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A large number of wave modes exist in a magnetized plasma. Their properties are
determined by the interaction of particles and waves. In a simulation code, the correct
treatment of field quantities and particle behaviour is essential to correctly reproduce
the wave properties. Consequently, plasma waves provide test problems that cover a
large fraction of the simulation code. The large number of possible wave modes and
the freedom to choose parameters make the selection of test problems time consuming
and comparison between different codes difficult. This paper therefore aims to provide
a selection of test problems, based on different wave modes and with well-defined
parameter values, that is accessible to a large number of simulation codes to allow for
easy benchmarking and cross-validation. Example results are provided for a number
of plasma models. For all plasma models and wave modes that are used in the test
problems, a mathematical description is provided to clarify notation and avoid possible
misunderstanding in naming.
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1. Introduction
Testing simulation codes for correct implementation and a sufficiently accurate

representation of reality is an important task. Our purpose is to make this task easier
for codes that simulate collisionless plasmas and hopefully lead to more widespread
validation activity. To this end, we propose a test problem that can be used for
benchmarking of different simulation codes, as well as validation with respect to
analytic solutions of the partial differential equations describing the system. This
paper describes the set-up, analysis and parameters in all the details that are necessary
for an independent replication and comparison with other codes. To make the test as
accessible and useful as possible, we choose parameters that allow for simulations
with many different methods while minimizing the computational effort. To the latter
end, the proposed test does not rely on more than one spatially resolved dimension.
While invariance under exchange of axis can be tested (and to some degree isotropy
of wave propagation), it is expedient to complement this set of test problems with
other tests that directly check for effects of two or three spatial dimensions.

The test case proposed here uses plasma wave modes in a homogeneous plasma.
No complicated set-up or boundary conditions are necessary and the corresponding
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theory is well established and widely available. From a numerical side, however,
wave modes are an interesting test as the properties of the wave are determined
by the interaction of the particles in the plasma with the electromagnetic fields.
Consequently, a large part of the simulation code is covered by this integration test,
verifying both the internal consistency of the code and the correct interaction of
the different modules. Some classes of problems in the code lead to characteristic
deviations in the simulation results. With sufficient experience, they can be tracked
back to the responsible part of the code, but the process can be difficult and time
consuming. The test is therefore not meant to replace unit tests that check individual
functions, but to complement them. The design of the test is such that the numerical
effort is low enough that it can be run before any checking into a source control
system to guard against regressions.

The reader should be aware that this paper is not an exhaustive list of tests, but
rather shows the minimum that every new simulation code should be able to solve
before it can be used. More advanced and specialized tests should be selected to fit the
intended use of the code. Especially variations in plasma density, strong magnetization
or sources of free energy such as temperature anisotropies or relative drifts between
species, should be considered, if they can occur naturally in the simulation of the
problem that is studied.

This paper is of course not the first test case that is available to the simulation
community. Probably the most widely used benchmark for comparisons between
plasma simulation codes is the Geospace Environment Modeling (GEM) reconnection
challenge by Birn et al. (2001). This set-up has been simulated by magnetohydro-
dynamic (MHD), Hall MHD, hybrid codes using kinetic ions and an electron fluid
with or without inertia and particle-in-cell (PIC) codes. Comparison between different
codes has led to a better understanding of the relevance of physical effects that are
represented to various degrees in different simulation methods. Beyond that, it is
a standard test case that is often used to measure the performance of new codes.
For the simulation of fusion devices, there are benchmarking and comparison efforts
(such as Dimits et al. 2000; Falchetto et al. 2008; Görler et al. 2016) that simulate
properties of fusion plasmas such as the turbulence that is driven by the thermal
gradient between the core and the edge of these plasmas. The goal is to improve
the reliability of predictions based on simulations through the cross-comparison of
simulation codes.

2. Plasma model

To validate a numerical code it is necessary to have a well specified mathematical
model of the system that the code is supposed to simulate. The basic equations
of each model are given here to clarify the nomenclature used for the following
discussion and to avoid any possible confusion about the model and to avoid conflicts
of notation. A more detailed explanation of the physical meaning and implication of
the equations can be found in standard textbooks (such as Jackson 1975; Bittencourt
2004). The equations are given in terms of the (particle) velocity v instead of the
momentum p, which is only appropriate in the non-relativistic limit. The exact value
of the plasma temperature will be defined in the description of the individual test
problems. The wave intensities are set by the intrinsic thermal and numerical noise
and are far below the regime where wave modes couple or show nonlinear effects.
Thus, in all cases discussed here, the non-relativistic formulation using velocities is
completely sufficient.
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For a collisionless plasma, the mathematical model is given by the Vlasov equation
(Vlasov 1938). This is an evolution equation for the phase space density fα of one
particle species α as a function of position r and velocity v:

∂fα(r, v, t)
∂t

+ v · ∇rfα + 1
mα

F(r, v, t) · ∇vfα = 0, (2.1)

where F is the total force acting on f .
From the distribution function, we can also compute the source terms for the

electromagnetic fields by integrating over the velocity components of the phase space.
This leads to the (net) charge density ρ and current density j:

ρ(r, t)=
∑
α

qα

∫
fα(r, v, t) dv, (2.2)

j(r, t)=
∑
α

qα

∫
vfα(r, v, t) dv. (2.3)

The reaction of the particles with charge qα to the fields is given by the Lorentz
force. In Gaussian cgs units the electric field E and the magnetic field B exert the
force

F(r, v, t)= qα
(

E(r, t)+ v

c
×B(r, t)

)
. (2.4)

To close the set of equations, we need the evolution equations for the fields. These
are given by Maxwell’s equations or some approximation thereof, depending on the
plasma model. They are discussed in the following subsections.

2.1. Electromagnetic
The electromagnetic plasma model uses the full set of Maxwell’s equations (Maxwell
1865, for modern notation Jackson 1975, I.1):

∇×E(r, t)=−1
c
∂

∂t
B(r, t), (2.5)

∇×H(r, t)= 1
c
∂

∂t
D(r, t)+ 4π

c
j(r, t), (2.6)

∇ · D(r, t)= 4πρ(r, t), (2.7)
∇ ·B(r, t)= 0. (2.8)

Equations (2.5)–(2.8) formally involve the electric displacement D and magnetic
intensity H. In vacuum – without material effects – these can be replaced by the
electric field E and magnetic induction B as the permittivity and permeability of
free space ε0 and µ0 are set to unity in the units used. These equations have
wave-like solutions that describe electromagnetic radiation. In a plasma these waves
are additionally modified due to the interaction between particles and fields. Whenever
the interaction of electromagnetic radiation (e.g. radio waves or laser pulses) with
a plasma is of interest, the full Vlasov–Maxwell-system is the model of choice.
However, the high propagation speed of these waves lead to a very restrictive limit
on the permissible time step in explicit codes (see e.g. Birdsall & Langdon 2005).
Therefore it is often convenient to couple the Vlasov equation to approximations of
Maxwell’s equations that do not allow for the existence of light waves.
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2.2. Radiation-free
There are several different ways to derive the radiation-free approximation to
Maxwell’s equations. It can be seen as the correct approximation up to order O(v2/c2).
Alternatively, one can approach it through a Helmholtz decomposition of the electric
field and the current, split into a longitudinal curl-free part (subscript ‘L’) and a
transverse divergence-free part (subscript ‘T’). The displacement current, given by the
time derivative of the transverse electric field, is removed from Ampère’s Law, which
removes light waves. Krause, Apte & Morrison (2007) showed that either way this
leads to the set of equations:

∇×B= 1
c
∂EL

∂t
+ 4π

c
j, (2.9)

∇2ET = 4π

c2

∂jT

∂t
, (2.10)

∇ ·EL = 4πρ. (2.11)

This approximation to Maxwell’s equations is also known as Darwin approximation
(Darwin 1920) or as magneto-inductive model as the production of magnetic fields
from currents is retained. Only the effect of the transverse displacement current is
removed.

2.3. Electrostatic
For particle velocities much slower than the speed of light and without large-scale
currents, one can completely remove the transverse electric field. This way, one
obtains the electrostatic model, where the magnetic field is constant in time and the
longitudinal electric field is given by (2.11). For this plasma model, no current has
to be calculated from the particle motion, as the charge density in each time step
is sufficient to calculate the fields. The downside is of course that wave modes that
require transverse fields are not present in this model.

2.4. Implicit electron fluid
If kinetic effects of electrons are not important, it is possible to reduce the numerical
effort by treating the electrons as a fluid. The electron momentum equation leads to
a generalized Ohm’s law for the electric field:

E=−me

e

(
∂ue

∂t
+ (ue · ∇)ue

)
− ue

c
×B− ∇Pe

ene
+ me

e
νj. (2.12)

In this equation ue gives the flow speed of the electron fluid, Pe its pressure and ν
the resistivity.

Combining this equation with Faraday’s law leads to an equation for the magnetic
field, or rather for the generalized vorticity W:

∂

∂t
W =∇× (ue ×W)−∇× ∇Pe

mene
+ ν∇× j, (2.13)

W =∇× ue − e
mec

B. (2.14)

There are two regimes where this description is worth consideration. One is
on electron scales, where ions can be considered immobile due to their large
inertia and do not affect the dynamics of the system. This model is called electron
magnetohydrodynamics (EMHD) and is not considered in this paper.
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Here, we are interested in the ions and the behaviour of the system on their time
scales. Then, we can assume that the electrons are sufficiently mobile to neutralize
their charge density nearly instantaneously. In this hybrid model of kinetic ions and
fluid electrons we use ne= ni at any instance. The total current that is determined by
the magnetic field must then be carried either by the ions (subscript ‘i’) or the bulk
flow of the electron fluid:

c
4π
∇×B= ji + je = ji − eneue. (2.15)

The current carried by the ions can be determined based on the marker particles and
deposited onto the grid. Inserting (2.15) into (2.14) removes the unknown flow speed
of electrons and leads to an equation that can be solved for B numerically. From this
magnetic field ue can be calculated, e.g. to study the motion of the electron fluid, but
it is not necessary for the temporal evolution.

The hybrid model described so far contains effects due to finite electron inertia.
Most hybrid codes ignore this effect as the ion mass is much larger than the electron
mass. The hybrid code here also allows us to do so and the reference results for the
test problems are provided with and without electron inertia.

3. Small-amplitude waves
To find the well-known small-amplitude waves (also known as linear modes or

eigenmodes) of a plasma model, it is necessary to linearize its governing equations.
That means we assume that all quantities can be split into a static and homogeneous
background part (subscript 0) and a small perturbation (subscript 1). Linearization
around other equilibria is possible, but there is only a limited number of such kinetic
equilibria (i.e. exact solutions of the Vlasov–Maxwell system) and they apply to very
specific cases. The assumption of a homogeneous background on the other hand is
entirely sufficient to build a set of test problems and simplifies the calculations. It is
often possible to find a small domain in a plasma where the homogeneity assumption
holds, and therefore the validity of any linear wave mode is quite general.

For physical reasons, we assume that E0 = 0 and j0 = 0 and drop any term that
contains two or more factors with subscript one, because we expect such contributions
that are second order in the small perturbation to be negligible. Furthermore we can,
without loss of generality, align our coordinate system in such a way that the static
and homogeneous background magnetic field B0 is aligned with the z axis and the
propagation direction of the wave k is in the x–z-plane.

Even with those simplifications, it is hard to self-consistently solve the Vlasov–
Maxwell-system. The canonical method by Landau (1946) requires Laplace transfor-
mations and residue calculus for integration in the complex plane. Details can be
found e.g. in Koskinen (2011).

For illustration, it suffices to analyse the electromagnetic case, neglecting any
thermal effects and assuming that the perturbations are plane waves that can be
written as (possibly complex) constants times exp(i(k · r − ωt)). For this harmonic
case, the first two Maxwell’s equations (2.5)–(2.6) reduce to:

k×E(r, t)= ω
c

B(r, t), (3.1)

k×B(r, t)=−ω
c

E(r, t)− 4πi
c

j(r, t). (3.2)
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Assuming a linear response of the plasma to the electric field, we can write the
current density j as σE using the conductivity tensor σ . Inserting this into Ampère’s
law given by (3.2), leads to

k×B=−ω
c

εE, (3.3)

using the dielectric permittivity tensor ε:

ε = 1+ 4πiσ
ω

. (3.4)

Using Faraday’s law given in (3.1), we can substitute for the magnetic field and
obtain:

n× n×E+ εE= 0. (3.5)

The vector n = ck/ω is a scaled version of the wave vector k, which is
dimensionless and its magnitude corresponds to the refractive index of the medium.

Rewriting (3.5) once more we get

D(ω, k)E= 0, (3.6)

where D is the dielectric tensor. For this equation to have a non-trivial solution, the
determinant of the 3× 3 tensor has to vanish.

Before going further, it is useful to introduce three quantities for each species
present in the plasma. These are the plasma frequencies ωp,α, the gyro-frequencies
Ωc,α and the sign of the charge sα. They are given by

ωp,α =
√

4πnαq2
α

mα

, (3.7)

Ωc,α = |qα| |B0|
mαc

, (3.8)

sα = qα
|qα| . (3.9)

It is useful to introduce the usual Stix parameters (Stix 1962) before discussing the
different solutions of (3.6):

R= 1−
∑
α

ω2
p,α

ω2
· ω

ω+ sαΩc,α
, (3.10)

L= 1−
∑
α

ω2
p,α

ω2
· ω

ω− sαΩc,α
, (3.11)

P= 1−
∑
α

ω2
p,α

ω2
, (3.12)

S= 1
2(R+ L), (3.13)

D= 1
2(R− L). (3.14)
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Using the Stix parameters and the angle ϑ between the background magnetic field
B0 and the wave normal vector n, the dielectric tensor in (3.6) reads:

D(ω, k)=
S− n2 cos2 ϑ −iD n2 cos ϑ sin ϑ

iD S− n2 0
n2 cos ϑ sin ϑ 0 P− n2 sin2 ϑ

 . (3.15)

The dependence on k is of course hidden in the index of refraction n and all entries
in the tensor D are frequency dependent. Each solution to (3.6) connects both ω and
k in the form of a dispersion relation that is characteristic for the wave mode.

The following test problems make use of a range of different wave modes. There
are two reasons why no single wave mode is sufficient. The first is that different
wave modes might use different parts of the simulation code. Especially in the
radiation-free plasma model, longitudinal and transverse fields are treated very
differently and are best tested with two different wave modes. The other reason
is that no single wave mode makes for a good test for every plasma model. To test
an electromagnetic model, the electromagnetic mode is computationally cheapest, but
this mode is removed from all other plasma models. On the other hand, low-frequency
modes such as ion Bernstein modes require very expensive simulations in an explicit
electromagnetic code that are not practical.

Table 7 at the end lists which wave modes are suitable for each plasma model,
allowing for a quick selection of the relevant description following below.

3.1. Electromagnetic mode
The first wave we want to consider is the electromagnetic wave. It also exists as a
solution to Maxwell’s equations in vacuum, where it has the trivial dispersion relation

ω= ck. (3.16)

To obtain the equivalent dispersion relation in a plasma, let us first consider the
case without a background magnetic field. In that case, D vanishes and P= R= L=
S= 1−ω2

p/ω
2, with the joint plasma frequency ωp of all species given by:

ωp =
√∑

α

ω2
p,α. (3.17)

This simplifies the Maxwell tensor significantly and the resulting characteristic
polynomial can be solved, yielding the following dispersion relation for the
electromagnetic wave:

ω2 =ω2
p + c2k2. (3.18)

Equation (3.18) indicates that this wave has a low-frequency cutoff at the plasma
frequency ωp and extends to arbitrarily large frequencies. In numerical practice, there
is a high-frequency limit from the Nyquist frequency that the grid imposes on the
wavelength. The high-frequency nature makes the electromagnetic mode very suitable
for a quick check of a simulation code implementing the electromagnetic plasma
model, as relatively few time steps are needed.
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3.2. Magnetic birefringence
The addition of a background magnetic field splits the electromagnetic mode into two
modes. For parallel propagation (ϑ = 0) these are the L and R mode. Their respective
dispersion relations are:

n2 = L, n2 = R. (3.19a,b)

The L mode is left-hand circularly polarized while the R mode right handed. This
motivates their name and the name of the corresponding Stix parameter. Solving for
ω(k) is possible, but leads to rather long expressions. Both modes behave very much
like the electromagnetic mode but with a shifted cutoff. Their cutoff frequencies are
given by

ωcut,L = 1
2

(
(Ωc,i −Ωc,e)+

√
(Ωc,e +Ωc,i)2 + 4ω2

p

)
, (3.20)

ωcut,R = 1
2

(
(Ωc,e −Ωc,i)+

√
(Ωc,e +Ωc,i)2 + 4ω2

p

)
. (3.21)

In the limit of ωcut�Ωc,e�Ωc,i, the right-hand sides of (3.20) and (3.21) simplify
to ωp± 1/2Ωc,e. The L and R modes have a second branch at much lower frequencies,
below the gyro-frequencies of ions and electrons respectively. These exist even in
radiation-free plasma models and provide a suitable test problem for them.

In this range of frequencies, that is especially relevant for EMHD or hybrid
simulations, the dispersion relation of the right-hand circular mode can be found in
e.g. Bulanov, Pegoraro & Sakharov (1992) or Shaikh (2009) and is given by:

ω=Ωc,e
d2

e k2

1+ d2
e k2
. (3.22)

The product of electron skin depth de and the wavenumber k can be expected to be
not too large. In the limit kde� 1 the wave frequency has the limiting value ω→Ωc,e,
however the wave is usually absorbed before that.

In a hybrid model without electron inertia the nature of the low-frequency R mode
changes. To derive the dispersion relation, it is necessary to insert the definitions of
gyro-frequency Ωc,e and electron skin depth de into (3.22) and take the limit me→ 0.
Doing so leads to

ω= cB
4πnee

k2, (3.23)

which is well defined even in the absence of electron inertia. However, at larger k
it lacks the cutoff at the electron gyro-frequency, which is not well defined without
electron mass.

3.3. Extraordinary mode
In the case of perpendicular propagation (i.e. ϑ = π/2), we also find that the
electromagnetic mode is split into a pair of modes. The mode where the electric
field component is parallel to the background magnetic field behaves just as in the
unmagnetized case. This is called the ordinary mode (or in short O mode). The
other mode, which only exists in the presence of a static magnetic field, is called
extraordinary mode (or X mode). Its electric field component is perpendicular to
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both k and B0. The dispersion relation of this second mode is given by

c2k2

ω2
= ((ω+Ωc,i)(ω−Ωc,e)−ω2

p)((ω−Ωc,i)(ω+Ωc,e)−ω2
p)

(ω2 −Ω2
c,i)(ω

2 −Ω2
c,e)+ω2

p(Ωc,eΩc,i −ω2)
. (3.24)

This mode has a cutoff at

ωcut,X =ωcut,R = 1
2

(
Ωc,e −Ωc,i +

√
(Ωc,e +Ωc,i)2 + 4ω2

p

)
. (3.25)

This frequency is close to the upper hybrid frequency which is given by

ωUH ≈
√
Ω2

c,e +ω2
p. (3.26)

Depending on the magnetization, a second branch of the extraordinary mode close
the plasma frequency exists. If it exists it has a lower cutoff frequency

ω′cut,X =ωcut,L = 1
2

(
Ωc,i −Ωc,e +

√
(Ωc,e +Ωc,i)2 + 4ω2

p

)
. (3.27)

3.4. Langmuir mode
If we return to the case without a magnetic background field and re-examine the
dielectric tensor as given in (3.15), we notice that the characteristic polynomial has
three solutions. Two of them are identical and belong to the electromagnetic mode
– discussed above – with two independent degrees of freedom (either two linearly
polarized modes or equivalently two circularly polarized modes). However, there
exists a third solution to |D(ω, k)| = 0 which satisfies ω= ωp. This describes plasma
oscillations which – for a cold plasma – have constant frequency, vanishing group
velocity and are purely electrostatic.

To obtain a wave mode with well-defined propagation behaviour and wavenumber
dependence, it is necessary to include the effects of a finite temperature in a warm
plasma. This can be done for any wave mode but is tedious as the permittivity tensor
needs to be redefined to include the distribution function. In the case of a Maxwellian
velocity distribution, this is generally expressed using the plasma dispersion function
Z(ζ ) (see Fried & Conte 1961). Solving the resulting equations to get the dispersion
relations is complicated by the extra terms or might even be impossible to do
analytically in the general case. For the test problems, it is sufficient to proceed in a
less rigorous manner with the Langmuir mode. Assuming an electron temperature Te,
we can modify the dielectric permittivity tensor to include the leading term, resulting
in:

ε = 1− ω
2
p

ω2
− 3

k2ω2
p

meω4
Te. (3.28)

Solving for ω2 to get the dispersion relation, we end up with

ω2 = 1
2

(
ω2

p +
√
ω4

p + 12
k2Te

meω2
p

)
, (3.29)

which of course for infinitely small k is just ω2
p and can be approximated, for not too

large k, by
ω2 =ω2

p + 3k2Te/me. (3.30)
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At this point, it is useful to introduce the Debye length λD. This is the natural length
scale below which the plasma might contain charge imbalances and electrostatic fields.
The (electron) Debye length is given by

λD =
√

Te

meω2
p

= vth,e

ωp
. (3.31)

We can rewrite the dispersion relation of the Langmuir mode as

ω2 =ω2
p · (1+ 3k2λ2

D). (3.32)

The second term in this formulation being the correction due to the finite
temperature and Debye length. This expression is reasonably accurate as long as
the second term is less than unity, which fortunately is the case as Langmuir waves
of higher k are quickly damped by electron Landau damping (see Dawson 1961).
This is a completely collisionless effect resulting from the interaction of the Langmuir
wave with kinetic electrons and as such is not applicable when electrons are described
as a fluid.

3.5. Bernstein modes
For the final wave mode considered in this set of test problems, we again add
a background magnetic field and look at the longitudinal modes that propagate
perpendicular to the background field. These waves also exist only in a plasma of
finite temperature, because only there is the gyro-radius finite. For a particle of
species α the gyro-radius rα is given by:

rα =
√

kBTα
mαΩ2

c,α

= vth,α

Ωc,α
. (3.33)

The original derivation of the dispersion relation can be found in Bernstein (1958)
and will not be repeated here. To write the dispersion relation it is useful to rescale
the wavenumber using the gyro-radius as follows:

λα = k2r2
α. (3.34)

This quantity is non-zero in a warm plasma, corresponding to the presence of finite
Larmor radius effects. If λα is small this mostly leads to gyro-resonances at integer
multiples of the gyro-frequencies. The situation becomes complicated if we cannot
make this assumption. At least for the case of electrostatic waves propagating exactly
perpendicular to the background magnetic field, we can find the dispersion relation e.g.
in Swanson (2003). Using the different definition of thermal speed implicitly used in
(3.33) and rewriting in terms of quantities defined in this paper, we find:

1−
∑
α

2ω2
p,α

λα
e−λα

∞∑
n=1

n2In(λα)

ω2 − n2Ω2
c,α

= 0. (3.35)

This expression uses modified Bessel functions In of the first kind. For frequencies
of the order of the electron gyro-frequency and higher, the ions can be considered
stationary and all terms connected to them can be dropped. This removes the splitting

https://doi.org/10.1017/S0022377817000149 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000149


Plasma waves as a benchmark problem 11

of each mode into a group of related modes separated by multiples of the ion gyro-
frequency as this is hard to resolve experimentally and numerically and is neglected
here. The dispersion relation then simplifies and reads:

1− 2Ω2
c,e

k2λ2
D

e−λe

∞∑
n=1

n2In(λe)

ω2 − n2Ω2
c,e

= 0. (3.36)

It is also possible to consider Bernstein waves at lower frequencies. At ion length
scales of λi≈ 1 we find that λe≈me/miλi� 1. Given that the Bessel function of order
n> 1 vanishes for small arguments, this implies that we can drop the electron terms
when considering ion scales. In this limit (3.35) can be approximated by:

1− ω
2
p,e

Ω2
c,e

− 2Ω2
c,i

k2λ2
D

e−λi

∞∑
n=1

n2In(λi)

ω2 − n2Ω2
c,i
= 0. (3.37)

The term containing electron quantities is not present in the same way for electron
Bernstein waves and represents a shielding effect from the electrons.

For high orders of n the simplification of representing the electrons by a constant
term becomes increasingly wrong, especially if the mass ratio mi/me is not sufficiently
large. However, as can be seen from the parameters in table 5, this is not a problem
for the test case presented here.

4. Numerical implementation
Most of the simulations that were performed to produce the illustrations in this

paper used the PIC Code ACRONYM (Kilian, Burkart & Spanier 2012) or extensions
thereof. This simulation code is quite flexible and implements a wide range of plasma
models. The simulation domain can be simulated with one, two or three spatially
resolved dimensions (fields and velocities are always represented by three component
vectors) and their boundaries can be periodic, reflecting or absorbing. For the test case,
only one spatially resolved dimension and periodic boundary conditions are used to
reduce numerical effort and implementation requirements.

Kinetic species are represented by macroparticles. Their charge and current density
is deposited onto the grid using second-order interpolation with the triangular-shaped
cloud (TSC) shape function. The current is deposited based on the same shape
function using qv for one-dimensional simulations or with the charge-conserving
method of Esirkepov (2001) for two- and three-dimensional simulations.

Electrons in the plasma can be represented either in this way for fully kinetic
simulations, or implicitly as a fluid with or without electron inertia, following the
EMHD solver of Jain et al. (2003).

4.1. Electromagnetic
In electromagnetic simulations, the electric and magnetic fields are evolved from the
homogeneous initial state using the finite-difference time domain (FDTD) method:

Bt+1/2 =Bt−1/2 − c1t∇×Et,

Et+1 =Et + c1t∇×Bt+1/2 − 4π1tjt+1/2.

}
(4.1)

The field quantities are stored in a staggered grid following the idea by Yee (1966),
which allows for a very straightforward calculation of the curl that is accurate to
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second order. This field solver leads to a modification of the dispersion relation at
large ω and k. In the case of the electromagnetic mode propagating along one axis
of the spatial grid, the resulting dispersion relation is(

2
1t

)2

sin2

(
ω1t

2

)
=ω2

p + c2

(
2
1x

)2

sin2

(
k1x

2

)
. (4.2)

For frequencies that are not close to the respective Nyquist limit, the modification is
negligible.

4.2. Radiation free
The numerical implementation of the radiation-free model is harder than (2.9)–(2.11)
imply at first. The reason is the fact that ET depends on the time derivative of the
transverse component jT of the current. The change in current, however, is of course
connected to the acceleration of the particles which in turn depends on the electric
field. An overly naive time discretization is therefore violently unstable. Our code
follows the method of Decyk (2011), which solves the problem in the following way.

In the first part of a time step, the charge density ρ is deposited onto the grid and
(2.11) is solved with a Fourier-based solver to get EL.

The new values of ET and B are calculated using the following iterative scheme:
first j and ∂j/∂t are deposited onto the grid using the assumption that the particle
velocities remain unchanged.

Once the current contributions are known, it is possible to solve for the field
components. And as soon as all fields are known, a better prediction of the particle
velocities can be made. Using the better estimate for the particle velocities, a better
estimate of the current can be deposited onto the grid. This, in turn, allows for a
refinement of the field components.

The iteration scheme converges quickly, after two or three iterations. At this point,
the particle velocity can be updated based on the best current prediction for the new
velocity and the code can proceed to the next time step.

4.3. Electrostatic
The electrostatic model uses a spectral solver to calculate the longitudinal electric field.
This solver makes use of the fact that the charge density can be replaced by its Fourier
series

ρ(r)=
∑

kx,ky,kz

ρ̃(k) exp(ikxx+ ikyx+ ikzz) (4.3)

in (2.11). The components of the electric field can be rewritten in the same way
and the derivative can act directly on the exponential functions. As the different
Fourier modes are orthogonal, the resulting equation has to be satisfied for each
mode separately, which leads to the following relation between the charge density
and the electric field in the spectral domain:

Ẽ(k)=−4πi
ρ̃(k)k
|k|2 . (4.4)

This way, the electric field can be calculated by performing a Fourier transform on
ρ, multiplying every component in k-space with −4πik|k|−2, which can be considered
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a convolution with the Green function of free space and transforming the resulting
field back to real space.

Both the radiation-free model and the electrostatic model have a gap at k = 0 in
the spectrum of the electric field. This is an artefact of solving Poisson’s equation
in the Fourier domain. The only possible source term that would produce Ẽ(k = 0)
is ρ̃(k = 0). This quantity, however, is the net charge density which vanishes when
averaging over the entire simulation domain that contains an equal number of positive
and negative charged particles.

4.4. Vlasov-hybrid simulation
We also used a second independent implementation of the electrostatic plasma
models, which is not based on the PIC method, but instead follows the Vlasov-hybrid
simulation (VHS) method by Nunn (1993). This method is not a hybrid between
a kinetic and a fluid part as described in the following subsection, but a hybrid
between an Eulerian description of phase space density and a Lagrangian description
using macroparticles. Whereas a PIC code represents chunks of phase space density
as macroparticles of constant weight and deposits their charge or current onto a
grid, a VHS code reconstructs the phase space density on a grid. It then integrates
out the velocity direction(s) to obtain moments of the distribution function such as
charge density. The reconstruction step requires extra effort but allows for the use
of macroparticles with significantly different weights without losing the effect of
markers that represent low phase space density. This makes VHS a technique with a
very low level of numerical noise. An open source implementation and a description
of the code have been submitted for publication elsewhere.

4.5. Implicit electron fluid
Details of the hybrid code are described in Muñoz et al. (2016). On a high level it
computes the time evolution of the ions, just as a PIC code would, and determines the
ions charge density ni and current density ji. Using those the generalized vorticity can
be updated as described in (2.13). After that, the magnetic field B can be computed
from a version of (2.14), where the electron flow speed has been eliminated using
(2.15). Then the electric field E can be determined from the generalized Ohm’s law
given in (2.12).

4.6. Linearized dielectric tensor
To verify the analytically known plasma modes and to check for thermal effects
that are neglected in their cold plasma description, we also used the ‘Waves in
homogeneous, anisotropic, multicomponent plasmas’ (WHAMP) code (see Roennmark
1982). This code does not evolve the full plasma model but starts with the
linearization of the time-independent equations. Assuming a parametrized velocity
distribution function it uses analytic expressions to approximate the dielectric tensor
of a warm multicomponent plasma. The plasma dispersion function that is needed
in that description is numerically approximated by a Padé approximation and the
resulting tensor is solved numerically using Newton iteration.

For a given wavenumber k WHAMP not only provides the real part of the wave
frequency, but also the growth or damping rate given by the imaginary part of ω. This
could be used to study waves that are driven by some source of free energy. As long
as the wave amplitude is sufficiently small, it is possible to measure growth rate in a
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Electron plasma frequency ωp,e 1.000× 109 rad s−1

Electron gyro-frequency Ωc,e 5.000× 108 rad s−1

Electron thermal speed vth,e 0.050 c
Mass ratio mi/me 1836

TABLE 1. Common choice of simulation parameters to be used in all simulations unless
noted otherwise.

way similar to Schreiner, Kilian & Spanier (2016) and compare to analytic predictions,
if available, or the results from WHAMP. This is however beyond the scope of the
test problems in this paper.

5. Test problems
It is not easy to choose plasma parameters that are accessible to a large range

of simulation codes and that produce results that can be compared in a meaningful
manner. This can be seen, for example, in the case of the thermal speed of electrons.
Very small values – and consequently low temperatures – make the comparison with
predictions for cool or cold plasmas easier. Explicit PIC codes, on the other hand,
have small time steps that are set by the speed of light. If thermal particles move
at a tiny fraction of the speed of light, they only move a tiny distance per time
step and the code has to compute many time steps. As a compromise and to avoid
relativistic effects, an electron thermal speed of 5 % of the speed of light was chosen.
All three initial velocity components of the electrons are drawn independently from
a normal distribution with zero mean and standard deviation vth,e. Using the relation
mev

2
th,e = kBTe, we determine the equivalent temperature of 14.79 MK.

The plasma contains protons (single positive charge, natural mass ratio unless
specifically noted otherwise) as neutralizing (ion) species. The ion temperature Ti is
set equal to the electron temperature, therefore, their thermal speed is lower by a
factor of

√
mi/me.

The absolute value of the plasma frequency has no such direct physical implications.
However, it sets the Debye length and thereby the size of the grid cells. A value of
109 rad s−1 was chosen for the electrons, which corresponds to a density of 3.14 ×
108 particles per cubic centimetre. The protons have the same density to fulfil charge
neutrality, which translates to a proton plasma frequency of 2.33× 107 rad s−1. The
contribution of the protons to the total plasma frequency is negligible.

Using these temperature and frequency scales, the Debye length turns out to be
1.497 cm. To avoid grid heating and other numerical effects, the cell size of each grid
cell should be slightly smaller (see e.g. Birdsall & Langdon 2005), which suggests the
round value of 1 cm.

The only physical parameter that still needs to be specified is the magnetic field
strength. Here we select 2.843 mT which corresponds to a high density plasma with
2Ωc,e=ωp,e. Table 1 lists all the defining parameters in compact form and table 2 has
some other derived plasma parameters.

Some of the simulations that depend on one spatial dimension were actually run
with a three-dimensional PIC code with a width of 4 cells and periodic boundary
conditions in the negligible directions. Each cell contains eight computational
macroparticles per species.

After the numerical simulation has been performed, it is necessary to extract
properties of the wave modes and compare with the expected behaviour. To this
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FIGURE 1. Sketch of the analysis pipeline.

Ion thermal speed vth,i ≈0.001 c
Temperature T 14.79 MK

1275 eV
Debye length λD 1.497 cm
Grid size 1x 1.000 cm
Electron gyro-radius re 2.998 cm
Magnetic field B0 2.843 mT

28.43 G
Alfvén speed vA 0.012 c

TABLE 2. Resulting plasma parameters based on the choices made in table 1.

end it is very useful to plot the energy density of a field component as a function
of k and ω. The energy density is sharply localized along linear wave modes and
characteristic frequencies (e.g. the low-frequency cutoff of the electromagnetic mode)
can easily and reliably be extracted.

Figure 1 shows a sketch of the analysis that is performed. For the following
explanation, we assume that we are interested in one component of the transverse
electric field, other field components work analogously. Depending on the simulation
code, Ex(z, t) or possibly Ex(x, y, z, t) is computed at every time step. This quantity
is stored along with the necessary meta-data in a file using the 5th version of the
Hierarchical Data Format (HDF5) for later analysis.

As I/O can be a bottleneck for the simulation code, it is desirable to reduce
overall output requirements. For the study of low-frequency wave modes, it is usually
sufficient to perform output every Nio time steps as long as

π

Nio1t
= π

1tio
<ω (5.1)

holds for the highest frequency ω that is of interest. Similarly, it should be considered
whether the code can average over the negligible directions before performing output.

In post-processing, Ex(z, t) is Fourier transformed in space and time to yield
Ẽx(kz, ω). To scale the axis correctly, it is useful to know that the frequency range
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FIGURE 2. Energy density in one transverse component of the electric field as simulated
by the electromagnetic plasma model. The electromagnetic mode is clearly visible,
including the cutoff at the plasma frequency ωp. The simulation parameters can be found
in tables 3 and 1, but the simulation is performed without a magnetic field.

Simulation domain Lz 2 0481x
Simulation duration Tsim 200ω−1

p,e
10 4001t

TABLE 3. Simulation size to study the electromagnetic mode.

one gets out of snapshots that are separated by 1tio is 0 . . . π/tio in steps of π/Tsim.
The range in k is −π/1x . . . π1x. In most cases it is advisable to rescale from the
units used in the code – Gaussian cgs with values in in 1/s and 1/cm for the codes
used here – to plasma scales such as ωp or Ωc,e before plotting.

5.1. Test 1: electromagnetic mode
The cheapest test is designed to capture the electromagnetic mode. It does not use any
background magnetic field and the size is given in table 3.

Figure 2 shows that the energy is mostly concentrated along the dispersion relation
predicted by cold plasma theory (given by (3.18), shown as a dashed line) and has
a cutoff at the plasma frequency ωp, which is indicated by the horizontal dashed
line. Predictions for the absolute magnitude and the low-frequency noise are given
in Sitenko (1967), but are not discussed here.

This mode is the cheapest way to determine the plasma frequency from the
simulated data and to compare it to the desired value from the simulation input.
Many numerical problems (wrong normalization, errors in the charge or current
deposition, problems in the particle pusher) can alter this mode, so it is ideally suited
as a quick regression check after code modifications.

At large k – closer to the Nyquist limit imposed by the grid size 1x – numerical
dispersion effects occur that result from the discrete Maxwell solver in the simulation
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FIGURE 3. Spectral energy density up to the resolution limits permitted by the finite cell
size and time step length. This plot uses data from the same simulation as figure 2. At
high frequencies and large k close to ±π/1x, significant numerical dispersion is visible.

FIGURE 4. Energy density in one component of the radiation-free plasma model. For this
plot the same parameters listed in tables 3 and 1 were used, with the exception of the
background magnetic field. Compared to figure 2, the electromagnetic mode is missing.

code. Figure 3 shows this effect of the FDTD algorithm that is used to solve
Maxwell’s equations in time. The modified dispersion relation is given by (4.2), in
good agreement with our results.

In the radiation-free plasma model, the electromagnetic mode is explicitly removed.
The remaining part of the transverse spectrum is shown in figure 4. No well-defined
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mode is left in the unmagnetized case. At small ω and low phase velocities, a diffuse
mode is visible that can be identified as ion acoustic waves. These, however, have a
broadband spectrum without sharp features that would provide a good test problem.

The increase in noise at low k can be attributed to a well known numerical
instability at scales larger than the electron skin depth in the radiation-free plasma
model. This instability can be removed through the introduction of a shift constant
in the equation for the transverse electric field, but some noise remains (see Decyk
2011, for details).

5.2. Test 2: high-frequency L and R modes
The addition of a background magnetic field (of 2.843 mT in this test problem)
along the z direction splits the electromagnetic mode into two modes with circular
polarization.

To study polarization properties of the waves, one switches from a standard
Cartesian basis (with transverse components x̂, ŷ) to a circular basis. In plasma
physics phase convention, the new basis vectors are given by

l̂= 1√
2
(x̂− iŷ), (5.2)

r̂= 1√
2
(x̂+ iŷ). (5.3)

Instead of performing the analysis that is sketched in figure 1 on a field component
in the Cartesian basis (e.g. Ex(z, t)), it is possible to combine Ex(z, t) and Ey(z, t) in
the following way:

El,r = 1√
2
(Ex(z, t)∓ iEy(z, t)). (5.4)

As usual, a Fourier transform in space and time is performed to yield Ẽl,r(kz, ω).
Figures 5 and 6 show the spectral energy density |Ẽl,r|2 respectively.

In the circular basis only the wave modes with the matching circular polarization
appear, thus confirming that the numerical implementation reproduces the expected
polarization properties. Both modes follow the analytically predicted dispersion
relation given in (3.19a,b). The cutoff is shifted (away from the cutoff at ωp in the
unmagnetized case) by about ±1/2Ωc,e as expected.

In the right-hand polarization, shown in figure 6, two additional features are visible.
One is a low-frequency component with a resonance at Ωc,e, which will be studied in
more detail in a following test. The other feature is a triangular region of fluctuations
that is caused by gyrating electrons. Within that region that is centred on Ωc,e and
bounded by approximately ±3 vth,e k, the dispersion relation of the R mode is modified.
At larger k the wave is absorbed. Both effects are captured by WHAMP and studied
in more detail in Test 6.

5.3. Test 3: extraordinary mode
Keeping the background magnetic field along z and rotating the simulation box
to point along x, allows to study waves that propagate across the magnetic field.
(Alternatively, one can change the direction of the magnetic field, in which case field
components switch behaviour.)
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FIGURE 5. Energy density in the left-handed circularly polarized component of the
electric field produced by the electromagnetic plasma model. This plot is based on
parameters given in tables 3 and 1. The spectral energy density is concentrated along the
high-frequency branch of the L mode, propagating along the background magnetic field.

FIGURE 6. Energy density in the right-handed circularly polarized component of the
electric field produced by the electromagnetic plasma model. This plot uses the same
parameters as figure 5, but the simulation results are combined differently to display the
other circular polarization basis. Both high- and low-frequency branches of the R mode
are visible.

As expected, the field component perpendicular to k and B0 shows the extraordinary
mode. Both the high-frequency branch above the upper hybrid frequency and the
branch close to the plasma frequency show the expected dispersion relation given

https://doi.org/10.1017/S0022377817000149 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000149


20 P. Kilian, P. A. Muñoz, C. Schreiner and F. Spanier

FIGURE 7. Energy density in the electric field component that is perpendicular to both
the background magnetic field and the propagation direction. The plot shows simulation
results from the electromagnetic plasma model with parameters given in tables 3 and 1.
Both branches of the X mode are clearly visible. Due to the finite temperature, harmonics
of the electron gyro-frequency and the first few electron Bernstein modes are also visible.

in (3.24). Thermal effects are not important for this mode, as can be seen by the
excellent agreement between the predictions of cold plasma theory and the numerical
solution by WHAMP that includes finite temperature effects.

Figure 7 also shows approximately horizontal features at harmonics of the electron
gyro-frequency. These are due to electron Bernstein waves which can only be
explained by the thermal effects and are studied in more detail in Test 7.

5.4. Test 4: Langmuir mode
This test problem focuses on longitudinal waves which, in the unmagnetized case, are
represented by the Langmuir mode. As mentioned previously, this mode is a result
of plasma oscillations in a plasma of finite temperature. Consequently, it can be used
to determine the thermal speed of the electrons vth,e and thereby the temperature Te.
This is of interest in codes that start with all particles at rest and rely on the initial
fluctuations in the charge density to generate a thermal velocity distribution.

Figure 8 compares the energy distribution in the longitudinal electric field with the
expected dispersion relation of a Langmuir mode in a plasma of the same temperature
that was used to generate the initial velocity distribution. For small k, the agreement
with the analytic prediction is very good. At intermediate k, there are deviations from
the analytic prediction due to the rather large electron temperature. WHAMP, however,
is able to accurately predict the behaviour of the plasma. At large k, the wave is
strongly damped and not visible in the spectral energy distribution. This effect is also
predicted by WHAMP, but missing from the analytical dispersion relation given in
(3.32).

Figure 9 shows the longitudinal electric field, as determined by the spectral solver
that is used in the radiation-free plasma model as well as the electrostatic plasma
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FIGURE 8. Energy density in the longitudinal component of the electric field. The
simulation was performed with using the electromagnetic plasma model and the parameters
given in tables 3 and 1, but without background magnetic field. At not too large k, the
Langmuir mode is clearly visible.

FIGURE 9. Energy density in the longitudinal component of the electric field. The set-up
and parameters are identical to figure 8 but the electric field is computed by the spectral
solver that is used in both the radiation-free and the electrostatic plasma model.

model in ACRONYM. The gap at k= 0 is an artefact of the spectral solver that was
mentioned before. At all other k the match to the electromagnetic plasma model and
the prediction from theory is very good.
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FIGURE 10. Plot of longitudinal perturbations in the electric field for the alternative
implementation of the electrostatic plasma model using the VHS technique. See § 4.4 for
a description and tables 3 and 1 for parameters.

Figure 10 shows the longitudinal electric field for the alternative implementation of
the electrostatic plasma model using the VHS technique. This method has a very low
level of intrinsic noise. To make the Langmuir mode visible, the initial density of each
species was randomly perturbed on every point of the phase space grid by ±5 %.
This reproduces the Langmuir mode at about the same strength as it appears in
the PIC simulations. In the PIC simulations this perturbation is not necessary, as
the Poisson noise in the charge density due to the finite number of computational
particles per cell is sufficient to excite the normal modes of the plasma on a level
that is well visible in the dispersion plots.

Very visible, at least in figures 8 and 9 and still recognizable in figure 10, is the
change in the broadband noise floor that is caused by thermal electrons and reaches
up to

ω= 3
√

2vth,ek. (5.5)

The reduction of this noise floor by at least four orders of magnitude is the main
reason to consider implementing the electrostatic plasma model using the VHS
method.

The hybrid plasma models do not include kinetic effects of the electrons and assume
instantaneous neutrality which, therefore, removes the Langmuir mode as well as the
thermal broadband noise.

5.5. Test 5: Bernstein modes
Figure 11 shows the electron Bernstein modes described in § 3.5. A comparison with
theoretical predictions is hampered by the complicated dispersion relations of these
modes. Using the leading terms of the infinite sums, it is possible to plot the first
few modes. The figure also contains some influence from the X mode that has a
longitudinal components at low k.
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FIGURE 11. Energy density in the longitudinal component of the electric field. The
simulation was performed using the electromagnetic plasma model, using parameters from
tables 3 and 1. The first few electron Bernstein modes are clearly visible.

FIGURE 12. Energy density in the longitudinal component of the electric field. Unlike
figure 11, the field is computed using the spectral solver used by the radiation-free and
the electrostatic plasma models.

Figure 12 shows the behaviour in the electrostatic model with a static background
magnetic field. Again we see a spectral hole at k = 0. Compared to figure 11, no
remnants of the X mode are visible here.

The absence of kinetic electrons in the hybrid models, carrying individual gyro-
phases, removes electron Bernstein modes.
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FIGURE 13. Energy density in the right-handed circularly polarized part of the electric
field. Similar to figure 6, the electric field is computed from the electromagnetic
plasma model, but this time with the parameters given in tables 1 and 4 to reach the
low-frequency regime. As expected, the low-frequency branch of the R mode is visible,
including the frequency range of whistler waves.

Simulation domain Lz 8 1921x
Simulation duration Tsim 1 000ω−1

p,e
52 0001t

TABLE 4. Simulation size to study the low-frequency R mode.

5.6. Test 6: low-frequency R mode
So far all simulations were as cheap as Test 1. To analyse the low-frequency regime,
some more effort is required. Table 4 lists the changes to the simulation parameters.

When we run the simulation using those parameters and plot the result, we again
find the L and R modes. Limiting ourselves to frequencies up to the electron gyro-
frequency and filtering for right-hand circular polarization, we get figure 13.

Figure 13 is dominated by the low-frequency branch of the R mode which contains
a region where ω depends quadratically on k. These waves would usually be classified
as whistler waves.

For larger k, the group velocity drops again as the wave comes closer to the
resonance at Ωc,e. In this region, a deviation can be seen between the prediction for a
cold plasma and the mode in the simulated plasma of finite temperature. Using either
the prediction of Chen et al. (2013) for a warm plasma or the linearized equations of
WHAMP, this effect can be predicted correctly. Both approaches, however, require the
use of a numerical root finding method. This might seem less elegant than comparison
against an analytic prediction, but root finding codes are quite different to the tested
simulation codes. The risk of implementation problems affecting them in the same
way as the simulation codes is thus minimal and a meaningful comparison can be
made.
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FIGURE 14. Energy density in the right-handed circularly polarized part of the electric
field. Unlike figure 13 the field is computed using the radiation-free plasma model, but
otherwise using the same parameters.

For even larger k, the mode is damped away by gyrating particles, which is also
predicted for warm plasmas. The gyrating electrons generate noise cones around
the electron gyro-frequency that are clearly visible. The opening angle of the cones
corresponds to roughly 3

√
2vth,ek.

Figure 14 shows the low-frequency modes that are right-handed circularly polarized
from a radiation-free plasma model. Unlike the high-frequency branches of L and
R mode that are removed when the electromagnetic radiation is removed, the low-
frequency branches still exist and show the same features as in an full electromagnetic
plasma model.

In an electrostatic plasma model, these waves are missing because no transverse
fields exist.

As figure 15 shows, the noise cones of gyrating electrons – a purely kinetic effect
– are missing in a model that uses an electron fluid. The low-frequency branch of the
R mode, however, still exists and shows the correct dispersion relation. This is not
surprising as the wave is carried by electrons but exists also in fluid-like plasma theory.
The gyro-frequency of electrons can be estimated from the spectral gap in the noise.

Figure 16 shows the right-hand circular mode in the limit me → 0. For small k,
the mode is unchanged by the lack of electron inertia, but at larger k it lacks the
resonance at the electron gyro-frequency, which is not well defined without electron
mass.

Normalizing in the same way as used for the plot ω= ω̃Ωc,e and k= k̃π/de

simplifies the dispersion relation given in (3.23) significantly:

ω̃=π2k̃2. (5.6)

The plot of the spectral energy density indeed shows that the wave mode follows this
dispersion relation even for frequencies ω larger than the electron gyro-frequency.
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FIGURE 15. Energy density in the right-handed circularly polarized part of the electric
field. In this figure the field is computed from the hybrid model with electron inertia.
Compared to figure 13, the noise cones around the gyro-frequency of electrons are
missing.

FIGURE 16. Energy density in the right-handed circularly polarized part of the electric
field. This time a hybrid model with massless electrons is used to compute the electric
field. The dispersion relation of the low-frequency R mode is significantly modified by
this model as a comparison with figures 13–15 shows.

5.7. Test 7: ion Bernstein modes
Figure 17 shows the result of Test 7 using the electromagnetic plasma model. The
simulation is computationally expensive and quite noisy. The X mode is clearly visible.
At smaller phase speeds, ion Bernstein modes are visible. Better resolution and lower
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FIGURE 17. Energy density in the longitudinal component of the electric field. The field
has been obtained from the electromagnetic plasma model using the parameter set given
in table 5.

Electron plasma frequency ωp,e 1.000× 109 rad s−1

Electron gyro-frequency Ωc,e 2.144× 108 rad s−1

Electron thermal speed vth,e 0.021 c
Mass ratio mi/me 1836
Temperature T 2.71 MK
Debye length λD 0.641 cm
Grid size 1x 0.454 cm
Electron gyro-radius re 2.993 cm
Magnetic field B0 1.219 mT

12.19 G
Alfvén speed vA 0.005 c
Simulation domain Lx 163841x
Simulation duration Tsim 150Ω−1

c,i

TABLE 5. Simulation parameters used for the ion Bernstein modes.

noise levels (e.g. through a larger number of particles per cell) would be required to
make this an efficient test, but would increase the computational cost even further.

Figure 18 shows the result of the spectral solver as used in the radiation-free plasma
model. As usual with this solver, a hole in the spectral energy density appears at k=0.
This plasma model allows larger time steps than the electromagnetic model, but the
simulation is still too expensive to make an efficient test problem.

Figure 19 shows the result of the spectral solver as used in the electrostatic plasma
model. This model does not include the X mode and allows much larger time steps,
which reduces computational expense. Additionally, a single time is cheaper than in
the radiation-free model and the test does not rely on the transverse field components
that are missing in the electrostatic model.
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FIGURE 18. Energy density in the longitudinal component of the electric field. The field
has been obtained from the spectral solver used for the radiation-free plasma model.

FIGURE 19. Energy density in the longitudinal component of the electric field. The field
has been obtained from the spectral solver used for the electrostatic plasma model using
the parameter set given in table 5. The only visible wave modes are ion Bernstein waves.

Figure 20 shows the output of the hybrid plasma model including effects of
electron inertia. In this model, ions are treated as kinetic particles and, as expected,
ion Bernstein modes are visible. Note the reappearance of the X mode as an enhanced
band of noise at relatively large phase velocities.

Figure 21 shows the hybrid plasma models without electron inertia. The ion
Bernstein modes are dominated by ion kinetic effects and remain unchanged. Given
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FIGURE 20. Energy density in the longitudinal component of the electric field. The plot
is based on the hybrid model with electron inertia and the parameter set given in table 5.

FIGURE 21. Energy density in the longitudinal component of the electric field. The hybrid
model used the parameter set given in table 5 and massless electrons. The case including
electron inertia can be found in figure 20.

that this plasma model admits a only limited number of modes, this is probably the
most relevant test problem for it.

5.8. Test 8: Low-frequency L mode
Resolving low-frequency L modes, as done in § 5.6 for their right-handed counterparts,
would require another large increase in effort. (One needs 1836 times as many time
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FIGURE 22. Energy density in the left-handed circularly polarized part of the electric field.
The plot is based on a simulation using the electromagnetic plasma model and parameters
given in table 6. As expected, the low-frequency L mode is visible as well as noise cones
produced by gyrating ions.

Mass ratio mi/me 18.36
Alfvén speed vA 0.117 c
Simulation domain Lz 16 3841x
Simulation duration Tsim 4 000ω−1

p,e
208 0001t

Particle updates 3.5× 1012

TABLE 6. Simulation size to study the low-frequency L mode.

steps to resolve the lower gyro-frequency and
√

1836 more cells to capture the larger
gyro-radius.) The only feasible way is to reduce the mass ratio between protons and
electrons. Low mass ratios result in possibly unrealistic high Alfvén speeds if the
magnetic field is not adjusted. Table 6 shows parameters that are a reasonable trade-off
and allow a glimpse at this wave mode.

Running the simulation with those parameters and plotting the spectral energy
density of left-handed modes results in figure 22. The low-frequency branch of the L
mode is clearly visible. For small k, it matches well the prediction for a cold plasma.
For intermediate k, effects of the finite temperature have to be included to explain
the simulation results. At higher k, the mode is damped away by gyrating protons
that are visible as noise cones. These cones are analogous to the cones generated by
gyrating electrons, but occur on ion scales, i.e. they are centred on the gyro-frequency
of the ions and the opening is determined by the thermal speed of ions.

In figure 23 it can be seen that the left-handed low-frequency waves survive in the
radiation-free plasma, the same as the right-handed counterparts.
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FIGURE 23. Energy density in the left-handed circularly polarized part of the electric field
obtained from the radiation-free plasma model. The simulation parameters can be found
in table 6.

FIGURE 24. Energy density in the left-handed circularly polarized part of the electric field.
Again parameters are from table 6, but this time for a hybrid model with electron inertia.
The ions are still treated kinetically and consequently the low-frequency L mode and the
noise cones are retained.

Figures 24 and 25 show that the low-frequency L mode branches exist basically
unaltered without kinetic electrons. The noise cones of gyrating ions are unaffected
unlike figure 15.
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FIGURE 25. Energy density in the left-handed circularly polarized part of the electric field.
Compared to figure 24 electron inertia has been removed.

Plasma model Wave mode
EM HF L/R X Langmuir EB LF R IB LF L

Electromagnetic X X X X X X $ $
Radiation-free — — — X X X $ $
Electrostatic — — — X X — X —
Hybrid with inertia — — — — — X X X
Hybrid w/o inertia — — — — — ∼ X X

TABLE 7. Suitability of modes for different plasma models. EB and IB stand for Bernstein
modes of electrons and ions, respectively. Cases indicated by ‘X’ allow for an effective test.
An entry of ‘—’ indicates that the wave mode is not suitable for testing implementations
of this plasma model. The four cases that are marked $ are in principle suitable, but
computationally expensive. The one special case indicated with ∼ is explained in the text.

6. Conclusions
In this work we proposed a set of test problems suitable for a wide range of kinetic

plasma models and provided reference results based on our numerical codes. Those
tests are based on a set of different plasma wave modes and are useful to check
quickly and conveniently the correct implementation of different plasma models,
including the correct interaction of the different parts of the simulation program
handling particles and electromagnetic fields.

Table 7 shows which wave modes are suitable to test codes implementing different
plasma models. Listed from left to right are the electromagnetic mode from § 5.1,
left- and right-hand circular wave modes at or above the plasma frequency (§ 5.2),
the extraordinary mode (§ 5.3), the Langmuir mode (§ 5.4), electron Bernstein modes
(§ 5.5), low-frequency waves with right-hand circular polarization (§ 5.6), ion Bernstein
modes (§ 5.7) and low-frequency left-hand circular polarization (§ 5.8). Listed on
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the left-hand side are the different plasma models — from top to bottom —, the
electromagnetic model (§ 2.1), the radiation-free model (§ 2.2), the electrostatic model
(§ 2.3) and the model using an implicit electron fluid — either with or without
electron inertia — described in § 2.4.

Wave modes that provide suitable test problems for the chosen plasma model are
indicated with ‘X’. If a ‘—’ is listed, the wave mode is not present or usable in
the plasma model. For two plasma models, the low-frequency left-hand circularly
polarized waves and the ion Bernstein modes are marked with $. These waves do
exist in the electromagnetic and radiation-free plasma model and show the properties
expected from cold plasma theory. In principle, these waves could be used to test the
simulation code, e.g. by extracting the gyro-frequency of ions or the Alfvén velocity.
Simulations with sufficient resolution are, however, computationally very expensive.
Given that these plasma models admit a large number of alternative wave modes, it
is better to choose an alternative test problem unless low-frequency properties of the
ions are explicitly needed. A special case (indicated by ‘∼’), occurs for low-frequency
right-hand circularly polarized waves in the hybrid model without electron inertia. As
shown in figure 16, such a wave mode does exist, however, the dispersion relation is
modified compared to all other plasma models used here. In particular the resonance
at the electron gyro-frequency is missing, as it has been ordered out of the model
and cannot be used for comparison purposes. Using the modified dispersion relation
in (3.23), it is possible to recover the combination of magnetic field and electron
density. Given the limited number of suitable wave modes in this hybrid plasma
model, right-hand circularly polarized waves are still an important test problem, but
analysis requires extra attention, and direct comparison with other plasma models is
difficult.
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