
Network Science 10 (1): 82–110, 2022
doi:10.1017/nws.2022.5

RES E ARCH ART I C L E

DERGMs: Degeneracy-restricted exponential family
random graphmodels
Vishesh Karwa1†, Sonja Petrović2∗‡ and Denis Bajić2
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Abstract
Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling
dependent data. While the early literature has shown them to be powerful in capturing many network
features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of
the probability mass being concentrated on a very small subset of the parameter space. This behavior limits
both the applicability of an ERGM as a model for real data and inference and parameter estimation via the
usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential
family of models for random graphs that build on the standard ERGM framework. Specifically, we solve
the problem of computational intractability and “degenerate” model behavior by an interpretable support
restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure
of sparsity whose value is commonly low in real-world networks. The new model family is supported
on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or
DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting
the degeneracy parameter to be maximal—they inherit good theoretical properties, while at the same time
place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and
fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable.
We study various theoretical properties of DERGMs and illustrate how the support restriction improves
the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids
many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs.
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1. Introduction
Exponential family random graph models, also known as ERGMs for short, are known to be a
theoretically flexible class for modeling real-world networks. There is a growing literature in appli-
cations such as Snijders et al. (2006), Saul & Filkov (2007), and Goodreau et al. (2009), but also
a growing set of contributions on concerns regarding model complexity and degenerate behav-
ior. Among the many contributions, we single out recent work by Yin et al. (2016), Chatterjee &
Diaconis (2013), Bannister et al. (2014), where various issues of ERGMs have been pointed out
and addressed theoretically. While some ERGMs may, as some like to phrase it, “behave badly,”
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this literature also suggests that if we understand this bad behavior, we can still work with this
model family—a desirable outcome as the family is quite flexible and broadly encompassing.

Degenerate behavior of somemodels in the ERGM family that go beyond dyadic independence,
as explained in Handcock (2003) and, more recently, in Rinaldo et al. (2009), stems from twomain
issues: The first issue is that given a fixed parameter value, a “degenerate” model places most of the
probability mass on a small region of the support. The second issue is that the subset of parameters
where this behavior does not happen can be very small. This property is then naturally implicated
in other problems such as estimation, in particular, non-convergence of MCMC-MLE estimates.
A popular algorithm for estimation is to approximate the log-likelihood using importance sam-
pling from the model with a fixed parameter θ0, usually via an MCMC sampler. To obtain an
accurate approximation of the log-likelihood, the standard MCMC sampler must generate sam-
ples from the region where the mass is concentrated. Since the mass is tightly concentrated on a
small region, the MCMC sampler must start with a parameter very close to MLE, otherwise esti-
mation fails. See Snijders (2002) for the Robbins-Monro algorithm, which need not start with a
parameter close to the true MLE for the estimation to not fail.

The literature offers several approaches to address the issue of model degeneracy, including the
study of curved ERGMs with alternating k-star and k-triangle terms and geometrically weighted
edge wise shared partner terms (Snijders et al., 2006; Hunter & Handcock, 2006; Hunter et al.,
2008b); dyad-independent ERGMs (ERGMs that assume the dyads are independent) with sparsity
assumptions (Krivitsky et al., 2011; Kolaczyk & Krivitsky, 2015); ERGMs with local dependence
(Schweinberger & Handcock, 2015), nonparametric ERGMs (Thiemichen & Kauermann, 2017);
and an example of a re-parametrized ERGM that appears in Horvát et al. (2015), who study the
edge-triangle ERGM and propose a one-to-one transformation of the sample space that renders
the model non-degenerate.

Our work contributes to this understanding and proposes a natural support restriction of
ERGMs to sparse graphs and without the dyadic independence assumption. The class of sparse
graphs that we consider are called k-degenerate graphs, defined below. We show that restrict-
ing support to k-degenerate graphs provably reduces the degenerate behavior. To formally show
improvement in model behavior, we rely on the notion of model degeneracy and stability as
defined in Schweinberger (2011) as our starting points. Schweinberger defined stability of suf-
ficient statistics and showed that instability leads to model degeneracy. We generalize and
strengthen this definition to support-restricted ERGMs, including DERGMs, and prove that
stability implies non-degeneracy of the model.

To decide how to restrict support, we build our intuition on the observation that has been
noted in much of the network literature: many real-world networks are sparse in some sense.
While there are many different notions of sparsity, we use the following class of sparse graphs: a
network is said to be sparse if it has bounded degeneracy,1 defined as follows (see Remark 1 for
equivalent descriptions).

Definition 1 (Degeneracy of a graph g, Lick &White, 1970; Seidman, 1983). The k-core Hk(g) of
g is the maximal subgraph of g in which every vertex has degree at least k. Here, maximal means
with respect to inclusion. The degeneracy of a graph g is the maximum index of its non-empty core:
max{k :Hk(g) �= ∅}.

Examples: Consider a star graph on n nodes. It has degeneracy 1. On the other extreme, a fully
connected graph has degeneracy n. Note that the degree of the star graph is n− 1, but its degen-
eracy is 1. Figure 1 shows a more interesting example of a small network with degeneracy 4, along
with its cores.

Many real-world networks tend to have small degeneracy with respect to the number of nodes.
The table below (adapted from Karwa et al., 2017) shows examples of some sample networks
whose degeneracy is much less compared to the number of nodes.
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Figure 1. An example of a small graph g (left), its 2-core (center), and its 3- and 4-core (right). Adapted from Karwa et al.
(2017).

Network dataset Nodes Edges Degeneracy

Scotland 244 256 4

Geom 7,343 11,898 21

NDyeast 2,114 2,277 5

NetScience 1,589 2,742 19

USpowerGrid 4,941 6,594 5

Erdős 6,927 11,850 10

Without further ado, let us define the model class and then discuss the graph-theoretic notion
more intuitively.

Let Gn be the set of all simple graphs on n nodes. This sample space definition for ERGMs is
standard, though extensions exist to valued graphs, see Krivitsky (2012). Recall that the ERGM
with sufficient statistics vector t = (t1, . . . , td) defined on the parameter space � ⊂R

d places the
following probability on any g ∈ Gn:

PERGM(G= g)= exp{θT · t(g)}
c(θ)

(1)

where θ = (θ1, . . . , θd) are the canonical parameters, c(θ) is the normalizing constant c(θ)=∑
g∈Gn exp{θT · t(g)}, and the set of possible parameters is given by � = {θ ∈R

d : c(θ)< ∞}. In
the corresponding DERGM, we simply restrict the support of the model from Gn to the set of all
graphs on n nodes whose degeneracy is at most k.

Definition 2 (DERGM). Denote by Gn,k the set of all graphs on n nodes whose degeneracy is at
most k. Choose a vector of graph statistics t = (t1, . . . , td). The degeneracy-restricted exponential
random graph model, or DERGM for short, with sufficient statistics vector t places the following
probability on a graph on n nodes:

PDERGM(G= g)=
{
exp{θT · t(g)} · ck(θ)−1, if g ∈ Gn,k
0, otherwise

(2)

where ck(θ) is themodified normalizing constant

ck(θ)=
∑
g∈Gn,k

exp{θT · t(g)}

and the set of possible parameters is given by

� = {θ ∈R
d : ck(θ)< ∞}

Note that setting k= n− 1 reduces the DERGM to the usual ERGM.
Section 4 illustrates the effect of changing the degeneracy parameter value on the model behav-

ior. For example, following Schweinberger (2011), we investigate whethermodels exhibit excessive

https://doi.org/10.1017/nws.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.5


Network Science 85

sensitivity, where small changes in the values of the natural parameters lead to large changes in the
mean value parameter and show an example where DERGMs do not exhibit such excessive sen-
sitivity when compared to the corresponding ERGM. In addition, simulation results in Section 5
provide evidence that the parameter estimates of a DERGM are not too different from the corre-
sponding ERGM, in cases where both can be estimated. That is, even if the true data generating
distribution is an ERGM, there is very little or no difference in fitting a DERGM.

One may ask, what is the point of fitting a DERGM in such cases when the ERGM parameters
can also be estimated? Our reasoning is that in such cases, one may think of support restriction
as a means of improving the properties of the MCMC-MLE estimation procedure by preventing
the Markov chain from visiting states that are extremal (e.g. graphs that are complete or near
complete). Moreover, we believe that any reasonable ERGM that fits a real-world data will place
very little mass on graphs with large degeneracy (this can be demonstrated by fitting an ERGM,
simulating a lot of graphs from the ERGM and recording the degeneracy parameter). Further,
these experiments show that in cases where ERGMs cannot be fit, fitting a DERGM will give us
reasonable parameter estimates.

Remark 1. Graph degeneracy has other characterizations; for instance, a k-degenerate graph
admits an ordering of its vertices v1, . . . , vn such that vertex vi has at most k neighbors after it in
the ordering; thus, a bounded degeneracy graphmeans there exists a vertex with few neighbors. In
fact, another characterization is that in a k-degenerate graph, every induced subgraph has a vertex
of degree at most k. Hence, bounding the degeneracy of a graph is aweaker constraint than bound-
ing the overall node degree in the graph, and it is also weaker than bounding the so-called h-index,
whichmeans thatmost nodes have few neighbors. For supporting evidence of low-degeneracy net-
work data, see Karwa et al. (2017, Section 3.1), where the authors compute degeneracy of each of
the undirected graphs in the Batagelj & Mrvar (2006) database. A secondary reason to consider
this support restriction is that restricting to bounded degeneracy graphs makes many sub graph
counting algorithms computationally efficient: for example, all the maximal cliques can be enu-
merated in polynomial time in the case of bounded degeneracy, while in general the problem is
NP-hard.

Remark 2. We want to emphasize the fact that bounding the degeneracy of a graph does not
impose any bound on the maximum degree. Consider, for example, a star graph on n nodes. The
maximum degree is n− 1, but the degeneracy is only 1. In fact, the key reason for bounding the
degeneracy and not the degree is that one gets a class of graphs that can have very high degree
nodes, but are still sparse in some sense.

Remark 3. A discussion on the choice of k is in order. The problem of simultaneously estimating
θ and k from gobs seems quite difficult, since changing k changes the support of the model. We
consider the choice of k akin to the problem of model selection, as different values of k describe
different models. Valid choices of k range from the observed value kobs to n− 1, where k= n− 1
reduces to the usual ERGM. Setting k= kobs seems to be a reasonable choice (and it is the min-
imal choice, otherwise the model places 0 probability on the observed graph), for now, given
that in most real-world networks kobs is much smaller than n. More importantly, we will show in
Section 2 that setting k� n leads to improved model behavior, and in addition we prove a lower
bound on the size of the support of such a DERGM compared to the full ERGM. Choosing smaller
values of k leads to a likelihood function that is better-behaved, eliminates dense graphs from the
support, and reduces model degeneracy. We show this in detail theoretically and by simulations.

A summary of the contributions of the remainder of this manuscript is as follows. In Section 2,
we prove that the support of a DERGMwith k� n is not too small compared to k= n− 1, extend
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and strengthen the definition of stability of sufficient statistics from Schweinberger (2011), and
prove that stability implies that the DERGM is non-degenerate. We also present an example of
an unstable ERGM whose counterpart DERGM is stable, namely, one with a two-dimensional
parameter space whose sufficient statistics are the number of edges and number of triangles in the
graph. The degeneracy of the edge-triangle model is studied in detail by Rinaldo et al. (2009). In
Section 3, we discuss the general estimation problem in DERGMs and address various aspects
of the problem, including existence of the MLE and approximate MLE. Section 3.1 also pro-
vides a straightforward Metropolis-Hastings algorithm to sample from the model. In Section 4,
we provide simulation results that support the theoretical claims about degeneracy-restricted
ERGMs. Specifically, we discuss the choice of k, why DERGMs do not suffer from the same
estimation issues that arise in standard ERGMs, model degeneracy issues and how they disap-
pear for smaller values of k. We focus on the edge-triangle models as the running example; these
are well-studied sufficient statistics that arise naturally when considering Markov dependence,
see for example Frank & Strauss (1986) and recent complementary work (Lauritzen et al., 2018).
As a running example in Rinaldo et al. (2009), it is also the natural example to compare ERGM
behavior to DERGMs. Section 5 includes simulation studies on real-world network data, including
those where a DERGM fits but ERGM fails to converge, as well as examples where both models
fit. Section 6 derives uniform samplers of the sample space Gn,k—which were used throughout
Section 4—and further discusses some of the algorithmic considerations pertaining to scalabil-
ity and applicability. The R and Python code used to run the simulations in Section 4, along
with implementations of the main algorithms from Section 6, is available on GitHub under Bajić
(2016).

2. Non-degeneracy and stability of DERGMs
In this section, we formally show that restricting the support of an ERGMs to k-degenerate
graphs improves model behavior. Schweinberger (2011) showed that the degenerate behavior of
an ERGM is closely tied with the notion of “stability” of sufficient statistics that are used to define
the ERGM. In particular, “unstable” sufficient statistics lead to excessive sensitivity of the model,
which in turn leads to degenerate model behavior and impacts the MCMC-MLE estimation. We
extend the notion of stability to support-restricted models and tie it to the support size of a model.
Roughly, a sufficient statistic is stable if it can be strictly upper-bounded by the log of support
size of the model. In an ERGM, the log of support size is of order O(n2) and hence any suffi-
cient statistic that grows faster than O(n2) is considered unstable. This includes the number of
triangles and number of two-stars, both of which grow at a rate of O(n3). This unstable behav-
ior leads to excessive sensitivity and degeneracy of the edge-triangle ERGM. DERGMs, on the
other hand, are defined by restricting the support size and include only k-degenerate graphs for a
fixed k. Restricting the support to k-degenerate graphs induces stability of sufficient statistics such
as triangles and two-stars, which in turn improves model behavior. Furthermore, if k is fixed, the
number of edges and triangles is of the same order, so the triangle term cannot dominate the edge
term; see Proposition 1.

First, we study the size of the support of DERGMs in Theorem 1, generalize the notion of
stable sufficient statistics in Definition 3, and show stability holds for the edge-triangle DERGM
in Proposition 1 (Schweinberger, 2011 showed the edge-triangle ERGM is unstable; cf. Rinaldo
et al., 2009). Then, in Theorem 3, we show that any DERGM with stable sufficient statistics is not
degenerate under the formal definition of asymptotic non-degeneracy from Schweinberger (2011).

Order notation.Many of the results in this paper are asymptotic and use the order notation. For
readers’ convenience, we include the definitions we use the “big-O,” denoted by O( · ); “little-O,”
or o( · ); “big-Omega,” �( · ); and “Theta,” �( · ). They offer convenient shorthand for comparing
the asymptotic growth of two functions f (n) and g(n), n ∈Z≥0:
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1. f (n) is O(g(n)) if there exists a constant c> 0 and an integer n0, such that for all n> n0,
the bound f (n)≤ c · g(n) holds.

2. f (n) is o(g(n))) if for all constants c> 0, there exists an integer n0 such that for every n≥ n0,
f (n)< c · g(n).

3. f (n) is �(g(n)) if there exists a constant c> 0 and an integer n0, such that for all n> n0,
such that f (n)≥ c · g(n).

4. f (n) is �(g(n)) if f (n) is O(g(n)) and f (n) is o(g(n)).

2.1 Support size of DERGMs
The number of graphs in the support of a ERGM is 2(

n
2). Since a DERGM restricts the support,

a natural question that arises is: what is the number of graphs in the support of a DERGM with
degeneracy parameter k? Unfortunately, there are no simple formulas to count the number of
k-degenerate graphs; nonetheless, we can obtain an asymptotic lower bound as follows.

Theorem 1 (Support size of DERGMs). Let Sk(n) denote the number of simple graphs with n nodes
and degeneracy at most k. Then, for a fixed k, there exist positive constants c1, c2 > 0 and an integer
n0 such that for all n> n0,

c1 · n log n≤ log Sk(n)≤ c2 · n log n
That is, for a fixed k, and as n goes to infinity, log Sk(n)= �

(
n log n

)
. On the other hand, for

k= n− 1, log Sn−1(n)= �(n2).

Theorem 1 is an asymptotic statement that gives an asymptotic upper and lower bound on
the support size of DERGMs, when k is a fixed constant. For the finite sample settings, we can
consider k=O(1), that is k is a bounded from above by a constant, whereas n is increasing. (As a
practical example, n may be 5, 000, but k may be 50 or even 10.) Under such settings, Theorem 1
shows that there are about O(2n log n) graphs in the support of DERGM. On the other hand, the
ERGM hasO(2n2 ) graphs. Note that Sn−1(n) is the size of the support of the full ERGM.We found
two interesting properties: that parameter estimates of a DERGM do not change drastically from
that of the corresponding ERGM, see Section 5.2 for a concrete example; and that the graphs
eliminated from the support of the ERGM are precisely the ones that cause instability issues, as
illustrated in the next result.

Proof of Theorem 1. We derive both upper and lower bounds for the DERGMs support size.
A natural lower bound on the number of k-degenerate graphs is the number of well-ordered k-
degenerate graphs. Awell-ordered k-degenerate graph is a labeled graph with vertex labels 1, . . . , n
such that the ordering of the vertices by their labels is a well-ordering of the graph. From Bauer
et al. (2010), the number of well-ordered graphs with degeneracy at most k is given by

Dk(n)=Dk(n− 1) ·
min(n−1,k)∑

i=0

(
n− 1
i

)

By definition, Dk(n) is a lower bound on the Sk(n). Applying the recursion, for a constant k,
we get

Dk(n)=
⎛
⎝ k∑

i=0

(
n− 1
i

)⎞⎠ ·
⎛
⎝ k∑

i=0

(
n− 2
i

)⎞⎠ . . . ·
⎛
⎝ k∑

i=0

(
k
i

)⎞⎠ ·
⎛
⎝k−1∑

i=0

(
k− 1
i

)⎞⎠ ·
( 1∑

i=0

(
1
i

))
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which further simplifies as follows:

Dk(n)=
n−1∏

r=k+1

k∑
i=0

(
r
i

)
·

k∏
r=1

r∑
i=0

(
r
i

)

=
n−1∏

r=k+1

k∑
i=0

(
r
i

)
·

k∏
r=1

2r

=
n−1∏

r=k+1

k∑
i=0

(
r
i

)
· 2(k2)

Taking logarithms gives

logDk(n)=
n−1∑

r=k+1

log

⎛
⎝ k∑

i=0

(
r
i

)⎞⎠+
(
k
2

)
log 2

≥
n−1∑

r=k+1

log
(
r
k

)
+
(
k
2

)
log 2

Note that the second term depends only on k, and hence, we can focus on the first term. Let

Tk(n) :=
n−1∑

r=k+1

log
(
r
k

)

Using the lower bound
(r
k
)≥ (r/k)k, we get,

Tk(n)≥ k ·
n−1∑

r=k+1

log(r/k)

≥ k ·
⎛
⎝ n−1∑

r=k+1

log r

⎞
⎠− k log k(n− k− 1)

= k ·
⎛
⎝n−1∑

r=1
log r −

k∑
r=1

log r

⎞
⎠− k log k(n− k− 1)

= k · (log(n− 1)! − log k!)− k log k(n− k− 1)
= �(n log n)

Thus, the claimed lower bound follows: log Sk(n)≥ logDk(n)≥ Tk(n)= �(n log n).
For the upper bound on the support size of k-degenerate graphs, we will use the following

strategy. Let #G(n,≤m) denote the number of graphs on n nodes with at most m edges, we will
show below that

log #G(n,≤m)≤ 2m · log(en) (3)

From Proposition 1 below, the maximum number of edges in a k-degenerate graph is k·
n− ((k+1)

2
)
. Using the fact that

Gn,k ⊂G(n,≤m)
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wherem= k · n− ((k+1)
2
)
, we have the following upper bound:

log Sk(n)≤ log #G
(
n,≤ k · n−

(
(k+ 1)

2

))

≤ 2
(
k · n−

(
(k+ 1)

2

))
log(en)

< 2k · n log(en)=O(n log n)
Finally, to see that the upper and lower bounds for the case when k= n− 1 hold, note that k=
n− 1 is the full ERGM and we have 2(

n
2) graphs in the support of an ERGM. Thus log Sn−1(n)=

log 2(
n
2) = �(n2).

All that remains to be shown is Equation (3). Note that the number of graphs on n nodes with
m edges is

((n2)
m
)
, since there are

(n
2
)
possible locations to choose from and place them edges. Now

the number of graphs with at mostm edges is given by

#G(n,≤m)=
m∑
i=0

((n
2
)
i

)
≤
(
e
(n
2
)

m

)m

from the well-known fact
∑m

i=0
(n
i
)≤ ( enm )m. Taking logs, we get

log #G(n,≤m)≤ log

(
e
(n
2
)

m

)m

≤ log
(
en2

m

)m

≤ 2m log en

2.2 Stability of sufficient statistics
By restricting the support to include only those graphs with degeneracy at most k, where k is small
compared to n, we eliminate “dense” graphs from the model. In turn, this has a stabilizing effect
on the sufficient statistics. A formal definition of a stable sufficient statistic in ERGMs is given in
Schweinberger (2011).

Definition 3 (Stable sufficient statistics). Let Sk(n) be the size of support of a DERGM with suffi-
cient statistic t(g). Then, t(g) is said to be stable if for any constant C > 0 there exists an integer n0
such that for every n≥ n0

max
g∈Gn,k

t(g)< C · log Sk(n)

or in other words, max
g∈Gn,k

t(g) ∈ o( log Sk(n)). On the other hand, t(g) is said to be unstable if for any

C > 0, however large,
max
g∈Gn,k

t(g)≥ C · log Sk(n)

A vector of sufficient statistics is stable if all the components of the vector are stable, if any component
is unstable, the vector of sufficient statistics is unstable.

Roughly, a sufficient statistic is stable if it can eventually be strictly upper-bounded by the log
of the support size of the DERGM. If it cannot be upper-bounded by the log of support size,
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then it is unstable. For an ERGM, with no support restriction, this definition reduces to strictly
upper bounding the sufficient statistic by

(n
2
)
, where n is the number of nodes and it strengthens

the definition of stable sufficient statistics in Schweinberger (2011). The edge-triangle ERGM is
not stable due to the instability of the number of triangles, as shown in Schweinberger (2011).
However, it turns out that the edge-triangle DERGM is stable.

Proposition 1. Let e(g) be the number of edges and �(g) be the number of triangles in a graph.
Then

1. max
g∈Gn,k

e(g)= k · n− ((k+1)
2
)

2. max
g∈Gn,k

�(g)= (k
3
)+ (k

2
)
(n− k).

Proof. For this proof, we use the notion of a shell index of a node: define the i-th shell of a graph
g to be the difference of the two consecutive cores Hi(g) \Hi−1(g). Note that a node may belong
to more than one core, but shell membership is unique. Thus, we say that a vertex v is said to have
shell index i if v ∈Hi(g) but v �∈Hi+1(g).

For any given network, the shell sequence s1 ≤ s2 . . . ≤ sn is the sorted sequence of shell indices
of each node. From Proposition 10 in Karwa et al. (2017), the maximum number of edges in a
graph with a shell sequence s1 ≤ s2 . . . ≤ sn is given by:(

k
2

)
+

n−k∑
i=1

si

This expression is maximized by graphs in which all the nodes are in the kth core, which has a
shell sequence s1 = k, s2 = k, . . . sn = k. Thus, the maximum number of edges in a k-degenerate
graph is (

k
2

)
+

n−k∑
i=1

k= k(k− 1)
2

+ k(n− k)= nk−
(
(k+ 1)

2

)

Similarly, from Proposition 12 in Karwa et al. (2017), the maximum number of triangles in a
graph with shell sequence s1 ≤ s2 . . . ≤ sn is given by:(

k
3

)
+

n−k∑
i=1

(
si
2

)

This expression is maximized also when all the nodes are in the kth core. Thus, the maximum
number of triangles is (

k
3

)
+

n−k∑
i=1

(
k
2

)
=
(
k
3

)
+ (n− k)

(
k
2

)

Proposition 1 shows that the number of triangles in a k-degenerate graph is O(n), whenever
k=O(1). (In fact k can be allowed to grow with n, albeit slowly, see the next theorem) On the
other hand, without any restriction on the degeneracy, the number of triangles can be as large as
O(n3) making the ERGMs unstable. The number of triangles in k-degenerate graphs is linear in n,
which make them a good candidate to model sparse graphs, which are commonplace in the real
world.
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In Theorem 2, we use Proposition 1 to show that the edge-triangle DERGM is stable. The way
we defined a DERGM assumes that k is fixed; however, note that Theorem 2 shows that k can
grow with n, albeit slowly: For instance, if k grows with

√
log(n), then the sufficient statistics are

still stable.

Theorem 2 (Stability of Edge-Triangle DERGM). Consider the edge-triangle DERGM with the
vector of sufficient statistics t(g)= (e(g),�(g)) where e(g) is the number of edges and �(g) is the
number of triangles. The edge-triangle DERGM is stable as long as k= o(

√
logn).

Proof. We need to show that for all c> 0, there exists n0, there exists n> n0 such that
maxg (e(g),�(g))< c · log Sk(n)) where the max is over the support set g ∈ Gn,k. Fix a g in Gn,k.
From Proposition 1, we have,

(e(g),�(g))≤
(
k · n−

(
(k+ 1)

2

)
,
(
k
3

)
+
(
k
2

)
(n− k)

)
≤O(k · n, k2 · n)

Thus, if k= o(
√
log n), we have (e(g),�(g))= o(n log n)= o( log Sk(n)).

2.3 Non-degeneracy of DERGMs
We now show that stability of sufficient statistics implies that a DERGM is non-degenerate. Let
us begin by defining degeneracy of a distribution or more precisely the degeneracy of a param-
eter associated with a distribution. Consider a DERGM defined by the parameter vector θ and
sufficient statistics t(g) and letMk(θ) be the set of modes, that is

Mk(θ)= arg max
g∈Gn,k

eθT ·t(g)

ck(θ)

One also defines a set of ε-modes for any 0< ε < 1:

Mε,k(θ)=
{
G ∈ Gn,k : eθ

T ·t(G) > (1− ε) max
g∈Gn,k

eθ
T ·t(g)

}
A parameter θ is said to be asymptotically degenerate if the distribution induced by θ asymptoti-
cally places all of its mass on its modes.

Definition 4 (Asymptotically degenerate parameters, see also Schweinberger, 2011). A parameter
θ is said to be asymptotically degenerate if

lim
n→∞ Pθ (G ∈Mk(θ))= 1

If, on the other hand, lim
n→∞ Pθ (G ∈Mk(θ)) is bounded away from 1, the model is asymptotically

non-degenerate. We define asymptotic near-degeneracy for DERGMs similarly using ε-modes.
As Schweinberger (2011) discusses, strict degeneracy in discrete exponential families is not

attainable; thus, θ is said to be near-degenerate if the mass concentrates on ε-modes. The same
reference proves that unstable sufficient statistics lead to near-degenerate distributions. In the fol-
lowing result, we prove that, under a technical condition that the number of graphs in the ε-modes
grows slower than square root of the model support size, stability implies non-(near-)degeneracy
in the more general case of DERGMs.

https://doi.org/10.1017/nws.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.5


92 V. Karwa et al.

Theorem 3 (Stability implies non-(near)-degeneracy). Consider any DERGMwith parameter vec-
tor θ and the vector of sufficient statistics t(g) and a bounded and fixed degeneracy parameter k.
Suppose that t(g) is stable. Assume θ ∈ � is such that there exists a constant c and an n0 such that
for all n> n0, |Mε,k(θ)| < c ·√Sk(n), that is the number of graphs in the set of ε modes does not grow
larger than the square root of the total number of graphs in the model support. Then, the DERGM is
asymptotically non-(near)-degenerate at θ .

Proof. To show that a DERGM is not near-degenerate, we need to show that lim
n→∞ Pθ (G ∈

Mε,k(θ))< 1. That is, we need to show that for every 0< ε < 1, however small, Pθ (G ∈Mε,k(θ)) is
bounded away from 1 asymptotically.

Pθ (G ∈Mε,k(θ))= 1
ck(θ)

∑
g∈Mk,ε(θ)

exp(θT · t(g))

=
∑

g∈Mε,k(θ) exp(θ
T · t(g))∑

g∈Gn,k
exp(θT · t(g))

=
∑

g∈Mε,k(θ) exp(θ
T · t(g))∑

g∈Mε,k(θ) exp(θ
T · t(g))+∑

g∈Gn,k\Mε,k(θ) exp(θ
T · t(g))

= 1
1+ rn

where

rn =
∑

g∈Gn,k\Mε,k(θ) e
θT ·t(g)∑

g∈Mε,k(θ) e
θT ·t(g)

Now, showing that lim
n→∞ Pθ (G ∈Mε,k(θ))< 1 is equivalent to showing lim

n→∞ rn > 0.

Let Nm = |Mε,k(θ)| and let Un,k(θ)= max
g∈Gn,k

θT · t(g), and Ln,k = min
g∈Gn,k

θT · t(g). Without loss of

generality, we can assume that Ln,k(θ) is 0. This follows from observing that Pθ (G= g) is invariant
under the translations of θT · t(g) by −Ln,k(θ). Also, note that for any g ∈Mε,k(θ), and any 0<

ε < 1, we have θT · t(g)≤Un,k(θ). Thus, we have

rn =
∑

g∈Gn,k\Mk(θ) e
θT ·t(g)∑

g∈Mε,k(θ) exp (θ
T · t(g))

>

∑
g∈Gn,k\Mk(θ) e

θT ·t(g)

NmeUn,k(θ)

≥
∑

g∈Gn,k\Mk(θ) e
Ln,k(θ)

NmeUn,k(θ)
=
∑

g∈Gn,k\Mk(θ) e
0

NmeUn,k(θ)
= Sk(n)−Nm

NmeUn,k(θ)
=

Sk(n)
Nm

− 1
eUn,k(θ)

≥
Sk(n)
2Nm

eUn,k(θ)

≥ c0
√
Sk(n)

2eUn,k(θ)
(By assumption, Nm < c0 ·√Sk(n))

≥ c0
2

√
ec1·n log n

eUn,k(θ)
(Since log Sk(n)> c1 · n log n, from Theorem 1)

The last inequality follows from Theorem 1, which states that there exists a constant c1, and an
n0 such that for all n> n0, log Sk(n)≥ c1 · n log n. Recall that t(g) being stable means that for all

https://doi.org/10.1017/nws.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.5


Network Science 93

c> 0, there exists an n0 such that for all n> n0, max
g∈Gn,k

t(g)< c · log Sk(n). Thus, for all c> 0,

Un,k(θ)= max
g∈Gn,k

θT · t(g)
< cθ · c · log(Sk(n))
< cθ · c · c2 · n log n

The last inequality again follows from Theorem 1 which states that there exists a constant c2 and
an n0 such that for all n> n0, log Sk(n)≤ c2 · n log n. Here, cθ is a constant that depends on θ .
Thus, we get, for all c> 0, there exists an n0, c1 and c2 such that for all n> n0,

rn >
c0
2
e
c1
2 ·n log n

eUn,k(θ)

>
c0
2

e
c1
2 ·n log n

ec·cθ c2·n log n

>
c0
2
e
( c1
2 −c·c2cθ

)·n log n
Since this holds for any c> 0, let us choose c such that c1

2 − c · c2cθ = 0. Then, rn > c0
2 > 0 in the

limit, as required.

In order to show an explicit example of a model for which we can find a set of parameter values
θ for which Theorem 3 holds, we spell out the result for the example of the triangle DERGM stud-
ied in the previous section. At the same time, we can prove stronger result, relaxing the assumption
on the degeneracy k.

Corollary 1 (Stability implies non-(near)-degeneracy for edge-triangle DERGM). Consider
DERGM with parameter vector θ = (θ1, θ2) and sufficient statistics (e(g),�(g)). Allow the degen-
eracy parameter k to increase as follows:

1. k= o(
√
log n).

For θ ∈ �, suppose that:

1. |θ |1 < o( log n), where |θ |1 is the l1 norm of θ ,
2. θ ∈ � is such that there exists and constant c0 and an n0 such that for all n> n0, |Mε,k(θ)| <

c0
√
Sk(n), that is the number of graphs in the set of ε modes does not grow larger than the

square root of the total number of graphs in the support of the DERGM.

Then, the edge-triangle DERGM is asymptotically non-(near)-degenerate at θ .

Assumption 1 of course holds for fixed values of k; thus, it is not restrictive on the DERGM as
we defined it, but rather is a relaxation. The last assumption is the same as in the theorem above.
Note that the former (concerning the growth of k) is weak, whereas the latter (concerning the
number of modes) is strong.

Proof. To prove asymptotic non-(near-)degeneracy, we repeat the same steps as in the theorem
above, but consider a finer lower bound on the ratio rn from the end of the proof:

rn >
c0
2

· e
c1
2 ·n log n

eUn,k(θ)
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Now, let us examine rn for the case of number of edges and triangles. From Proposition 1, there
exists a constant c2 and an n0 such that for all n> n0, the following holds:

Un,k(θ)=max
g

(θ1, θ2)T · (e(g),�(g))< |θ |1 ·max
g

(e(g)+ �(g))

< |θ |1 · c2 · k2 · n
Thus, we have

rn ≥ c0
2

· e
c1
2 ·n log n

eUn,k(θ)

≥ c0
2

· e
c1
2 ·n log n

e|θ |1·c2·k2·n

If we allow |θ |1 = o( log n), and k= o(
√
log n), then we have c2|θ |1 · k2 · n= o(n log n), which

means for all c> 0, there exists an n0 such that for all n> n0, c2|θ |1 · k2 · n< c · n log n. Thus,
we have

rn ≥ c0
2

· e
c1
2 ·n log n

ec·n log n
Choosing c= c1

2 , we get rn ≥ c0
2 , as needed.

Corollary 1 shows that the edge-triangle DERGM is asymptotically non-(near)-degenerate for
k= o( log n) and |θ |1 = o( log n). This result implies that for large n, the edge-triangle DERGM
cannot place all its mass on the set of ε-modes, and there must be a considerable amount of mass
assigned to points outside the set of ε-modes.

3. Maximum likelihood estimation of DERGMs
In this section, we consider the problem of estimating the parameters of a DERGM given by
Equation (2) from a single observed graph gobs on n nodes. Suppose that gobs has degeneracy kobs.
To fit a DERGM to gobs, we need to estimate the parameter vector θ and the degeneracy parameter
k. From now on, we assume k is fixed and equal to kobs; see Remark 3. For a fixed k, one can write
the log-likelihood function of a DERGM in the following form:

lk(θ ; gobs)= − log

⎛
⎝ ∑

g∈Gn,k

exp
(
θT�(g; gobs)

)⎞⎠ (4)

where �(g; gobs)= t(g)− t(gobs). We will also use �(g) to denote �(g; gobs) when it is clear that
gobs is fixed. The maximum likelihood estimate of θ is

θ̂ = arg max lk(θ ; gobs)

As is the case with ERGMs, directly maximizing Equation (4) to obtain θ̂ is intractable. Hence, we
need to resort to approximate maximization. The most commonly used method is the MCMC-
MLE proposed in Geyer & Thompson (1992) and applied to ERGMs by and Hunter & Handcock
(2006). An alternative is to use stochastic approximation of Robbins &Monro (1985), see Snijders
(2002). However, as stated in Hunter et al. (2012), and shown in Geyer & Thompson (1992), the
MCMC-MLE procedure makes more efficient use of the samples in comparison to the stochastic
approximation method.

Therefore, to estimate DERGMs, we use the MCMC-MLE method, combined with the step
length algorithm of Hummel et al. (2012). The key idea in MCMC-MLE is to approximate

https://doi.org/10.1017/nws.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.5


Network Science 95

the log-likelihood function using importance sampling, which is then maximized to obtain an
approximate MLE. The approximate MLE is used to sample graphs and obtain an improved
approximation of the likelihood function, which is again maximized. This process is repeated
iteratively, until convergence.

More specifically, letting θ0 be a fixed starting value (usually taken to be the maximum pseudo-
likelihood estimator), the log-likelihood from Equation (4) can be written as:

lk(θ ; gobs)= −log(ck(θ0)) − logEPθ0,k

[
exp((θ − θ0)t�(G; gobs))

]
(5)

where �(G; gobs)= t(G)− t(gobs) and the expectation is over Pθ0,k, which denotes a DERGMwith
parameters θ0 and degeneracy parameter k. If G1, . . . ,GB are iid samples from Pθ0,k, one can
obtain a strongly consistent estimate of the log-likelihood by using

l̂k(θ ; gobs)= −log (ck(θ0)) − log
B∑

b=1

[
exp ((θ − θ0)t�(Gb; gobs))

]+ log B (6)

∝ log
B∑

b=1

[
exp((θ − θ0)t�(Gb; gobs))

]
The estimated log-likelihood in Equation (6) is maximized to obtain an approximate maximum
likelihood estimator. Thus, the approximate MLE is defined as

θ̃ = arg max l̂k(θ , gobs) (7)
In general, it is not possible to obtain iid samples from Pθ0 , and one resorts to MCMCmethods

to draw approximate samples from themodel by running theMarkov chain until convergence, see
Snijders (2002) and Hunter & Handcock (2006) for more details. Thus, the key step in estimating
DERGMs using MCMC-MLE is to draw MCMC samples from a DERGM with a fixed value of θ

with the support restricted to k-degenerate graphs.

3.1 Sampling graphs from a DERGMwith a fixed parameter
In this section, we discuss an MCMC algorithm for sampling graphs from the DERGM for a fixed
value of θ with degeneracy parameter k. The key issue is that to sample from a DERGM using
MCMC, we need to ensure that the proposed graphs are in the set Gn,k, that is they have degen-
eracy restricted to k. To this end, we consider two different approaches: the first, straightforward
approach, is to use the usual tie-no-tie proposal (see, for example, Caimo & Friel, 2011) along with
the Metropolis-Hastings step. Such a proposal may generate graphs outside the set Gn,k, which are
naturally rejected by the Metropolis-Hastings algorithm. Thus, whenever the degeneracy of the
proposed graph is more than k, the graph is rejected; otherwise, it is accepted with the usual accep-
tance probability that depends on the change statistics, see Hunter et al. (2008a) for more details.
Note that the degeneracy of a graph can be computed in O(m) time, where m is the number of
edges, using the algorithm of Batagelj & Zaversnik (2003).

While the first method works, it can be wasteful and slow, that is at each step of the Markov
chain, we have to compute the degeneracy of the graph and reject it whenever it is larger than k.
The second approach is to directly propose graphs from the setGn,k. For this, we develop a uniform
sampler that proposes graphs uniformly from the set of all k-degenerate graphs. The uniform
sampler is presented in Section 6.

Algorithm 1 summarizes the approach 2 where the proposal is the uniform distribution from
Gn,k, denoted byUn,k. Let π(g)∝ exp (θ t0t(g)). TheMetropolis-Hastings acceptance ratio becomes

α(gcurrent , gproposed)=min
(
1,

π(gproposed)
π(gcurrent)

)
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Algorithm 1: Independent Metropolis algorithm to sample from the model
input : g0, the starting value of the chain

1 Let g0 be the starting value of the chain and set gcurrent = g0.
2 For t = 1, . . . , B:
3 Propose a new value gproposed from Un,k
4 Define

α(gcurrent , gproposed)=min
(
1,

π(gproposed)
π(gcurrent)

)
.

5 Let u∼Unif (0, 1).
6 If u≤ α, accept the new proposal and set gt+1 = gproposed;
7 Else set gt = gcurrent .

3.2 Existence of MLE and the approximate MLE
There are two likelihood functions: the true likelihood l(θ) given by Equation (4) and the esti-
mated likelihood l̂(θ) given by Equation (6). Correspondingly, there are two maximizers, the
true MLE θ̂ and the approximate MLE θ̃ . We will discuss the existence of the true MLE and the
approximate MLE and argue that using a smaller kmakes the estimation of the MLE easier.

Using the standard theory of exponential families (Barndorff-Nielsen, 2014), existence of the
true MLE θ̂ depends on the marginal polytope, that is, the convex hull of sufficient statistics of
the set Gn,k. The log-likelihood function is concave and a unique maximum exists if and only
if the observed sufficient statistic t(gobs) lies in the relative interior of the marginal polytope.
The marginal polytopes of ERGMs are difficult to obtain in general (see for example Engström
& Norén, 2011) and known only in few special cases, such as Rinaldo et al. (2013), Karwa &
Slavković (2016). Obtaining the marginal polytopes for the degeneracy-restricted ERGMs appears
to be more difficult and is an open problem in general, as it can only be computed for one specific
DERGM at a time. We will compute these polytopes numerically for the edge-triangle DERGM in
Section 4.

On the other hand, existence of the approximate MLE can be checked numerically. As
discussed in Handcock (2003), the estimated log-likelihood (6) can be written as the log-
likelihood of a model from a discrete exponential family with support over t(G1), . . . , t(GB) with
observed sufficient statistic t(gobs). Hence, using again the standard theory of exponential fam-
ilies (Barndorff-Nielsen, 2014), one can show that the estimated log-likelihood is concave and
Equation (6) has a unique maximum if and only if 0 lies in the interior of the convex hull of
{�(G1, gobs), . . . ,�(GB, gobs)}. Thus, assuming that the MLE exists, the existence of the approxi-
mate MLE is crucially tied to the sampling algorithm used to approximate the likelihood, which
in turn depends on the behavior of the model.

4. Simulations on the effect of k onmodel behavior
In this section, we use extensive simulations to show that “bad behavior” of the model is a func-
tion of the degeneracy parameter. In particular, the bad behavior of the model increases with
values of degeneracy parameter k, where “bad behavior” is an umbrella term used to denote model
degeneracy, sensitivity, the difficulty of MLE computations. These simulations provide additional
justification to the theory developed in Section 2 and illustrate that restricting the support of the
model to k-degenerate graphs improves model behavior. We focus on the edge-triangle DERGM
as a running example, a model whose sufficient statistics are the number of edges and the number
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Table 1. Number of graphs of degeneracy exactly k for n= 7 nodes

k 1 2 3 4 5 6

n(g) 36,960 1,095,461 900,298 63,801 630 1

of triangles of the graph. To illustrate the changing behavior of the degeneracy-restricted ERGMs,
in each of the following examples we fix n and vary k from the observed value to the maximum
k= n− 1.

Remark 4. The edge-triangle model is also the running example in Rinaldo et al. (2009), where
the authors show that the model degeneracy is captured by polyhedral geometry of the model and
the entropy function. We also study the model polytope and the entropy function of DERGMs.

4.1 Insensitivity and lack of degeneracy of DERGMs
We begin by studying the effect of k on the mean value and the natural parameters of DERGMs.
The goal is to gain insight into themodel degeneracy and excessive sensitivity of DERGMs as a func-
tion of k. Roughly, the model is said to suffer from degeneracy issues, if the mean value parameters
of the model are pushed to the boundary for different values of the natural parameter. Similarly,
the model is said to suffer from excessive sensitivity, small changes in the values of the natural
parameters lead to large changes in the mean value parameter, see Schweinberger (2011) for more
details.

Remark 5. We want to note that the term “degeneracy” is being used in two different contexts. In
Section 2, we defined asymptotic degeneracy to denote the situation where a distribution places most
of its mass on its modes. In this section, the term “degeneracy” is used to denote the situation when
the mean value parameter of a distribution is pushed to its boundary. In fact, the second type of
degeneracy is implied by asymptotic degeneracy, as shown in Schweinberger (2011).

In the rest of the section, we focus on one-parameter exponential families. We will work with
normalized sufficient statistics. Specifically, let Uk denote the maximum of t(g) when g ∈Gn,k. Let
the normalized sufficient statistic be tnorm(g)= t(g)/Uk. For the natural parameter θ , the mean
value parameter is given by μk(θ)=EPθ ,k tnorm(g).

We consider two different DERGM models: the two-star DERGM with the number of two-
stars as the sufficient statistic, and the triangle DERGM with the number of triangles as the
sufficient statistic. Degeneracy corresponds to the situation where if θ > 0, μk(θ)→ 1 and θ < 0,
μk(θ)→ 0. Sensitivity corresponds to the situation where the derivative of μk(θ) with respect to
θ is very large in a small neighborhood of θ .

Remark 6. When k= n− 1, from the properties of standard exponential families, we can show that
the derivative ofμk(θ)with respect to θ is the variance of the sufficient statistic. Thus, another way to
view sensitivity is that the variance of the sufficient statistic is very large in a small neighborhood of
θ . Fellows & Handcock (2017) restrict the variance, addressing the degeneracy and sensitivity issues.

Recall that our goal is to study the map from θ toμk(θ) for varying values of k and gain insights
into model behavior. To avoid any issues due to MCMC sampling, we compute this map exactly
for a small network, where enumeration is possible. Specifically, we consider networks defined on
n= 7 nodes. When n= 7, there are a total of 2(

7
2) possible simple networks. We enumerate all

possible networks and compute the number of edges, two-stars, triangles and degeneracy of each
network. The total number of networks with different degeneracy values is shown in Table 1.
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Figure 2. Mean value parameters vs natural parameters for the 2-star DERGM for n= 7 and k= 2, 3, 6 respectively.
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Figure 3. Mean value parameters vs natural parameters for the triangle DERGM for n= 7 and k= 2, 3, 6 respectively.

The plot of mean value vs natural parameter for each DERGM model is generated as follows.
We fix a value of k and fix a sufficient statistic. Next, we vary θ from −3 to 3 in steps of 0.01. For
each value of θ , we compute the correspondingmean value parameterμk(θ) using the enumerated
networks. We normalize μk(θ) to make sure it lies between 0 and 1 and plot the normalizedμk(θ)
on y-axis and the natural parameter θ on the x-axis. We repeat this process for different values of
k, and obtain a separate plot for each value of k. Similarly, we get different sets of plots for each
DERGM. The results are shown in Figures 2 and 3.

Let us focus on Figure 3(c). This figure shows the map between θ and μk(θ) for the triangle
DERGM when k= 6 and n= 7, which is the same as the ERGM (since k= 6 is the maximum
possible, there is no support restriction). The plot shows that the mean value parameter is pushed
to its corresponding boundaries for positive and negative values of θ , that is for θ > 0, μk(θ) is
close to 1, and for θ < 0,μk(θ) is close to 0. Moreover, for θ close to 0, the mean value parameter is
very sensitive to small changes in θ . This is the classic model degeneracy and excessive sensitivity.
On the other hand, if we consider Figure 3(a) and (b), we can see that if we restrict the support to
2-degenerate graphs or 3-degenerate graphs, the mean value map improves. Specifically, for k= 2,
Figure 3(a) shows that μk(θ) is not pushed to its boundaries for positive or negative values of θ ,
and has a small derivative near θ = 0. This shows that the model does not suffer from degeneracy
and excessive sensitivity when k is small. A similar conclusion holds for the 2-star model shown
in Figure 2. We also created such plots for n= 50, for which we had to resort to MCMC sampling
to estimate the mean value parameters, see Figure 4 for the triangle DERGM for k= 3 and k= 50.
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Figure 4. Simulated plot ofmean value parameters vs natural parameters, based onMCMC, for the triangle DERGM for n= 50
and k= 3 and k= 49 respectively.

The results for this setting were the same as described here: For small values of k, the triangle and
the two-star DERGM does not suffer from excessive sensitivity and model degeneracy.

4.2 Existence of approximate MLE, the model polytope, and entropy
Consider first the issue of existence of the approximate MLE. Recall from Section 3.2 that in the
MCMC-MLE estimation, the approximateMLE does not exist when the observed sufficient statis-
tics lies outside of the convex hull of the sufficient statistics sampled from Pθ0 . In DERGMs, this
is more likely to happen when the degeneracy parameter k is large relative to the observed graph
degeneracy.

As an example to illustrate this phenomenon, consider fitting the edge-triangle DERGM to
Sampson monastery data (Sampson, 1968), in particular, the time period T4, available at Batagelj
& Mrvar (2006) and Hunter et al. (2008a). In this dataset, n= 18 and observed graph degeneracy
is k= 3. Building on the correspondence between MLE non-existence and the model polytope
from Rinaldo et al. (2009), we study the location of the observed edge-triangle vector with respect
to estimated DERGMmodel polytopes for varying values of k. Recall that the model polytope for
an exponential family model is the convex hull of all observable vectors of sufficient statistics.
We estimate the DERGM polytopes as convex hulls of edge-triangle pairs of networks obtained
by sampling graphs uniformly from the support Gn,k, using Algorithm 2. Figure 5 shows the esti-
mated model polytopes for different values of k, along with the relative location of the Sampson
edge-triangle vector.When k= 3, the observed sufficient statistic lies well in the relative interior of
the sampled sufficient statistics. On the other hand, when k= 6 and higher, the observed sufficient
statistic lies well outside the convex hull.

As k increases, the observed edge-triangle count is progressively pushed out of the estimated
polytope and becomes probabilistically less likely under the uniform distribution (blue corre-
sponds to lower probability). This is because for larger k, the uniform sampler places more weight
on edge-triangle counts of denser graphs, making more sparse edge-triangle counts such as those
from Sampson graph probabilistically less likely to appear. Thus, for larger k, the observed edge-
triangle count of the Sampson graph lies in the tails of the distribution induced by the uniform
sampler. This in turn effects the MCMC-MLE as follows: For larger k, the observed sufficient
statistic lies close to the boundary of the true model polytope, or as the figures show, outside
the estimated polytope. Unless the MCMC algorithm finds a θ0 that generates graphs around the
observed sufficient statistic, the approximate MLE will not exist. However, this is difficult, since as
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(a) (b)

n = 18, k = 3 n = 18, k = 4
(c) (d)

n = 18, k = 5 n = 18, k = 6

Figure 5. Estimated edge-triangle DERGM model polytopes for increasing k, with x marking the location of the observed
sufficient statistic of the Sampson graph. Sample size is 100, 000 each; we have verified that the results do not change when
sample size is increased to 1, 000, 000. We do not plot the estimated polytopes for all other values of k> 6, but the reader
can rest assured that the observed value of the sufficient statistics of the Sampson graph only gets farther removed from the
convex hull.

the observed sufficient statistic approaches the boundary, the number of network configurations
corresponding to it becomes smaller. This concept can be formalized by measuring the entropy,
discussed next.

Entropy. As explained in Rinaldo et al. (2009) (see Section 3.4 therein for details), the shape of
the model polytope supports the argument that the full ERGM is ill-behaved. Specifically, they
use Shanon’s entropy, which captures the degree to which the model concentrates its mass on
network configurations associated with a relatively very small number of network statistics. The
rationale is that degenerate models have large areas of low entropy. The correspondence between
themodel polytope andmodel degeneracy derived by Rinaldo et al. shows that the extremal rays of
the normal fan of the model polytope correspond to directions of the ridges of Shanon’s entropy
function where it converges to some fixed value. These extremal rays are outer-normals of the
facets (in our case, edges) of the polytope; we see that as k grows, the polytope becomes “flatter” or,
equivalently, the directions of the outer-normals of the edges on the lower hull get closer together,
making the area of high entropy smaller. Although the exact plots are unavailable for the full
ERGM on n= 18, we know that for n= 9 already the rays of normal fan concentrate in a small
area of the plane implying that the model has low entropy and is degenerate for a vast majority of
parameter values; cf. Rinaldo et al. (2009, Figure 4a). As the authors in the said article justify, we
use the mean value parameters to illustrate this behavior, where it can be clearly seen.

In contrast, Figure 6 shows that the higher-entropy region is more “spread out” across the
parameter region for the DERGMs with smaller values of k. While one cannot, of course, con-
clude that the model is non-degenerate for all possible parameter values, it is clear that the size of
the parameter space that correspond to degenerate regions is certainly less than in the full ERGM.
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(a)

n = 18, k = 3 n = 18, k = 4 n = 18, k = 5

(b) (c)

Figure 6. Comparison of degenerate (low entropy) regions in themean value parameter space for the edge-triangle DERGMs
on n= 18 and increasing k. Sample sizes are 100, 000. As k increases, the high-entropy region becomes smaller.

(a)

n = 18, k = 3 n = 18, k = 4 n = 18, k = 17

(b) (c)

Figure 7. Contour plots of the estimated edge-triangle DERGM likelihood functions for the Sampson network, for various
values of (θ1, θ2). Here, n= 18 and k= 3, 4, 17. Note that k= 17 corresponds to the full ERGM. The estimated likelihood is
based on an iid sample of 25, 000 graphs in Gn,k .

Regarding the caveat that the Figures are also estimated and not exact, we are nevertheless con-
fident in the results, because (1) the algorithm used is a uniform sampler of well-ordered graphs
from the model support Gn,k, and (2) the estimated polytope is not far off from the true model
polytope: it is missing some extremal graphs that are probabilistically unlikely to be generated by
the uniform sampler from the space of graphs G9 = G9,8.

4.3 The likelihood surface changes with k
The shape of the estimated likelihood function changes as we change k. To illustrate this, we use
the uniform sampler given in Algorithm 2 to sample graphs uniformly from the support of the
full ERGM Gn = Gn,n−1 and Gn,k with k< n− 1 for various DERGMs, and estimate the likelihood
function using the sampled graphs for the Sampson network. Figure 7 shows the contours of the
(estimated) likelihood function for various values of θ = (θ1, θ2). This figure uncovers an interest-
ing trend: the likelihood surface becomes “flatter” around the maximum value as k grows, making
it more difficult to find the maximum itself after a certain number of steps.

5. Estimation and fitting DERGMs on real-world data
In this section, we present the results of fitting DERGMs to some real-world networks. These
results were obtained by fitting the DERGMs using the MCMC-MLE estimation algorithm
using the tie-no-tie procedure, and Hummel et al. (2012) step length algorithm to improve the
estimation. The degeneracy parameter k was set to its observed value.
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Table 2. Summary of datasets used to fit the edge-triangle DERGMs

Network Nodes Edges Degeneracy

Sampson 18 41 3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Faux Mesa High 205 203 3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ecoli 418 519 3

Table 3. Fitting the edge-triangle DERGM where the edge-triangle ERGM fit fails. The ∗
denotes level of significance, based on the p-values. (The numbers in the parenthesis are
the standard errors of the MCMCMLE.)

Networks Faux Mesa High Sampson Ecoli

Edges −5.13∗ −1.62∗ −5.32∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.08) (0.34) (0.05)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Triangle 2.62∗ 0.36 (2.65)∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.10) (0.34) (0.16)

AIC 2,029.17 157.41 6,210
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BIC 2,045.06 163.47 6,229

∗p< 0.001

5.1 Examples where DERGMs fit whereas ERGM fit fails to converge
We first start by showing three examples where the MCMC-MLE procedure fails to converge
when fitting an edge-triangle ERGM, whereas it converges when using the edge-triangle DERGM
with the degeneracy parameter set to the observed degeneracy. We consider three networks—
an undirected version of the Sampson dataset, the Faux Mesa High network and the undirected
version of ecoli network, from the ergm package in R. The summary statistics of these networks are
given in Table 2. Note that we are not claiming that the edge-triangle DERGM is the best model
for these data. Instead, the point is to illustrate that restricting the degeneracy has a direct impact
on MCMC-MLE estimation.

The Sampson network has n= 18 nodes andm= 41 edges, with an observed degeneracy k= 3.
The Faux Mesa High network has 205 nodes and 203 edges, and an observed degeneracy of 3.
The ecoli network has n= 423 nodes, m= 519 edges with a degeneracy k= 3. Note that all the
networks have a low observed degeneracy. In particular, the ecoli and the fauxmesa high networks
are very sparse since the degeneracy is very small in comparison to the number of nodes.

While fitting the edge-triangle ERGM to these networks, the MCMC-MLE combined with the
step length procedure failed to converge due to model degeneracy; for a detailed study of this
model’s degeneracy, see Rinaldo et al. (2009). Specifically, the Markov chain started sampling net-
works whose number of edges and triangles are very far from the observed network, indicating
model degeneracy. On the other hand, there were no such issues when fitting the edge-triangle
DERGM and the MCMC-MLE combined with the step length procedure converged. The esti-
mated parameter for the edge-triangle DERGMs for these networks is given in Table 3. There are
two sources of standard error here, one from the MCMC estimation and another corresponding
to the MCMCMLE. The MCMCMLE standard errors are calculated by using an MCMC estimate
of the inverse of the estimated fisher information matrix, as described in Hunter & Handcock
(2006).

5.2 Examples when both ERGM and DERGM fit converges
We now consider cases where the MCMC-MLE procedure is able to fit both an ERGM and a
DERGM to the same dataset. In these cases, we show that the parameter estimates obtained from
both these models are very close to each other. We fit the edge-triangle DERGMs and ERGM
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Table 4. Fitting DERGM and ERGM to the Florentine data. The ∗ denotes level of significance, based
on the p-values. (The numbers in the parenthesis are the standard errors of the MCMCMLE.)

Degeneracy 15

(k) 2 3 4 10 (ERGM)

Edges −1.672∗ −1.678∗ −1.675∗ −1.672∗ −1.667∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.392) (0.362) (0.352) (0.346) (0.351)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Triangle 0.410 0.172 0.167 0.152 0.146
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(0.731) (0.595) (0.580) (0.572) (0.596)

AIC 111.786 112.058 112.073 112.090 112.071
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BIC 117.361 117.633 117.648 117.665 117.646
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log-likelihood −53.893 −54.029 −54.036 −54.045 −54.035
∗p< 0.001

to the florentine dataset. This dataset has n= 16 vertices and m= 20 edges, with a degeneracy
parameter k= 2. We fit DERGMs with increasing values of k= 2, 3, . . . , 15. Note that when k=
15, the DERGM is equivalent to the edge-triangle ERGM. The parameter estimates are given in
Table 4. This table shows that the edge parameter is more or less the same for all the DERGMs
and ERGM. The parameter corresponding to the triangles varies, but is within the margin of the
standard error.

6. Uniform samplers for Gn,k
The main contribution of this section is the development of a fast uniform sampler of the space of
well-ordered graphs in Gn,k, contained in Section 6.1, which has been used throughout Section 4 in
simulations, most prominently for estimated polytope plots. We discuss the basis of the algorithm
and the updates we made to make it scalable. This algorithm can be used stand-alone for Monte
Carlo sampling for DERGM estimation, specifically in the case when non-well-ordered graphs
are not of interest. On the other hand, it can also be used in combination with a non-well-ordered
sampler to create a stratified sampler for all graphs of Gn,k when needed; below, we discuss how
in some cases the stratified sampler effectively reduces to the well-ordered one. Finally, if the
observed graph is well outside the convex hull of sampled graphs, one may wish to use a fast
importance MCMC sampler, in conjunction with the uniform sampler from Section 6.1 to create
an umbrella sampler on Gn,k. The umbrella sampler converged quickly in simulations, but we omit
those results here as they were not necessary for the datasets we analyze.

6.1 A uniform sampler for well-ordered graphs from Gn,k

In Bauer et al. (2010, Algorithm 1), the authors derive a uniform sampler for the set of well-
ordered graphs in Gn,k. A well-ordered graph is one in which the node labels are ordered so that
no vertex has more than k neighbors with a higher label.

Using this algorithm as a starting point, we make several key changes to ensure that their algo-
rithm is computationally efficient: we convert their algorithm from a recursive one to an iterative
one. By doing this, we eliminate many complexity problems inherent in the original algorithm.
Specifically, the iterative version eliminates stack overflow issues for large graphs, as well as greatly
reduces the execution time of generating a graph.

Let us take a closer look at the following algorithm, based on Bauer et al. (2010, Algorithm 1),
which we improved and updated to a scalable version.
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Algorithm 2: Generate a well-ordered g from Gn,k uniformly.
input : n, the number of nodes,

k, maximum graph degeneracy.
output: g, a graph in Gn,k in which every vertex i has no more than ≥ k neighbors in the set

{i+ 1, . . . , n}.
1 for i= 1 to n do
2 di ∼ restrictedBinomial(n− i, min(n− i, k))
3 if i= n then
4 V =V ∪ {n}
5 end
6 for i= n to 1 do
7 T = {}
8 P =V
9 a= |P|

10 for j= 0 to di − 1 do
11 m∼ Uniform(0, a− j)
12 T = T ∪ {(i, Pm)}
13 Pm = Pa−j−1
14 end
15 V =V ∪ {i}
16 E= E∪ {T}
17 end
18 G= {V , E}
19 return G

The algorithm was originally formulated using recursion, which we emulate using two for-
loops. The first for-loop populates a list of degrees where each index of the list corresponds to
the respective vertex label. The degrees for each vertex are generated using a restricted binomial
distribution. Instead of utilizing the cumulative distribution and using binary search to obtain
values as suggested by the original paper, we opt to use the probability density function and store
the values in a list data structure, reducing the complexity of obtaining the degree values. When
the loop reaches the very last vertex, we add that vertex to the working vertex set. For each iteration
in the second for-loop, a temporary copy of the current working vertex set is created. We then
uniformly generate di indices to sample without replacement from the vertex set copy and use
these samples for the edge set of the current vertex. It is obvious that this sample is uniformly
generated, complying with the original algorithm.

For a benchmark, we tested the original recursive version (including generating all possible
combinations) and the new iterative version on a machine with the following specifications: Intel
Core i7-4790K CPU @ 4.00 GHz, 8 GB DDR3 RAM, Arch Linux x64, with the results shown in
Table 5. The results clearly indicate that the scalable version is superior in regard to time complex-
ity. In some applications, it may be desirable to further restrict the sample space of the model by
restricting the total number of edges of the graph, or use such a restriction for stratified sam-
pling of Gn,k. To that end, let Gn,m,k be the set of graphs on n nodes and degeneracy k with
exactly m edges. (Bauer et al., 2010, Algorithm 2) offer an algorithm for uniform sampling of
Gn,m,k; however, it was not implemented due to the complexity of step 3 that the authors suggest
be implemented using Equation (2.7) in Bauer et al. (2010). Pre-computation of degrees proved
nearly impossible in practice for several reasons. The recursive nature of calculating the cardinality
for possible graphs of given vertices, edges, and degeneracy yielded very inefficient computations
in which the run time of each computation was longer than trying to generate whole graphs by
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Table 5. Run times of the uniform samplers

Original Recursive Algorithm Our Iterative Version

(n, k) (Bauer et al., 2010, Algorithm 1) Algorithm 2

(50, 8) 3.96 seconds 0.03 seconds

(800, 2) Stack Overflow 0.51 seconds

(3000, 2) Stack Overflow 1.90 seconds

other means. While we were able to alleviate this issue somewhat by utilizing a dynamic program-
ming approach with memoization, even for semi-sparse, average size graphs, numerical overflow
occurred, which rendered the speed increase fruitless. Instead, we opt to use (Bauer et al., 2010,
Algorithm 3), which is a non-uniform but fast sampler of Gn,m,k. Our implementation of this algo-
rithm, outlined in Algorithm 3, stays true to the pseudo-code given in the original paper, with the
only alteration being utilizing the same approach to uniform selection as in our implementation
of Algorithm 2.

Algorithm 3: Generate a well-ordered g from Gn,m,k non-uniformly.
input : n, the number of nodes,

m, the number of edges,
k, maximum graph degeneracy.

output: g, a graph in ∈ Gn,k withm edges in which every vertex i has no more than ≥ k
neighbors in the set {i+ 1, . . . , n}.

1 C = 1, ..., vn−1
2 for i= 1 to m do
3 j∼ Uniform(0, |C|)
4 dj = dj + 1
5 if dj = min(n− vj, k) then
6 C \{vj}
7 end
8 for i= 1 to n− 1 do
9 T = {}

10 P =V
11 a= |P|
12 for j= 0 to di − 1 do
13 m∼ Uniform(0, a− j)
14 T = T ∪ {(i, Pm)}
15 Pm = Pa−j−1
16 end
17 V =V ∪ {i}
18 E= E∪ {T}
19 end
20 G= {V , E}
21 return G

6.2 Stratified sampling of Gn,k to include non-well-ordered graphs if needed
Another issue with Bauer et al. (2010, Algo.1) is that it generates only so-called “well-ordered”
graphs in Gn,k. This misses a part of graphs in the support of our model. To remedy this issue, we
classify all missing graphs and produce them via stratified sampling with two strata. Specifically,
Algorithm 2 is used to sample from the set of well-ordered graphs in Gn,k, while Algorithm 4,
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described below, is used to generate non-well-ordered graphs in Gn,k. Let n1 and n2 be the num-
ber of well-ordered and non-well-ordered graphs, respectively. The formula for n1 is provided
in Bauer et al. (2010) under the notation D(k)

n , while n2 is studied below. To the best of our
knowledge, the literature does not provide a good estimate of the number n1 of well-ordered
k-degenerate graphs compared to the total number of k-degenerate graphs. Although we derived
a lower bound on the total number of k-degenerate graphs (�(n log n)) in Theorem 1, in this sec-
tion we study the ratio of n1 and n2 further, which is needed from an algorithmic point of view.
It should be noted that, in practice, the uniform sampler from Section 6.1 may only be omitting
a tiny fraction of graphs in the support of the DERGM; this situation is described in detail at the
end of this Section. Therefore, the reader interested in applications more than in theory behind
the algorithms that may not be necessary in practice may skip the remainder of this technical
section.

A graph g ∈ Gn,k is not well-ordered if there exists at least one vertex j with at least k+ 1 neigh-
bors in the set {j+ 1, . . . , n}. Among all such vertices with too many big neighbors, let k+ c
be the minimum such number of big neighbors, and let i be the index of the smallest vertex
that has k+ c big neighbors. We construct non-well-ordered graphs and use them to estimate
n1 by going through possible cases for the values of c and i. For each case c= 1, . . . , n− k− 1,
some vertex i has k+ c neighbors in the set {i+ 1, . . . , n}. For each of the cases, the vertex i
can be chosen from the set {1, . . . , n− (k+ c)}. Note that these k+ c neighbors of i can be con-
nected in any arbitrary way, as long as the entire graph is in Gn,k. Thus, we proceed as follows:
construct a random graph h on k+ c vertices whose labels are in the set {i+ 1, . . . , n}. Then, con-
struct a suspension g over h using vertex i, that is, ensure that i is connected to all k+ c vertices
of h. Finally, the vertices {1, . . . , i} can be connected in any way such that, by minimality of i, the
resulting subgraph on {1, . . . , i} is well-ordered and, additionally, each vertex in the set {1, . . . , i}
can have at most k neighbors in the vertex set {i+ 1, . . . , n}. The construction is outlined in
Algorithm 4.

Algorithm 4: Generate a non-well-ordered g from Gn,k
input : n, the number of nodes,

k, maximum graph degeneracy.
output: g, a graph in ∈ Gn,k (or Gn,d with d > k, unfortunately) in which there is a vertex i

that has ≥ k+ 1 neighbors in the set {i+ 1, . . . , n}.
1 Pick c ∈ {1, . . . , n− k− 1}.
2 Pick i ∈ {1, . . . , n− (k+ c)}.
3 Use Algorithm 2 to sample h̃ ∈ Gk+c,k+c−1; repeat until degen(h̃)≤ k.
4 Choose (uniformly) a subset of k+ c vertex labels from the set of legal vertex labels

{i+ 1, . . . , n}.
5 Let h be the graph obtained from h̃ by replacing the labels 1, . . . , k by those selected on
Line 4.

6 Create the suspension graph g over h by adding to h edges {i, x} for all x ∈V(h).
7 Connect vertices {1, . . . , i} by constructing any well-ordered graph from Gi,k.
8 Connect any of the vertices {1, . . . , i} to at most k vertices in the set {i+ 1, . . . , n}.
9 Output g if degen(g)≤ k; otherwise return to Step 1.

There are
(n−i
k+c
)
ways to choose the neighbors of the vertex i on Line 4 and for each choice of

neighbors there are 2(
k+c
2 ) graphs h̃ generated on Line 3. There are D(k)

i well-ordered graphs on
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Line 7 and i
∑k

p=1
(n−i

p
)
graphs on Line 8. Thus, Algorithm 4 constructs the following number of

graphs g:

n−(k+1)∑
i=1

(
n− i
k+ 1

)
︸ ︷︷ ︸
Line 4

· 2
(
k+1
2
)

︸ ︷︷ ︸
Line 3

· D(k)
i︸︷︷︸

Line 7

· i
k∑

p=1

(
n− i
p

)
︸ ︷︷ ︸

Line 8︸ ︷︷ ︸
c=1

+
n−(k+2)∑

i=1

(
n− i
k+ 2

)
· 2
(
k+2
2
)
·D(k)

i · i
k∑

p=1

(
n− i
p

)
+ · · ·

︸ ︷︷ ︸
c=2

· · · +
n−(k+n−k−1)∑

i=1

(
n− i
n− 1

)
· 2(n−1

2 ) ·D(k)
i · i

k∑
p=1

(
n− i
p

)
︸ ︷︷ ︸

c=n−k−1

(8)

= 2(
k+1
2 ) ·

n−(k+1)∑
i=1

(
n− i
k+ 1

)
·D(k)

i · i
k∑

p=1

(
n− i
p

)

+2(
k+2
2 ) ·

n−(k+2)∑
i=1

(
n− i
k+ 2

)
·D(k)

i · i
k∑

p=1

(
n− i
p

)
+ · · ·

· · · + 2(
n−1
2 ) ·

(
n− 1
n− 1

)
·D(k)

i · i
k∑

p=1

(
n− i
p

)
(9)

where each of the n− k− 1 summands corresponds to one of the cases c.
Note that Equation (9) is an upper bound on n2, since it counts all graphs g constructed by

Algorithm 4. It is also a strict upper bound on the number of graphs g actually returned by the
algorithm, since it counts those graphs whose degeneracy happens to be strictly larger than k.

Equation (9) counts all graphs on k+ c nodes, 2
(
k+c
2
)
, constructed in Step 3. Surely, a better

count can be obtained by replacing 2
(
k+c
2
)
by

2
(
k+c
2
)
− #{well-ordered graphs on k+ c vertices of degeneracy> k}.

Doing this replacement in the equation is, crucially, still an upper bound on n2 (since the well-
ordered graphs of degeneracy larger than k certainly do not contribute to any non-well-ordered
graphs of degeneracy at most k). Since

#{well-ordered graphs on k+ c nodes of degeneracy> k}
=#{all well-ordered graphs on k+ c nodes except those of degeneracy≤ k}
=D(k+c−1)

k+c −D(k)
k+c
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the following is a better upper bound on the number of graphs, we wish to keep from Algorithm 4
and thus also an upper bound on n2:

n−(k+1)∑
i=1

(
n− i
k+ 1

)
·
(
2
(
k+1
2
)
−
(
D(k+1−1)
k+1 −D(k)

k+1

))
·D(k)

i · i
k∑

p=1

(
n− i
p

)
+

n−(k+2)∑
i=1

(
n− i
k+ 2

)
·
(
2
(
k+2
2
)
−
(
D(k+2−1)
k+2 −D(k)

k+2

))
·D(k)

i · i
k∑

p=1

(
n− i
p

)
+ · · ·

· · · +
(
n− 1
n− 1

)
·

(
2(

n−1
2 ) −

(
D(n−1−1)
n−1 −D(k)

n−1

))
︸ ︷︷ ︸

Line 3 minus well-ordered of degen>k

·D(k)
i · i

k∑
p=1

(
n− i
p

)
(10)

Let

ttrue = log n1/(n1 + n2)

be the true threshold used to divide the sample in two strata and define

testimated = log n1/(n1 + (10))

Given that (10)> n2, testimated < ttrue ≤ 0. Therefore, we take the following approach: (1) compute
the threshold testimated for the fixed n and k for which we wish to run the current simulation. (2) If
testimated is close to 0, then that forces ttrue to be close to 0, which in turn means that there is a
very, very small number of non-well-ordered graphs for that choice of n and k and therefore the
stratified sampler essentially reduces to sampling well-ordered graphs only.

Of course, if testimated is not relatively close to 0, then for those values of n and k, while it is
possible that ttrue is close to 0, one should implement both the well-ordered and non-well-ordered
algorithm. Falling back on the well-ordered algorithm is equivalent to using an approximate sam-
pler in practice. The users may additionally prefer to replace Algorithm 4 by instead permuting the
vertices of the output of Algorithm 2, allowing it to reach the entire sample space Gn,k in another
way.

Remark 7. In practice, if themodel’s sufficient statistics are subgraph counts (or if the distribution
is exchangeable), well-ordering does not pose a restriction, because in the uniform sampling using
MC in estimating the MLE, only the values of the sufficient statistics of the sampled graphs are
used. These are oblivious to vertex labels, so ordering is irrelevant.

7. Discussion
In this paper, we introduced a general modification of exponential family random graph models
that solves some of the model degeneracy issues. This modification amounts to a support restric-
tion, by conditioning on the observed network’s graph degeneracy, which is a measure of sparsity
that is weaker than imposing an upper bound on node degrees. The resulting model class, which
we name degeneracy-restricted or DERGMs, does not suffer from the same estimation issues as
the usual ERGMs. The proposed support restriction is interpretable as a weak sparsity constraint,
it respects most real-world network data, and it provably does not eliminate a large part of the
support of the full ERGM, while improving model behavior. Specifically, we show that DERGMs
with smaller graph degeneracy parameter k induce stable sufficient statistics, and we also show
that such a stable behavior implies non-degeneracy of the model. Using simulations, we also show
that DERGMs with small values of k have a better-behaved simulated likelihood (i.e. more steep
around the maximum) and the simulated model polytope spreads more mass around realistic
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graphs by eliminating very low-probability extreme graphs. This also makes MCMC algorithms
to approximate the likelihood more stable, thus improving the MCMC-MLE estimation.

The particular example of the edge-triangle DERGM presented here is a good illustration of
the general DERGM behavior. It is a natural choice of the running example, given the recent
work by Rinaldo et al. (2009) that studies its degenerate behavior in detail. The general frame-
work presented, however, applies to any ERGM; a good overview of many of the popular classes
being offered in Goldenberg et al. (2009). Recent work on the shell-distribution ERGM Karwa
et al. (2017) introduces a limited version of the current contribution: it is an example of an ERGM
with similarly restricted support and gives direct motivation for the study of DERGMs in general.
However, there, the model support was not Gn,k for fixed n and k, but rather Gn,k \ Gn,k−1—
networks with degeneracy exactly k. Here were propose to use networks of degeneracy at most k,
to enlarge the model support, and offer greater flexibility in modeling. Our contributions indi-
cate that DERGMs may offer a feasible and interpretable modification of ERGMs, a powerful and
flexible model class.

Extending the approach presented herein to directed graphs is one of the directions of future
work. The notion of k-degeneracy as defined here applies only to undirected graphs; however, it
has been extended to directed graphs recently in Giatsidis et al. (2011). Another direction of future
is to develop a distributed version of Algorithm 2. While we did run the current implementation
in parallel, it can further be improved to run on a cluster. The current implementation scales very
well to hundreds of nodes and with the additional step it should perform just as well on thousands.
Competing interests. None.

Note
1 Sadly, the two fields—graph theory and statistics—use the same term, degeneracy, for two different concepts. We will show
that degeneracy-restricted graphs lead to non-degenerate models.

References
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