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We consider the problem of modelling the flow of a slightly compressible fluid in a periodic

fractured medium assuming that the fissures are thin with respect to the block size. As a

starting point we used a formulation applied to a system comprising a fractured porous

medium made of blocks and fractures separated by a thin layer which is considered as an

interface. The inter-relationship between these three characteristics comprise the triple porosity

model. The microscopic model consists of the usual equation describing Darcy flow with the

permeability being highly discontinuous. Over the matrix domain, the permeability is scaled

by (εδ)2, where ε is the size of a typical porous block, with δ representing the relative size of

the fracture. We then consider a model with Robin type transmission conditions: a jump of

the density across the interface block-fracture is taken into account and proportional to the

flux by the mean of a function (εδ)−γ , where γ is a parameter. Using two-scale convergence,

we get homogenized models which govern the global behaviour of the flow as ε and δ tend

to zero. The resulting homogenized problem is a dual-porosity type model that contains a

term representing memory effects for γ � 1, and it is a single porosity model with effective

coefficients for γ > 1.

1 Introduction

Modelling of flow in fractured media is a subject of intensive research in many engineering

disciplines, such as petroleum engineering, water resources management, civil engineer-

ing. More recently, fractured rock domains corresponding to the so-called Excavation

Damaged Zone (EDZ) receives increasing attention in connection with the behaviour of

geological isolation of radioactive waste after the drilling of the wells or shafts. A fissured

medium is a structure consisting of a porous and permeable matrix which is interlaced on

a fine scale by a system of highly permeable fissures. The majority of fluid transport will

occur along flow paths through the fissure system, and the relative volume and storage

capacity of the porous matrix is much larger than that of the fissure system. When the

system of fissures is so well developed that the matrix is broken into individual blocks

or cells that are isolated from each other, there is consequently no flow directly from

cell to cell, but only an exchange of fluid between each cell and the surrounding fissure

system. Therefore the large-scale description will have to incorporate the two different flow
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mechanisms. For some permeability ratios and fissure widths, the large-scale description

is achieved by introducing the so-called double porosity model. It was introduced first

for describing the global behaviour of fractured porous media by Barenblatt et al. [7]. It

has been since used in a wide range of engineering specialities related to geohydrology,

petroleum reservoir engineering, civil engineering or soil science.

Within the framework of the homogenization approach the usual double porosity model

assumes that the width or opening of the fractures [34] containing highly permeable porous

media is of the same order as the block size, and the ratio of the permeability in the

matrix blocks and the fissures system is of the order ε2, leading to a high contrast for the

corresponding characteristic times [25]. The double porosity problem was first studied in

Arbogast et al. [5], and was then revisited in the mathematical literature by many other

authors [10, 11, 25, 29, 31, 35].

In this paper we investigate models assuming different scale ratios. For this we consider

the fissured part to be a porous medium crossed by many small fissures but behaving

like a porous medium with permeability of order 1, and the porous blocks (or matrix)

made of porous material but with a small permeability. Then we introduce an additional

small parameter δ quantifying the ratio between the thickness of the fissured part and

the matrix diameter (see Figure 1). We consider, then, the family of models corresponding

to a range of permeability ratios allowing the fissures thickness εδ to become very small.

If we denote by ε the size of a typical block of porous materiel, then in order to have

the same characteristic time scale for a parabolic evolution in one block and for the flow

through the entire system of fractures, it is necessary to assume a ratio of permeability in

the blocks and in the fissures to be of order (εδ)2. This time ratio, (εδ)2, is exactly the one

leading to the dual-porosity model. If the ratio is smaller than that of order (εδ)2, then

there is no contribution from the blocks to the global continuity system of equations in

the limit model, which is obtained as a homogenization limit of the system of fissures only.

In the present paper we consider a single phase flow of a slightly compressible fluid

through a periodic fractured–porous medium made of a set of porous blocks with

permeability of order (εδ)2, where 0 < ε � δ � 1; these porous blocks are surrounded

by a system of connected fissures with permeability of order 1. We also suppose that the

fissures and the matrix are separated by a very thin, so called colmated layer (e.g. see

Sophocleous [33] or Delleur [18] (Chapter 1), where it appears as a fractured-porous layer

of sedimentary deposits). The model will be developed in Appendix A on the basis of

physical intuition when the thickness of this layer tends to zero. The model is described

by a linear parabolic equation in each part with Robin type transmission conditions plus

appropriate initial and boundary conditions. We consider the continuity of the flux at

the interfaces, but there is a jump of the density, which is proportional to the flux, by

means of a function (εδ)−γ where γ is a parameter. Following Bourgeat et al. [14] and

Amaziane et al. [4], our homogenization process will be based on two main steps. In the

first step we fix δ and apply the Laplace transform to the boundary value problem to

reduce our parabolic problem to an elliptic one. We then pass to the limit, as ε tends to

zero, using two-scale convergence [2] leading to a δ-model, i.e. a boundary value problem

considered in a homogeneous domain with coefficients still depending on the parameter

δ. In the second step we then pass to the limit as δ tends to zero and we obtain a final

homogenized model with no dependence on either on ε or on δ.
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Similar questions, with different parameters and different scope, have been considered

by several authors [4, 12, 14, 30]. In Pankratov & Rybalko [30], this type of micro-

structure, but with a fixed relative fissure size, was modeled with only one parameter ε. In

contrast with the present paper the continuity of the density and the flux were assumed to

be satisfied in these papers. Let us mention also that homogenization problems involving

Robin type interface conditions have been studied in past years [3, 19, 20, 23, 24, 25, 27].

More details about the physics of the problem can be found in Panfilov [29]. For a more

general discussion of the homogenization method used to establish the results of this

paper, we refer to Cioranescu & Donato [15] and Cioranescu & Saint Jean Paulin [16].

The outline of the rest of the paper is as follows. § 2 contains the equations of the

microscopic model and the main results of the paper which correspond to different values

of the parameter γ as ε and δ tend to zero. There are three typical different behaviours

for γ equal to, strictly greater than or strictly less than one. The resulting homogenized

problem is a dual-porosity type model that contains a term representing memory effects

which could be seen as source term or as a time delay for γ � 1, and it is a single porosity

model with effective coefficients for γ > 1. § 3 is devoted to the proof of the convergence

result for γ = 1. The result when γ > 1 is proved in § 4. The proof of the convergence

result for γ < 1 is carried out in § 5. Note that the expression of the exchange kernel is

different for the two homogenized models corresponding to γ = 1 and γ < 1. Additional

conclusions are drawn in § 6. In Appendix A, we derive, by physical arguments, the model

used in this study by considering a double porosity model with a thin weakly permeable

layer between fissures and blocks. The model is obtained when the thickness of this layer

tends to zero.

2 Formulation of the problem and the main results

In this section, we describe a microscopic double porosity model with Robin interface

conditions in a periodic fractured medium. We consider a reservoir Ω ⊂ R
3 to be a

bounded connected domain with a periodic structure. More precisely, we will scale this

periodic structure by a parameter ε which represents the ratio of the cell size to the size

of the whole region Ω and we will assume that ε is a parameter tending to zero.

Let Y =]0, 1[3 represent the microscopic domain of the basic cell of a fractured porous

medium. For the sake of simplicity and without loss of generality, we assume that Y is

made up of two homogeneous porous media Mδ and Fδ corresponding to the parties

of the microscopic domain occupied by the matrix block and the fracture, respectively.

We assume that Mδ is an open cube centered at the same point as Y with length equal

to (1 − δ), where 0 < δ < 1. Thus Y = Mδ ∪ Γδ
mf ∪ Fδ, where Γδ

mf denotes the interface

between the two media.

Let Ω
ε,δ
i with i = m or f denote an open set filled with the porous medium i. Then

Ω = Ωε,δ
m ∪ Γ

ε,δ
mf ∪ Ω

ε,δ
f , where Γ

ε,δ
mf = ∂Ωε,δ

m ∩ ∂Ωε,δ
f and the subscripts m and f refer to the

matrix and fracture, respectively (see Figure 1). Let ΩT =]0, T [×Ω, where T > 0 is given.

For the sake of simplicity we assume that ∂Ωε,δ
m ∩ ∂Ω = ∅. Since the measure of the set

Fδ is given by

|Fδ | = 1 − (1 − δ)3 = 3δ − 3δ2 + δ3 = 3δ + o(δ) (2.1)

https://doi.org/10.1017/S0956792505006200 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006200


338 B. Amaziane et al.

ε

ε

εδ

ε,δ
Ωf

ε,δ
Ωm

0 1

1

Mδ

δ/2

Fδ

Figure 1. A fractured periodic domain with thin fissures.

as δ → 0, the measure of the fissure set Ωε,δ
f satisfies

lim
δ→0

lim
ε→0

|Ωε,δ
f | = 0. (2.2)

Let us now introduce the permeability coefficient and the porosity of the porous medium

Ω. We set

Kε,δ(x) = km(εδ)2 · 1ε,δm (x) + kf · 1ε,δf (x); (2.3)

ωε,δ(x) = ωm · 1ε,δm (x) + ωf · 1ε,δf (x), (2.4)

where kf is the permeability of the fissures, km is the permeability of the blocks, ωf is the

porosity of the fissures, ωm is the porosity of the blocks; 1ε,δf = 1ε,δf (x) and 1ε,δm = 1ε,δm (x)

denote the characteristic periodic functions of the sets Ω
ε,δ
f and Ωε,δ

m , respectively. Here

0 < kf, km, ωf, ωm < +∞. As in the classical double porosity model, the critical process in

any naturally fractured porous medium is the transfer of fluid between the matrix and

fractures. Homogenized models which do not preserve this transfer in some sense as ε → 0,

as shown in Arbogast et al. [6], are not reasonable. The traditional scaling means that

the square of the fissure thickness is of the same order as the permeability coefficient of

the matrix set. The same result was obtained in the case when the fissures had a low bulk

volume (see Pankratov & Rybalko [30] and Amaziane et al. [4]). The homogenization of

a fractured media was obtained in Amaziane et al. [4] for a ratio between permeabilities

of blocks and fractures equal to (εδ)2.

A popular model of the flow of a single, slightly compressible fluid in an incompressible

porous media is described by the mass balance equation combined with Darcy’s law,

leading to the following diffusion equations [8]:

ωf

∂uε,δf
∂t

− kf ∆uε,δf = Q(x) in ]0, T [ ×Ω
ε,δ
f ; (2.5)

ωm

∂uε,δm
∂t

− km(εδ)2 ∆uε,δm = 0 in ]0, T [ ×Ωε,δ
m , (2.6)
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where uε,δi , i = f, m, is the fluid density in Ω
ε,δ
i and Q ∈ L2(Ω) represent external sources. For

simplicity we have neglected the gravity effect, the fluid viscosity and the compressibility

factor are taken to be equal to one. We assume that in such a geometrical configuration

of Ω, the transmission conditions described in Appendix A are of the form




kf∇uε,δf ·�ν = (εδ)2km∇uε,δm ·�ν on Γ
ε,δ
mf ;

(εδ)2km∇uε,δm ·�ν = σ (εδ)γ(uε,δf − uε,δm ) on Γ
ε,δ
mf ,

(2.7)

where �ν is the normal vector on Γ
ε,δ
mf (exterior to Ω

ε,δ
f ), γ ∈ R is a parameter and σ is a

positive constant.

Consider now the scaling of the interface conditions. The factor Σ in (A 7) (see

Appendix A) describes the jump in the pressure with respect to the fluid flux which is

continuous. Then it follows from the equation of state satisfied by the density that the

transmission conditions could be written in the form (2.7). Moreover the jump of the

density at the interface depends on several geometrical and hydraulic parameters and is

scaled by σ(εδ)γ , where σ is a positive constant independent of ε, δ and γ is a parameter,

γ ∈]0,+∞[. In the framework of the scaling procedure used in this paper γ is “responsible”

for the exchange process between the fissures system and the matrix set. It is shown that

if γ < 1 then we have no density jump on the interface fissure–matrix and the influence

of the colmated layer is negligible. This case corresponds to the usual double porosity

model. If γ = 1 it is necessary to take into account this layer. Finally if γ > 1 the layer is

totally impermeable to the fluid. From a mathematical point of view this difference comes

from the asymptotic behaviour of the surface term. Moreover, γ = 1 corresponds to the

critical case when the limit of this surface term is nontrivial.

The system (2.5)–(2.7) is completed by boundary and initial conditions:




u
ε,δ
f = 0 on ∂Ω;

u
ε,δ
f (0, x) = 0 in Ω

ε,δ
f ;

uε,δm (0, x) = 0 in Ωε,δ
m .

(2.8)

In what follows we use standard notations for Sobolev spaces. Let us define the energy

space

H1(Ωε,δ
f , Ωε,δ

m ) ≡ (H1(Ωε,δ
f ) ∩ H1

0 (Ω)) × H1(Ωε,δ
m ).

Then following the lines of Clark & Showalter [17] and using Showalter [32] [Chapter

III] we can prove that for each ε, δ ∈]0, 1[ there exists a unique solution uε,δ = (uε,δf , uε,δm ) ∈
C(0, T ;H1(Ωε,δ

f , Ωε,δ
m )) of problem (2.5)–(2.8).

Due to the vanishing measure of the fissure, we should define the convergence of

sequences according to the singularity of the fissure measure. For this, inspired by

Bouchitté & Fragala [9], Bourgeat et al. [13], Cioranescu & Saint Jean Paulin [16],

Panasenko [28] and Zhikov [35] we define:
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Definition 2.1 A sequence (vε,δ) ⊂ L2(Ωε,δ
f ) is said to Lε,δ–converge to a function v ∈ L2(Ω)

if

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

‖vε,δ − v‖2
L2(Ω

ε,δ
f )

= 0.

Definition 2.2 Let Ωε be any sub-domain of the domain Ω, we will say that the sequence

(vε) ⊂ L2(Ωε) converges in the space L2(Ωε) to a function v ∈ L2(Ω) if

lim
ε→0

‖vε − v‖L2(Ωε) = 0.

It is already known [13] that the ε and δ limits commute. We then choose to study the

asymptotic behaviour of uε,δ the solution of problem (2.5)–(2.8) as ε → 0 and δ → 0.

At the present time two main approaches were developed to study double porosity type

problems with thin fissures [4, 14, 30]. The first one involves only one small parameter but

it requires some special notions of extension and convergence. The second one involves

two small parameters and it is based on the ideas of Cioranescu & Saint Jean Paulin [16]

where thin reticulated structures are studied by such a method. Notice that a singular

double porosity model was considered in Bourgeat et al. [13]. In this paper we use the

same homogenization approach considered in Amaziane et al. [4]. It involves two small

parameters ε, δ. We also make use of the Laplace transform to reduce our parabolic

problem to an elliptic one. The homogenization process is then achieved in three main

steps. On the first step we fix δ and apply the Laplace transform to the boundary value

problem (2.5)–(2.8). We study then the asymptotic behaviour of u
ε,δ
λ solutions of the

corresponding stationary boundary value problem as ε → 0. For different values of the

parameter γ we obtain then stationary boundary value problems considered in the whole

domain Ω but with the coefficients depending on the parameter δ. In the second step we

pass to the limit as δ → 0 and obtain a stationary homogenized problem independent of

ε, δ. Finally, on the third step we make use of the Lε,δ–convergence (see Definition 2.1) of

u
ε,δ
λ to u∗

λ solution of the stationary homogenized problem. Then we prove that the inverse

Laplace transform of u∗
λ, denoted u∗, is the solution of the macroscopic model that it will

be specified later.

Macroscopic models corresponding to the various situations are given by the following

convergence results:

Theorem 2.3 Let γ = 1 in (2.7) and uε,δ = (uε,δf , uε,δm ) be the solution of (2.5)–(2.8). Then,

for any t ∈]0, T [, uε,δf Lε,δ-converges to u∗, the solution of a global model with an additional

source term S(u∗) and the fracture porosity as effective porosity:




ωf

∂u∗

∂t
− 2

3
kf∆u

∗ = Q(x) + S(u∗), in ΩT ;

u∗(t, x) = 0 on ]0, T [×∂Ω;

u∗(0, x) = 0 in Ω,

(2.9)
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where

S(u∗) = −2σ

t∫
0

u∗
t (t − τ) exp (µ2τ) erfc (µ

√
τ) dτ (2.10)

with

erfc (x) =
2√
π

∫ ∞

x

exp (−t2) dt

and

µ =
σ√
kmωm

.

Remark 1 The exchange kernel in (2.10) contains the function erfc which usually appears

as a solution of the 1D diffusion problem on a half axis. The appearance of this function

in the macroscopic model (2.9)–(2.10) could be interpreted by some physical arguments.

In the model under consideration, the width of the fissure is much smaller than the

dimension of the adjacent block. Therefore this block may be considered as semi–infinite

for the thin fissure in the direction orthogonal to the interface between the fissure and

the block. Moreover, the density stabilization in a fracture happens very rapidly as the

fracture permeability is very high. So the density along the block boundary is practically

uniform, which suggests that no flow will be observed in the direction parallel to the block

boundary. Thus, within a block we obtain a 1D diffusion problem from the interface with

the fracture in the direction normal to the block boundary. This process may be described

by the erfc–function which determines the structure of convolution kernels entering in the

macro-scale model.

Similar results with a 1D exchange process between fractures and blocks described by

an erfc–function (or a Gauss-function) have been obtained at the physical level of study

in Panfilov [29] [pp. 47–48] for the case of non–thin fractures and very low permeable

blocks. It has been shown that the overall mass exchange is localized within a narrow

boundary layer in the neighborhood of the block-fracture interface which causes finally

the appearance of the erfc–function typical for the 1D diffusion problems.

Theorem 2.4 Let γ > 1 in (2.7) and uε,δ = (uε,δf , uε,δm ) be the solution of (2.5)–(2.8). Then, for

any t ∈]0, T [, uε,δf Lε,δ–converges to u∗, the solution of a single porosity model with effective

constant porosity and permeability:




ωf

∂u∗

∂t
− 2

3
kf∆u

∗ = Q(x), in ΩT ;

u∗(t, x) = 0 on ]0, T [×∂Ω;

u∗(0, x) = 0 in Ω.

(2.11)

Theorem 2.5 Let γ < 1 in (2.7) and uε,δ = (uε,δf , uε,δm ) be the solution of (2.5)–(2.8). Then,

for any t ∈]0, T [, uε,δf Lε,δ–converges to u∗, the solution of a global model with an additional
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source term S(u∗) and the fracture porosity as effective porosity:


ωf

∂u∗

∂t
− 2

3
kf∆u

∗ = Q(x) + S(u∗), in ΩT ;

u∗(t, x) = 0 on ]0, T [×∂Ω;

u∗(0, x) = 0 in Ω,

(2.12)

where

S(u∗) = −2
√
kmωm√

π

t∫
0

u∗
t (x, τ)√
t − τ

dτ. (2.13)

Remark 2 Notice that the homogenized model (2.12)–(2.13) describes the well known

Lauwerier phenomenon [26].

The homogenized models obtained in the paper can be written in the following form:

ωf

∂u∗

∂t
− 2

3
kf∆u

∗ = Q(x) + S(u∗) in ΩT ; (2.14)

plus appropriate initial and boundary conditions, where

S(u∗) = −
t∫

0

u∗
t (x, τ)Bγ(t − τ) dτ (2.15)

and the exchange kernel Bγ is given in (2.10) when γ = 1, in (2.13) when γ < 1, and

Bγ ≡ 0 when γ > 1. Homogenized models of type (2.14) were studied in the literature

(e.g. see Hornung & Showalter [22] or Panfilov [29] Chapter 1). In these works the

exchange kernel is calculated by the solution of an auxiliary boundary value problem

with constant coefficients considered on the rescaled matrix inclusion. Furthermore, it

could be found explicitly for some special geometry of the block. In contrast, in our case

the corresponding boundary value problem depends on the small parameter δ and the

kernel is calculated from the asymptotic expansion of the solution. Moreover, this solution

appears to be exponentially small inside the inclusion and it is non-negligible only in a

thin boundary layer. In particular, this means that in the traditional models we have an

exchange between all the matrix blocks and the fissures. In our case we have an exchange

only between the boundary of the block and the fissure.

3 Proof of Theorem 2.3

Knowing from Bourgeat et al. [13] that the limit as (ε, δ) → 0 does not depend on

the order, Theorem 2.3 will be proved in three main steps. On the first step, fixing

δ, we apply the Laplace transform to the boundary value problem (2.5)–(2.8). We study

the asymptotic behaviour of uε,δλ solutions of the corresponding stationary boundary value

problem as ε → 0. We obtain then a stationary boundary value problem considered in the
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whole domain Ω but with the coefficients depending on the parameter δ. In the second

step we pass to the limit as δ → 0 and obtain a stationary homogenized problem, i.e. the

problem independent of ε, δ. Finally, in the third step we make use of the Lε,δ-convergence

of uε,δfλ to u∗
λ the solution of the stationary homogenized problem to complete the proof of

Theorem 2.3.

3.1 Step 1: Passage to the limit as ε → 0

Let us fix δ. We consider u
ε,δ
λ = (uε,δfλ , u

ε,δ
mλ) the Laplace transform of uε,δ solution of

(2.5)–(2.8) with γ = 1 and then study the corresponding boundary value problem:




ωfλu
ε,δ
fλ − kf ∆uε,δfλ =

1

λ
Q in Ω

ε,δ
f ;

ωmλu
ε,δ
mλ − km(εδ)2 ∆uε,δmλ = 0 in Ωε,δ

m ;

kf∇uε,δfλ ·�ν = (εδ)2km∇uε,δmλ ·�ν on Γ
ε,δ
mf ;

(εδ)2km∇uε,δmλ ·�ν = σ (εδ)(uε,δfλ − u
ε,δ
mλ) on Γ

ε,δ
mf ;

u
ε,δ
fλ = 0 on ∂Ω,

(3.1)

where�ν is the normal vector to Γ
ε,δ
mf (exterior to Ω

ε,δ
f ) and λ > 0. By standard arguments we

can prove that for each ε ∈]0, 1[, problem (3.1) has a unique solution u
ε,δ
λ ∈ H1(Ωε,δ

f , Ωε,δ
m ).

The next result relies on the two-scale approach [2]. For the reader’s convenience, let

us recall the definition of the two-scale convergence.

We denote, by C∞
# (Y), the space of infinitely differentiable functions in R3 which are

periodic of period Y and, by D(Ω;C∞
# (Y)), the space of infinitely smooth and compactly

supported functions in Ω with values in the space C∞
# (Y).

Definition 3.1 A sequence of functions vε in L2(Ω) two–scale converges to v(x, y) belonging

to L2(Ω × Y) if, for any function ϕ(x, y) in D(Ω;C∞
# (Y)), it satisfies

lim
ε→0

∫
Ω

vε(x)ϕ
(
x,

x

ε

)
dx =

∫
Ω×Y

v(x, y)ϕ(x, y) dx dy.

We denote vε(x)
2s
⇀ v(x, y) two-scale in L2(Ω × Y).

The asymptotic behaviour of uε,δλ as ε → 0 is given by the following proposition.

Proposition 3.2 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (3.1). Then u

ε,δ
λ two–scale converges

as follows:

1ε,δf u
ε,δ
fλ

2s
⇀ 1δf(y) u

δ
fλ(x); 1ε,δm u

ε,δ
mλ

2s
⇀ 1δm(y) uδmλ(x, y),
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where uδλ = (uδfλ, u
δ
mλ) is the unique solution of




|Fδ |ωfλu
δ
fλ − divx (Kδ∇uδfλ) = S(uδfλ, u

δ
mλ) + |Fδ |1

λ
Q in Ω;

uδfλ(x) = 0 on ∂Ω;

ωmλu
δ
mλ − δ2km ∆yu

δ
λm = 0 in Ω × Mδ;

δ2km∇yu
δ
mλ ·�ν = σδ(uδfλ(x) − uδmλ(x, y)) on Ω × Γδ

mf;

(3.2)

where Kδ = (kδij) is the homogenized permeability tensor defined by:

kδij = kf

∫
Fδ

(∇ywi +�ei) · (∇ywj +�ej) dy (3.3)

with wi being the unique solution in H1
#(Fδ) \ R of




−∆wi = 0, in Fδ;

(∇ywi +�ei) ·�ν = 0, on Γδ
mf;

y → wi(x, y) Y − periodic;

(3.4)

where H1
#(Fδ) denotes the Hilbert space

H1
#(Fδ) = {ϕ ∈ H1

loc(R
3), ϕ is Y − periodic in y}.

The effective source term is given by

S(uδfλ, u
δ
mλ) = −δσ

∫
Γδ
mf

(uδfλ(x) − uδmλ(x, y)) dsy. (3.5)

Moreover u
ε,δ
fλ converges to uδfλ in L2(Ωε,δ

f ) as ε → 0.

Proof of Proposition 3.2. First we establish the following lemma.

Lemma 3.3 Let u
ε,δ
λ be the solution of the problem (3.1). Then there exist uδfλ ∈ H1

0 (Ω),

Uδ
fλ ∈ L2(Ω;H1

#(F) \ R), uδmλ ∈ L2(Ω;H1
#(Y)), and a subsequence of solutions of (3.1) that

two–scale converges as follows:

1ε,δf u
ε,δ
fλ

2s
⇀ 1δf(y) u

δ
fλ(x); 1ε,δf ∇uε,δfλ

2s
⇀ 1δf(y)

[
∇xu

δ
fλ(x) + ∇yU

δ
fλ(x, y)

]
;

1ε,δm u
ε,δ
mλ

2s
⇀ 1δm(y) uδmλ(x, y); ε1ε,δm ∇uε,δmλ

2s
⇀ 1δm(y) ∇yu

δ
mλ(x, y).
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The proof of the Lemma is based on the two-scale results in Allaire [2] and the following

a priori estimates for the family (uε,δλ )ε,δ>0:

‖uε,δfλ‖2
L2(Ω

ε,δ
f )

+ ‖uε,δmλ‖2
L2(Ω

ε,δ
m )

+ ‖∇uε,δfλ‖2
L2(Ω

ε,δ
f )

+ (εδ)2‖∇uε,δmλ‖2
L2(Ω

ε,δ
m )

+ (εδ)σ

∫
Γ

ε,δ
mf

(uε,δfλ − u
ε,δ
mλ)

2 ds � C, (3.6)

where C is a constant independent of ε, δ.

We now define a variational formulation of the problem (3.1):

ωfλ

∫
Ω

ε,δ
f

u
ε,δ
fλ (x)vf(x) dx + ωmλ

∫
Ω

ε,δ
m

u
ε,δ
mλ(x)φm dx

+

∫
Ω

ε,δ
f

kf∇uε,δfλ · ∇vf dx + (εδ)2
∫
Ω

ε,δ
m

km∇uε,δmλ · ∇φm dx

+ (εδ)σ

∫
Γ

ε,δ
mf

(uε,δfλ − u
ε,δ
mλ)(vf − φm) ds =

∫
Ω

ε,δ
f

1

λ
Q(x)vf(x) dx, (3.7)

where vf(x) =φf(x) + εζ(x, x
ε
) with φf ∈ C1(Ω) and ζ ∈ C1(Ω;C1

#(Y)); φm ∈ C1(Ω;C1
#(Y)).

Then we want to pass to the limit as ε → 0 in the equation (3.7). Consider first the

surface term in the left-hand side of (3.7).

The next result relies on the two–scale approach for sequences of functions which are

defined on periodic surfaces. For the reader’s convenience, let us recall the definition of

the two-scale convergence on periodic surfaces [3, 27].

Let Γ be a smooth (n − 1)–dimensional manifold compactly included in Y. Let Γε be

the union of all ε(Γε + li�ei), li ∈ Z which are contained in Ω.

Definition 3.4 A sequence of functions wε in L2(Γε) two-scale converges to w(x, y) belonging

to L2(Ω × Γ ) if, for any function ϕ ∈ D(Ω;C∞
# (Γ )), it satisfies

lim
ε→0

ε

∫
Γε

wε(x)ϕ
(
x,

x

ε

)
ds =

∫
Ω×Γ

w(x, y)ϕ(x, y) dx dsy.

Now the asymptotic behaviour of the term involving Γ
ε,δ
mf is given by the following

Lemma.

Lemma 3.5 Let

Iε[uε,δfλ , u
ε,δ
mλ] = (εδ) σ

∫
Γ

ε,δ
mf

(uε,δfλ − u
ε,δ
mλ)

{
φf(x) + εζ

(
x,

x

ε

)
− φm

(
x,

x

ε

)}
ds.
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Then

lim
ε→0

Iε[uε,δfλ , u
ε,δ
mλ] = σδ

∫
Ω

∫
Γδ
mf

(uδfλ(x) − uδmλ(x, y))(φf(x) − φm(x, y)) dsy dx.

The proof of the Lemma is a direct consequence of Theorem 2.1 and Proposition 2.6

of Allaire et al. [3].

By using this result and standard arguments of the two-scale convergence method, we

can pass to the two-scale limit in (3.7) as ε → 0 and obtain the variational formulation of

(3.2).

It remains to show the convergence of u
ε,δ
fλ to uδfλ in L2(Ωε,δ

f ) as ε → 0. We have from

Acerbi et al. [1] that there exists an extension ũ
ε,δ
fλ of uε,δfλ from the set Ωε,δ

f to Ω such that

‖ũε,δfλ‖H1(Ω) � C‖uε,δfλ‖
H1(Ω

ε,δ
f ),

where C is a constant independent of ε. Then the desired convergence result easily

follows from the a priori estimate (3.6) and Lemma 3.3. This completes the proof of

Proposition 3.2. �

Remark 3 The convergence result in Proposition 3.2 can be reformulated as follows. Let

ũ
ε,δ
fλ be an extension of u

ε,δ
fλ from the set Ω

ε,δ
f to Ω which exists as shown in Acerbi et

al. [1]. Then it follows that ũε,δfλ converges to uδfλ in L2(Ω) as ε → 0.

Remark 4 The homogenization result of Proposition 3.2 remains true when the matrix

blocks Ωε,δ
m form a connected set in Ω, provided that the fissure system remains also

connected. In this case, the interface condition for the function uδmλ becomes

δ2km∇yu
δ
mλ ·�ν = σδ(uδfλ(x) − uδfλ(x, y))

when y ∈ Γδ
mf \ ∂Y and uδmλ(x, y) is Y–periodic in y.

3.2 Step 2: Passage to the limit as δ → 0

Now we pass to the limit as δ → 0 in (3.2). The asymptotic behaviour of uε,δλ as ε, δ → 0

is given by the following proposition.

Proposition 3.6 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (3.1). Then the sequence (uε,δfλ ) Lε,δ-

converges to u∗
λ the solution of




ωfλu
∗
λ − 2

3
kf∆u

∗
λ + 2σλu∗

λ

1√
λ(µ +

√
λ)

=
1

λ
Q in Ω;

u∗
λ(x) = 0 on ∂Ω.

(3.8)
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Proof of Proposition 3.6. First we consider the effective source term S(uδfλ, u
δ
mλ) given by

(3.5):

S(uδfλ, u
δ
mλ) = −δσ

∫
Γδ
mf

(uδfλ(x) − uδmλ(x, y)) dsy.

Here the function uδmλ = uδmλ(x, y) satisfies the following boundary value problem:




ωmλu
δ
mλ − δ2km ∆yu

δ
λm = 0 in Ω × Mδ;

δ2km∇yu
δ
mλ ·�ν = σδ(uδfλ(x) − uδmλ(x, y)) on Ω × Γδ

mf,

(3.9)

where Mδ is an open cube with length equal (1 − δ). It is clear that

uδmλ(x, y) = Uδ
mλ(y) u

δ
fλ(x), (3.10)

where Uδ
mλ is the unique solution of




ωmλU
δ
mλ − δ2km ∆yU

δ
mλ = 0 in Mδ;

δ2km∇yU
δ
mλ ·�ν = σδ(1 − Uδ

mλ(y)) on Γδ
mf.

(3.11)

Therefore, we have:

S(uδfλ, u
δ
mλ) = −δσuδfλ(x)

∫
Γδ
mf

(1 − Uδ
mλ(x, y)) dsy ≡ −δσuδfλ(x)C(λ, δ). (3.12)

Let us study the asymptotic behaviour of the integral C(λ, δ).

Lemma 3.7 Let C(λ, δ) be the integral defined in (3.12). Then

C(λ, δ) = 6λ

(
1√

λ(µ +
√
λ)

+ o(1)

)
(3.13)

as δ → 0, where

µ =
σ√
kmωm

.

Proof of Lemma 3.7. Consider the boundary value problem (3.11). Changing variables

(without changing notation for the solution) we obtain that Uδ
mλ is the unique solution of




ωmλU
δ
mλ − δ2

(1 − δ)2
km ∆yU

δ
mλ = 0 in M;

δ2km∇yU
δ
mλ ·�ν = σδ(1 − δ)(1 − Uδ

mλ(y)) on ∂M,

(3.14)

https://doi.org/10.1017/S0956792505006200 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006200


348 B. Amaziane et al.

where M is the open unit cube in R3. Then

C(λ, δ) = (1 − δ)2
∫

∂M

(1 − Uδ
mλ(y)) dsy. (3.15)

Let us rewrite (3.14) as follows:




βδ
λU

δ
mλ − δ2∆yU

δ
mλ = 0 in M;

δ2km∇yU
δ
mλ ·�ν = σδ(1 − δ)(1 − Uδ

mλ(y)) on ∂M,

(3.16)

where

βδ
λ = λ

ωm

km
(1 − δ)2. (3.17)

Let us introduce the functions v±
l = v±

l (yl) (l = 1, 2, 3):

v±
l (yl) =

σ

σ +
√
λ
√
ωmkm

exp


±

√
βδ
λ

δ

(
yl ∓ 1

2

)
 . (3.18)

It is clear that these functions verify the differential equation in (3.16) and the boundary

condition on the corresponding surfaces of the cube M. For example, the function v+
1

satisfies the boundary condition on M+
y1

, where M+
y1

= {y ∈ M : y1 = 1/2}.
Let us introduce the function Φδ = Φδ(y) in the following way:

Φδ(y) =

3∑
k=1

(v+
k (yk) + v−

k (yk)). (3.19)

It is clear that Φδ satisfies the first equation in (3.16) but it satisfies the boundary condition

with some exponentially small residual εδ = εδ(y), i.e. the function (Uδ
mλ − Φδ)(y) satisfies

the following boundary value problem:




βδ
λ (U

δ
mλ − Φδ) − δ2∆y(U

δ
mλ − Φδ) = 0 in M;

δ2km∇y(U
δ
mλ − Φδ) ·�ν = σδ(1 − δ)(εδ(y) − (Uδ

mλ − Φδ)(y)) on ∂M.

(3.20)

Using the variational formulation of the problem (3.20), we can show that

∫
∂M

|Uδ
λm − Φδ |2 dsy �

∫
∂M

|εδ(y)|2 dsy. (3.21)

Moreover, the integral in the right hand side of (3.21) tends to zero as δ → 0. This

means that we can replace the surface integral of the function Uδ
mλ by the integral of

the function Φδ . Now the statement of the lemma follows from simple calculations. This

proves Lemma 3.7. �
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Equation (3.12) shows that the system (3.2) could be decoupled. Plugging the expression

of the source term S(uδfλ, u
δ
mλ) given by (3.12) into equation (3.2) directly gives:




|Fδ |ωfλu
δ
fλ − divx (Kδ∇uδfλ) + C(λ, δ)σδuδfλ = |Fδ |1

λ
Q in Ω;

uδfλ(x) = 0 on ∂Ω,
(3.22)

where C(λ, δ) is defined in (3.12). Thus the limit of uδfλ as δ → 0 will give a global

behaviour of the system.

Notice that all the coefficients in (3.22) are of order δ. Then following the arguments

of Cioranescu & Saint Jean Paulin [16] [Chapter 2] and using (2.1) one can show that uδfλ
converges strongly in H1

0 (Ω) to u∗
λ the solution of (3.8).

Let us now show that uε,δfλ Lε,δ-converges to u∗
λ the solution of (3.8). As in Bourgeat et

al. [14], we have

1

|Ωε,δ
f |

‖uε,δfλ − u∗
λ‖2

L2(Ω
ε,δ
f )

� C
(

‖ũε,δfλ − uδfλ‖2
L2(Ω) + ‖uδfλ − u∗

λ‖2
L2(Ω)

)
, (3.23)

where ũ
ε,δ
fλ is the extension of uε,δfλ from the set Ωε,δ

f to Ω and C is a constant independent

of ε, δ. Now the Lε,δ–convergence of u
ε,δ
fλ to u∗

λ easily follows from Remark 3 and the

strong convergence in L2(Ω) of the sequence (uδfλ) to u∗
λ. This completes the proof of

Proposition 3.6. �

Now we are in position to complete the proof of Theorem 2.3.

3.3 Step 3: Proof of the convergence result in Theorem 2.3

Consider the boundary value problem (2.5)–(2.8). Using standard parabolic theory one

can obtain the following uniform estimates:

‖uε,δ(t)‖2
L2(Ω

ε,δ
f )

+ ‖uε,δ(t)‖2
L2(Ω

ε,δ
m )

+ ‖∇uε,δ(t)‖2
L2(Ω

ε,δ
f )

+ (εδ)2‖∇uε(t)‖2
L2(Ω

ε,δ
m )

+

t∫
0

(
‖uεt(τ)‖2

L2(Ω
ε,δ
f )

+ ‖uεt(τ)‖2
L2(Ω

ε,δ
m )

)
dτ � C1|Ωε,δ

f |, (3.24)

where C1 is a constant independent of t, ε, δ. Then, for any t ∈]0, T [, the function

u
ε,δ
f = u

ε,δ
f (t, x) Lε,δ-converges to a function v = v(t, x), i.e.

lim
δ→0

lim
ε→0

µε,δ
∫
Ω

ε,δ
f

uε,δ(t, x)ϕ(x) dx =

∫
Ω

v(t, x)ϕ(x) dx (3.25)
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for any ϕ(x) ∈ L∞(Ω). Here the constant µε,δ is defined by

µε,δ =
|Ω|

|Ωε,δ
f |

. (3.26)

Let us show that v = v(t, x) is the solution of problem (2.9)–(2.10). Let u
ε,δ
λ be the

solution of the boundary value problem (3.1) with an arbitrary complex λ such that

arg λ� π. Then u
ε,δ
fλ is an analytic function in the complex λ–plane C \{arg λ = π} and

‖uε,δfλ‖2
L2(Ω

ε,δ
f )

� C2

|Ωε,δ
f |

|λ|4 , | arg λ − π| � ϑ0 > 0, (3.27)

where C2 is a constant independent of ε, δ. Moreover, uε,δf may be represented by the

inverse Laplace transform as follows

u
ε,δ
f (t, x) =

1

2πi

θ+i∞∫
θ−i∞

exp (λt)uε,δfλ (x) dλ, θ > 0, (3.28)

where uε,δfλ is the first component of the solution of problem (3.1) with an arbitrary complex

λ such that arg λ� π.

Now let u∗
λ be the solution of problem (3.8) with an arbitrary complex λ such that

arg λ� π. The solution u∗
λ of this problem is an analytic function with respect to λ in the

complex λ-plane C \{arg λ = π} and

‖u∗
λ‖2

L2(Ω) �
C3

|λ|4 (3.29)

for | arg λ−π| � ϑ0 > 0. Moreover, the solution of problem (2.9)–(2.10) can be represented

as follows

u∗(t, x) =
1

2πi

θ+i∞∫
θ−i∞

exp (λt)u∗
λ(x) dλ, θ > 0, (3.30)

where u∗
λ is the solution of problem (3.8) with an arbitrary complex λ such that arg λ� π.

Now it follows from (3.27)–(3.30) that

µε,δ
∫
Ω

ε,δ
f

u
ε,δ
f (t, x)ϕ(x) dx =

1

2πi

θ+i∞∫
θ−i∞


µε,δ

∫
Ω

ε,δ
f

u
ε,δ
fλ (x)ϕ(x) dx


dλ (3.31)

and ∫
Ω

u∗(t, x)ϕ(x) dx =
1

2πi

θ+i∞∫
θ−i∞




∫
Ω

u∗
λ(x)ϕ(x) dx


dλ. (3.32)
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From Proposition 3.6, for any λ > 0, we have

lim
δ→0

lim
ε→0

µε,δ
∫
Ω

ε,δ
f

u
ε,δ
fλ (x)ϕ(x) dx =

∫
Ω

u∗
λ(x)ϕ(x) dx. (3.33)

Here u
ε,δ
fλ = u

ε,δ
fλ (x) is an analytic function with respect to λ and is uniformly bounded

with respect to ε, δ. Therefore, (3.33) is valid for any complex λ and the limit is achieved

uniformly with respect to λ for any compact set in the domain | arg λ − π| � ϑ0 > 0. Now

from (3.31)–(3.33) we obtain that

lim
δ→0

lim
ε→0

µε,δ
∫
Ω

ε,δ
f

u
ε,δ
f (t, x)ϕ(x) dx =

∫
Ω

u∗(t, x)ϕ(x) dx, (3.34)

for any t ∈]0, T [. Comparing (3.25) and (3.34) we conclude that v(t, x) = u∗(t, x) and

Theorem 2.3 is proved.

4 Sketch of the proof of Theorem 2.4

The main lines of the proof of Theorem 2.4 are similar to those of Theorem 2.3.

On the first step we fix δ and then pass to the limit as ε → 0. For this we consider

u
ε,δ
λ = (uε,δfλ , u

ε,δ
mλ) the Laplace transform of uε,δ the solution of (2.5)–(2.8) with γ > 1 and

then we study the corresponding boundary value problem:




ωfλu
ε,δ
fλ − kf ∆uε,δfλ =

1

λ
Q in Ω

ε,δ
f ;

ωmλu
ε,δ
mλ − km(εδ)2 ∆uε,δmλ = 0 in Ωε,δ

m ;

kf∇uε,δfλ ·�ν = (εδ)2km∇uε,δmλ ·�ν on Γ
ε,δ
mf ;

(εδ)2km∇uε,δmλ ·�ν = σ (εδ)γ(uε,δfλ − u
ε,δ
mλ) on Γ

ε,δ
mf ;

u
ε,δ
fλ = 0 on ∂Ω,

(4.1)

where λ > 0.

By standard arguments we can prove that for each ε ∈]0, 1[ problem (4.1) has a unique

solution u
ε,δ
λ ∈ H1(Ωε,δ

f , Ωε,δ
m ).

The asymptotic behaviour of uε,δλ as ε → 0 is given by the following proposition.

Proposition 4.1 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (4.1) with γ > 1. Then u

ε,δ
λ two–scale

converges as follows:

1ε,δf u
ε,δ
fλ

2s
⇀ 1δf(y) u

δ
fλ(x); 1ε,δm u

ε,δ
mλ

2s
⇀ 0,
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where uδfλ is the unique solution of




|Fδ |ωfλu
δ
fλ − divx (Kδ∇uδfλ) = |Fδ |1

λ
Q in Ω;

uδfλ(x) = 0 on ∂Ω,

(4.2)

where Kδ = (kδij) is the homogenized permeability tensor defined by (3.3)–(3.4).

Moreover, uε,δfλ converges to uδfλ in L2(Ωε,δ
f ) as ε → 0.

Proof of Proposition 4.1. Again, as in the previous case, the variational formulation of

problem (4.1) is given by:

ωfλ

∫
Ω

ε,δ
f

u
ε,δ
fλ (x)vf(x) dx+ωmλ

∫
Ω

ε,δ
m

u
ε,δ
mλ(x)φm dx+

∫
Ω

ε,δ
f

kf∇uε,δfλ · ∇vf dx+(εδ)2
∫
Ω

ε,δ
m

km∇uε,δmλ · ∇φm dx

+ (εδ)γσ

∫
Γ

ε,δ
mf

(uε,δfλ − u
ε,δ
mλ)(vf − φm) ds =

∫
Ω

ε,δ
f

1

λ
Q(x)vf(x) dx, (4.3)

where vf(x) =φf(x) + εζ(x, x
ε
) with φf ∈ C1(Ω) and ζ ∈ C1(Ω;C1

#(Y)); φm ∈ C1(Ω;C1
#(Y)).

Then we want to pass to the limit as ε → 0 in equation (4.3). Consider first the

surface term in the left-hand side of (4.3). In the framework of the definition of two-scale

convergence on periodic surfaces (see Definition 3.4) we have that

lim
ε→0

(εδ)γ σ

∫
Γ

ε,δ
mf

(uε,δfλ − u
ε,δ
mλ)

{
φf(x) + εζ

(
x,

x

ε

)
− φm

(
x,

x

ε

)}
ds = 0

for γ > 1.

As in the previous section, the two-scale convergence results from Lemma 3.3 permit

to pass to the limit for the other terms in (4.3). In particular, we obtain that the function

uδmλ satisfies the following boundary value problem:




ωmλu
δ
mλ − δ2km ∆yu

δ
λm = 0 in Mδ;

δ2km∇yu
δ
mλ ·�ν = 0 on Γδ

mf.

(4.4)

This means that uδmλ ≡ 0. The limit of the other terms gives the variational formulation of

(4.2). The second convergence result in Proposition 4.1 is obtained by the same arguments

as in the previous section. This completes the proof of Proposition 4.1. �

Remark 5 The convergence result in Proposition 4.1 can be reformulated as follows. Let

ũ
ε,δ
fλ be an extension of u

ε,δ
fλ from the set Ω

ε,δ
f to Ω which exists as shown in Acerbi et

al. [1]. Then it follows that ũε,δfλ converges to uδfλ in L2(Ω) as ε → 0.
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4.1 Step 2: Passage to the limit as δ → 0

Now we pass to the limit as δ → 0 in (4.2). The asymptotic behaviour of uε,δλ as ε, δ → 0

is given by the following proposition.

Proposition 4.2 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (4.1). Then the sequence (uε,δfλ ) Lε,δ–

converges to u∗
λ which is the solution of




ωfλu
∗
λ − 2

3
kf∆u

∗
λ =

1

λ
Q in Ω;

u∗
λ(x) = 0 on ∂Ω.

(4.5)

Proof of Proposition 4.2. Following the arguments of Cioranescu & Saint Jean Paulin [16]

[Chapter 2] and using (2.1) we can show that uδfλ converges strongly in H1
0 (Ω) to u∗

λ the

solution of (4.5).

As in the previous section we show that uε,δfλ Lε,δ-converges to u∗
λ which is the solution

of (4.5). �

We complete the proof of Theorem 2.4 through arguments similar to ones used

in the proof of Theorem 2.3 (see Step 3 in the previous section). Theorem 2.4 is

proved.

5 Sketch of the proof of Theorem 2.5

The main lines of the proof of Theorem 2.5 are similar to those of Theorem 2.3 or

Theorem 2.4.

5.1 Step 1: Passage to the limit as ε → 0

Let us fix δ.

We consider u
ε,δ
λ = (uε,δfλ , u

ε,δ
mλ) the Laplace transform of uε,δ the solution of (2.5)–(2.8)

and study then the boundary value problem (4.1) with γ < 1. It is clear that there exists

a unique solution u
ε,δ
λ ∈ H1(Ωε,δ

f , Ωε,δ
m ) of problem (4.1) when γ < 1.

The asymptotic behaviour of uε,δλ as ε → 0 is given by the following proposition.

Proposition 5.1 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (4.1) with γ < 1. Then u

ε,δ
λ two-scale

converges as follows:

1ε,δf u
ε,δ
fλ

2s
⇀ 1δf(y) u

δ
fλ(x); 1ε,δm u

ε,δ
mλ

2s
⇀ 1δm(y) uδmλ(x, y),
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where uδλ = (uδfλ, u
δ
mλ) is the unique solution of




|Fδ |ωfλu
δ
fλ − divx (Kδ∇uδfλ) = S(uδfλ, u

δ
mλ) + |Fδ |1

λ
Q in Ω;

uδfλ(x) = 0 on ∂Ω;

ωmλu
δ
mλ − δ2km ∆yu

δ
λm = 0 in Ω × Mδ;

uδmλ(x, y) = uδfλ(x) on Ω × Γδ
mf;

(5.1)

where Kδ = (kδij) is the homogenized permeability tensor defined by (3.3)–(3.4); the effective

source term is given by

S(uδfλ, u
δ
mλ) = −δ2km

∫
Γδ
mf

∇yu
δ
mλ ·�ν dsy. (5.2)

Moreover, uε,δfλ converges to uδfλ in L2(Ωε,δ
f ) as ε → 0.

Proof of Proposition 5.1. As in the previous sections we first obtain a convergence result

given by Lemma 3.3. Then we consider the variational formulation of the problem given

by (4.3). The next step is to pass to the limit in equation (4.3) with γ < 1. We consider

first the surface term in the left-hand side of (4.3). In the framework of the definition of

two-scale convergence on periodic surfaces (see Definition 3.4) we show that the function

(uε,δfλ −u
ε,δ
mλ) two-scale converges to 0 on the surface Γε,δ

mf . Therefore, taking φm(x, y) = φf(x),

for y ∈ Fδ , we pass to the two-scale limit in (4.3) taking into account that γ < 1 and we

obtain the variational formulation of (5.1).

The second convergence result in Proposition 5.1 is obtained by the same arguments as

in § 3. This completes the proof of Proposition 5.1. �

Remark 6 The convergence result in Proposition 5.1 can be reformulated as follows. Let

ũ
ε,δ
fλ be an extension of u

ε,δ
fλ from the set Ω

ε,δ
f to Ω which exists as shown in Acerbi et

al. [1]. Then it follows that ũε,δfλ converges to uδfλ in L2(Ω) as ε → 0.

Remark 7 The homogenization result of Proposition 5.1 remains true when the matrix

blocks Ωε,δ
m form a connected set in Ω, provided that the fissure system also remains

connected. In this case the interface condition for the function uδmλ becomes

uδmλ(x, y) = uδfλ(x)

where y ∈ Γδ
mf \ ∂Y and uδmλ(x, y) is Y–periodic in y.

5.2 Step 2: Passage to the limit as δ → 0

Now we pass to the limit as δ → 0 in (5.1). The asymptotic behaviour of uε,δλ as ε, δ → 0

is given by the following proposition.
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Proposition 5.2 Let uε,δλ = (uε,δfλ , u
ε,δ
mλ) be the solution of (4.1) with γ < 1. Then the sequence

(uε,δfλ ) Lε,δ-converges to u∗
λ the solution of




ωfλu
∗
λ − 2

3
kf∆u

∗
λ + 2

√
λωmkmu

∗
λ =

1

λ
Q in Ω;

u∗
λ(x) = 0 on ∂Ω.

(5.3)

Proof of Proposition 5.2. It is clear that the source term satisfies:

S(uδfλ, u
δ
mλ) = −δ2km

∫
Γδ
mf

∇yu
δ
mλ ·�ν dsy = C1(λ, δ)uδfλ,

where

C1(λ, δ) = −λωm

∫
Mδ

Uδ
mλ(y) dy (5.4)

and Uδ
mλ is the unique solution of




ωmλU
δ
mλ − δ2km ∆yU

δ
λm = 0 in Mδ;

Uδ
mλ(y) = 1 on Γδ

mf.

(5.5)

Following Pankratov & Rybalko [30], the asymptotic behaviour of the integral C1(λ, δ)

is given by

C1(λ, δ) = −6δ
√

λωmkm (1 + o(1))

as δ → 0.

Finally, using the same arguments as in § 3, we can show that the system (5.1) could be

decoupled. Thus the limit of uδfλ as δ → 0 will give the global behaviour of the system.

Moreover, following the arguments of Cioranescu & Saint Jean Paulin [16] [Chapter 2]

and using (2.1) we can show that uδfλ converges strongly in H1
0 (Ω) to u∗

λ the solution of

(5.3).

As in § 3 (see (3.23)) we prove that uε,δfλ Lε,δ-converges to u∗
λ the solution of (5.3). �

We complete the proof of Theorem 2.5 repeating the arguments from § 3.3.

6 Concluding remarks

The problem of macroscopic behaviour for a double porosity model of single phase flow

with Robin interface conditions has been formulated and analyzed in this paper. The

convergence of the homogenization process in a suitable topology has been established.

The main feature of the homogenized models is that the effective coefficients and the

exchange kernel of the long time operator are obtained explicitly. This model may be

of practical use for the numerical simulation of flow in fractured media. This study was

intended as a first step to the homogenization of highly heterogeneous reservoirs with
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thin fissures. We are now investigating the homogenization problem of a coupled system

modelling the flow and transport of contaminants in such porous media.
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Appendix A A double porosity type model with Robin transmission conditions

In this section, we derive in a formal way a double porosity model with nonstandard

transmission conditions at the interface between the matrix and fracture. Namely, we

consider the continuity of the flux and a jump of the pressure proportional to the flux at

the interface.

We consider a fractured porous medium Ω made of rectangular blocks Ωm and fracture

system Ωf separated by a thin layer Ωl (see Figure A 1). Notice that such a layer always

exists in naturally fractured reservoirs because of the sedimentation process, and is usually

called colmated layer [18, 33]. If we assume that the width of the layer Ωl is very small

in comparison with the width of the fissure, then we will characterize this layer as an

interface between the block and the fissure. This is the reason why we call our model a

degenerate triple porosity model. Let us mention that a similar approach was already used

in Faille et al. [21] to treat the faults in geological basin modelling. We will describe briefly

the procedure leading to the double porosity model with Robin transmission conditions

at the interface between the matrix and fracture.

We denote by Kf and Km the permeabilities of Ωf and Ωm respectively, which are

functions of the space variable x = (x1, x2). We assume that the thickness of the layer

Ωl is constant and we denote it by h. The permeability Kl of Ωl is scaled by h and

it is assumed to be anisotropic with constant components K1
l , K2

l . We suppose that

the transverse permeability K1
l of the layer is much higher than the longitudinal layer

permeability K2
l (K1

l � K2
l ), so that the flow inside the layer is oriented along the

coordinate x1 only. Moreover, this flow is assumed to be stationary.

Let Γlm be the interface between the block and the layer and let Γfl be the interface

between the fracture and the layer. We denote �nfl the normal vector to Γfl oriented from

Ωf to Ωl , and �nlm is the normal vector to Γlm oriented from Ωl to Ωm.

Single phase, slightly compressible fluid flow through Ω is then described by Darcy’s

law and continuity subject to the classical conditions of pressure and flux continuity on

Γfl and Γlm:{
pf = pl on Γfl;

Kf∇pf ·�nfl = Kl∇pl ·�nfl on Γfl,

{
pm = pl on Γlm;

Km∇pm ·�nfl = Kl∇pl ·�nfl on Γlm,
(A 1)

where pi denotes the pressure in Ωi, i = f, l and m.
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Figure A 1. A fractured domain with an intermediate layer.

Let AB be a line between Γfl and Γlm such that x2 = constant (see Figure A 1) and let

�v = (v1, v2) be the flow velocity. Then the continuity equation and the Darcy law in the

layer are:

v2 ≡ 0,
∂v1
∂x1

= 0, v1 = −K1
l

∂pl
∂x1

.

Therefore, we have for the pressure derivative along the transverse direction

K1
l

∂pl
∂x1

= C0(x2) (A 2)

for any line AB orthogonal to Γfl . This equation may be considered as a stationary model

of flow through the interface layer. Moreover, since K1
l � K2

l we have:

K1
l ∇pl ·�nfl

∣∣
A

= K1
l ∇pl ·�nlm

∣∣
B

= C0 (A 3)

for any fixed line AB. Now the interface conditions (A 1) and (A 3) yield:

Kf∇pf ·�nfl |A = Km∇pm ·�nlm|B , A ∈ Γfl, B ∈ Γlm. (A 4)

We integrate the equation (A 2) along the line AB to obtain

pA − pB = C0
h

K1
l

. (A 5)

Then using (A 1) and (A 3) we get

pA − pB =
h

K1
l

Km ∇pm ·�nlm|B , B ∈ Γlm. (A 6)
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We have that Γfl → Γlm ≡ Γmf when h → 0. We assume that the limit K1
l /h as h → 0

exists and we denote it by Σ. Then (A 4) and (A 6) take the form:

{
Σ(pf − pm) = Km∇pm ·�n on Γmf;

Kf∇pf ·�n = Km∇pm ·�n on Γmf.
(A 7)

where�n is the normal vector to Γmf . Conditions (A 7) represent the desired transmission

conditions.
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[1] Acerbi, E., Chiadò Piat, V., Dal Maso, G. & Percival D. (1992) An extension theorem

from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18,

481–496.

[2] Allaire, G. (1992) Homogenization and two–scale convergence. SIAM J. Math. Anal. 28,

1482–1518.

[3] Allaire, G., Damlamian, A. & Hornung, U. 1995 Two–scale convergence on periodic surfaces

and applications, In: Bourgeat, A., Carasso, C., Luckhaus, S. and Mikelic, A. (editors),

Mathematical Modelling of Flow Through Porous Media, pp. 15–25. World Scientific.

[4] Amaziane, B., Bourgeat, A., Goncharenko, M. & Pankratov L. (2004) Characterization of

the flow for a single fluid in excavation zone. Comptes Rendus Mécanique, 332, 79–84.
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