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Non-isolated drop impact on surfaces
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Upon impact on a solid surface, a drop expands into a sheet, a corona, which can
rebound, stick or splash and fragment into secondary droplets. Previously, focus
has been placed on impacts of single drops on surfaces to understand their splash,
rebound or spreading. This is important for spraying, printing, and environmental
and health processes such as contamination by pathogen-bearing droplets. However,
sessile drops are ubiquitous on most surfaces and their interaction with the impacting
drop is largely unknown. We report on the regimes of interactions between an
impacting drop and a sessile drop. Combining experiments and theory, we derive
the existence conditions for the four regimes of drop–drop interaction identified, and
report that a subtle combination of geometry and momentum transfer determines a
critical impact force governing their physics. Crescent-moon fragmentation is most
efficient at producing and projecting secondary droplets, even when the impacting
drop Weber number would not allow for splash to occur on the surface considered
if the drop were isolated. We introduce a critical horizontal impact Weber number
Wec that governs the formation of a sheet from the sessile drop upon collision with
the expanding corona of the impacting drop. We also predict and validate important
properties of the crescent-moon fragmentation: the extension of its sheet base and the
ligaments surrounding its base. Finally, our results suggest a new paradigm: impacts
on most surfaces can make a splash of a new kind – a crescent-moon – for any
impact velocity when neighbouring sessile drops are present.

Key words: aerosols/atomization, drops, drops and bubbles

1. Introduction and observations: ubiquity of non-isolated impacts
The outcome of the impact of a drop depends on its impacting energy and the

surface wetting properties. Upon impact on a solid surface, a drop expands into a
sheet, a corona, which can rebound, stick or splash and fragment into secondary
droplets (Rioboo, Marengo & Tropea 2002; Yarin 2006). Numerous studies have
focused on impacts of single drops on superhydrophobic surfaces to understand when
and how splash, rebound or coating occurs. This is important for spray-coating,
deicing, pesticide spraying (Zable 1977; Eggers & Villermaux 2008; Josserand &
Thoroddsen 2016), and for environmental and health processes such as erosion
(Furbish et al. 2007) or contaminant dissemination by secondary pathogen-bearing
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droplets (Bourouiba & Bush 2013; Bourouiba, Dehandschoewercker & Bush 2014;
Gilet & Bourouiba 2014, 2015; Scharfman et al. 2016). However, most natural and
indoor surfaces have average-wetting – neither superhydrophobic nor superhydrophilic
– properties and support sessile drops. The physics of a single drop impact on
most surfaces can be dramatically changed by the presence of adjacent sessile drops
(Sivakumar & Tropea 2002; Moreira, Moita & Panão 2010; Gilet & Bourouiba 2014;
Liang & Mudawar 2016). Yet, little attention has been paid to interactions between
impacting drops and sessile drops surrounding them on average-wetting surfaces
(Charalampous & Hardalupas 2016). Instead, the focus has been on the impact of
isolated drops on surfaces, predicting, for example, the maximum radius of expansion
of the corona they form upon impact, rmax, and the number of corrugations, N,
that appear on the rim surrounding such expanding corona. Here, we focus on the
neglected case of drop impact on surfaces of average wetting that hold sessile drops.

1.1. Types of drop–drop impact
Two types of impact on a leaf supporting a sessile drop are illustrated experimentally
in figure 1(a,b). A rain or irrigation spray drop, of radius r1, can either impact a
sessile drop of radius r2 head-on, at its centre (figure 1a), or off-centre, leading to a
crescent-moon fragmentation (figure 1b). When off-centre, with an interdrop distance
d, the impacting drop viewed from the bottom (figure 2c) spreads into a circular
corona which collides with the sessile drop (figures 1b, 2c). Viewed from the side,
the collision results in lift of the sessile drop from the surface to form an arched
sheet (figures 1b, 2b) expanding in the air with a profile shaped as a crescent-moon
(figure 2a), which eventually fragments into droplets. Viewed from below, quickly
following the lift of the sessile drop, two filaments emerge at the edge of the foot of
the crescent-moon sheet and grow (figures 1a and 2c). A few studies have reported
the interaction of coronas (Barnes et al. 1999) or head-on collisions of trains of drops
on surfaces (Yarin & Weiss 1995; Fujimoto, Ito & Takezaki 2002).

However, the probability of an off-centre impact such as in figure 2(a–c) is much
higher than that of a head-on impact. Hence, crescent-moon fragmentation is a more
frequent and efficient source of secondary droplets in spray- or rain-induced foliar
disease transmission (Gilet & Bourouiba 2015). Indeed, common leaves have average
wetting – neither superhydrophobic nor superhydrophilic – and support sessile drops
(Gilet & Bourouiba 2014). The physics of the crescent-moon generalizes beyond
impacts on leaves and provides an explanation of difficulties in achieving uniform
coatings or suppressing undesired secondary droplet ejection from most common
surfaces of average wetting (figure 2a). Even when the impacting drop is below
the splash limit, the presence of a sessile drop in the vicinity can still generate
undesired ejection of secondary droplets (figure 2a–c), thus making it important to
gain an understanding of this recently discovered phenomenon. Before discussing our
observations further, we start by reviewing the body of literature on isolated drop
impact on surfaces, with a particular focus on the maximum corona radius rmax they
reach, and the number of corrugations N observed on the rim of their corona.

1.2. Maximum corona radius and corrugations: prior literature results
We consider the impact of an isolated drop of radius r1 with normal impact Weber
number We = ρu2

1(2r1)/σ , where r1 is the radius of the impacting drop, u1 is the
impact speed, and ρ, ν and σ are the density, kinematic viscosity and surface
tension of the drop respectively. Upon impact, the drop expands in the form of a
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0 ms

(a)

5 ms 10 ms

0 ms 3 ms 6 ms

(b)

FIGURE 1. (Colour online) Drop–drop interactions on a leaf. (a) A drop hits a sessile drop
right at its centre, forming a head-on collision. (b) A drop hits a sessile drop off-centre,
leading to a crescent-moon with universal sheet lift and growth of a pair of bounding
ligaments. The scale bar is 5 mm.

(a) (c)

(b)

FIGURE 2. (Colour online) Crescent-moon formation. (a) From impacting clear drop, to
lift of the blue sessile drop, to its stretching and onset of fragmentation. Both drops are
made of water with density ρ = 1.0× 103 kg m−3, viscosity ν = 1.0× 10−6 m2 s−1 and
surface tension σ = 72 mNm−1. The radii are r1 = 2.24 mm and r2 = 1.95 mm for the
impacting and sessile drop respectively. (b) Side view of the crescent-moon formation
shown in (a), displaying the stretching of the sessile drop into an arched sheet as it lifts
from the surface. (c) Bottom view of the expanding corona of the impacting drop lifting
the sessile drop, at distance d = 5.65 mm from impact, and emergence of the pair of
ligaments bounding the base of the crescent-moon sheet. Here, rmax is the maximum radius
of the corona and λ is the average wavelength (distance) between rim corrugations at the
maximum radius. The time interval is 0.12 ms and the scale bar is 5 mm.
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corona which reaches a maximum radius rmax (figure 2c). Two particular regimes
of such corona spreading have been predominantly discussed in the literature
(table 1): a viscous dominated regime and a capillary dominated regime. In the
capillary dominated regime, viscous effects are neglected. In this first regime, lossless
conversion of the impacting drop kinetic energy to the corona surface energy is
assumed to set rmax, leading to Rmax = rmax/r1 ∼ We1/2 first derived by Madejski
(1976). Lastakowski et al. (2014) more recently reported Rmax ∼ We1/2 based on
experiments on superheated surfaces which reduce viscous stresses. Clanet et al.
(2004) proposed a scaling Rmax ∼We1/4 on superhydrophobic surfaces based on mass
conservation and considering an average corona thickness h=

√
σ/ρa, with a= u2

1/d1
the impact acceleration and d1 the impacting drop diameter. The Rmax observed
in their experiments was smaller than their prediction. These authors conjectured
that the missing energy was converted to internal circulation in the corona. In the
viscous regime, surface tension is neglected. In this second regime, Madejski (1976)
and Chandra & Avedisian (1991) predicted Rmax ∼ Re1/5 by considering full viscous
dissipation of the impacting drop kinetic energy, where Re= (2r1)u1/ν is the Reynolds
number and ν is the kinematic viscosity of the fluid. This scaling is also consistent
with the experimental data reported by Clanet et al. (2004).

Eggers et al. (2010) attempted to combine the viscous and capillary dominated
regimes and proposed a unified expression Rmax=Re1/5f (P), with P=We Re−2/5 when
energy conservation holds as in Madejski (1976) or P=We Re−4/5 when impact inertia
is dominant as in Clanet et al. (2004). More recently, Laan et al. (2014) collapsed
all of the experimental data available on Rmax from both the viscous and capillary
dominated regimes and also proposed a unified scaling as

Rmax = Re1/5f (P), with P=We Re−2/5, (1.1)

where the empirical expression of f (P) was proposed using the Padé approximant,

fc(P)=
P1/2

A+ P1/2
, (1.2)

with fitting parameter A = 1.24 ± 0.02. Lee et al. (2016) extended the Padé
approximant of Laan et al. (2014) by incorporating surface wetting via a contact
angle θe, leading to R̃max = (R2

max − R2
v→0)

1/2, where Rv→0 is the drop dimensionless
radius when deposited (without inertia) on the surface,

R̃max = fc(We)=
We1/2

B+We1/2 , (1.3)

with fitting parameter B= 7.6.
Scheller & Bousfield (1995) considered drop impacts on a range of materials from

glass to plastic and for the widest range of Weber number from 50 to 2500. The initial
fit to their data for maximum radius led to

Rmax = 0.61(Re2Oh)1/6 = 0.61 Re1/5(We Re−2/5)1/6, (1.4)

which can also be expressed as Rmax = Re1/5f (P) in the form proposed by Eggers
et al. (2010). Scheller & Bousfield (1995) also discussed a prediction of Rmax based
on a ‘squeeze flow model’, assuming that the impacting drop squeezes in the form
of a cylindrical column. This geometry, combined with conservation of mass and
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Study N Liquid Surface We Re

Marmanis &
Thoroddsen (1996)

∼(Re1/2 We1/4)3/4 =

(
We
Oh

)3/8
Water Stiff paper 100–4000 1100–25 000

Bhola & Chandra
(1999)

∼Re1/4 We1/2
=

We5/8

Oh1/4 Paraffin
wax

Aluminium 25–750 200–1150

Mehdizadeh,
Chandra &
Mostaghimi (2004)

∼We1/2 Water Stainless
steel

100–50 000 5500–65 000

TABLE 2. Summary of literature scaling laws proposed to quantify the number of rim
corrugations, N, surrounding the corona of a single impacting drop.

momentum, and considering viscous stress and surface tension as external forces,
leads to

Rmax = (Re2Oh)0.123, (1.5)

which is close to the best fit of their experimental data (1.4). In summary, we can
re-express (1.1), (1.3) and (1.4) as

Rmax =
We1/2

1.24+We2/5Oh1/5 , R̃max =
We2/5Oh−1/5

7.6+We1/2 , Rmax = 0.61
(

We
Oh

)1/6

(1.6a−c)

respectively. These expressions are summarized with additional details in table 1.
In the literature, the number of corrugations, N, at maximum corona radius rmax was

linked to the destabilization wavelength of the rim, N = 2πrmax/λ (see figure 2c for
illustration of λ). A summary of prior literature predictions of N is given in table 2.
In particular, Marmanis & Thoroddsen (1996) first conducted an experimental study
of the corrugations for drop impacts on paper and found N to scale with the ‘impact
Reynolds number’ ReI = u1δ/ν, where δ=

√
ντc is the boundary layer thickness based

on the drop free oscillation period, essentially the capillary timescale τc =
√
ρ8r3

1/σ ,
yielding

N = B(ReI)
3/4
= B(Re1/2We1/4)3/4 = B

(
We
Oh

)3/8

, (1.7)

where the coefficient B was not explicitly given by the authors.
Bhola & Chandra (1999) estimated N = 2πrmax/λ, with rmax/r1 ∼ Re1/4 proposed in

their study, with λ= 2π
√

3σ/aρ the wavelength characteristic of the Rayleigh–Taylor
instability with a characteristic acceleration a= u2

1/2r1, leading to

N =
Re1/4We1/2

4
√

3
=

We5/8

4
√

3 Oh1/4
. (1.8)

Mehdizadeh et al. (2004) conducted a theoretical study of the temporal evolution
of the corrugations by considering small initial perturbations of the corona rim and
using a linear Rayleigh instability analysis. They inferred a decreasing value of N with
corona expansion, but did not express N at maximum corona radius explicitly.

In this study, combining experiments and theory, we show that an impacting drop
that would not splash in isolation, but coat the surface, can still lead to secondary
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r1 (mm) r2 (mm) d (mm) u1 (m s−1) We Re (×104) Oh (×10−3) No. of
exp.

2.36± 0.06

1.12∼ 3.36 0.4∼ 10.3 2.31± 0.04 371± 3 1.13± 0.01

1.75± 0.04

31
1.10∼ 2.88 2.5–12.5 3.35± 0.04 778± 4 1.61± 0.04 31
1.22–2.86 1.2–14.5 4.24± 0.03 1226± 8 1.95± 0.07 52
1.34–3.30 1.7–17.8 5.28± 0.06 1926± 28 2.48± 0.08 53
1.23–3.10 0.4–18.0 5.91± 0.08 2405± 30 2.81± 0.09 57

TABLE 3. The experimental conditions for the water drop–drop impact experiments.
Deionized water was used for both the falling drops and the sessile drops with density,
kinematic viscosity and surface tension ρ = 1.0× 103 kg m−3, ν = 1.0× 10−6 m2 s−1 and
σ = 72 mN m−1 respectively. The Weber number We=ρu2

1(2r1)/σ , Reynolds number Re=
(2r1)u1/ν and Ohnesorge number Oh=µ/

√
ρσ(2r1) involved are also given. The averaged

wetting of the surface used was similar to that of plant leaves supporting crescent-moon
fragmentation (figure 1).

droplets in the presence of a sessile drop. Our focus is on the impact of rain or
irrigation drops on intermediate-wetting surfaces supporting sessile contaminated
drops with potential for secondary contaminated drop ejection. We revisit the
predictions of maximum corona radius Rmax and corrugations N for impacts on
average-wetting surfaces. We identify four regimes of drop–drop interaction: head-on
collision, crescent-moon fragmentation, touch-and-flop collision and no collision
(§ 2). We combine experiments and theory to derive the conditions under which these
regimes occur, and find that a subtle combination of geometry and momentum transfer
determines a critical drop–drop impact force governing the existence and inter-regime
boundaries and the physics of the crescent-moon new splash phenomenon (§ 3).
We introduce a horizontal critical collision Weber number Wec which determines
when crescent-moon fragmentation can occur. The critical collision Weber number
Wec is defined based on the force per unit length upon collision of the corona rim
on the sessile drop (§§ 3.3.1–3.3.2). Finally, we also predict key properties of the
crescent-moon fragmentation: the extension of its base (§ 4) and the length of the
pair of ligaments always surrounding its base (§ 5). These properties are important
for study of the highly efficient fragmentation process that is the crescent-moon (§ 6).

2. Experimental set-up and observations: regimes of drop–drop interaction
We conducted systematic collision experiments involving a water drop impacting

in the vicinity of sessile drops of increasing viscosity (from water to pure glycerol),
with properties summarized in tables 3 and 4. The impacts were recorded by two high-
speed cameras from side and bottom views (figures 4 and 2). An impacting drop of
radius r1 was released from a height of 0.3–2.2 m onto an impact point at distance d
from the centre of a sessile drop of radius r2 (table 3). The sessile drop was deposited
on surfaces of average wetting with static equilibrium contact angles 45◦ 6 θE 6 82◦.
Upon expansion of the impacting drop, the expanding corona grows and reaches a
maximum radius rmax (figure 2c). For every impacting drop speed u1 and size r1, the
distance d between the impact point and the centre of the sessile drop and the size
of the sessile drop r2 were varied. Our large set of experiments allowed us to identify
four drop–drop interaction regimes: head-on collision, crescent-moon fragmentation,
touch-and-flop collision and no collision (figure 3a–h).
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Head-on Crescent-moon

No collisionTouch-and-flop

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 3. (Colour online) The four possible scenarios of drop–drop interaction. In each
quadrant, the upper two panels are imaged from below, while the lower panels are imaged
simultaneously from the side. The red impacting drop radius is r1 = 2.27, 2.29, 2.31,
2.31 mm for (a), (c), (e), (g) respectively. The blue sessile drop radius is r2= 2.29, 2.24,
2.60, 2.16 mm for (a), (c), (e), (g) respectively. The drop–drop distance is d= 2.51, 6.85,
11.51, 17.68 mm for (a), (c), (e), (g) respectively.

r1 (mm) r2 (mm) d (mm) u1 (m s−1) Material of
sessile drops

Density ρ
(×103 kg m−3)

Viscosity ν
(×10−3 m2 s−1)

No. of
exp.

2.33± 0.04

1.63–3.22 6.1–13.1

4.06± 0.06

Water 1.000 0.001 20
1.55–2.53 6.1–12.2 Mixture 1 1.131 0.008 15
1.58–3.26 4.6–12.4 Mixture 2 1.175 0.027 15
1.94–2.61 4.8–10.7 Glycerol 1.264 1.414 10
2.51–3.95 6.7–14.5 Plastic (solid) 1.2 ∞ 10

TABLE 4. The experimental parameters used for drop–drop collisions with sessile drops of
increasing viscosity and with a solid drop-analogue. Mixture 1 is made of a 1 : 1 volume
ratio of water to glycerol. Mixture 2 has a 1 : 2 volume ratio. The density, kinematic
viscosity and surface tension of the falling drops are the same as those given in table 3,
with corresponding We = 1063 ± 26, Re = (1.89 ± 0.04) × 104 and Oh = (1.73 ± 0.03) ×
10−3.
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High-speed
camera

High-speed
camera

Syringe pump

d

FIGURE 4. (Colour online) Schematic of the experimental set-up. The inset shows the
scheme of the impact phenomenon viewed from the top. The red circle indicates the
impacting drop and the blue circle the sessile drop. The radii of the impacting drop and
the sessile drop are r1 and r2 respectively. The centre-to-centre offset between the sessile
drop and the impact point is d; rmax is the maximum radius of the expanding corona.

3. Boundary between the regimes of drop–drop interaction
3.1. Head-on collision

We capture the transition between the four regimes (figure 3) with only two
parameters: the impact Weber number We = ρu2

1(2r1)/σ and the dimensionless
drop–drop distance D = (d − r2)/r1. If the impacting drop contacts the sessile drop
prior to touch-down on the surface, then a head-on drop–drop interaction occurs
(figures 1a and 3a,b). This regime emerges for drop–drop offsets d that are smaller
than the sum of the radii of the two drops, namely for

d< r1 + r2 or D< 1. (3.1a,b)

Depending on the relative drop sizes, the impact is analogous to (i) an isolated drop
impact on a surface, where the expanding corona of the impacting drop seamlessly
swallows the sessile drop (r1/r2� 1), (ii) an impact on thin film (r1/r2� 1) or (iii) an
asymmetric non-isolated drop impact on a solid surface (r1/r2 ∼ O(1)), as seen in
figures 1(b) and 3(a,b).

3.2. No collision and maximum corona radius
If the impacting drop corona is smaller than the drop–drop distance, no collision
occurs, making this an isolated drop impact. This scenario (figure 3g,h) is captured
by

d> rmax + r2 or D>
rmax

r1
= Rmax, (3.2a,b)

where Rmax is the dimensionless spreading of the impacting drop. A number of
prior studies have examined isolated drop impacts on solid surfaces and aimed to
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FIGURE 5. (Colour online) Comparison of our measured isolated drop Rmax= rmax/r1 as a
function of impact Weber number We (black dots) with literature predictions summarized
in table 1. Our data, obtained with the conditions summarized in table 5, are best captured
by Rmax = 0.61(We/Oh)1/6 from Scheller & Bousfield (1995). Here, the Weber number
We= ρu2

1(2r1)/σ and the Ohnesorge number Oh=µ/
√
ρσ(2r1).

r1 (mm) u1 (m s−1) We Re (×104) Oh (×10−3) No. of exp.

2.29± 0.01

1.96± 0.01 245± 2 0.89± 0.01

1.74± 0.01

15
2.54± 0.02 409± 1 1.16± 0.02 15
2.93± 0.03 549± 8 1.35± 0.05 15
3.72± 0.04 884± 7 1.71± 0.07 15
4.42± 0.02 1250± 5 2.03± 0.01 15
5.03± 0.05 1607± 30 2.30± 0.03 15
5.53± 0.08 1978± 44 2.55± 0.04 15

TABLE 5. Experimental conditions and number of experiments in the present study used
to quantify the maximum radius Rmax = rmax/r1 (§ 3.2) and the number of ligaments
N (figure 9) of the impacting drop expanding corona. Given our focus on the impact
of rain and irrigation drops, the density, kinematic viscosity and surface tension of the
impacting drops are those of water: ρ = 1.0 × 103 kg m−3, ν = 1.0 × 10−6 m2 s−1 and
σ = 72 mN m−1 respectively.

express Rmax = rmax/r1 as a function of the impact Weber and Reynolds numbers,
We= ρu2

1(2r1)/σ and Re= (2r1)u1/ν respectively (table 1 and § 1.2).
Given the disparities in prior literature predictions of maximum corona radius for

a range of eclectic surfaces and fluids, and our focus on impacts of water drops
on surfaces of average wetting relevant for irrigation or washing of crop and fresh
produce, we proceed to conduct more than a hundred isolated water drop impact
experiments to determine the relevant maximum radius on our surfaces (table 5). The
impacting drop viscosity µ, surface tension σ and size r1 are such that Oh= (1.74±
0.01)× 10−3 is fixed, while We ranges from 240 to 2020 (see table 5 for the full list
of parameters).

Figure 5 shows our experimental measurements of maximum corona radius Rmax
as a function of drop impact We. When compared with the literature (table 1), our
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FIGURE 6. (Colour online) Regime map of the outcome of drop–drop interaction as a
function of D= (d − r2)/r1, Rmax = rmax/r1 and We= ρu2

1(2r1)/σ . The collision threshold
Weber number Wec = 25 derived in the text is used to analytically derive the boundaries
between the regimes. All experimental values are found in tables 3–5. The boundaries
between the regimes are elucidated and derived one by one in § 3.

results are consistent with the scaling of Scheller & Bousfield (1995) and Laan et al.
(2014), and are best captured by Rmax∼We1/6 from Scheller & Bousfield (1995), who
conducted experiments over an analogous range of impact We and Re to our study
(tables 1 and 5). From figure 5, we obtain

Rmax =
rmax

r1
=CR We1/6, (3.3)

with CR = 0.61/Oh1/6
= 1.75 given (1.6) and Oh = 1.75 × 10−3, which is fixed here

(table 3). The experiments presented in this section allow us to fix the expression for
Rmax as (3.3) with CR = 1.75 for the remainder of this study.

3.3. Boundary between crescent-moon and touch-and-flop collision
Crescent-moon fragmentation and touch-and-flop collision can only exist for
1 < D < Rmax. Crescent-moon fragmentation occurs if the sessile drop is lifted and
transformed into an expanding arched sheet, ultimately fragmenting into secondary
droplets (figures 2a–c, 3c,d). The onset of the touch-and-flop collision is similar
to that of the crescent-moon, with an initial lift of the sessile drop; however, the
sessile drop remains a coherent bulk without topological change into a thin sheet.
This results in the sessile fluid being simply displaced to form another sessile drop
in the vicinity of the original one (figure 3e, f ). We summarize in figure 6 our results
and prediction of transition criteria between drop–drop interaction regimes in a phase
diagram of We versus D.

3.3.1. Physical picture and threshold impact force
To understand the more subtle transition between the crescent-moon and the

touch-and-flop collision, we consider the following. Upon impact with a given We,
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FIGURE 7. (Colour online) (a) Top view of the expanding corona, the contour of which
is detected using image processing, allowing us to deduce a radial expansion velocity
u=dr/dt, where r is the radius of the corona. This radius was determined by measurement
of the temporal evolution of the corona area A and r=

√
A/π. (b) The side view allows

us to measure the radius of the corona at the time of collision with the sessile drop, rc,
and to track the evolution of the thickness of the corona edge h (c). These side and
top views allow us to define a force of impact per unit arclength of corona, fc = ρhu2.
(d–f ) The time evolution of the dimensionless (d) corona radius R= r/r1, (e) radial speed
U= u/u1 and ( f ) edge thickness H= h/r1 for different Weber numbers. Here, T = t/τ is
the dimensionless time, with impact time τ = r1/u1.

the impacting drop expands into a corona. This expansion is decelerated by surface
viscous stresses and surface tension. As it decelerates, the force of impact with the
sessile drop along the way decreases with the distance of expansion r (figure 7a). The
impact We determines the radial speed of corona expansion u= dr/dt in addition to
its maximum extension rmax (figure 7b). The interplay of the corona expansion speed
u and the drop–drop offset d determines the force of impact between the corona
and the sessile drop. In particular, for a given impact We, the larger the interdrop
distance d is, the smaller the momentum transfer from the edge of the corona to its
neighbouring sessile drop upon impact is.

We can formalize this physical picture further by defining a horizontal collision
Weber number Wec characterizing the competition between the inertia of the corona
edge and the interfacial forces of the sessile drop. For a given impact We, there should
exist a critical collision distance, rc, such that r1+ r2< d− r2< rc< rmax, below which
Wec is high enough for the horizontal collision to impart high enough inertia to the
sessile drop to overcome capillarity, transforming the sessile drop into an expanding
sheet in the air. For an interdrop distance rc such that rc < d − r2 < rmax, this would
not be the case and only a touch-and-flop collision could occur.
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FIGURE 8. (Colour online) (a) The collision Weber number Wec as a function of the
dimensionless corona radius R. The collision Weber number Wec is the ratio of the rate
of change of momentum (collision force) per unit arclength ρu2h and surface tension σ .
(b) The critical distance above which crescent-moon fragmentation cannot occur, Rc, as a
function of the impact We and at which Wec = 25. Below the impacting drop We= 417,
crescent-moon fragmentation cannot occur regardless of the radial drop–drop interdistance.

We quantify this process with an expression for the drop–drop impact force of the
corona per unit arclength,

fc = ρhu2, (3.4)

where h and u are the thickness and velocity of the corona edge respectively
(figure 7a–c). This force allows us to derive an expression for the impact horizontal
Weber number,

Wec =
fc

σ
=
ρhu2

σ
. (3.5)

By analogy with impacts normal to a surface, we expect Wec of the order of 1–10 or
lower not to allow for sufficient force to transform the sessile drop into a sheet, thus
restricting the drop–drop impact outcome to a touch-and-flop. Similarly, we expect
values of Wec higher than order 10 to enable crescent-moon sheet formation. We test
this expectation in the next section.

3.3.2. Quantification of threshold impact force from spatiotemporal corona expansion
Combining top and side analysis of the spatiotemporal corona expansion with

detailed calibration of thickness and feature extraction as illustrated in figure 7(a–c)
(Wang & Bourouiba 2017), we measured the following: the time evolution of the
corona area A and its radius r =

√
A/π, its edge radial velocity u = dr/dt and its

average thickness h. The results are shown in figure 7(d–f ) for a range of impact
We. From these results, we can deduce the dependence of the horizontal collision
Weber number Wec on the corona radius R = r/r1, as shown in figure 8(a), and
compute the threshold corona radius rc above which Wec is too small to induce
crescent-moon sheet formation (figure 8b). We find that the corresponding threshold
value for crescent-moon formation is Wec = ρhu2/σ = 25, associated with a local
drop–drop threshold collision force fc = 1.2 kg s−2 per unit arclength. It should be
noted that Wec= 25 is consistent with our expectation of a threshold Weber number of
the order of 1–10 by analogy with the classical splash of isolated drops upon impact
normal to a solid surface (Yarin 2006; Josserand & Thoroddsen 2016). However,
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FIGURE 9. (Colour online) (a) Overlay of bottom views of the crescent-moon collision,
where the opening angle evolves from (4.1) at initial contact between the red corona and
the blue sessile drop to (4.3) at maximum corona radius (rmax). The scale bar is 4 mm.
The corrugation angle of the corona rim is θc = (θf − θ)/2. (b) Comparison between the
measured and predicted number of corrugations N from the literature: N = 4.1We3/8 is
the scaling from Marmanis & Thoroddsen (1996) and N = 1.14We1/2 is from Mehdizadeh
et al. (2004); N = 3.36We3/8 is the best fit of the experimental data of the present study.
The left inset shows the normalized power spectrum of rim corrugations at the maximum
corona radius (right inset) as a function of wavenumber. The wavenumber with the peak
of the spectrum gives the number of ligaments N.

here, as the drop–drop collision is tangential to a solid surface, we expect more
dissipation from tangential surface friction and longitudinal wave propagation in the
sessile drop; hence, the critical Wec = 25 for the tangential on-surface drop–drop
collision is slightly higher compared with normal single drop impacts We = 1–10.
Figure 8(a) also shows that no crescent-moon can occur if We is too small (We< 417
here), regardless of the drop–drop interdistance. In summary, the boundary between
crescent-moon and touch-and-flop regimes is for

1<D= Rc = 0.043(We− 417)0.58
+ 1< Rmax, (3.6)

where Rc= rc/r1. This expression when overlaid on the D–We regime map of figure 6
is in very good agreement with the data, hence supporting the physical picture of
drop–drop impact presented in this section.

4. Crescent-moon: universality of opening angle

To better understand crescent-moon fragmentation, we now turn to the factors
governing its features. At impacting drop maximum corona radius rmax, the base of
the sheet of the crescent-moon is prescribed by an opening angle θf and is surrounded
by two ligaments of length ll (figure 9a). The values of θf and ll can depend on a
range of parameters d, r1, r2, u1, rmax, fc of this complex problem (see figures 2
and 9a).

We first elucidate the crescent-moon angle θf via a geometrical relation between the
falling drop of size r1 at a distance d from the sessile drop of size r2. The view from
below in figure 9(a) shows θ , the angle between the two tangent lines to the sessile
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FIGURE 10. (Colour online) (a) The match between prediction (4.1)–(4.3) and
measurement of crescent-moon opening angle θf as a function of r2/d. (b) Robustness
of the prediction to increase of sessile drop fluid viscosity and for impact with a solid
analogue sessile drop. (c) Bottom views of the crescent-moon with sessile drops of
increasing viscosity (left to right) and a solid (rightmost), showing the robustness and
universality of θf and the emerging pair of ligaments. The scale bar is 4 mm.

drop (r2) originating from the centre of the impacting drop at radial distance d. Simple
geometry yields

θ = 2 arcsin
(r2

d

)
. (4.1)

The inset to figure 10(a) compares the predicted opening angle θ (4.1) and its
measurement θf as in figure 9(a). The prediction and observation differ by a systematic
bias. We elucidate this bias by closer inspection of the corona of the impacting
drop. Prior studies have documented the appearance of corrugations surrounding the
expanding coronas of isolated impacting drops on solids, as summarized in table 2.
We observe that during corona expansion, the angle θ (4.1) defining the base of the
crescent-moon sheet is stretched outward (figure 9a). The fluid accumulated in the
flaps surrounding the sessile drop settles and is entrained and absorbed into the two
closest corrugations of the corona rim. This process is further discussed in § 5.

To elucidate the systematic bias of the prediction of the opening angle in
figure 10(a inset), we analyse the average angle θc between rim corrugations at
maximum corona radius rmax, θc = 2π/N, where N is the total number of rim
corrugations (figure 9b). To measure the total number of ligaments systematically,
we take the Fourier transform of the rim corrugations, leading to a power spectrum
as a function of the wavenumber n = 2πrmax/λn (figure 9b inset), where λn is the
wavelength. We use the dominant mode (wavenumber corresponding to the peak of
the spectrum) as the number of ligaments N. Correction of the prediction (4.1) by the
obtained intercorrugation angle θc = 2π/N leads to figure 10(a). The opening angle
predicted, θ + 2θc, and that measured match very well.
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In addition, our Fourier analysis shows that the number of rim corrugations N at
maximum corona radius is well captured by

N =CN We3/8, (4.2)

with CN = 3.36 as seen in figure 9(b). Equation (4.2) falls between prior scalings
proposed in the literature (§ 1.2 and table 2) and matches the empirical expression
proposed by Marmanis & Thoroddsen (1996) particularly well. We expect CN to
be sensitive to surface roughness, wetting and temperature. The value of CN = 3.36
obtained in this paper was, however, robust to the range of contact angles of average
wetting of interest herein, 45◦6 θe 6 82◦ (discussed thereafter in figure 12). The value
of CN = 3.36 is fixed for the remainder of the study.

Hence, we can predict the opening angle of the crescent-moon, θf , completely from
the geometric parameters d and r2 and the dynamic parameter We as

θf = 2 arcsin
(r2

d

)
+

4π

CNWe3/8 , (4.3)

with CN = 3.36 fixed, which is robust to change of the impact Weber number, as
shown in figure 10(a). To investigate further the robustness of the prediction, we
conducted an extensive series of experiments where the sessile drop was changed
from inviscid to viscous, to a solid drop-analogue with similar size and geometry
to the sessile drop as seen from below in figure 10(c) (see table 4 for the fluids
and solids used). We found that the prediction of θf (4.3) is robust to change of
sessile fluid properties and is even robust for impacts of expanding coronas on sessile
solids, as shown in figure 10(b,c). This robust match confirms that crescent-moon
fragmentation is governed by geometry at first order and governed by dynamics, via
impacting drop corona destabilization, at second order.

5. Crescent-moon: universality of ligament length
We now turn to the length of the ligaments, ll (figure 11a). Upon impact with

the sessile drop, the impacting drop corona is obstructed. Close observation reveals
that the fluid in the crescent-moon sheet is from the sessile drop, while the fluid in
the ligaments surrounding its base is from the impacting drop corona (figures 2c, 3c,
9a and 10c). We conducted an extensive set of experiments and predicted the length
ll of the two ligaments bounding the crescent-moon (figure 10c).

Careful observation (e.g. figure 11a inset) reveals that the fluid of the obstructed
corona (pink in figure 11a) is diverted as it flows out along the sides of the lifted
sessile drop (blue in figure 11a), where the sessile drop and the expanding drop sheet
connect. The two regions, or flaps, surrounding the sessile drop (blue shadowed flaps
in figure 11a) are initially formed around the sessile drop sheet suspended in the
air (e.g. figure 11b inset). When the corona sheet reaches maximum radius rmax, the
fluid settles down on the surface and flows radially outward in the corona sheet. On
reaching and entering the rim, the fluid is reoriented to flow along the rim, reaching
and feeding the closest corrugation. The two surrounding rim corrugations of thickness
wc indeed grow into crescent-moon ligaments of length ll as a result. We report that
the thickness of the two ligaments is similar to that of the rim corrugations,

wc =
2πrmax

2N
=

πrmax

N
, (5.1)
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FIGURE 11. (Colour online) (a) The impacting drop (dark red) of maximum corona radius
rmax (light red) with rim corrugations of width wc is shown with a sessile drop (blue) of
radius r2 at distance d and the crescent-moon pair of cylindrical ligaments of length ll and
width wc. The fluid in the flaps surrounding the crescent-moon sheet (blue shadow region)
is originally lifted up. (b) Impact of an expanding corona on a sessile drop (upper panel)
and a solid drop-analogue (lower panel). At corona radius rmax, the fluid in the flaps settles
and feeds the pair of ligaments. The scale bar is 4 mm.

Tangent lines obtained
by image processing

Fitting circle

Centre
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FIGURE 12. (Colour online) (a) Side view of a sessile drop on a solid surface. A circle is
fitted to the drop. The contact angle is measured on both sides and averaged such that θe=

arctan(r2/hc), where r2 is the radius of the base of the sessile drop and hc is the distance
between the surface plane and the centre of the circle. (b) The contour of the sessile
drop in (a) detected using an image processing algorithm. (c) The agreement between our
prediction of ligament length (5.8) at maximum corona radius and our experimental data.

as shown in figures 9(a) and 11(b). Based on this physical picture, the resulting
volume of fluid expected to be in the two flaps in the air surrounding the
crescent-moon sheet should be equal to the volume of the two bounding ligaments.
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From geometry (figure 11a shadowed blue regions), the volume of fluid in the flaps
surrounding the crescent-moon sheet is

Vs = Ash, (5.2)

where h is the average thickness of the corona at maximum radius and As is the area
of the flaps, which can be expressed by

As ≈ (rmax − d)rmax sin
(
θf − θ

2

)
. (5.3)

At maximum corona radius rmax, the average corona thickness is

h= V/πr2
max =

4
3

r3
1/r

2
max, (5.4)

with V = (4/3)πr3
1 the initial impacting drop volume.

The volume of the ligaments (figure 11a) is

Vf = 2Af ll, (5.5)

with cross-sectional area Af =Csw2
c , by assuming their shape to be semicylindrical of

width wc, as shown in figure 11(a). The geometrical coefficient Cs can be expressed
as

Cs =
1
4(θe csc2 θe − cot θe), (5.6)

where θe is the equilibrium contact angle of the fluid on the surface. We measured the
contact angle using image processing on the two sides of the sessile drops as shown
in figure 12(a,b). Our measurements give a mean contact angle of θe = 60◦, and thus
Cs = 0.2047, with a maximum angle of 82◦ and a minimum angle of 45◦.

By equating the volume of the flaps Vs to the volume of the ligaments Vl, we obtain
a prediction for the length of the ligaments as

ll

rmax
=

2
3Cs

(
N
π

)2 ( r1

rmax

)3 (
1−

d
rmax

)
sin
[
θf − θ

2

]
. (5.7)

It should be recalled that we have already determined and fixed the constants
associated with the dimensionless maximum corona radius Rmax = rmax/r1 in (3.3)
(figure 5) and the number of corrugations, N, of the corona at its maximum radius
Rmax in (4.2) (figure 9b and § 4). By leveraging these prior findings, the ligament
length predicted is

ll

rmax
=CLWe1/4

(
1−

d
rmax

)
sin
[
θf − θ

2

]
(5.8)

or

ll

r1
=CRCLWe5/12

(
1−

d
r1CR

We−1/6

)
sin

 2π

CN︸︷︷︸
≈2

We−3/8

 , (5.9)
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in terms of initial impact parameters. The constants are interdependent, with

CL =
2

3π2Cs

(
C2

N

C3
R

)
, (5.10)

where all constants are fixed by our prior measurements (no free parameter) and given
by (5.6), (3.3) and (4.2) with CL = 0.69 for Cs = 0.2047, CR = 1.75 and CN = 3.36.
Figure 12(c) shows the very good agreement between our prediction (5.8) and our
experimental measurements. The dashed lines show the prediction of the length of
ligaments corresponding to the minimum and maximum values of contact angle
measured (figure 12a,b). Our data fall within our range of prediction (5.8).

Interestingly, the size of the sessile drop, r2, does not prescribe the length of the
crescent-moon ligaments. Returning to the schematic in figure 11(a), one can see that,
regardless of r2, the flap regions of corona fluid forming the ligaments are indeed
independent of r2. They depend directly on the corona extension rmax (fixed by r1
and impact We), its corrugation wavelength λ= 2πrmax/N and the interdrop distance d.
Prediction (5.8) is robust to increase of sessile drop viscosity up to approximately 30
times that of water (figures 12c and 10c). The lengths of the ligaments for impacts
on solid sessile objects and sessile drops of viscosity 1400 times that of water (i.e.
pure glycerol) differ however. This is expected given that (5.8) is based on the key
observation that the ligaments are formed of the fluid of the lifted flaps surrounding
the deformed sessile drop (figure 11a,b). The lift of the sessile drop and formation
of flaps continues to be the dominant feature of the crescent-moon regime for sessile
drop viscosities of up to 30 times that of water (mixtures 1 and 2 in figure 10c and
table 4), but can no longer occur for pure glycerol and rigid objects. In addition,
one of the underlying assumptions of our model is that both interacting drops have
comparable sizes (as found in sprays and rainfalls), and both are assumed to be of
the order of or smaller than the capillary length. By construction, equation (5.9) is
established for the crescent-moon We–D regime (figure 6). Finally, one last underlying
assumption is that the corona corrugation wavelength is smaller than the typical sessile
drop size considered: λ< r2. This last assumption is clearly always true for the water
drops of interest for sprays and rainfalls motivating the present study.

6. Conclusion

Drop impacts on surfaces are ubiquitous in agriculture, coating and pathogen
transport. Most extensive research on drop impacts has focused on idealized
superhydrophobic or fully wetting surfaces. Despite the ubiquity of surfaces of
intermediate wetting (not fully wetting or superhydrophobic) in nature, indoors and
in industry, little is understood about the physics of impacts on them. Combining
experiments and modelling, we show that such surfaces, which support sessile drops,
lead to dramatically different regimes of coating and splash from those inferred from
isolated impacts. We showed that four regimes of drop–drop interaction emerge:
head-on collision, crescent-moon fragmentation, touch-and-flop collision and no
collision (figures 3 and 6). These regimes include novel fragmentation phenomena
only recently identified as ubiquitous in impacts on plant surfaces (Gilet & Bourouiba
2015), such as the crescent-moon fragmentation. Herein, we have predicted the
transitions between these four regimes accurately based on two dimensionless
parameters: the impacting drop Weber number and the normalized interdistance
between the two drops (figure 6). We have shown that a critical drop–drop impact
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force governs the existence and physics of the crescent-moon fragmentation and
that this force is shaped by a subtle combination of geometry and momentum
transfer. We introduced a horizontal critical collision Weber number Wec below which
crescent-moon fragmentation cannot occur. The horizontal critical collision Weber
number Wec is defined based on the force per unit length upon collision of the rim of
the expanding corona onto the sessile drop. Below Wec= 25, the momentum imparted
to the sessile drop is not sufficient to transform its bulk into an expanding sheet
characteristic of a crescent-moon. Using the geometric constraint of the drop–drop
interaction and volume conservation, we also predicted and validated the models
governing two peculiar features of crescent-moon fragmentation: the width of the base
of its expanding sheet in the air and the length of the pair of ligaments surrounding
its base. We showed that the predictions of these two properties are robust to a wide
range of surface average wettings and sessile drop fluid viscosities. Prediction of
these properties is important for the study of crescent-moon fragmentation, which is
a highly efficient producer of secondary droplets.

Our findings bring a fundamental understanding to a ubiquitous, yet so far neglected,
drop–drop interaction physical phenomena. Our results suggest a new paradigm:
impacts on most surfaces can make a splash of a new kind – a crescent-moon – for
any impact velocity when neighbouring sessile drops are present. Hence, interactions
between sessile and impacting drops of comparable sizes can alter the washing and
coating of surfaces significantly, while increasing spray drift or rain-induced pathogen
transmission from contaminated surfaces in agriculture. Elucidation of the final stages
of drop–drop impact fragmentation in this agricultural context is our current focus.
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