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Abstract

We propose a class of models of random walks in a random environment where an exact
solution can be given for a stationary distribution. The environment is cast in terms of a
Jackson/Gordon–Newell network although alternative interpretations are possible. The
main tool is the detailed balance equations. The difference compared to earlier works is
that the position of the random walk influences the transition intensities of the network
environment and vice versa, creating strong correlations. The form of the stationary
distribution is closely related to the well-known product formula.
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1. Introduction

In this paper we introduce exactly solvable reversible models of a random walk interacting
with a random environment of a queueing-network type. The environment stems from a
symmetric Jackson network or its closed version (a Gordon–Newell network); cf. [7], [10], [11].
The walking particles can be interpreted as distinguished customers (DCs). Depending on the
site of the network that a DC is in, he/she may prefer to stay in the site if the queue size is large (or
small) and in turn encourages more (or less) tasks to come to this site. Further development is
where DCs interact with each other: here we consider the case of a symmetric simple exclusion;
the zero-range model is also included. By analyzing the detailed balance equations (DBEs),
the equilibrium distribution is derived, closely related to the product-form distribution; cf. [1],
[17], [19]. Our approach can be considered as a further development of earlier papers [5], [22],
where possible applications have been outlined in the area of communication networks.

Other areas of applications may cover problems of random trapping/localization and con-
densation; cf. [2], [6], [8], [21], and the references therein.
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An immediate problem would be to identify a Lyapunov function assessing the speed of
convergence to the stationary (equilibrium) distribution under subcriticality conditions; cf. [9],
[16], and references therein.

A possible step would be to introduce similar models in a quasi-reversible setting [12].
In this direction, it would be interesting to treat a wider class of service rules for tasks and
the DC. Namely, a processor-sharing discipline seems a natural choice, involving a branching
formalism; see, e.g. [18].

Our models also show some potential in the direction of Markov processes with local
interaction. An immediate goal can be to develop models in an infinite-volume configuration
space [3], [4], [20].

2. Description of a basic model

2.1. A symmetric open Jackson network

As a model for an environment, we take a symmetric and homogeneous Jackson job-shop
network; see [10], [11]. The model is defined by the following ingredients:

(i) a finite collection � of sites with a single-server system assigned to each k ∈ �;

(ii) two positive numbers: λ > 0, the intensity of an exogenous input flow to a given site,
and μ > 0, the intensity of the flow from a given site out of the network;

(iii) a nonnegative symmetric matrix of transmission intensities,

B = (βik, i, k ∈ �), βik = βki, βik ≥ 0, βii = 0. (2.1)

The value λ gives the rate of independent Poisson processes of exogenous tasks arriving at
sites in � and μi = μ + βi is the rate of servicing the queue at site i ∈ �, where βi = ∑

k∈�βik .
After completing service at site i, a task leaves the network with probability μ/μi and jumps
to site k with probability βik/μi . Condition βii = 0 is used for convenience. In contrast, the
symmetry property βik = βki in (2.1) is essential but rather restrictive and hopefully could be
weakened in the future.

The above description gives rise to a continuous-time Markov process (MP) with states
n = (ni, i ∈ �) ∈ Z

�+, where ni ∈ Z+ := {0, 1, 2, . . .}. The generator matrix Q = (Q(n, n′))
of the process has nonzero entries corresponding to the following transitions:

(i) Q(n, n + ei ) = λ an exogenous arrival of a task at site i;

(ii) Q(n, n − ei ) = μ 1{ni≥1} a task exits from site i out of the network;

(iii) Q(n, n + ei→k) = βik 1{ni≥1} a task jumps from site i to k.

Here, ei = (ei
l , l ∈ �) ∈ Z

�+ has ei
l = δil, e

i→k denotes the difference ek − ei , and 1 denotes
the indicator.

Assuming the subcriticality condition λ/μ < 1, the invariant measure π is the product of
geometric distributions with parameter λ/μ. Here, the probability π(n) of having ni tasks at
sites i ∈ � is of the form

π(n) =
(

1 − λ

μ

)#� ∏
i∈�

(
λ

μ

)ni

, n = (ni) ∈ Z
�+. (2.2)
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In fact, assuming that matrix B is irreducible (i.e. B t has strictly positive entries for some
t ∈ Z+), the process is positive recurrent (PR).

Equation (2.2) follows from the DBEs for probabilities π(n), n ∈ Z
�+:

π(n)Q(n, n + ei ) = π(n + ei )Q(n + ei , n),

π(n)Q(n, n − ej ) = π(n − ej )Q(n − ej , n), nj ≥ q,

π(n)Q(n, n + ek→l ) = π(n + ek→l )Q(n + ek→l , n), nk ≥ 1,

which are easy to check. Note that the probabilities π(n) in (2.2) do not refer to matrix B.
Throughout this paper, � denotes a finite set, and sites of � are marked by i, j, k, l, p, q, r,

s, and j ′.

2.2. Random walk in a Jackson environment

We now give the description of the model with interaction. A new ingredient is the presence
of a random particle (a distinguished customer (DC)) walking over set �. Parameters of the
Jackson network are changed only for a site where the DC is located; we call it a loaded site
and denote by j . A site i �= j (free of a DC) is called unloaded. In general, i, k, and l denote
sites in � which may be loaded or unloaded.

In addition to λ, μ, and B = (βik) (see items (b) and (c) in Section 2.1), we need more
ingredients and rules. The queue of tasks at the loaded site j has an exogenous arrival intensity
eϕλ, where ϕ ∈ R, while for the remaining sites the intensity remains λ. The exit flow intensity
from all sites of the network equals μ as before. The intensities βik for i �= j �= k (task
jumps from one unloaded site to another) are as before (and satisfy (2.1)). Next, we introduce
symmetric matrices θ = (θik, i, k ∈ �) and T = (τik, i, k ∈ �), where

θik = θki, θik ≥ 0, θii = 0; τik = τki, τik ≥ 0, τii = 0. (2.3)

(Again, condition θii = τii = 0 is used for convenience.) For the loaded site j , the intensity
of the task flow from j to k �= j equals θjk . For an unloaded site k �= j , the intensity of the
task flow from k to j equals eϕθkj . Finally, the intensity of a leap of the DC from a loaded
site j where there are nj tasks to a site j ′ �= j is taken to be e−ϕnj τjj ′ . As with intensities βik ,
symmetry equations θik = θki and τik = τki are essential (in modified forms, they reappear in
the rest of the paper), and it would be interesting to replace these conditions with weaker ones.

Matrices θ and T and parameter ϕ ∈ R are additional ingredients of the model. (In the future,
we also refer to B, θ , and T as arrays or collections of intensities.) The state of the emerging
MP is a pair (j, n), where j ∈ � and n = (ni, i ∈ �) ∈ Z

�+. As was said, the entry j indicates
the loaded site, and ni , as before, gives the number of tasks at site i ∈ �. In accordance with
the above description, the generator R = {R[(j, n); (j ′, n′)]} has the following entries (here
and below, zero-rate transitions are not shown):

(R2.1) R[(j, n); (j, n + ek)] = λeϕδjk exogenous arrival of a task;

(R2.2) R[(j, n); (j, n − ek)] = μ 1{nk≥1} exit of a task out of the network;

(R2.3) R[(j, n); (j, n + ek→l )] = βkl 1{nk≥1} jump of a task for k �= j �= l;

(R2.4) R[(j, n); (j, n + ej→l )] = θjl 1{nj ≥1} a task jumps from the loaded site for l �= j ;

(R2.5) R[(j, n); (j, n + ek→j )] = θkj eϕ 1{nk≥1} a task jumps to the loaded site for k �= j ;

(R2.6) R[(j, n); (j ′, n)] = e−ϕnj τjj ′ leap of a DC, from j to j ′ �= j .
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Pictorially, the DC is served or provides service affecting task arrivals (both exogenous
and intrinsic) at the loaded site, after which it moves to another site. Conversely, the DC
departure from the loaded site is influenced by the number of tasks accumulated in the queue.
If ϕ < 0 then the presence of the DC suppresses task arrivals, whereas ϕ > 0 means the
opposite. Likewise, the intensity of a DC leap increases with nj for ϕ < 0 and decreases for
ϕ > 0. Mnemonically, if the DC attracts/repells tasks to/from the site where it currently is
then it does so for both exogenous arrivals and arrivals from other sites, increasing/reducing
the corresponding ‘nominal‘ rate by the same factor eϕ . At the same time, the DC would like
to stay for longer/shorter at a given site, by reducing/increasing the rate of its leap by factor
e−nj ϕ .

3. An exact solution for a single DC

3.1. The basic case

In this section we assume that the rate collections B, θ , and T satisfy (2.1), (2.3), and
are irreducible (i.e. matrices Bu, θu, and T u have strictly positive entries for some positive
integer u).

Theorem 3.1. Assume that the subcriticality condition holds true: λ/μ, λeϕ/μ < 1. Then the
MP on � × Z

�+ with generator R is positive recurrent and reversible (PRR). The stationary
probability (SP) π(j, n), j ∈ �, n = (ni) ∈ Z

�+, of locating the DC at site j and having ni

tasks in sites of � is of the form

π(j, n) = (#�)−1
(

1 − λeϕ

μ

)(
1 − λ

μ

)#�−1(
λ

μ

)∑
i∈� ni

eϕnj . (3.1)

Proof. Probabilities π(j, n) from (3.1) satisfy the following DBEs:

π(j, n)R[(j, n); (j, n + ek)] = π(j, n + ek)R[(j, n + ek); (j, n)], k �= j, (3.2a)

π(j, n)R[(j, n); (j, n + ej )] = π(j, n + ej )R[(j, n + ej ); (j, n)], (3.2b)

π(j, n)R[(j, n); (j, n + ek→l )] = π(j, n + ek→l )R[(j, n + ek→l ); (j, n)],
k �= j �= l �= k, nk > 0, (3.2c)

π(j, n)R[(j, n); (j, n + ej→k)] = π(j, n + ej→k)R[(j, n + ej→k); (j, n)],
j �= k, nj > 0, (3.2d)

π(j, n)R[(j, n); (j ′, n)] = π(j ′, n)R[(j ′, n); (j, n)], j �= j ′. (3.2e)

In fact, substituting (R2.1)–(R2.6), omitting constant factors, and canceling the common term
(λ/μ)

∑
i ni yields the identities

eϕnj λ =
(

λ

μ

)
eϕnj μ, k �= j, eϕnj λeϕ =

(
λ

μ

)
eϕ(nj +1)μ,

eϕnj βkl = eϕnj βlk, k �= j �= l �= k, nk > 0,

eϕnj θjk = eϕ(nj −1)θkj eϕ, j �= k, nj > 0, eϕnj e−ϕnj τjj ′ = eϕnj ′ e−ϕnj ′ τj ′j , j �= j ′.

Finally, under the irreducibility assumption, the process is PR. �
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Note that the SP distribution π in (3.1) does not involve B, θ , or T . The same pattern will
be observed in the generalizations of the basic model below.

3.2. A direct generalization

In this section the rates R[(j, n), (j ′, n′)] are as follows (cf. (R2.1)–(R2.6)):

(R3.1) R[(j, n); (j, n + ek)] = λk(nk; j), k �= j ;
(R3.2) R[(j, n); (j, n + ej )] = λj (nj ; j)γj (nj );
(R3.3) R[(j, n); (j, n − ek)] = μk(nk, k) 1{nk≥1};
(R3.4) R[(j, n); (j, n + ek→l )] = βkl(nk, nl; j) 1{nk≥1}, k �= j �= l �= k;
(R3.5) R[(j, n); (j, n + ej→l )] = θjl(nj , nl) 1{nj ≥1}, l �= j ;
(R3.6) R[(j, n); (j, n + ek→j )] = θkj (nk, nj )γj (nj ) 1{nk≥1}, k �= j ;
(R3.7) R[(j, n); (j ′, n)] = [γj (nj )]−1τjj ′(n), j �= j ′.

Let us comment on the form of these rates. As one can see, we take into account the number
of tasks in related sites and the position of the DC. To start with, we deal in (R3.1)–(R3.7) with
values λi(n; j) and μi(n; j), n ∈ Z+, i, j ∈ �. For i �= j , values λi(n; j), μi(n; j) give the
intensities of exogenous arrival and exit of tasks, depending on i, the site location, n(= ni),
the current number of tasks at the site, and on j , the current loaded site. For i = j , μj (n; j)

yields an exit intensity from a loaded site while λj (n; j) represents a nominal arrival intensity
which will be modified via a gauge function γj (n). Examples are

λi(n; j) = λU 1{n<C}, μi(n, j) = μU min[n, K], j �= i,

λj (n; j) = λL 1{n<C}, μj (n; j) = μL min[n, K],
where λU, λL, μU, μL, C, and K are positive constants (which can be made by varying the site)
with ‘U’ and ‘L’ denoting unloaded and loaded. It means that the arrival at a given (unloaded)
site is blocked if the number of tasks reaches C, and the pre-exit service is done by a K-server
device, with intensities depending on the site.

For simplicity, we assume that

sup[λi(n; j) : n ≥ 0, i; j ∈ �] < +∞, inf[μi(n; j) : n ≥ 1, i; j ∈ �] > 0,

and that λi(n; j) > 0 if λi(n + 1; j) > 0. Throughout, we also set

λi (0; j) = μi (0; j) = 1, (3.3)

λi (n; j) =
∏

0≤m<n

λi(m; j), μi (n; j) =
∏

1≤m≤n

μi(m; j), n > 0. (3.4)

We also work with values γi(n) ≥ 0, i ∈ �, n ∈ Z+, assuming that γi(0) = 1 and γi(n) > 0
if γi(n + 1) > 0. These values are used to modify intensities of task arrival and jump at loaded
site j . Namely,

γj (0) = 1, γj (n) = eϕ(j)

n
or γj (n) = neϕ(j), n ≥ 1,
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where ϕ(j) is a given real parameter depending upon j . Next, we let, again throughout,

γi (0) = 1, γi (n) =
∏

0≤m<n

γi(m), n ≥ 1. (3.5)

Furthermore, the intensities βik depend on j and ni , nk , and so we can write B(n; j) =
(βik(ni, nk; j)). Consequently, we modify the symmetry assumptions in (2.1). For i �= k,

λi(ni − 1; j)

μi(ni; j)
βik(ni, nk; j) = λk(nk; j)

μk(nk + 1; j)
βki(ni + 1, nk − 1; j) (3.6)

and set βii(ni, ni; j) = 0. Similar conditions are imposed on array θ(n; j) = (θik(ni, nk; j)).
For i �= k,

λi(ni − 1; j)

μi(ni; j)
θik(ni, nk; j) = λk(nk; j)

μk(nk + 1; j)
θki(nk + 1, ni − 1; j) (3.7)

and θii(ni, ni; j) = 0.
Finally, intensities τik depend upon n yielding an array T (n) = (τik(n), i, k ∈ �). In this

section we assume that τii(n) = 0 and for i �= k and n = (nq, q ∈ �) ∈ Z
�+,

τik(n)
∏
q∈�

λq(nq; i)

μq(nq; i)
= τki(n)

∏
q∈�

λq(nq; k)

μq(nq; k)
. (3.8)

We continue referring to (3.6)–(3.8) as symmetry conditions; one of our primary future tasks
should be their replacement with less restrictive assumptions.

In Theorem 3.2 we assume that conditions (3.6)–(3.8) hold (these conditions will be recast
in Section 4 in a more general situation) and suppose that arrays B(n; j), θ(n; j), and T (n)

have off-diagonal entries greater than 0. (We keep referring to this property as irreducibility.)
The subcriticality condition for the unloaded and loaded site reads

Uij :=
∑
n∈Z+

λi (n; j)

μi (n; j)
< +∞ for all i, j ∈ �, i �= j, (3.9)

Lj :=
∑
n∈Z+

λj (n; j)γj (n)

μj (n; j)
< ∞ for all j ∈ �. (3.10)

Theorem 3.2. Under (3.9) and (3.10), the MP on � × Z
�+ with generator R = (R[(j, n); (j ′,

n′)]) as in (R3.1)–(R3.7) is PRR. The SP π(j, n), of having the DC at site j and nq tasks at
q ∈ �, is of the form

π(j, n) = 1

��

∏
q∈�

λq(nq; j)

μq(nq; j)
γj (nj ), j ∈ �, n = (nq) ∈ Z

�+ (3.11)

with �� = ∑
j∈� Lj

∏
i∈�\{j} Uij . Here, �� is the partition function of the model.

Proof. Probabilities π(j, n) from (3.11) and rates R[(j, n), (j ′, n′)] from (R3.1)–(R3.7)
satisfy the DBEs (3.2a)–(3.2e). In fact, after omitting the factor 1/�� and canceling common
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terms in
∏

i∈�(λi (ni; j)/μi (ni; j)), the DBEs are again verified with the help of symmetry
conditions. For j ′, j, k, l ∈ �, with k �= j �= l �= k, j �= j ′,

γj (nj )λk(nk; j) = λk(nk; j)γj (nj )

μk(nk + 1; j)
μk(nk + 1; j),

γj (nj )λj (nj ; j)γj (nj ) = λj (nj ; j)γj (nj + 1)

μj (nj + 1; j)
μj (nj + 1; j),

λk(nk − 1; j)

μk(nk; j)
γj (nj )βkl(nk, nl; j) = λl(nl; j)γj (nj )

μl(nl + 1; j)
βlk(nl + 1, nk − 1; j), nk ≥ 1,

λj (nj − 1; j)γj (nj )

μj (nj ; j)
θjk(nj , nk; j) = λk(nk; j)γj (nj − 1)

μk(nk + 1; j)
θkj (nk + 1, nj − 1; j)

× γj (nj − 1), nj ≥ 1,

γj (nj )γj (nj )
−1τjj ′(n) = γj ′(nj ′)γj ′(nj ′)−1τj ′j (n).

As before, the process is PR under the irreducibility assumption. �
3.3. A closed-network version

This version arises when the number of tasks in the network remain fixed. Correspondingly,
we drop the three first rates in (R3.1)–(R3.7), i.e.

(R3.4) R[(j, n); (j, n + ek→l )] = βkl(nk, nl; j) 1{nk≥1}, k �= j �= l,

(R3.5) R[(j, n); (j, n + ej→l )] = θjl(nj , nl) 1{nj ≥1},

(R3.6) R[(j, n); (j, n + ek→j )] = θkj (nk, nj )γj (nj ) 1{nk≥1},

(R3.7) R[(j, n); (j ′, n)] = [γj (nj )]−1τjj ′(n), j �= j ′.

In Theorem 3.3 we assume a modification of condition (3.8):

τjj ′(n) = τj ′j (n). (3.12)

Theorem 3.3. Fix N , the number of tasks in the network. Given n ∈ Z
�+, set |n| = ∑

s∈�ns .
The MP on {(j, n) ∈ �× Z

�+ : |n| = N} with generator R = (R[(j, n); (j ′, n′)]) as in (R3.4),
(R3.5), (R3.6), and (R3.7) is PRR. The SPs π(j, n) take the form

π(j, n) = 1{|n|=N}
�N,�

γj (nj ),

where �N,� = ∑
n=(ns)∈Z

�+ : |n|=N

∑
l∈� γl (nl).

Proof. Again, we use the DBEs verified with the help of the corresponding symmetry
conditions

π(j, n)R[(j, n); (j, n + ei→k)] = π(j, n + ei→k)R[(j, n + ei→k); (j, n)],
i �= j �= k, ni > 0,

π(j, n)R[(j, n); (j, n + ej→k)] = π(j, n + ej→k)R[(j, n + ej→k); (j, n)],
j �= k, nj > 0,

π(j, n)R[(j, n); (j ′, n)] = π(j ′, n)R[(j ′, n); (j, n)], j �= j ′. �
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4. Simple exclusion in a Jackson-type environment

4.1. A closed–open network

The simple exclusion model was introduced in [20] (where the corresponding term was
coined). The model was extensively studied thereafter: see [13]–[15]. Here, the state of the
MP is a pair (y, n), where y = (ys, s ∈ �) ∈ {0, 1}� and n = (ni, i ∈ �) ∈ Z

�+. Let us
set |y| = ∑

s∈�ys . We also write j ∈ y when yj = 1, and j �∈ y when yj = 0. In the case
of a closed–open network, the sum M = |y| remains constant. The rates (now denoted by
R[(y, n); (y′, n′)]) are specified as

(R4.1) R[(y, n); (y, n + ep)] = λp(np; y)[γp(np)]yp ;
(R4.2) R[(y, n); (y, n − ep)] = μp(np; y) 1{np≥1};
(R4.3) R[(y, n); (y, n + ek→l )] = βkl(nk, nl; y);
(R4.4) R[(y, n); (y, n + ei→j )] = εij (ni, nj ; y);
(R4.5) R[(y, n); (y, n + ei→l )] = θil(ni, nl; y);
(R4.6) R[(y, n); (y, n + ek→j )] = θkj (nk, nj ; y)γj (nj );
(R4.7) R[(y, n); (y + ej→j ′

, n)] = [γj (nj )]−1τjj ′(n; y);
assuming

(i) i �= j, i, j ∈ y, k �= l, k, l, j ′ �∈ y, and

(ii) ni, nk ≥ 1.

Here, we deal with intensities λ•(·; y) and μ•(·; y) depending on y. Such a generalization
is extended to arrays B(n; y) = (βkl(nk, nl; y)), θ(n; y) = (θkl(nk, nl; y)), and T (n, y) =
(τjj ′(n; y)). We assume symmetry conditions similar to (3.6)–(3.8). For j ∈ y and k �=
l, k, l, j ′ �∈ y,

λk(nk − 1; y)

μk(nk; y)
βkl(nk, nl; y) = λl(nl; y)

μl(nl + 1; y)
βlk(nl + 1, nk − 1; y), nk ≥ 1, (4.1)

λj (nj − 1; y)

μj (nj ; y)
θjk(nj , nk; y) = λk(nk; y)

μk(nk + 1; y)
θkj (nk + 1, nj − 1; y), nj ≥ 1, (4.2)

and (see (3.3) and (3.4))

τjj ′(n; y)
∏
q∈�

λq(nq; y)

μq(nq; y)
= τj ′j (n; y + ej→j ′

)
∏
q∈�

λq(nq; y + ej→j ′
)

μq(nq; y + ej→j ′
)
. (4.3)

We also have a new collection of jump rates E(n; y) = (εij (ni, nj ; y)) satisfying the
following symmetry property. For i �= j, i, j ∈ y, and ni ≥ 1,

λi(ni − 1; y)γi(ni − 1)

μi(ni; y)
εij (ni, nj ; y) = λj (nj ; y)γj (nj )

μj (nj + 1; y)
εji(nj + 1, ni − 1; y). (4.4)

Until the end of Section 4 we work with irreducible collections B(n; y), θ(n; y), E(n; y),

and T (n; y). Furthermore, assumptions (4.1)–(4.4) are adopted in Sections 4.1 and 4.2.
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The interpretation is that we have a 1-0 configuration y of loaded sites occupied by DCs, with
a total number of DCs M; each of them influences task arrivals and task jumps as indicated,
independently for different sites. In addition, each DC can jump from a loaded to an unloaded
site, again independently.

With γj (n) as in (3.5), the SPs π(y, n) can be expressed as

π(y, n) = 1{|y|=M}
��,M

∏
q∈�

λq(nq; y)

μq(nq; y)

∏
j∈� : yj =1

γj (nj ) (4.5)

with partition function

��,M =
∑

y=(ys )∈{0,1}� : |y|=M

∏
r : yr=1

Lr(y)
∏

l : yl=0

Ul(y), M ≤ # �,

and

Ul(y) =
∑
n∈Z+

λl (n; y)

μl (n; y)
, Lr(y) =

∑
n∈Z+

λr (n; y)γr (n)

μr (n; y)
. (4.6)

The subcriticality conditions emerging from (4.6) are, for all y ∈ {0, 1}� with |y| = M ,

Ul(y) < +∞, Lj (y) < +∞ for all l, j ∈ � (4.7)

with yl = 0 and yj = 1.

Theorem 4.1. The MP with generator R = (R[(y, n); (y′, n′)]) as in (R4.1)–(R4.7) on state
space {(y, n) ∈ {0, 1}� × Z

�+ : |y| = M} is PRR. The SPs π(y, n) are given by (4.5).

Proof. As before, the proof is based on DBEs. These are now as follows. For j, j ′, k, l ∈ �,
with k �= l,

π(y, n)R[(y, n); (y, n + ek)] = π(y, n + ek)R[(y, n + ek); (y, n)], k �∈ y, (4.8a)

π(y, n)R[(y, n); (y, n + ej )] = π(y, n + ej )R[(y, n + ej ); (y, n)], j ∈ y, (4.8b)

π(y, n)R[(y, n); (y, n + ek→l )] = π(y, n + ek→l )R[(y, n + ek→l ); (y, n)],
yk = yl, nk ≥ 1, (4.8c)

π(y, n)R[(y, n); (y, n + ej→k)] = π(y, n + ej→k)R[(y, n + ej→k); (y, n)],
j ∈ y, k �∈ y, nj ≥ 1, (4.8d)

π(y, n)R[(y, n); (y + ej→j ′
, n)] = π(y + ej→j ′

, n)R[(y + ej→j ′
, n); (y, n)],
j ∈ y, j ′ �∈ y. (4.8e)

The verification is still direct. For definiteness, we show the equation emerging in (4.8c), when
k, l ∈ y (other cases have been effectively considered earlier). Upon omitting the factor 1/��

and canceling common terms in the products

∏
j∈� : yj =1

γj (nj ) and
∏
q∈�

λq(nq; j)

μq(nq; j)
,

this equation becomes (4.4). �
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4.2. An open–open network

Now the rates (R4.1)–(R4.7) are complemented with

(R4.8) R[(y, n); (y + ek, n)] = ξkγk(nk) 1{yk=0}, arrival of a DC at site k;

(R4.9) R[(y, n); (y − ei , n)] = ηi 1{yi=1}, exit of a DC from site i.

Here, ξk > 0 and ηi > 0 do not depend on n or y. (This assumption can be generalized but a
certain independence should be maintained.) Furthermore, in this section we assume that (4.1)
holds. In addition, we assume here that, for all n ∈ Z

�+, the product

V (n) =
∏
q∈�

λq(nq; y)

μq(nq; y)
(4.9)

does not depend on configuration y ∈ {0, 1}�. Accordingly, (4.3) has to be replaced with

τjj ′(n; y)
ξj

ηj

= τj ′j (n; y + ej→j ′
)
ξj ′

ηj ′
, j ∈ y, j ′ �∈ y. (4.10)

The SPs π(y, n) then become

π(y, n) = V (n)

��

∏
j∈� : yj =1

ξjγj (nj )

ηj

. (4.11)

Here,

�� =
∑

y∈{0,1}�

∑
n∈Z

�+

V (n)
∏

j∈� : yj =1

ξjγj (nj )

ηj

=
∑

y∈{0,1}�

∏
r:yr=1

ξrLr(y)

ηr

∏
l∈� : yl=0

Ul(y),

Lr(y), and Ul(y) are as in (4.6). The subcriticality condition reads �� < ∞, or

Ul(y) < +∞, Lr(y) < +∞ for all y ∈ {0, 1}� (4.12)

and l, r ∈ � with yl = 0 and yr = 1, and can be treated as a slight modification of (4.7).

Theorem 4.2. Under (4.12), the MP on {0, 1}� ×Z
�+ with generator R = (R[(y, n); (y′, n′)])

as in (R4.1)–(R4.9), is PRR. The SPs π(y, n) are given by (4.11).

Proof. As before, we check the DBEs (4.8a)–(4.8e) completed with

π(y, n)R[(y, n); (y + ek, n)] = π(y + ek, n)R[(y + ek, n); (y, n)], k �∈ y. (4.13)

In view of (4.9), the latter holds. �
4.3. A closed–closed network

Here, we keep |y| and |n| fixed: |y| = M , |n| = N . The rates are as in (R4.3)–(R4.7). The
following conditions are assumed. For i �= j, i, j ∈ y and k �= l, k, l, j ′ �∈ y,

βkl(nk, nl; y) = βlk(nl + 1, nk − 1; y), (4.14)

θjk(nj , nk; y) = θkj (nk + 1, nj − 1; y), nk, nj ≥ 1, (4.15)

εij (ni, nj ; y)γi(ni − 1) = γj (nj )εji(nj + 1, ni − 1; y), ni ≥ 1, (4.16)
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and
τjj ′(n; y) = τj ′j (n; y − ej + ej ′

), (4.17)

which can be viewed as a modification of (4.1)–(4.4) and (3.12).
The SP distribution resembles (3.11):

π(y, n) = 1{|y|=M, |n|=N}
�N,�,M

∏
j∈�

[γj (nj )]yj , (4.18)

�N,�,M =
∑

y=(ys )∈{0,1}�,

n=(ns)∈Z
�+ : |y|=M,|n|=N

∏
l∈�

[γl (nl)]yl . (4.19)

Theorem 4.3. Given integer M, N ≥ 1, the MP on {(y, n) ∈ {0, 1}� × Z
�+ : |y| = M, |n| =

N} with generator R = (R[(y, n); (y′, n′)]) as specified in this subsection is PRR. The SPs
π(y, n) are given by (4.18) and (4.19).

Proof. Again by means of suitable DBEs (4.8a)–(4.8e), the proof is complete with the help
of (4.14)–(4.16). �
4.4. An open–closed network

In this version of the model, N , the number of tasks, is fixed, but the number of DCs
varies due to arrivals and exits. A part of the transition rates R[(y, n); (y′, n′)] come from
(R4.1)–(R4.7):

(R4.10) R[(y, n); (y, n + ek→l )] = βkl(nk, nl; y) 1{nk≥1}, k �= l, k, l �∈ y;
(R4.11) R[(y, n); (y, n + ei→j )] = εij (ni, nj ; y) 1{ni≥1}, i �= j, i, j ∈ y;
(R4.12) R[(y, n); (y, n + ej→l )] = θjl(nj , nl; y) 1{nj ≥1}, j ∈ y, l �∈ y;
(R4.13) R[(y, n); (y, n + ek→j )] = θkj (nk, nj ; y)γj (nj ) 1{nk≥1}, j ∈ y, k �∈ y;
(R4.14) R[(y, n); (y + ej→j ′

, n)] = [γj (nj )]−1τjj ′(n; y), j ∈ y, j ′ �∈ y.

In addition, we use the rates (R4.8) and (R4.9). The DBEs read, for i, j, j ′, k, l ∈ � with k �= l,
j ∈ y,

π(y, n)R[(y, n); (y, n + ek→l )] = π(y, n + ek→l )R[(y, n + ek→l ); (y, n)],
yk = yl, nk ≥ 1, (4.20a)

π(y, n)R[(y, n); (y, n + ej→k)] = π(y, n + ej→k)R[(y, n + ej→k); (y, n)],
k �∈ y, nj ≥ 1, (4.20b)

π(y, n)R[(y, n); (y + ej→j ′
, n)] = π(y + ej→j ′

, n)R[(y + ej→j ′
, n); (y, n)], j ′ �∈ y,

(4.20c)

π(y, n)R[(y, n); (y + ek, n)] = π(y + ek, n)R[(y + ek, n); (y, n)], k �∈ y. (4.20d)
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We now assume conditions (4.10) and (4.14)–(4.16). The SPs and subcriticality condition
read as

π(y, n) = 1{|n|=N}
�N,�

∏
q∈�

[
ξq

ηq

γq(nq)

]yq

, (4.21)

�N,� =
∑

y=(ys )∈{0,1}�,

n=(ns)∈Z
�+ : |n|=N

∏
q∈�

[
ξq

ηl

γq(nq)

]yq

< ∞. (4.22)

Theorem 4.4. Fix N ∈ Z+. If �N,� < ∞, the MP with generator R = (R[(y; n); (y′; n′)])
as above is PRR on state space {(y, n) ∈ {0, 1}� × Z

�+ : |n| = N} . The SPs are given by
(4.21) and (4.22).

Proof. The proof follows from using the DBEs, now from (4.20a)–(4.20d). �

5. A zero-range system in a Jackson-type environment

A zero-range modification arises when we allow the DCs to accumulate in sites i ∈ �. Here,
y = (ys, s ∈ �) ∈ Z

�+; we again set |y| = ∑
s∈� ys and write j ∈ y when yj ≥ 1 and l �∈ y

when yl = 0.

5.1. A closed–open network

In this section, M := |y| is a conserved quantity. The rates are similar to (R4.1)–(R4.7).
For i, j, k, l, p ∈ �,

(R5.1) R[(y, n); (y, n + ep)] = λp(np; y)[γp(np)]yp ;
(R5.2) R[(y, n); (y, n − ep)] = μp(np; y) 1{np≥1};
(R5.3) R[(y, n); (y, n + ek→l )] = βkl(nk, nl; y) 1{nk≥1}, k, l �∈ y, k �= l;
(R5.4) R[(y, n); (y, n + ei→j )] = εij (ni, nj ; y) 1{ni≥1}, i, j ∈ y, i �= j ;
(R5.5) R[(y, n); (y, n + ej→l )] = θjl(nj , nl; y) 1{nj ≥1}, j ∈ y, l �∈ y;
(R5.6) R[(y, n); (y, n + ek→j )] = θkj (nk, nj ; y)[γj (nj )]yj 1{nk≥1}, j ∈ y, k �∈ y;
(R5.7) R[(y, n); (y + ej→j ′

, n)] = [γj (nj )]−yj τjj ′(n; y)[γj ′(nj ′)]−yj ′ , j ∈ y, j ′ �= j.

Until the end of Section 5, we suppose that irreducibility of collections B(n; y), θ(n; y),
E(n; y), and T (n; y). In Sections 5.1 and 5.2, intensities εij (ni, nj ; y) are supposed to obey
the following. For all i �= j , i, j ∈ y,

λi(ni − 1; y)[γi(ni − 1)]yi

μi(ni; y)
εil(ni, nj ; y)

= λj (nj ; y)[γj (nj )]yj

μj (nj + 1; y)
εji(nj + 1, ni − 1; y), ni ≥ 1, (5.1)

which replaces (4.4). Conditions (4.1)–(4.3) remain in place in both Sections 5.1 and 5.2.
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The present model gives rise to SPs,

π(y, n) = 1{|y|=M}
��,M

∏
p∈�

λp(np; y)

μp(np; y)

∏
q∈�

[γq(nq)]yq , (5.2)

��,M =
∑

y=(ys )∈Z
�+ : |y|=M

∏
r : yr≥1

Cr(y)
∏

l : yl=0

Ul(y), (5.3)

and

Ul(y) =
∑
n∈Z+

λl (nl; y)

μl (n; y)
, Cr(y) =

∑
n≥0

λr (n; y)

μr (n; y)
γr (n)yr . (5.4)

The subcriticality conditions read as follows. For all y ∈ Z
�+ with |y| = M ,

Ul(y) < +∞, Cr(y) < +∞ for all l, r ∈ � (5.5)

with yl = 0 and yr ≥ 1.

Theorem 5.1. Under conditions (5.5), the MP on {(y, n) ∈ Z
�+ × Z

�+ : |y| = M} with gen-
erator R = (R[(y, n); (y′, n′)]) as in (R5.1)–(R5.7) is PRR. The SPs π(y, n) are given by
(5.2)–(5.4).

Proof. The proof follows by still using the DBEs, now for rates (R5.1)–(R5.7). The DBEs
are as in (4.8a)–(4.8e), and after cancellations are reduced to (4.1)–(4.3) and (5.1). �

5.2. An open–open network

In this model we allow both the tasks and DCs to arrive and depart. Correspondingly, the
rates (R5.1)–(R5.7) are complemented in a manner similar to (R4.8) and (R4.9):

(R5.8) R[(y, n); (y + ep, n)] = ξpγp(np);
(R5.9) R[(y, n); (y − ep, n)] = ηp 1{yp≥1} .

As in Section 4.2, we assume (4.1) and (4.2), and that (4.3) is replaced by (4.9). We also
assume (4.10) holds. (In (4.9), y ∈ {0, 1}� is replaced with y ∈ Z

�+, and in (4.10) the restriction
j ′ �∈ y is removed.) As in Section 5.1, condition (5.1) is also in place.

Assuming Ul(y) and Cl(y) as in (5.4), the SPs and subcriticality condition now read as

π(y, n) = �−1
�

∏
p∈�

λp(np; y)

μp(np; y)

∏
q∈�

[
ξq

ηq

γq(nq)

]yq

, (5.6)

�� =
∑

y=(ys )∈Z
�+

∏
r : yr≥1

Cr(y)
∏

l : yl=0

Ul(y) < ∞. (5.7)

Theorem 5.2. If �� < +∞, the MP on Z
�+ × Z

�+ with generator R = (R[(y, n); (y′, n′)])
as in (R5.1)–(R5.9) is PRR. The SPs π(y, n) are given by (5.6) and (5.7).

Proof. Using the DBEs again. The added equations (R5.8) and (R5.9) are treated similarly
to (4.13). �
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5.3. A closed–closed network

Let us now suppose that both |y| and |n| are fixed: |y| = M and |n| = N . The rates
are (R5.3)–(R5.7). In this section we assume conditions (4.14)–(4.16) and (4.17) hold, with
specification y ∈ {0, 1} replaced by y ∈ Z

�+ and condition j ′ �∈ y removed. The only exception
is that (4.16) is now replaced with

εij (ni, nj ; y)[γi(ni − 1)]yi = [γj (nj )]yj εji(nj + 1, ni − 1; y), i �= j, i, j ∈ y, ni ≥ 1.

(5.8)
The SP distribution mimics (4.18) and (4.19):

π(y, n) = 1{|y|=M,|n|=N}
�N,�,M

∏
j∈�

[γj (nj )]yj , (5.9)

�N,�,M =
∑

y=(ys ),n=(ns)∈Z
�+ :

|y|=M,|n|=N

∏
l∈�

[γl (nl)]yl . (5.10)

The above DBEs and symmetry conditions (including (5.8)) lead to Theorem 5.3.

Theorem 5.3. The MP on state space {(y, n) ∈ Z
�+ × Z

�+ : |y| = M, |n| = N} with generator
R = (R[(y, n); (y′, n′)]) as in (R5.3)–(R5.7) is PRR. The SPs π(y, n) are given by (5.9) and
(5.10).

5.4. An open–closed network

Here, as in Section 4.4, we only fix N . The rates follow (R4.8)–(R4.12) and consist of

(R5.10) R[(y, n); (y, n + ek→l )] = βkl(nk, nl; y) 1{nk≥1}, k �= l, k, l �∈ y;
(R5.11) R[(y, n); (y, n + ei→j )] = εij (ni, nj ; y) 1{ni≥1}, i �= j, i, j ∈ y;
(R5.12) R[(y, n); (y, n + ej→l )] = θjl(nj , nl; y) 1{nj ≥1}, j ∈ y, l �∈ y;
(R5.13) R[(y, n); (y, n + ek→j )] = θkj (nk, nj ; y)[γj (nj )]yj 1{nk≥1}, j ∈ y, k �∈ y;
(R5.14) R[(y, n); (y + ej→j ′

, n)] = [γj (nj )]−yj τjj ′(n; y)[γj ′(nj ′)]−yj ′ , j �= j ′, j ∈ y,

plus rates (R5.8) and (R5.9). As in Section 4.4, we now assume conditions (4.10) and (4.14)–
(4.16) hold, modified like the above (including (5.9)). The SPs and subcriticality condition
read as

π(y, n) = 1{|n|=N}
�N,�

∏
l∈�

[
ξl

ηl

γl (nl)

]yl

, (5.11)

�N,� =
∑

y=(ys ), n=(ns)∈Z
�+ : |n|=N

∏
l∈�

[
ξl

ηl

γl (nl)

]yl

< ∞. (5.12)

The DBEs in this case yield the following theorem.

Theorem 5.4. Fix N ∈ Z+ and consider the MP on {(y, n) ∈ Z
�+ × Z

�+ : |n| = N} with
generator R = (R[(y, n); (y′, n′)]) as in (R5.10)–(R5.14). If �N,� < ∞, assuming (5.11),
(5.12) it is PRR. The SPs are given by (5.11) and (5.12).

https://doi.org/10.1017/jpr.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.12


462 M. GANNON ET AL.

Acknowledgements

We thank the anonymous referee and V. Belitsky for corrections/suggestions and express
gratitude to the following institutions for hospitality and support: MG to the Coordination
for the Improvement of Higher Education Personnel (CAPES) and the National Counsel of
Technological and Scientific Development (CNPq); YS to the Institute of Mathematical and
Computer Sciences, University of São Paulo and the Department of Mathematics, Penn State
University; AY to the São Paulo Research Foundation (FAPESP), CNPq, and the Deptartment of
Pharmacy, Oregon State University. The research of E. Pechersky was carried out at the Institute
for Information Transmission Problems (IITP), Russian Academy of Science and funded by the
Russian Foundation for Sciences (project number 14-50-00150).

References

[1] Baskett, F., Chandy, K. M., Muntz, R. R. and Palacios, F. G. (1975). Open, closed and mixed networks
of queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248–260.
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