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Abstract

In this paper, a novel alternating direction method of multiplier (ADMM) is proposed to solve
the inverse scattering problems. The proposed method is suitable for a wide range of applica-
tions with electromagnetic detection. In order to solve the internal ill-posed problem of the
integral equation and make the reconstructed images more closer to the ground truth, first,
the augmented Lagrangian method is introduced to transform the complex constrained opti-
mization problem into the extremum problem of unconstrained cost function. Therefore, two
artificial regularization factors of the cost function are optimized. Then, this proposed method
decomposes the unconstrained global problem in the inversion process into three linear sub-
problem forms of contrast source function, contrast function, and dual variables. And the
form of the updated algebra for each sub-problem is not complicated. By cross-iterating
and updating contrast source function, contrast function, and dual variables, the global mini-
mization of the cost function can be accurately found. Finally, the proposed method is com-
pared with the existing well-known iterative method for solving the inverse scattering
problem. Both the numerical and experimental tests verify the validity and accuracy of the
proposed ADMM.

Introduction

Electromagnetic inverse scattering imaging technique hascontactless and non-destructive
characteristics when measuring geometric shapes and permittivities of unknown objects.
Therefore, it plays an important role in the fields of biomedical imaging, microwave imaging,
remote sensing, non-destructive evaluation,security checks, and so on [1–5]. Specifically, scat-
tered field data and other prior information tested outside the domain of interest (DoI) are
used to reconstruct unknown objects in the DoI. Since electromagnetic inverse scattering prob-
lem (EISP) is inherently nonlinear and ill-posed, it is challenging to obtain a solution of the
global optimization in an efficient and steady approach. It is partly ascribable to the amount of
unknowns of the electric field integral equation. Various methods have been proposed to deal
with these difficulties. Generally speaking, these algorithms are divided into two categories;
namely, the linear algorithms and the nonlinear algorithms. In these leading edge algorithms,
the first Born approximations and the Rytov approximations belong to the linear algorithms
[6,7]. Contrast source-type inversion (CSI) method [8], subspace optimization method (SOM)
[9], and variational Born iterative method [10] belong to the nonlinear algorithms.

These advanced algorithms can effectively solve most inverse problems, but there are still
some subtle defects. In linear algorithms, multiple scattering effects are not considered. The
scattering field outside the DoI is simply ignored, and the total field is usually replaced by
the incident field. Once the EISP is linearized, researchers can effectively solve it by using
the preferred reconstruction algorithms. However, these algorithms are usually sparse and
iterative [11,12], and are only applied to weak scatterers. Compared with the linear algorithms,
the quality of the spatial distribution of the reconstructed permittivity obtained by the non-
linear method is excellent. The nonlinear algorithm considers multiple electromagnetic scat-
tering effects in the EISP and can make more accurate reconstruction of scatterers by
increasing computational complexity of the reconstruction. In addition, nonlinear optimiza-
tion algorithms take a long time to reconstruct scatterers. Therefore, it is not suitable for
instantaneous applications or very complex problems. Moreover, it still needs to effectively
combine a priori knowledge, starting from the initial guess of the spatial distribution of the
permittivity in the EISP.

Optimization problems in imaging are often nontrivial to solve. When solving the EISP, the
nonlinearity and the ill-posedness of its integral equation will lead to the complexity of the
solving process [13]. To this end, we propose an eligible alternating direction method of multi-
plier (ADMM) to solve the EISP. This method has a unique advantage. It is different from the
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classical optimizations and its iteration assures the convergence of
the reconstructed images in an iterative process. Aiming at the
application of the ADMM in the EISP, the ADMM is suitable
for dealing with large-scale data due to its significant low compu-
tational complexity. In the framework of the ADMM, the complex
cost function in the EISP is transformed into an unconstrained
problem. Then, by employing the decomposition-coordination
method, the unconstrained global problem is decomposed into
three sub-problems that are easier to solve. The specific expres-
sion form of each sub-problem is iteratively updated by different
solving methods. By implementing the cross-iterating method, the
global minimization of the cost function can be accurately found.
This method provides relevant theoretical guidance and practical
tests for the EISP of large-scale data. In addition, itis aware that
there also exists another work that employs the ADMM to the
EISP [14]. Particularly, Li et al.regarded the equation of the exter-
nal scattering field as a constraint in the ADMM framework and
selected the equation of the internal total field as the objective
function. By contrast, in our work, the proposed method regards
the equation of the internal total field as a constraint in the
ADMM framework and choose the equation of the external scat-
tering field as the objective function. As the external scattering
field is often corrupted by large noise in [9,15–17], thus our for-
mulation can be more suitable to describe this circumstance.
Furthermore, in order to pursue better robust recovery, more reg-
ularizations such as L1-norm are considered in our work.

The remainder of this paper is organized as follows. In Section
“Inverse scatteringproblem,” the general model and basic theory
of the EISP are introduced. In Section “Method,” the formulas
and procedure of the ADMM are presented to solve the EISP.
In Section “Experimental validation,” numerical and experimental
examples demonstrate the effectiveness and accuracy of the
ADMM. And conclusions are drawn in Section “Conclusion.”

Notation: x and v denote the matrix and vector, respectively.
Then, AT denotes the transpose of a matrix A. | · |F denotes the
Frobenius norm of a matrix. In addition, in the reconstructed
images, the units of the horizontal and vertical coordinates are
meters. Finally, ψ( · ) denotes contraction operator.

Inverse scattering problem

The configuration of Fig. 1 is the same as the configuration
of [18]. A two-dimensional(2-D) transverse-magnetic (TM) case
(ẑ is the longitudinal direction) is considered in an EISP. As
shown in Fig. 1, in free-space background, nonmagnetic scatterers
are located in a DoI. The sources and receivers are equally placed
outside the DoI, and their relevant position vectors are recorded
as rj (j = 1, 2, . . . , Nj) and rs (s = 1, 2, . . . , Ns), respectively. A
total number of Nj line sources illuminate harmonic electromag-
netic waves through the unknown scatterers. Then, the scattered
electric field generated by each incidence is measured by an
array of Ns antennas, so the size of the obtained total data of
the scattered field is NjNs. And we discretize the DoI into the
total number of M small subunits. The unknown scatterers are
located in the DoI where the background medium is evenly dis-
tributed, so the relevant permittivity of the background is ε0
and the relevant permeability is μ0.

The total field in the DoI can be expressed as:

Etot
j (r) = Einc

j (r)+ k2b

∫
D
GD(r, r

′)x(r′)Etot
j (r′)dr′, (1)

where Einc
j (r) represents the incident field emitted by the jth antenna.

The scattered field outside the DoI satisfies the following equation:

Esca
j rs( ) = k2b

∫
D
GS rs, r

′( )
x r′
( )

Etot
j r′
( )

dr′, (2)

whereG(r, r′) = (1/4j)H(2)
0 (kb r− r′| |) is a 2-D scalar Green’s func-

tion andH(2)
0 (·) is the zeroth order of Hankel function of the second

kind. kb = v
������
10m0

√ = 2p/l0 represents the wave number of the
backgroundmedium.ω is the angular frequency of the incident elec-
tromagnetic wave, and λ0 represents the wavelength. The contrast
χ(r′) of the object can be expressed as χ(r′) = (ε(r′)− ε0)/ε0 +
i(σ(r′)/ωε0). In order to process data conveniently, equations (1)
and (2) are written in the form of matrixes hereinafter.

Method

The ADMM is a simple and effective algorithm for solving the dis-
tributed concave optimization problem. Therefore, it is used to solve
imaging reconstruction for the sparse model [19]. The proposed
algorithm mainly solves two types of problems. One is the con-
straint problem, and the other is the optimization problem. The
ADMM transforms the global problem of a complex cost function
into an unconstrained problem. The unconstrained problem is
decomposed into several sub-problems by the decomposition-
coordination method. Moreover, the analytical formulas of the
transformed local sub-problems are relatively simple, so it is easy
to find the iterative updating formula, and there is no need to con-
strain and converge for each local sub-problem. The ADMM can be
used to effectively solve the L1-norm regularization problem [20].
Therefore, the ADMM has a large advantage in inversion speed
and reconstruction accuracy because of its unique characteristics.

Therefore, the expression of the cost function in the EISP can
be written as:

L x, vj, j = 1, 2, . . .
( ) = hr

∑Nj

j=1

E
sca
j − GSvj

∥∥∥
∥∥∥2
2

+ hD

∑Nj

j=1

vj − x(E
inc
j + GDvj)

∥∥∥
∥∥∥2
2
,

(3)

Fig. 1. Test system of a 2-D inverse scattering problem, where unknown scatterers are
located in a DoI. The sources and receivers are evenly distributed on a circle,
respectively.
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where hr = 1/
∑Nj

j=1 E
sca
j

∥∥∥
∥∥∥2
2
, and hD = 1/

∑Nj

j=1 E
inc
j

∥∥∥
∥∥∥2
2
.

Equation (3) is transformed into a form with constrained
optimization problems, which can be expressed as:

argmin
x,vj

Luc x,vjE
tot
j , j = 1, 2, . . .

( )

s.t. vj = x E
inc
j + GDvj

( )
, j = 1, 2, . . . ,

(4)

where the expression of data fidelity item Luc in equation (4) is

Luc x, vj, E
tot
j , j = 1, 2, . . .

( )
= 1

2

∑Nj

j=1

E
sca
j − GSvj

∥∥∥
∥∥∥2
2
. (5)

We extend the traditional real-valued augmented Lagrangian
algorithm to the complex-valued domain. By its augmented
Lagrangian form, equation (4) is transformed into a non-
constrained problem, so that the augmented Lagrangian opti-
mization problem at the complex-valued domain can be trans-
formed into the following form:

max
y

min
x,vj ,E

tot
j

LAL x, vj, E
tot
j , j = 1, 2, . . .

( )
. (6)

The augmented Lagrangian function LAL at the complex-valued
domain in equation (6) is expressed as:

LAL x, vj, E
tot
j , y

( )
= Luc +

∑Nj

j=1

y, vj − x E
inc
j + GDvj

( )〈 〉

+ r

2

∑Nj

j=1

vj − x E
inc
j + GDvj

( )∥∥∥
∥∥∥2
2
.

(7)

Due to the nonlinearity and the ill-posedness of the electromag-
netic integral equation, the stability and the uniqueness of the
unknown contrast to be reconstructed cannot be guaranteed. In
this case, in the process of the reconstruction of the scatterer,
the range of the solution is expanded to some extent, so compu-
tational cost increases. The expression of equation (7) is combined
with the L1-norm regularization, so the concrete expression of the
cost function of the ADMM can be written as:

Lr x, vj, E
tot
j , y

( )
= 1

2

∑Nj

j=1

E
sca
j − GSvj

∥∥∥
∥∥∥2
2

+ l x
∥∥ ∥∥

1+
∑Nj

j=1

y, vj − x E
inc
j + GDvj

( )〈 〉

+ r

2

∑Nj

j=1

vj − x E
inc
j + GDvj

( )∥∥∥
∥∥∥2
2
,

(8)

where the second term on the right side ofequation (8) is the
L1-norm regularization term, and λ represents the regularization
coefficient. y denotes the dual value of the complex-valued
Lagrangian (Lagrangian multiplier) for the balance of the data

fidelity item and the second penalty. ρ is a parameter of the pen-
alty term, and ρ > 0.

When using the ADMM framework to optimize the EISP, the
solving process mainly includes three layers of variables. The
observed variable of the first layer needs to obtain the scattering
field data E

sca
j outside the DoI. The variable of the second layer

is the contrast source vj that is introduced to simplify the number
of unknown variables. The variable of the third layer is the con-
trast x to be reconstructed. n represents the number of iterations.
When processing in a single layer, the variables are independent
of each other.

Cost function of equation (8) is decomposed into the following
three iterative equations:

vn+1 = argmin
v

Lr v, xn, yn
( )

, (9)

xn+1 = argmin
x

Lr vn+1, x, yn
( )

, (10)

yn+1 = argmin
y

Lr vn+1, xn+1, y
( )

. (11)

According to equations (9), (10), and (11), the following three
sub-problems are handled separately:

v
j
n+1 = argmin

v

1
2

∑Nj

j=1

E
sca
j − GSv

j
n

∥∥∥
∥∥∥2
2

+
∑Nj

j=1

y j
n, v

j
n − xE

tot
j,n

〈 〉
+ r

2

∑Nj

j=1

v j
n − xE

tot
j,n

∥∥∥
∥∥∥2
2
,

(12)

xn+1 = argmin
x

1
2

∑Nj

j=1

v
j
n+1 − xnE

tot
j,n+1

∥∥∥
∥∥∥2
2

+
∑Nj

j=1

yn, v
j
n+1 − xnE

tot
j,n+1

〈 〉
+l x

∥∥ ∥∥
1,

(13)

yn+1 = argmin
y

∑Nj

j=1

yn, v
j
n+1 − xn+1E

tot
j,n+1

〈 〉
, (14)

where E
tot
j,n = E

inc
j + GDv

j
n.

For the sake of simplicity, the above three sub-problems are
respectively simplified. The scaled dual variable is introduced,
and u = y/r is defined, thereby obtaining:

v
j
n+1 = argmin

v

1
2

∑Nj

j=1

E
sca
j − GSv

j
n

∥∥∥
∥∥∥2
2

+ r

2

∑Nj

j=1

xnE
tot
j,n − v j

n + un
∥∥∥

∥∥∥2
2
,

(15)
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xn+1 = argmin
x

r

2

∑Nj

j=1

xnE
tot
j,n+1 − v

j
n+1 + un

∥∥∥
∥∥∥2
2

+ l xn
∥∥ ∥∥

1,

(16)

un+1 = un + xn+1E
tot
j,n+1 − v

j
n+1

( )
. (17)

According to equations (15), (16), and (17), the contrast source
function v is solved by the least squares method. Then, the gra-
dient of v is solved via equation (15) and the gradient is zero.
The collation can be obtained, and the updated equation of the
contrast source function v j is

v
j
n+1 = PQ, (18)

where P = (G
T

S GS + r(I − xGD)
T
(I − xGD))

−1, and

Q = (GT

S E
sca
j + r I − xGD

( )T
xE

inc
j − un

( )
). I is the identity

matrix. According to the form of the shrinkage threshold, the
update of the contrast function x in equation (16) can be solved.
According to the essence of the proposed algorithm, in order to
simplify equation, the above equation (16) can be recorded as:

F x
( ) = argmin

x

r

2
xE

tot
j,n+1− v

j
n+1−un

( )∥∥∥
∥∥∥2
2

+ l x
∥∥ ∥∥

1. (19)

For the solution of equation (19), it is generally solved by the
iterative soft thresholding algorithm [21]. Using this algorithm,
the updating algebra of the contrast function x in the iterative
process of inversion is written as:

xn+1 = rcl xn + E
tot
j,n+1 xnE

tot
j,n+1 − b

( )( )
, (20)

where cl(xi) = sgn(xi)( xi
∣∣ ∣∣− l) + . And b = v

j
n+1 − un. In each

updating iteration, once the solution is obtained, the soft thresh-
old needs to be shrunk.

The gradient descent method is used to solve the scaled dual
variable. Therefore, the iterative process of the ADMM in the
EISP can be obtained by combining equations (17), (18), and
(20).

The procedures of the detailed iteration are stated as follows.

Step 1: Set n = 0. Calculate the relevant parameters, and let

E
tot
j = E

inc
j at initialization. Calculate v0 by the backpropaga-

tion (BP) method [8]. Then, x0 can be obtained.

Step 2: n = n + 1. v j
n−1 and xn−1 are known at the next iteration.

Therefore, the data item error is rn = E
sca
j − GSv

j
n−1, and the

status item error is sn = v
j
n−1 − xn−1(E

inc
j + GDv

j
n−1).

Step 3: Use equation (18) to calculate the contrast source function

v j. Then, update the total field E
tot
j = E

inc
j + GDv

j.
Step 4: Similar to the update of the contrast source function v j,

the contrast function x is updated according to equation (20).
Step 5: Update the Lagrange multiplier (dual variable) y using

equation (17).

Step 6: If the cost function Lr in equation (8) at this time meets
the termination condition, the iteration is terminated.
Otherwise, return to step 2 again for the next iteration.

As can be seen from the basic iterative process of the ADMM,
the ADMM has the characteristics of distributed optimization.
Compared with the CSI and the SOM, two artificial regularization
factors are avoided. The ADMM is suitable for solving large-scale
sparse matrices, and has the characteristics of fast convergence
and high quality of inversion reconstruction.

Experimental validation

This section considers some reconstructed results constructed
using numerical and experimental data at a single frequency to
evaluate the performance of the proposed ADMM. In these
tests, we use handwritten words in EMNIST database [22],
which includes some commonly numbers, English letters, and
Greek letters. However, due to the irregularities and the singular
characteristics of these handwritten words, it is very difficult to
restore the original shape and the permittivity. In addition, we
compare the ADMM with the well-known CSI and the SOM in
this field. Finally, the ADMM is applied to the experimental
data to verify its high efficiency.

Numerical results

In the forward model, the handwritten words in EMNIST data-
base were used as scatterers for 2-D modeling. These handwritten
images are assigned to a DoI with the size of 2 × 2 m2. What’s
more, the DoI is divided into 112 × 112 pixels. In the inversion
process, the DoI is divided into 64 × 64 pixels in order to avoid
the inverse crisis. In total, 16 line sources and 32 line receivers
are equally placed on a circle of radius of 3 m, wherein the center
of the circle is at the origin. In addition, the operating frequency
of is 400 MHz. These scatterers have a permittivity of 2. The back-
ground permittivity is 1. Therefore, method of moment is used to

obtain the corresponding scattering field matrix K whose size is
Ns ×Nj. On this basis, additive white Gaussian noise matrix n is

added to K . Therefore, K + n is the final scattering field matrix
as a known condition to reconstruct scatterers for the EISP. The

noise level is described as ( n
∥∥ ∥∥

F/ K
∥∥∥

∥∥∥
F
)× 100%. A priori infor-

mation is that the scatterers are lossless and have nonnegative
contrast [8]. Finally, the spatial distribution of the permittivity
of the scatterer is reconstructed by using the CSI, the SOM, and
the ADMM, respectively.

In order to evaluate the quality of these algorithms, the mean
square error of the reconstructed permittivity is defined as:

MSE =
��������������������
1
N

∑M
m

1invm − 1
gt
m

∣∣ ∣∣2
1
gt
m

∣∣ ∣∣2
√√√√ , (21)

where M is the number of grids in the whole DoI. 1invm denotes the
permittivity of each iteration and 1

gt
m represents the ground truth

of scatterers in the DoI.
In the first example, there are four representative profiles in

Fig. 2 to be reconstructed, including the English letter G, the
number 8, the Greek letter ε and the famous “Austria ring” profile
composed of two ear-shaped disks and one ring. In particular, we
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often use “Austria ring” as a benchmark to evaluate the perform-
ance of electromagnetic inverse scattering algorithms. Obviously,
these irregular handwritten words are more challenging than
regular shapes. Three different methods are used for each profile
to reconstruct the spatial distribution of its permittivity with
noise-free scattered field data. The permittivities of reconstructed
images in the ADMM are distributed in the range of 1.7–2.3, and
the shape also has less difference from the ground truth.
Compared with the CSI and the SOM, the ADMM has achieved
satisfactory results. Some scatterers in the CSI and the SOM are
somewhat distorted and inaccurate, while the ADMM does not.
Especially, the lack of information appears at some corners of
the image in (b) and (c) of Fig. 2. Therefore, it can be observed
that the proposed ADMM has obvious advantages over the CSI
and the SOM. These numerical results show that the proposed
ADMM can effectively solve the inverse scattering problem.

In the second example, we test the more challenging “Austria
ring” profile with different signal to noise ratios (SNRs) in Fig. 3.
Under the condition of 15% Gaussian noises (SNR = 12 dB), the
spatial distribution of the permittivity of the scatterer can be well
reconstructed in the CSI, the SOM, and the ADMM, respectively.
However, as the noise level increases, the reconstructed images of
three algorithms show distortion of shape and inaccuracy of per-
mittivity, and the original profiles cannot be completely restored.
At 50% Gaussian noises (SNR = 6 dB), it can be seen from (g)
and (h) that the CSI and the SOM have great defects for the
shape reconstruction of two disks of “Austria ring.” Although the
defects are also obvious, the position of disks and ring is correctly
reconstructed (i). It can be seen that the noise immunity of the
ADMM is better than that of the CSI and the SOM at low SNRs.

As presented in Fig. 4, the convergent speed of MSE curve is
still fast under the noisy condition. Due to the use of the BP

algorithm, the difference of initial MSE is very small. And
under 50 iterations, all three algorithms can meet the convergent
condition. At SNR = 12 dB, the convergent speed of the ADMM is
much faster than the convergent speed of the SOM and the CSI,
so the imaging speed is faster. At different SNRs, the convergent
speed of the ADMM is still very fast. At low SNRs, the convergent
speed of the ADMM is reduced. Therefore, the ADMM converges
faster than other algorithms.

In the third example, in order to illustrate the insensitivity of
the present method to large noise corruption, reconstruction
comparison between IS-ADMM [14] and the proposed ADMM
is conducted. In the experiment, the scatterer in Fig. 5(a) contains
a square with a side length of 0.6 m and a circle with a radius of
0.3 m. Their relative permittivities are 2. At the same time, three
noises with different SNRs are introduced into the scatterer, i.e.
no noise, SNR = 12 dB, and SNR = 9 dB. The constructions
from the three observed measurements are depicted in Fig. 5.

Fig. 2. Tests on “Austria ring” profile and some profiles in EMNIST dataset with noise-
free scattered field data. Here, the ground truth profiles in EMNIST dataset are dis-
played in (a), (e), and (i), respectively. The ground truth of “Austria ring”in (m).
Reconstructed images (b), (f), ( j), and (n) by the CSI; (c), (g), (k), and (o) by the
SOM; (d), (h), (l), and (p) by the ADMM, respectively.

Fig. 3. Testing the noise immunity of the CSI, the SOM, and the ADMM in “Austria ring”.
Top images, middle images, and bottom images are reconstructed from the scattered
field data with 25% (SNR = 12 dB), 35% (SNR = 9 dB), and 50% (SNR = 6 dB) Gaussian
noises, respectively. Left images, middle images, and right images are reconstructed
by the CSI, the SOM, and the ADMM, respectively.

Fig. 4. Comparison of convergent trajectories in the first 50 iterations for different
algorithms and different SNRs.

794 Jian Liu et al.

https://doi.org/10.1017/S175907872000015X Published online by Cambridge University Press

https://doi.org/10.1017/S175907872000015X


Generally, it can be seen that the scatterer can be roughly recon-
structed using two different methods. Obviously, the reconstruc-
tions with the proposed ADMM are clearer under the same
SNR, indicating that the proposed ADMM exhibits better robust-
ness. Since the proposed ADMM additionally adds the L1-norm
as a constraint to the solution in the cost function, the reconstruc-
tion with the ADMM performs more smoothly at the edges and
has a more uniform distribution.

Experimental data

In order to better verify the proposed ADMM, experimental data
from Institute Fresnel [23] is used to reconstruct the image. A
“FoamTwinDiel” profile with TM case is applied in the
ADMM. There are 241 line receivers and 18 line sources. As
can be seen from Fig. 6(a), there are two same plastic cylinders
(berylon) with a diameter of 31 mm. Its permittivity is ε = 3 ±
0.3. A foam cylinder (SAITEC SBF 300) has a diameter of
80 mm with the permittivity ε = 1.45 ± 0.15. One plastic cylinder
is embedded in the foam cylinder, and the other plastic cylinder is
tangent to the foam cylinder. The ± sign indicates that the permit-
tivity of the experimental measurement is inaccurate. Because the
operating frequency is changed to 5 GHz, the DoIis alsochanged

to 0.15 × 0.15 m2. At this moment, MSE becomes the mean
square error of the permittivity of the current iteration and the
previous iteration.

As presented in Fig. 6, in the reconstructed scatterers, the
reconstructions of the foam cylinder and the external plastic
cylinder have achieved satisfactory results in the CSI, the SOM,
and the ADMM. Unfortunately, images in the CSI and the
SOM have obvious distortions. The plastic cylinder embedded
in the foam cylinder apparently fails to reconstruct while the
ADMM can do it successfully. The spatial distribution of the per-
mittivity of the reconstructed “FoamTwinDiel” profile in the
ADMM is given in Fig. 6(d). It can be seen that the permittivities
of plastic cylinders are in the range of 2.5–3.5 and the permittiv-
ities of the foam cylinder are in the range of 1.2–1.7 with the
ADMM in Fig. 6(d). The spatial position is basically accurate.
The ADMM is significantly better than the CSI and the SOM
in reconstruction. The experimental results show that the pro-
posed ADMM can also show an excellent performance for the
experimental data. This shows the high efficiency and the accu-
rateness of the ADMM.

Maximum 50 iterations are set in the inversion process, and all
three algorithms can reach convergent conditions. As shown in
Fig. 7, the CSI, the SOM, and the ADMM can converge quickly.
But, it is clear that MSE of the ADMM drops faster, which means
that the reconstructed images are closer to the ground truth more
quickly. Consequently, the ADMM is more efficient.

Conclusion

In this paper, we propose an ADMM to solve the EISP. During
the inversion process, the augmented Lagrangian method is intro-
duced to transform the complex nonlinear cost function into an
unconstrained global problem. Two artificial regularization fac-
tors in the CSI and the SOM are optimized. By the
decomposition-coordination method, this unconstrained problem
is decomposed into three solved sub-problems easily. The global
optimization process of the cost function is achieved by alter-
nately updating the contrast source function, the contrast func-
tion, and dual variables. In addition, we found that ρ = 0.2 is
the best choice according to the trial and error method.
Moreover, we prove that the anti-noise performance of the

Fig. 5. Comparisons of the reconstructions by IS-ADMM in [14], and the proposed
ADMM under different noises. (a) Ground truth. (b) No noise with IS-ADMM.
(c) SNR = 12 dB with IS-ADMM. (d) SNR = 9 dB with IS-ADMM. (e) No noise with
ADMM. (f) SNR = 12 dB with ADMM. (g) SNR = 9 dB with ADMM.

Fig. 6. “FoamTwinDiel” profiles. (a) The original shape. Reconstructed images of
“FoamTwinDiel” profile in (b) the CSI, (c) the SOM, and (d) the ADMM, respectively.

Fig. 7. Comparison of convergent trajectories in the first 50 iterations for different
algorithms with “FoamTwinDiel” profile.
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ADMM is better than other algorithms in the numerical results.
Not only is the reconstruction of the scatterer highly efficient in
numerical experiments, but it can also effectively reconstruct
complex profiles in practical applications.

Although the proposed method can outperform others in the
performance of reconstructing scatterers, it still has some short-
comings. The selection of some parameters (such as ρ) has sub-
jective dependence and non-generality. In future work, we will
consider the deep unrolling network. The knowledge in the
imaging field and a priori information are merged into the deep
network to adaptively acquire some parameters in the ADMM.
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