

Base 40.62 6.6 40.62 6.15
1 10 5.71 10 1.75
2 30 6.41 30 4.68
3 6.67 4.6 6.67 1.45

Table IV. Links’ parameters and inertia properties.

Moment of Link center of
No Length (m) Mass (kg) inertia (kg m2) mass (m)

1 0.4 12 0 0 0 0
0 0.2 0 −.2
0 0 0 0

2 0.5 10 0 0 0 −0.25
0 0.2 0 0
0 0 0.2 0

3 0.5 5 0 0 0 −0.25
0 0.1 0 0
0 0 0.1 0

Fig. 9. Optimal trajectory of base, links, and end-effector.

Fig. 10. Angular positions of joints.
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Fig. 11. Angular velocities of joints.

Table V. Maximum payloads for different final times.

Final time tf (s) 1.083 1.2 1.4

mpmax(Kg) 6 11.2 22.8

the result is compared with that obtained in ref. [22]. All
the manipulator parameters and the boundary conditions are
the same used in ref. [22]. The penalty matrices are selected
as: W1 =W2 = 0, R = diag(1). The obtained maximum
payloads and the corresponding final times are given in
Table V. As expected, by increasing the final time, the
obtained maximum payload value is increased. Increasing
the duration time reduces the acceleration and velocity of
the system which leads to less acceleration, centrifugal and
Coriolis forces, and more maximum payload.

Now, by setting the payload value equal to 6 kg and the
maximum final time equal to 1.5 s, time-optimal control
problem is solved using the same approach used to find
the maximum payload trajectory. Step by step, final time

Fig. 12. (a) Actuator torque at first joint. (b) Actuator torque at second joint. (c) Actuator torque at third joint. (d) Actuator torque at base.
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Fig. 13. Optimal controls, U1 and U2.

decreases and the TPBVP is solved according to the
algorithm given in Fig. 1. In this case, the minimum time
is found to be 1.083 s. The optimal controls are shown in
Fig. 13, and the optimal states are shown in Fig. 14. The
obtained minimum time, angular positions and velocities,
and switch times in controls are the same obtained in ref.
[22]. As it can be seen in Fig. 13, control switching between
the upper and lower bound occurred with a finite rate, while
the controls in ref. [22] switch immediately with an infinite
rate.

6. Contribution

In all the previous works dealing with maximum payload
calculation, direct methods are used to solve the path-
planning problem. In this paper, indirect method is employed
as an exact and powerful method which explicitly solves
the optimization problem. Optimality conditions for carrying

Fig. 14. Time-optimal states, Xi , i = 1 . . . 4.

the maximum payload in point-to-point motion are derived
using the Pontryagin’s minimum principle. The obtained
conditions lead to a bang-bang control with 4m ordinary
differential equations, one algebraic equation, and 4m

boundary conditions. By solving these equations, maximum
payload and corresponding optimal path can be obtained
directly. But bang-bang control results in infinite jerk in
system, and also the presence of algebraic equation makes
the problem solution difficult. So, formulation is improved,
and an algorithm is developed to convert the optimization
problem into a standard form of TPBVP which is easily
solved with bvp4c commands in MATLAB.

In the proposed method, the generalized coordinates and
additional kinematic constraints are selected in such a way
that the system’s motion coordination is guaranteed and
the nonholonomic constraints do not appear in TPBVP
directly, unlike the method given in refs. [26]–[28]. Here, the
complete form of the obtained nonlinear equation is used, and
unlike the previous works, linearizing the equations,5,13−16

using of a fixed-order polynomial as the solution form,8−12

or developing the additional numerical algorithm to solve
the problem20−22,26−28 is not required. Also calculation of
Hamiltonian’s derivatives with respect to the system variables
is a simple and straightforward task unlike the complicated
procedures needed to derive the equations in spline8 and
ILP13 methods.

7. Conclusion

Three simulation studies are presented to investigate the
application of the proposed approach. In the first simulation
for a two-link wheeled mobile manipulator, the procedure of
obtaining the equations are given in detail. The maximum
payload in this method is found to be 20.2 kg which has
reasonable agreement with result obtained by ILP method
in ref. [13] (21.92 kg). In optimal control method, boundary
conditions are satisfied exactly, while the results obtained
by ILP method have a considerable error in final time.
In another simulation, a three-link manipulator mounted
on a linear tracked base is considered. It is shown that,
we are able to have various maximum payload trajectories
with different characteristics via considering the different
objective function. It means that in addition to maximizing
the payload, other objectives such as angular velocity or
applied torque can be minimized. It is also seen that the
runtime of the problem solution does not increase with
problem size significantly. In the last case study, the effect
of final time on the maximum payload is investigated. It is
shown that increasing the final time leads to increase in the
maximum payload value. Finally, the algorithm presented
is applied to solve the time-optimal control problem. The
obtained optimal control leads to the quasi bang-bang control
which is very close to the result reported in ref. [22].
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Appendix

a1 = mpL2 + m2Lc2, a2 =mpL1L2 + m2L1Lc2,

a3 = mpL1 + m2L1 + m1Lc1,

J11 = J22 =mb + m1 + m2 + mp, J12 = 0,

J13 = mbL0sin(θ0) − (mpL1 +m2L1 +m1Lc1) sin(θ0 + θ1)

− a1sin(θ0 + θ1 + θ2),

J14 = −a3sin(θ0 + θ1) − a1sin(θ0 + θ1 + θ2),

J15 = −a1 sin(θ0 + θ1 + θ2),

J23 = −mbL0 cos (θ0) + a3 cos (θ0 + θ1)

+ a1 cos (θ0 + θ1 + θ2),

J24 = a3cos (θ0 + θ1) + a1cos (θ0 + θ1 + θ2),

J25 = a1cos (θ0 + θ1 + θ2),

J33 = mbL
2
0 + m2L

2
c2 + m1L

2
c1 + m2L

2
1 + mpL2

2 + mpL2
1

+ 2a2cos θ2 + I1 + I2 + Ib,

J34 = 2a2cos θ2 + mpL2
2 + m1L

2
c1 + m2L

2
1 + m2L

2
c2

+ mpL2
1 + I2 + I1,

J35 = I2 + a2cos θ2 + mpL2
2 + m2L

2
c2,

J44 = 2a2cos θ2 + I1 + I2 + mpL2
1 + mpL2

2 + m2L
2
c2

+ m1L
2
c1 + m2L

2
1,

J45 = m2L
2
c2 + mpL2

2 + I2 + a2cos θ2,

J55 = I2 + mpL2
2 + m2L

2
c2.
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