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             INTRODUCTION 

 Mild Cognitive Impairment (MCI) has garnered much atten-
tion in dementia research for its implication as a prodromal 
stage of Alzheimer’s disease (AD) (see Morris,  2005 ). Since 
its establishment as an amnestic syndrome in the presence of 
otherwise intact cognition and ability to execute activities of 
daily living (Petersen et al.,  1999 ), this well-studied condition 
has been revised to address and incorporate single-domain 
and multiple-domain defi cits in cognitive abilities other than 
memory (Peterson & Morris,  2005 ). The revision therefore 
yielded four possible MCI conditions: single-domain am-
nestic, multiple-domain amnestic, single-domain nonamnestic, 
and multiple-domain nonamnestic. Research suggests that 
amnestic MCI (aMCI) patients convert to AD at a rate of 
16–41% per year (Gauthier et al.,  2006 ) as opposed to a rate 

of 1–2% per year in the general population (Petersen et al., 
 2001 ). Some propose research criteria for very early AD that 
rely on a core diagnostic criterion of early episodic memory 
impairment, supportive features such as the presence of 
medial temporal lobe atrophy or abnormal cerebrospinal fl uid 
markers, and exclusionary criteria like depression or sudden 
onset of symptoms (Dubois et al.,  2007 ). Thus, the study of 
aMCI and its relationship to cognitive decline remains an 
important focus of neuropsychological inquiry. 

 We employed a novel nonlinear multivariate classifi cation 
statistical method called Optimal Data Analysis (ODA; 
Yarnold & Soltysik,  2005 ) with the aim of identifying factors 
in the prediction of aMCI. Our prior work (Jak et al.,  2009 ), 
as well as the work of others (see Twamley et al., 2006  , for a 
review), suggests that specifi c performances on standardized 
clinical measures of memory, such as the Wechsler Memory 
Scale – Revised edition (WMS-R) Logical Memory and the 
California Verbal Learning Test – Second edition (CVLT-II), 
are highly predictive of aMCI status within a group of 
premorbidly nondemented older adults.   
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 METHOD  

 Participants and Materials 

 All human data included in this article were obtained in 
compliance with regulations of the Internal Review Board of 
the University of California San Diego. Ninety-four partici-
pants were recruited by advertisements through various 
media sources in and around San Diego, CA (see  Table 1 ). 
These participants were enrolled in a longitudinal aging 
study and had been tracked for three years. All were asked to 
complete an annual battery of psychosocial measures and 
neuropsychological tests. Participants were assessed for, and 
when appropriate diagnosed with, aMCI according to crite-
ria delineated in Jak et al ( 2009 ). The Jak et al. ( 2009 ) method 
for assigning aMCI diagnoses is based on six variables (age-
scaled scores of LMI, LMII, VRI, VRII, and CVLT Trials 
1–5 Total and CVLT Long Delay Free Recall standard 
scores). If participants’ performances on at least two of the 
memory measures fell one or more standard deviations 
below their age appropriate norms (i.e., single-domain aMCI), 
or if participants met criteria for a defi cit in one or more 
cognitive domains in addition to single-domain aMCI (i.e., 
multiple-domain aMCI), the participants were classifi ed as 
aMCI. Also, the participants with a defi cit in one or more 
cognitive domains in the absence of memory problems   
(i.e., nonamnestic subtypes of MCI) were excluded from 
the analysis. Otherwise, participants were classifi ed as “no 
MCI.” At the initial wave of the longitudinal study, no par-
ticipant qualifi ed for a diagnosis of aMCI or AD. At the 
time of this investigation, 52 participants had completed 
the second wave, and 35 of these also had completed the 
third wave.     

 The demographic information, genetic measures (apoli-
poprotein E genotype), psychosocial measures, and neurop-
sychological tests that comprised the battery included: age, 
education, gender, apolipoprotein E genotype, the Logical 
Memory (LM) subtest and the Visual Reproduction (VR) 
subtest from the Wechsler Memory Scale–Revised edition 
(WMS-R), the California Verbal Learning Test–Second edi-
tion (CVLT-II), the Dementia Rating Scale (DRS), the Digit 
Span and Block Design subtests from the Wechsler Adult 
Intelligence Scale–Revised edition (WAIS-R), Trials A and 
B, the Draw-A-Clock test, the Boston Naming Test (BNT), 
Verbal Fluency, Category Fluency, Color-Word Interference, 

 Table 1.        Demographic data for participants          

   Demographic information  Mean  Standard Deviation     

  N   94     
 Age  77.23  7.303   
 Gender (M/F)  39/51     
 Education  15.87  2.487   
 ANART VIQ  119.50  5.780   
 DRS Total  139.30  4.268   
 APOE (E4 / 
   Non-E4 / Unknown) 

 24 / 60 / 10     

Tower Test, Sorting Test, and Trail-Making Test from the 
Delis-Kaplan Executive Functions System (D-KEFS), the 
48-card version of the Wisconsin Card Sorting Test (WCST), 
the American National Adult Reading Test (ANART), the 
Independent Living Scale (ILS), and the Geriatric Depres-
sion Scale (GDS). In addition, the participants were asked to 
submit to a cheek buccal swabbing to determine their APOE 
allele genotype (see Saunders, Strittmatter, & Schmechel, 
 1993 ). In the ODA statistical analyses, all of the above 
measures collected at the fi rst wave were used as the inde-
pendent variables to predict the occurrence of aMCI at the 
second wave. Furthermore, the measures assessed at the 
fi rst and second waves were examined to predict the occur-
rence of aMCI at the third wave. The dependent variable 
was the diagnosis of aMCI at the second and third waves, 
respectively.   

 Analysis Strategy 

 Optimal Data Analysis (ODA) was used to explore 
whether there were any demographic (including APOE 
genotype), psychosocial, or neuropsychological factors 
that predicted diagnosis of aMCI in the second and third 
waves. The specifi c variables included in the analysis 
are listed in the Appendix. ODA was performed by the 
Windows-based computer analysis software (Yarnold & 
Soltysik,  2005 ). This nonlinear multivariate classifi cation 
method provides a hierarchical classifi cation tree model 
in which cases are categorized into each group of a 
dichotomous dependent variable (“aMCI” or “no MCI” in 
the current study) by pathways branched by independent 
variables or “nodes.” An advantage of ODA is that there 
are no necessary assumptions such as multivariate normality, 
additivity, equality of group sizes, number of variables, or 
multicollinearity (see Yarnold, Soltysik, & Bennett,  1997 , 
for details). 

 ODA refers to an independent variable as an  attribute  and 
a dependent variable as a  class variable  (Soltysik & Yarnold, 
 1993 ; Yarnold & Soltysik,  2005 ). The class variable must be 
categorical (either dichotomous or multicategorical), whereas 
attributes may have any scale of measurement. ODA fi rst 
sets the best categorical borderline for each attribute, called 
 cutpoint  or  decision rule , which classifi es cases with the 
maximum percentage accuracy ( percentage accuracy in 
classifi cation  or PAC) into each category of a class variable. 
ODA uses a special index, called  effect strength for sensi-
tivity  (ESS), to indicate the percentage of how many cases 
belonging to a group are correctly classifi ed. In other words, 
higher ESS indicates that an obtained cutpoint achieves 
higher PACs in classifying cases into each category. Next, 
ODA employs a  leave-one-out  (LOO)  validity  approach to 
evaluate the stability of classifi cation performance. This 
entails repeatedly analyzing classifi cation performance and 
checking its consistency across subsamples every time one 
observation is occasionally excluded. Finally, to evaluate the 
signifi cance level of classifi cation performance, Fisher’s 
exact probability test is used. 
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 An attribute that shows the highest ESS, LOO stability, 
and signifi cant  p -value is considered the strongest attribute, 
which is entered as the top  node  of the hierarchical tree 
model (Soltysik & Yarnold,  1993 ; Yarnold & Soltysik,  2005 ). 
Once the top attribute is selected, the same procedure is 
performed again within a subsample classifi ed by the top 
attribute. Consequently, the model gradually builds a tree of 
several nodes branched out from the top attribute. If there is 
no signifi cant attribute, the classifi cation performance is 
stopped. To fi nalize the classifi cation tree model, the signifi -
cance levels of all attributes are retested by a sequentially 
rejecting Sidak Bonferroni-type multiple comparisons pro-
cedure. The purposes of this procedure are to control Type I 
error rate per comparison and maximize statistical power. If 
any signifi cance levels are beyond  p -value per comparison, 
these attributes are pruned from the model. 

 Lastly, it should be noted that, in spite of its unique 
approach being different from traditional classifi cation 
methods, the indices used by ODA are compatible with tra-
ditional classifi cation method indices, such as the goodness-
of-fi t index, effect size, and signifi cance level. Therefore, 
models produced by ODA may be tested according to these 
parameters. For example, the goodness-of-fi t index is com-
parable to overall classifi cation accuracy, the effect sizes can 
be calculated by ESS or overall effect strength in ODA, and 
the signifi cance level is tested by Fisher’s exact probability 
test.    

 RESULTS 

 There were 8 participants categorized as aMCI (5 single-
domain) at the second wave, and 5 categorized as aMCI at 
the third wave (2 single-domain). Three cases from the sec-
ond wave and one case from the third wave were dropped in 
accordance with the pairwise deletion method, because these 
cases had missing data on measures that were signifi cant in 
the model (i.e., WMS-R LMII % retention, D-KEFS Trail-
Making Number Sequencing scaled score, Geriatric Depres-
sion Scale score, and WMS-R LMI MOANS age standard 
score).  Figures 1a and 1b  summarize the ODA hierarchical 
classifi cation tree model of baseline data to predict the 
occurrence of aMCI at the second wave of the longitudinal 
study. Forty-nine participants entered into the model as the 
result of a pairwise deletion method, and overall classifi cation 
accuracy was 93.88% ( p  < .001) with an overall effect strength 
of 79.85%. These values indicate that our model was strongly 
predictive (see  Table 2 ; for the method to evaluate effect 
strength, see Yarnold & Soltysik,  2005 ).  Figure 1  depicts that 
the classifi cation tree model predicted the development of 
aMCI with 87.5% accuracy; the participants were highly 
likely to develop aMCI at the second wave if their memory 
retention rate on WMS-R LM Delayed Recall  versus  Imme-
diate Recall was lower than or equal to 78.5% at the fi rst 
wave, and if they had a scaled score of less than or equal to 
14.5 on D-KEFS Trail-Making Number Sequencing scale at 
the fi rst wave. On the other hand, if the participants scored 
higher than 78.5% of their memory retention rate on WMS-R 

 

(a)
WMS-R LMII 

% retention

D-KEFS Trail 
Making Number

Sequencing 
Scaled Score 

No MCI 

aMCI

.000116

> 78.5 78.5

 14.5> 14.5

36/38 
(94.74%) 

3/3 
(100%)

No MCI 

.024242

7/8 
(87.5%) 

(b)
WMS-R LMII 

% retention

Geriatric
Depression Scale 

Score

No MCI 

aMCI

.000116

> 78.5 78.5

> 2.5 2.5

36/38 
(94.74%) 

3/3 
(100%) 

No MCI 

.024242

7/8 
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(c)

 

WMS-R LMI 
MOANS Age 

Standard Score
(1st Wave)

No MCI aMCI

.000004

> 8.5 8.5

29 29/
(100%) 

5/5 
(100%)  

 Fig. 1a – 1c.        (a) The Optimal Data Analysis (ODA) Hierar-
chical Tree Model 1 for predicting no MCI  versus  aMCI one 
year later based on neuropsychological and psychosocial vari-
ables ( N  = 49); (b) Classifi cation performance summary of 
Optimal Data Analysis prediction of aMCI one year later ( N  = 
49); (c) Classifi cation performance summary of Optimal Data 
Analysis prediction of aMCI two years later ( N  = 34). 
  Note . Ellipses represent nodes, arrow lines represent branches, 
and rectangles represent prediction endpoints. Numbers under 
each ellipse (node) indicate Fisher’s exact  p  value for each node. 
Numbers next to arrows indicate the cutpoint for classifying 
cases into the categories (No MCI or aMCI) for each node. 
Finally, fractions and percentages below each prediction endpoint 
indicate the absolute number or percentage of the cases correctly 
classifi ed.    
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LMII at the fi rst wave, aMCI was less likely to occur at the 
second wave with 94.74% accuracy. In addition, even if the 
memory retention rate was lower than or equal to 78.5% on 
WMS-R LMII at the fi rst wave, a higher score than 14.5 on 
the D-KEFS Trail-Making Number Sequencing scale at the 
fi rst wave predicted the low likelihood of the occurrence of 
aMCI at the second wave with 100% accuracy.         

 It was also found that the occurrence of aMCI at the 
second wave was predicted with the same classifi cation 
accuracy if the Geriatric Depression Scale (GDS) score was 
used as the second predictor (see  Figure 1b ). In this case, the 
fi rst attribute was still memory retention rate on WMS-R 
LMII, such that a higher score than 78.5% of their memory 
retention rate predicted a low likelihood of developing aMCI 
at the second wave with 94.74% accuracy. On the other hand, 
if memory retention rate was lower than 78.5%, GDS alter-
natively predicted the likelihood of developing aMCI in the 
following way: A participant was less likely to develop aMCI 
at the second wave if their GDS score was less than or 
equal to 2.5; otherwise, a participant was likely to develop 
aMCI at the second wave. Note that both  Figures 1a and 1b  
predicted the occurrence of aMCI with the same accuracy of 
classifi cation performance. 

 The predictors of the development of aMCI two years 
later were also examined by ODA. The ODA hierarchical 
classifi cation tree model for this prediction is more parsimo-
nious with greater classifi cation accuracy than the fi rst model 
(see  Figure 1c ). If participants had a score lower than 8.5 as 
a Mayo’s Older American Normative Scales (MOANS) age 
standard score on WMS-R LMI at the fi rst wave, they were 
diagnosed as aMCI at the third wave; otherwise, participants 
did not qualify for aMCI at the third wave. Note that both 
prediction endpoints were predicted with 100.00% accu-
racy. In other words, the overall classifi cation accuracy was 

100.00% ( p  < .001), and the overall effect strength was also 
100.00%, which means that the model perfectly predicted 
the occurrence of aMCI two years later (see  Table 3 ).       

 DISCUSSION 

 We employed a novel nonlinear multivariate classifi cation 
statistical method called Optimal Data Analysis to identify 
possible predictive factors of developing aMCI in a dataset 
of neuropsychological and psychosocial measures collected 
annually for three years from 94 originally nondemented 
participants. With this method we found that story learning 
or retention, visuomotor processing speed, and depression 
were predictive of aMCI one to two years later. No other 
neuropsychological or psychosocial factors predicted devel-
opment of aMCI. 

 Two statistical classifi cation methods have been widely 
utilized in the literature to conduct exploratory classifi cation 
analyses: logistic regression analysis (LRA) and discrimi-
nant function analysis (DFA). However, these methods 
assume linearity, where the variability of human behavior is 
forcefully fi t into a mathematical approximation. Specifi cally, 
LRA assumes a linear relationship between independent 
variables and the log odds of a dependent variable, whereas 
DFA assumes linear combinations of independent variables 
(i.e., discriminant functions, see Agresti,  2007  and Stevens, 
 2002 ). However, the linearity assumption presumes that all 
observed data should be the same in terms of (1) the set of 
independent variables, (2) the direction of infl uence (i.e., 
positively or negatively predictive), and (3) the coeffi cient 
values (or weight) of each independent variable (Yarnold, 
Soltysik, & Bennett,  1997 ). If these characteristics are not 
present, the classifi cation accuracy level is constrained or 
biased (Soltysik & Yarnold,  1993 ; Yarnold & Soltysik,  2005 ). 

 Table 2.        Classifi cation performance summary of Optimal Data Analysis prediction of MCI one year later ( N  = 49)          

   Performance Index  Performance Parameter     

 Overall classifi cation accuracy  46/49 (93.88%)   
 Sensitivity (No MCI)  39/41 (95.12%)   
 Sensitivity (aMCI)  7/8 (87.50%)   
 Effect strength for sensitivity  82.62%   
 Predictive value (No MCI)  39/40 (97.50%)   
 Predictive value (aMCI)  7/9 (77.78%)   
 Effect strength for predictive value  75.28%   
 Effect strength overall  78.95%  

  Cross-Classifi cation Table ( p  < .001)   

 Respondents’ Actual Status  Respondents’ Predicted Status   

 No MCI  aMCI  

  No MCI  39  2   
 aMCI  1  7   

   Note.      This classifi cation performance was exactly replicated, regardless of whether the second attribute was (1) D-KEFS Trail-Making 
Number Sequencing scaled score or (2) Geriatric Depression Scale score. Overall classifi cation accuracy is the percentage of the cases 
classifi ed correctly. Sensitivity is the percentage of how many cases were correctly classifi ed among cases that actually belong to a given 
category. Predictive value is the percentage of how many cases were correctly classifi ed among cases that were predicted as a given 
category. Higher percentage indicates greater classifi cation performance. Effect strength overall is the mean of effect strength for sensi-
tivity and effect strength for predictive value. According to Yarnold & Soltysik ( 2005 ), the effect strength is strong (75% < ES < 90%).    
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In addition to these assumptions, LRA and DFA assume (1) 
no gross outliers, (2) low multicollinearity of independent 
variables, (3) the inclusion of independent variables that are 
all conceptually relevant to a dependent variable, (4) equal 
and adequate group size, and (5) normality (Agresti,  2007 ; 
Jaccard,  2001 ; Menard,  1995 ; Peduzzi, Concato, Kemper, 
Holford, & Feinstein,  1996 ; Tabachnick & Fidell,  1989 ). 

 In contrast to the linear classifi cation methods, a hierarchical 
classifi cation tree analysis (CTA) is a nonlinear approach 
(Yarnold & Soltysik,  2005 ; Yarnold, Soltysik, & Martin, 
 1994 ). The major methods of CTA include classifi cation and 
regression tree models (e.g., CART; see Breiman, Friedman, 
Olshen, & Stone,  1984 ) and Optimal Data Analysis (ODA; 
Soltysik & Yarnold,  1993 ; Yarnold & Soltysik,  2005 ). These 
nonlinear methods show some advantages over the linear 
methods, especially for exploratory analyses. First, CTA the-
oretically provides a better classifi cation accuracy level than 
the linear methods, because CTA constructs a hierarchical 
tree model in which a different set of independent variables 
with different directions and/or weights are suggested across 
different partitions of a given sample (i.e., no requirement of 
forcefully fi tting variance into a mathematical estimation). 
This also means that CTA (1) is less sensitive to gross out-
liers and (2) detects an interaction effect automatically, 
without having to create a cross-product variable, which 
occur in linear classifi cation methods (Bremner & Taplin, 
 2002 ; Fox,  2000 ; Sonquist & Morgan,  1964 ). 

 Furthermore, CTA repeatedly analyzes the overall effect 
size of each independent variable and enters only the best 
variable(s) into a model (Breiman et al.,  1984 ; Soltysik & 
Yarnold,  1993 ; Yarnold & Soltysik,  2005 ), whereas the linear 
methods compute the partial effect size of each predictor 
simultaneously to fi t all predictors into an overall model. 
CTA’s unique approach enables (1) selection of a set of 
independent variables that are all statistically relevant, (2) 

the ability to ignore a multicollinearity of independent vari-
ables, (3) minimization of a loss of observed data by using a 
pairwise deletion method (rather than a listwise deletion 
method), and (4) examination of as many independent vari-
ables as needed. 

 Finally, group size is an issue for LRA and DFA because 
unequal group size can diminish statistical power. In con-
trast, regardless of group size, CTA maximizes statistical 
power by using cross-validation (for CART; Breiman et al., 
 1984 ) or a sequentially rejective Sidak Bonferroni-type mul-
tiple comparisons procedure (for ODA; Soltysik & Yarnold, 
 1993 ; Yarnold & Soltysik,  2005 ). These procedures deter-
mine the size of a CTA model. Thus, CTA does not neces-
sarily assume equality or adequacy of group size to maximize 
statistical power. 

 Therefore, CTA (e.g., CART and ODA) is conceptually 
advantageous over LRA and DFA. But, what is the differ-
ence between CART and ODA? CART relies on the least 
squares and maximum likelihood estimation to evaluate 
“impurity,” an index that indicates the heterogeneity of 
given categories (e.g., the Gini index, the towing index, the 
deviance of nodes; see Breiman et al.,  1984 ; Clark & 
Pregibon,  1992 ; Bremner & Taplin,  2002 ), whereas ODA 
employs percentage accuracy in classifi cation (PAC) and 
Fisher’s exact probability test. In other words, CART uses 
parametric tests as classifi cation criteria for a given sample 
(i.e., the normality and linearity are assumed within a cat-
egory). However, ODA does not require the assumptions 
of normality and linearity. Thus, Yarnold et al. ( 1997 ) 
believe that the nonlinear methods using the least squares/
maximum likelihood (e.g., CART) “fail to maximize 
classifi cation accuracy explicitly for the training sample” 
(p. 1452), compared to ODA, if the assumptions of nor-
mality and linearity are seriously violated within a training 
sample. 

 Table 3.        Classifi cation performance summary of Optimal Data Analysis prediction of MCI one year later ( N  = 34)          

   Performance Index  Performance Parameter     

 Overall classifi cation accuracy  34/34 (100.00%)   
 Sensitivity (No MCI)  29/29 (100.00%)   
 Sensitivity (aMCI)  5/5 (100.00%)   
 Effect strength for sensitivity  100.00%   
 Predictive value (No MCI)  29/29 (100.00%)   
 Predictive value (aMCI)  5/5 (100.00%)   
 Effect strength for predictive value  100.00%   
 Effect strength overall  100.00%  

  Cross-Classifi cation Table ( p  < .001)   

 Respondents’ Actual Status  Respondents’ Predicted Status   

 No MCI  aMCI  

  No MCI  29  0   
 aMCI  0  5   

   Note.      Overall classifi cation accuracy is the percentage of the cases classifi ed correctly. Sensitivity is the percentage of how many cases 
were correctly classifi ed among cases that actually belong to a given category. Predictive value is the percentage of how many cases were 
correctly classifi ed among cases that were predicted as a given category. Higher percentage indicates greater classifi cation performance. 
Effect strength overall is the mean of effect strength for sensitivity and effect strength for predictive value. According to Yarnold & 
Soltysik ( 2005 ), the effect strength is very strong (95% < ES).    
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 Previous studies revealed that ODA yielded better 
classifi cation performance accuracy on predicting cardiac 
death (Yarnold, Soltysik, & Martin,  1994 ) and mortality of 
patients with cardiopulmonary resuscitation (Yarnold, 
Soltysik, Lefevre, & Martin,  1998 ) than LRA. For these and 
the reasons detailed above, ODA was selected in the present 
study to achieve our goal – exploring neuropsychological 
and other predictors of aMCI. 

 Our fi ndings suggest that lower,  and not necessarily 
impaired , performances on measures of story learning and 
memory, visuomotor processing speed, and depressive symp-
toms are predictive of subsequent memory decline in a nor-
mal population. These fi ndings, at fi rst glance, appear to be 
in accord with prior studies that have reported the utility of 
either delayed recall (Albert, Moss, Tanzi, & Jones,  2001 ; 
Arnaiz & Almkvist,  2003 ; Bäckman et al., 2005  ; Twamley 
et al., 2006  ) or learning measures (Grober & Kawas, 1997  ; 
Rabin et al., 2009  ) in providing strong diagnostic sensitivity 
for aMCI. However, it is important to note that the results 
showed that relatively lower scores on either WMS-R LM 
Delayed Recall, D-KEFS Trail-Making Number Sequencing 
scale, or Geriatric Depression Scale alone did not provide 
good predictive value of the occurrence of aMCI at follow-up 
visits, whereas the predictive power improved signifi cantly 
when Delayed Recall and either D-KEFS Trail-Making 
Number Sequencing or depression scores were taken into 
account. Our model suggests that consideration of additional 
cognitive features beyond memory buttresses the prediction 
of progression to aMCI. 

 Studies of aMCI have relied almost exclusively on de-
layed recall or retention measures in rendering the diagnosis 
(Arnaiz & Almkvist,  2003 ). Our fi ndings, however, suggest 
that the diagnosis of aMCI may be aided by the incorpora-
tion of other cognitive and psychosocial functioning mea-
surement strategies. A number of studies have specifi cally 
shown the sensitivity of Trail-Making test procedures (Chen 
et al.,  2001 ), as well as depressive features (Teng, Lu, & 
Cummings,  2007 ) in the years preceding a diagnosis of 
Alzheimer’s disease. As Jak and colleagues (2009) have 
pointed out, the use of comprehensive neuropsychological 
assessment when diagnosing MCI subtypes will help to 
improve the stability and reliability of diagnosis, as will the 
use of multiple measurements within a cognitive domain, 
such as episodic memory. These results may suggest that the 
conventional practice of relying solely on the use of a de-
layed recall or retention measure, or rating scale summaries 
of a single delayed recall measure, may lead to more false 
positive errors (i.e., misdiagnosing healthy individuals as 
aMCI; Saxton et al., 2009  ) than using a procedure based on 
multiple measures. 

 Of particular note is the fact that apolipoprotein E (APOE) 
genotype and gender were not predictive of aMCI in our 
sample. The APOE genotype, more specifi cally possession 
of the epsilon 4 allele, has been associated with earlier age of 
onset of Alzheimer’s disease (Corder et al.,  1993 ) and with 
impairments in aMCI (Ramakers et al.,  2008 ). However, it 
was not identifi ed as a signifi cant predictive factor in our 

model. Our results suggest that neurocognitive and possibly 
psychological factors may be more predictive of aMCI than 
the APOE genotype. In regard to gender, some studies have 
identifi ed a gender difference in MCI incidence (e.g., Das 
et al.,  2007 ), although others have not (e.g., Panza et al., 
 2005 ). Our results suggest gender is not a factor in the inci-
dence of aMCI, at least when considering neurocognitive 
and psychosocial factors, supporting the refutation of gender 
as a risk factor for aMCI. 

 Limitations of the present study include potential sources 
of sampling error, such as demographic factors that may be 
not be generalizable to the population as a whole. Our study 
group’s age range was particularly circumscribed (mean = 
77.23,  SD  = 7.30), and our group had a relatively high level 
of education (mean = 15.87,  SD  =2.49). Our neuropsycho-
logical and psychosocial variables were also limited to the 
battery incorporated for our longitudinal study and may not 
have addressed factors that could have had an impact on 
development of aMCI (e.g., neurovascular factors). It is also 
unknown how many of our aMCI-diagnosed participants 
will progress to AD. The size of our study sample was not a 
limitation because ODA as a statistical approach is not 
limited by traditional sample size power considerations. 
A fi nal limitation is that our results may be viewed as 
“circular” given that we examined performances on the same 
memory measures utilized one or two years later in the diag-
nosis of aMCI. We do not regard this possibility as refl ecting 
criterion contamination given that we investigated perfor-
mances on memory measures that were not used in the diag-
nosis of aMCI at the time that aMCI was diagnosed. In other 
words, even though the same tests of memory may have been 
used in the diagnosis of aMCI, the actual test score per-
formances entered into our predictive model were from a 
different time than diagnosis (i.e., one or two years prior to 
diagnosis). In addition, the Jak et al. ( 2009 ) method for 
assigning aMCI diagnoses were based on six variables 
(age-scaled scores of LMI, LMII, VRI, VRII, and CVLT 
Trials 1–5 Total and CVLT Long Delay Free Recall standard 
scores), whereas our predictive models considered a total 
of 26 memory variables (see Appendix), six of which 
overlapped with the assignment method of Jak et al. 
( 2009 ), although, again, the use of these six test score perfor-
mances antedated the diagnosis of aMCI – which was based 
on different test scores from these same tests – by one to two 
years. As a fi nal remedy to inspect for the possibility of cri-
terion contamination, we again performed ODA analyses 
excluding those six memory measures used in the Jak et al. 
( 2009 ) aMCI classifi cation method. The resulting model 
trees were identical. 

 In conclusion, our results have interesting implications for 
models of the aMCI construct and provide some compara-
tive value to the various defi nitional schemes recently pro-
posed (see Petersen & Morris,  2005 ; Dubois et al.  2007 , Jak 
et al.  2009 ). Some of the advantages of ODA as a statistical 
approach are that it yields specifi c cutpoints and a decision 
tree model that can be cross-validated and empirically tested 
in future prospective studies. Future research is needed to 
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investigate whether these performance cutpoints in this age 
range are indeed predictors of aMCI and ultimately of pro-
gression to dementia.     
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 APPENDIX 

 List of attributes analyzed by ODA 

     1.     age as of test date  

     2.     gender  

     3.     handedness  

     4.     examiner  

     5.     education (yrs)  

     6.     ethnicity  

     7.     subject referral  

     8.     ANART VIQ  

     9.     ANART errors  

     10.     WAIS-R digit span forward  

     11.     WAIS-R digit span backwards  

     12.     WAIS-R digit span scaled score    

     13.     WAIS-R digit span MOANS  

     14.     WISC-R block design raw  

     15.     WISC-R block design  T  score  

     16.     WISC-R block design broken confi guration  

     17.     WISC-R block design over time  

     18.     DRS total  

     19.     DRS total  T  score  

     20.     DRS attention  

     21.     DRS attention  T  score  

     22.     DRS initiation/perseveration    

     23.     DRS initiation/perseveration  T  score  

     24.     DRS supermarket items  

     25.     DRS supermarket items  T  score  

     26.     DRS construction  

     27.     DRS construction  T  score  

     28.     DRS conceptualization  

     29.     DRS conceptualization  T  score  

     30.     DRS memory  

     31.     DRS memory  T  score  

     32.     ADRC form (1 or 2)  

     33.     Boston Naming Test total correct  

     34.     Boston Naming Test total correct  T  score  

     35.     Boston Naming Test total correct MOANS scaled score  

     36.     BNT spontaneous correct (total)  

     37.     BNT stimulus cues given (total)  

     38.     BNT stimulus cues correct (total)  

     39.     BNT phonemic cues given (total)  

     40.     BNT phonemic cues correct (total)  

     41.     WCST-48 number of categories  

     42.     WCST-48 categories  T  score  

     43.     WCST-48 nonperseverative errors  

     44.     WCST-48 nonperseverative errors  T  score  

     45.     WCST-48 perseverative errors  

     46.     WCST-48 perseverative errors  T  score  

     47.     WCST-48 set losses  

     48.     WCST-48 total errors  

     49.     Trails A  

     50.     Trails A  T  score  

     51.     Trails A MOANS  

     52.     Trails A no. of errors  

     53.     Trails B  

     54.     Trails B  T  score  

     55.     Trails B MOANS  

     56.     Trails B no. of errors  

     57.     draw a clock command  

     58.     draw a clock copy  

     59.     verbal fl uency version (standard/alternate)  

     60.     letter fl uency (f)  

     61.     letter fl uency (a)  

     62.     letter fl uency (s)  

     63.     letter fl uency total raw  

     64.     D-KEFS verbal fl uency scaled score  

     65.     letter fl uency total  T  score  

     66.     category fl uency (animals) raw  

     67.     D-KEFS category fl uency scaled score  

     68.     category fl uency (animals)  T  score  

     69.     D-KEFS color-word interference inhibition scaled score  

     70.     D-KEFS color-word interference inhibition/switch scaled 
score  

     71.     D-KEFS tower total achievement scaled score  

     72.     D-KEFS sorting test confi rmed correct sorts scaled score  

     73.     D-KEFS sorting test sort recognition description scaled 
score  

     74.     D-KEFS trail-making visual scanning scaled score  
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     75.     D-KEFS trail-making number sequencing scaled score  

     76.     D-KEFS trail-making letter sequencing scaled score  

     77.     D-KEFS trail-making number-letter switch scaled score  

     78.     D-KEFS trail-making motor sequencing scaled score  

     79.     WMS-R LMI  

     80.     WMS-R LMI age scaled score    

     81.     WMS-R LMI MOANS age scaled score  

     82.     WMS-R LMII  

     83.     WMS-R LMII age scaled score  

     84.     WMS-R LMII MOANS age scaled score  

     85.     WMS-R LMII % retention    

     86.     WMS-R LMII % retention MOANS age scaled score  

     87.     WMS-R LM recognition   %  

     88.     WMS-R LM recognition discrimination   percentage  

     89.     WMS-R LM response   bias  

     90.     WMS-R VRI  

     91.     WMS-R VRI age scaled score  

     92.     WMS-R VRI MOANS age scaled score  

     93.     WMS-R VRII  

     94.     WMS-R VRII age scaled score  

     95.     WMS-R VRII MOANS age scaled score  

     96.     WMS VRII % retention  

     97.     WMS VRII % retention MOANS age scaled score  

     98.     WMS VRII recognition  

     99.     WMS-R VR recognition discrimination percentage  

     100.     WMS-R VR response bias  

     101.     ILS managing money raw  

     102.     ILS managing money  T  score  

     103.     ILS managing money problem-solving  

     104.     ILS managing money information  

     105.     ILS health and safety raw  

     106.     ILS health and safety  T  score  

     107.     ILS health and safety problem-solving  

     108.     ILS health and safety information  

     109.     Geriatric Depression Scale score  

     110.     Geriatric Depression Scale rating  

     111.     CVLT-II  

     112.     CVLT-II list A trials 1–5 total  T  score  

     113.     CVLT-II long delay free recall  T  score  

     114.     Overall Abilities  

     115.     Overall Attention  

     116.     Overall Language  

     117.     Overall Visuospatial Skills  

     118.     Overall Executive Functions  

     119.     Overall Memory  

     120.     Overall Living Skills  

     121.     APOE epsilon 4 positive  

    Note.      All attributes listed above were collected at the 
fi rst wave and the second wave, and each attribute at each 
wave was individually analyzed by ODA. Class variables 
were the diagnosis of aMCI at the second wave or the 
third wave.    
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