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Considering the miniaturization trend in technical applications, the need of a slender
nozzle theory for such conventional, that is ideal-gas-like, fluids, which accounts for a
strong boundary-layer interaction with the core region, arises in quite a natural way
as the dimensions of the flow device are successively reduced. Moreover, a number of
modern technological processes (e.g. organic Rankine cycles) involve fluids with high
molecular complexity, some of which are expected to exhibit embedded regions with
negative values of the fundamental derivative in the vapour phase commonly termed
Bethe–Zel’dovich–Thompson (BZT) fluids. Linked to it, unconventional Laval nozzle
geometries are needed to transform subsonic to supersonic internal flows. In the
present paper, the transonic flows through nozzles of short length scales located in a
channel of constant cross-section so slender that the flow in the inviscid core region is
one-dimensional are considered. Rapid streamwise changes of the flow field caused by
the nozzle then lead to a local breakdown of the classical hierarchical boundary-layer
approach, which is overcome by the triple-deck concept. Consequently, the properties
of the inviscid core and the near-wall (laminar) boundary-layer regions have to
be calculated simultaneously. The resulting problem is formulated for both regular
(ideal-gas-like) fluids and dense gases. Differences and similarities of the resulting
flow pattern with respect to the well-known classical Laval nozzle flow are presented
for perfect gases, and the regularizing influence of viscous–inviscid interactions, is
examined. Furthermore, the analogous problem is considered for BZT fluids in detail
as well. The results indicate that the passage through the sonic point in the inviscid
core is strongly affected by the combined influence of nozzle geometry and boundary-
layer displacement effects suggesting in turn an inverse Laval nozzle design in order
to obtain the desired flow behaviour.

Key words: boundary layers, complex fluids, compressible flows

1. Introduction
In the preceding paper Kluwick & Meyer (2010), we have considered the influence

of viscous–inviscid interactions on the transition of fluids in the vapour phase from
supersonic to subsonic flow via weak normal shocks in a channel of a constant cross-
section. The channel has been assumed to be so slender that the (laminar) boundary
layer correction at the walls for high Reynolds numbers can no longer be considered
to be an effect of higher order, but rather has to be considered at leading order in
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the framework of a triple-deck theory. Moreover, the inviscid core region flow, which
is confined within the two interacting boundary layers at the channel walls, has been
required to be one-dimensional to leading order. As a direct consequence of the strong
shock–boundary layer interaction in slender channels, a normal shock is transformed
into a smooth pseudo-shock; cf. Kluwick & Meyer (2010). The regularizing mechanism
of viscous–inviscid interactions in internal flows has been found to be quite different
from the well-known thermo–viscous regularization in connection with external flows.
The interacting boundary layers form a kind of viscous nozzle which interacts with
and at the same time reacts to the induced pressure perturbations in the inviscid core.
The focus of the aforementioned study has been to gain theoretical insight into shock
regularization of conventional shocks (compression shocks) and non-conventional
types of shocks (e.g. rarefaction shocks) in the vapour phase without undergoing
phase transition. The latter shock types are, however, only possible for a limited class
of fluids consisting of complex molecules known as dense gases or Bethe–Zel’dovich–
Thompson (BZT) fluids; e.g. Cramer (1991). This is true at least from a theoretical
point of view, as an experimental verification of the proclaimed non-conventional
thermodynamic behaviour eludes experimental verification as yet and is currently an
active field of research (cf. e.g. Fergason et al. 2001; Guardone, Zamfirescu & Colonna
2010). Presently, the experimental detection of such reported dense gas behaviour relies
on variants of shock-tube experiments, cf. Guardone et al. (2010). In Kluwick &
Meyer (2010), we have argued that the observation of pseudo-shocks in a slender
channel could propose an interesting alternative experimental set-up to shock-tube
experiments. An obvious advantage of a stationary set-up is that it avoids complicated
irregular wave patterns caused by the rupture of the diaphragm, which can be elimin-
ated only by the use extremely fast opening valves. A major drawback, however, would
be that the shock position in a channel of a constant cross-section is unfortunately
very sensitive to perturbations. An extension of the theory presented before to slender
nozzles, which is the aim of the present paper, provides an elegant way to control
the actual shock position by the nozzle design and thereby reduce its sensitivity
to perturbations. Of course, the sensibility of the flow phenomena with respect to
various other sources, such as variations of thermodynamic conditions and boundary
conditions, is not reduced, since these are problem-inherent and a consequence of the
extremely small inversion zone in real gases, where rarefaction shocks are possible.

Besides the fundamental question of the existence of rarefaction shocks in the
vapour phase, the unconventional behaviour of BZT fluids opens up some interesting
possibilities for technical applications, especially as working media in organic Rankine
thermal power cycles; cf. e.g. Cinnella & Congedo (2007) or Brown & Argrow (2000).
Because of the relatively small values of the speed of sound of dense gases close
to the thermodynamical critical point, there arises the need to convert subsonic
flows to the supersonic regime by means of a nozzle. However, taking a look at
the estimates on the actual dimensions of the interaction region and the appropriate
channel heights performed in Kluwick & Meyer (2010) for the example fluid PP10
(C13F22) with possible BZT fluid character reveals that the reported flow phenomena
of viscous–inviscid interactions are likely to be encountered in such flow devices for
dense gases of quite realistic technical dimensions. Consequently, the implications of
a strong boundary layer interaction with the inviscid core region flow again may not
be neglected in the construction of flow devices, unlike in conventional nozzle design.

Taking into account the trend in technical applications towards miniaturization,
the need of a nozzle theory, in which the strong boundary layer interaction with the
core region has to be accounted for, arises in quite a natural way as the dimensions
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of the flow device are successively reduced. To the authors’ knowledge, such a theory
has not been formulated so far even for perfect gases which at present are of more
importance as far as practical applications are concerned. The investigation of the
regular perfect-gas-like fluid behaviour, therefore, serves as the natural starting point
for a discussion of flows through slender nozzles in § 4.2.1 and in particular the
consequences of viscous–inviscid interactions, since the results of the purely inviscid
one-dimensional Laval nozzle theory for perfect gas are readily at hand and widely
known, see for example Oswatitsch (1956).

Therefore, in the present paper, we aim to investigate the conversion of subsonic
to supersonic high-Reynolds-number flows by means of a small nozzle located in a
slender channel of an otherwise constant cross-section, both for regular fluids and
dense gases, which are characterized by the fundamental derivative of gasdynamics
defined as

Γ =
1

c̃

∂(ρ̃c̃)

∂ρ̃

∣∣∣
s̃

(1.1)

introducing the speed of sound

c̃ =

√(
∂p̃

∂ρ̃

)
s̃

, (1.2)

the thermodynamic pressure p̃, the density ρ̃ and the specific entropy s̃. In the
following, we refer to fluids as regular fluids if the fundamental derivative is positive
in the entire flow field considered and as a dense gas if the fundamental derivative is
negative or changes its sign. The prototype of a regular fluid is, of course, a perfect gas
where Γ is a positive constant Γ = (κ+1)/2, where κ denotes the ratio of specific heats.

The resulting boundary-layer interaction problem will be formulated for transonic
internal flows by means of matched asymptotic expansions exploiting the largeness
of the Reynolds number. For this purpose, the geometrical configuration of a small
surface-mounted hump at the lower and upper channel walls forming a short nozzle
in a narrow channel as depicted in figure 1 will be considered. At high Reynolds
numbers, viscous effects near the channel inlet are limited to thin layers adjacent to the
channel walls, and Prandtl’s classical boundary layer theory for laminar flow provides
a good description of the resulting flow (except for a tiny region near the leading
edge where the full Navier–Stokes equations apply as in the case of external flows), in
general. Yet, the boundary layer correction affects only the inviscid core-region flow in
higher orders, and therefore the core-region flow regime and the boundary layer flow
are interlinked in a strictly hierarchical way excluding a strong interaction. However,
the rapid changes in the streamwise direction which are introduced by the short nozzle
(possibly in connection with a pseudo-shock, cf. figure 1) lead to a local breakdown
of the classical boundary layer approach; cf. Stewartson (1974) or Kluwick (1998). As
a direct consequence, the properties of the inviscid core and the viscosity-dominated
boundary layer regions can no longer be determined in subsequent steps but have
to be calculated simultaneously within an asymptotically small interaction region
around the nozzle depicted by region 3 in figure 1. The interaction problem will be
formulated in terms of a triple-deck problem (cf. Stewartson 1974), where the inviscid
interacting core region is represented by a single upper deck which is shared by the
two interacting boundary layers at the lower and upper channel walls. The interacting
boundary layer itself is subdivided into an asymptotically thin lower-deck accounting
for wall-near effects of viscosity and a passive main deck comprising the main part
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ũ0

p̃0

ũ0 + δũ0

p̃0 + δp̃0

L̃0(>>H̃0)

H̃
0

ũ0

s̃N( x̃)

H̃
0 

+
2 

δH̃
0

x̃

ỹ

1

2

2

3CL

Pseudo-shock

Figure 1. Schematic sketch of the problem set-up. Region 1, inviscid core; region 2, viscous
non-interacting boundary layers; region 3, viscous–inviscid interaction; CL, centreline.

of the interacting boundary layer. As in the study of Kluwick & Meyer (2010), the
channel shall be sufficiently narrow so that the flow in the inviscid core becomes
one-dimensional to the leading order. Correspondingly, the present work can be seen
as an extension to the above paper as well as to the study on one-dimensional purely
inviscid internal flows of dense gases through nozzles outlined by Kluwick (1993).

It is the aim – both of the preceding and the present paper – to provide insight
into the fundamental mechanism of interacting regular and dense gas flows which
rest on a firm theoretical basis relying on matched asymptotic expansions. At present,
this can only be achieved for the case of laminar flow, since a similarly rigorous
treatment of turbulent flows does not appear to be possible at the moment. Of
course, considerations of the limit Reynolds number to infinity are, strictly speaking,
not compatible with the assumption of laminar flow. However, there is a reason
to hope that the results obtained in this limit are at least qualitatively correct for
high-Reynolds-number laminar flows satisfying the proposed scalings as has been
found in other triple-deck studies, see for example Stewartson (1981). This, however,
can in the end only be validated by experiments.

This paper is structured as follows. Suitable reference states for the various
quantities relevant to the problem set-up and the governing equations in dimensionless
form are introduced in § 2. In § 2.1, we briefly describe the magnitude of the
various dimensional groups entering the governing equations (presented in § 2 of
Kluwick & Meyer 2010). The formulation of the fundamental problem together
with the asymptotic analysis is given in §§ 3.1 and 3.2, and important asymptotic
properties of solutions to the fundamental problem are discussed in §§ 3.3 and 3.4.
Finally, numerical solutions are presented in § 4. The numerical method is outlined
in § 4.1. Section 4.2 discusses the steady flow field in nozzles of similar shape but
varying minimal throat area for regular fluids (§ 4.2.1) and varying maximal throat
area for dense gases having Γ < 0 in the entire flow regime to be considered (§ 4.2.2).
Sections 4.2.1 and 4.2.2 discuss the differences and similarities to conventional purely
inviscid and one-dimensional Laval nozzle flows. The last section (§ 4.3) deals with
the calculation of nozzle shapes required to generate a certain desired pressure
distribution in terms of an inverse problem formulation for both regular fluids and
dense gases, where Γ now is not restricted to sole negative values, but can change
sign in the flow field.
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2. Problem formulation I: governing equations
Analogous to the problem of shock-wave regularization by viscous–inviscid

interactions in a slender channel discussed in Kluwick & Meyer (2010), we introduce
the non-dimensional quantities (tilde denotes dimensional quantities) in the following
way:

(x̃, ỹ) = L̃0(x, y), (ũ, ṽ) = ũ0(u, v), t̃ =
L̃0

ũ0

t, H̃0 = L̃0H0, s̃N = L̃0sN,

p̃ = ρ̃0ũ
2
0 p, ρ̃ = ρ̃0 ρ, c̃ = c̃0 c, θ̃ = θ̃0 θ, h̃ = ũ2

0 h,

s̃ = c̃p,0s, µ̃ = µ̃0 µ, µ̃b = µ̃0 µb, k̃ = k̃0 k.

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

Here (x̃, ỹ) denote coordinates in the horizontal and vertical directions, (ũ, ṽ) are
the corresponding components of the velocity vector, t̃ is the time, H̃0 is the channel
height at the entry, s̃N is the contour of the nozzle, c̃ is the speed of sound, ρ̃ is
the density, p̃ is the pressure, θ̃ is the temperature, h̃ is the specific enthalpy, s̃ is the
specific entropy, c̃p is the specific heat capacity at constant pressure, µ̃ is the dynamic

viscosity, µ̃b is the bulk viscosity, and k̃ is the thermal conductivity. The subscript
0 indicates a reference state characterizing the inlet conditions and the undisturbed
core region upstream of the interaction region as well. The interaction process itself is
evoked by the presence of a nozzle of a given shape s̃N(x), cf. figure 1. The nozzle is
of short length scales, which in turn introduces rapid changes within the streamwise
flow field and thus triggers the viscous–inviscid interaction process. It is located in
the channel at a distance L̃0 from the entry; consequently, the variation of the area
of cross-section is restricted to a short region around L̃0 and ∂x̃ s̃N(x) = 0 upstream
and downstream of the interaction region. Therefore,

s̃N(x̃) = 0, upstream of interaction region, (2.2)

|s̃N(x̃)| = δH̃0, downstream of interaction region. (2.3)

In contrast to the meaning of δH̃0, δũ0, δρ̃0 and δp̃0 given in Kluwick & Meyer
(2010), these quantities are not associated with small variations of the flow conditions
at the inlet with respect to the reference state but rather denote the small variations of
the channel height and the flow conditions caused by the nozzle s̃N far downstream
the interaction region, cf. figure 1.

In terms of the non-dimensional quantities (2.1), the Navier–Stokes equations for
two-dimensional compressible flows neglecting gravitational forces can be written as

∂ρ

∂t
+ ∂i(ρui) = 0, (2.4a)

ρ

(
∂ui

∂t
+ uj∂jui

)
= −∂ip +

1

Re
∂jτij , (2.4b)

c2

M2
0

Dρ

Dt
− Dp

Dt
=

G0Ḡ

Re

(
τij ∂jui +

1

PrEc
∂k(k ∂kθ)

)
, (2.4c)

with the stress tensor for a Newtonian fluid τij = µb∂kukδij + µ(∂jui + ∂iuj − 2
3
∂kukδij )

and the substantial derivative D(·)/Dt . The resulting dimensionless groups

Re :=
ρ̃0L̃0

µ̃0

, M0 :=
ũ0

c̃0

, Ec :=
ũ2

0

c̃p,0T̃0

, P r :=
k̃0

µ̃0c̃p,0

, G0 :=
ρ̃0

θ̃0

(
∂θ̃

∂ρ̃

)
s̃,0

(2.5)
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Regular fluid Dense gas

Re � 1 � 1
M0 ≈ 1 ≈ 1
Ec O(1) � 1
Pr O(1) O(1)
G0 O(1) � 1

Table 1. Assumptions on the order of magnitude for the relevant dimensionless groups.

denote the Reynolds, the Mach, the Eckert, the Prandtl numbers and the Grüneisen
coefficient G evaluated at the reference state, respectively. Here Ḡ= G/G0 = O(1)
entering (2.4c) then denotes a properly scaled Grüneisen coefficient. For later
convenience, we introduce the quantity

c̄ := c/M0 = c̃/ũ0. (2.6)

The centreline of the nozzle y = H0/2 (and labelled CL in figure 1) is a line of
symmetry along which

∂u

∂y
=

∂p

∂y
= 0, x > 0, y =

H0

2
; (2.7)

consequently, it is sufficient to specify the boundary conditions for the lower half-plane
only. The boundary conditions at the (adiabatic) wall are

(u, v) = (0, 0),
∂θ

∂y
= 0, x > 0, y = sN(x). (2.8)

The undisturbed state (ũ, ṽ) = ũ0(1, 0), ρ̃ = ρ̃0 and p̃ = p̃0 = ρ̃0ũ
2
0 p0 is taken to hold

at the channel entry, i.e.

(u, v) = (1, 0), ρ = 1, p = p0, x = 0, 0 < y < H0. (2.9)

2.1. Order-of-magnitude estimates of dimensionless groups

Table 1 summarizes the physical setting of interest by stating the orders of magnitude
we require of the dimensionless groups (2.5). In Kluwick & Meyer (2010), the
implications of these assumptions have been discussed in detail; here we only mention
the important arguments for the sake of completeness. Briefly, the requirements Re � 1
and M0 ≈ 1 concern the characterisation of the flow regime in which the theory is
applicable, whereas the estimates of Ec, Pr and G0 concern the thermodynamic
properties of the class of fluids considered under such flow conditions. Specifically, we
note that the smallness of G0 for dense gases simply expresses the fact that isotherms
and isentropes tend to coincide when the fluid specific heats tend to infinity, that is
become large.

Most importantly, the condition Re � 1 leads to the formation of viscosity-
dominated boundary layers near the channel walls. The assumption of transonic
flow, M0 ≈ 1, allows the study of weak transitions from supersonic to subsonic flow
conditions (and vice versa) by means of an asymptotic theory.

The thermodynamic region of interest is restricted to the single-phase gas regime.
Dense gas behaviour associated with a change of sign of the fundamental derivative
Γ can be expected for various classes of fluids of higher molecular complexity
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(Cramer 1991), and then occurs only in a relatively small region in the vicinity of
the thermodynamical critical point which is located above the region of gas-vapour
coexistence in the p- versus 1/ρ-diagram (see figure 2a; Kluwick 2004). In the
following, we refer to a fluid as being regular if the fundamental derivative is positive
and the reference state is sufficiently far away from the transition line Γ = 0, so that
the fluid is not supposed to access the region of negative Γ within the entire flow field
under flow conditions to be considered, and we refer to a fluid as exhibiting dense
gas behaviour otherwise. The present theory is applicable in both thermodynamic
regimes.

3. Problem formulation II: interaction problem
3.1. Preliminary remarks on the core flow region

3.1.1. One-dimensional transonic flow in channel core

As has been pointed out in the Introduction, we impose an additional order-of-
magnitude constraint which is not based on the inspection of the dimensionless groups
in the governing equations, namely the condition of a narrow channel H0/L0 � 1.
More precisely, the channel height H0 shall depend on the limiting procedure in
such a way that the compressible, inviscid flow in the core region, i.e. upper deck,
of the interaction region becomes one-dimensional to leading order as Re → ∞.
The appropriate choice of the Re number dependency of H0 has been found by
employing an inspection analysis; cf. Kluwick & Meyer (2010) for details. There, the
compatibility relations along right- and left-running characteristics have been used
as the starting point of the inspection analysis of the upper-deck flow regime. The
local reduction of the area of cross-section within the interaction region has been
related to the perturbation of the displacement thickness, as seen in figure 3, which
captures the displacement effect exerted by the interacting boundary layers at the
channel walls on the inviscid core. An inspection of the compatibility relations is
useful in revealing the relevant physical mechanism associated with viscous–inviscid
interactions in slender channels and determining the choice of time scaling associated
with the long-term behaviour of the system on the basis of the characteristic wave
speeds. However, it is worthwhile noting that the distinguished limit obtained for
the upper-deck problem can, of course, also be derived by considering the full (two-
dimensional) Navier–Stokes equations (2.4a)–(2.4c). To this end, by means of (2.4b)
and (2.4a), respectively, the substantial derivative of the pressure and the density is
rewritten as

Dp

Dt
=

∂p

∂t
+ ui∂ip =

∂p

∂t
+ ui

(
−ρ

∂ui

∂t
− ρuj∂jui +

1

Re
∂jτij

)
, (3.1)

Dρ

Dt
=

∂ρ

∂t
+ ui∂iρ =

∂ρ

∂t
+ ∂i(uiρ) − ρ∂iui. (3.2)

Insertion into (2.4c) leads to

c̄2

(
∂ρ

∂t
+ ∂i(ρui)

)
=

∂p

∂t
− ρui

∂ui

∂t
− ρ

(
uiuj − c̄2δij

)
∂jui

+
1

Re

(
ui∂j τij + G0Ḡ

(
τij ∂jui +

1

PrEc
∂k(k ∂kθ)

))
, (3.3)

where δij is Kronecker’s delta. The left-hand side of (3.3) is the continuity equation;
consequently, it follows that the right-hand side has to satisfy the solvability condition
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∂p

∂t
− ρui

∂ui

∂t
− ρ

(
uiuj − c̄2δij

)
∂jui

+
1

Re

(
ui∂j τij + G0Ḡ

(
τij ∂jui +

1

PrEc
∂k(k ∂kθ)

))
= 0, (3.4)

which for stationary flow reduces to the well-known gas dynamic equation(
uiuj − c̄2δij

)
∂jui = 0 (3.5)

in the limit Re → ∞.

3.1.2. Characterization of thermodynamic properties in channel core flow

The behaviour of compressible flows as considered here strongly depends on the
variation of the speed of sound – or, more precisely, the variation of the fundamental
derivative Γ – with the thermodynamic state. It is, therefore, useful to identify regions
in the p, 1/ρ-diagram which exhibit significantly different properties in this respect.
To this end, we adopt the single assumption that the fundamental derivative expressed
in terms of ρ and s, i.e. Γ =Γ (ρ, s), can be Taylor-expanded about the reference
state characterized by the subscript 0:

Γ = Γ0 + Λ0(ρ − 1) + 1
2
N0(ρ − 1)2 + · · · , (3.6)

introducing the quantities

Λ = (∂Γ/∂ρ)s, (3.7)

N = (∂2Γ/∂ρ2)s . (3.8)

Contributions resulting from entropy changes are too small to influence the analysis
to the order of accuracy considered here and therefore are not displayed in (3.6). As
far as the magnitude of the Taylor coefficients Γ0, Λ0 and N0 is concerned (which is of
critical importance for the subsequent analysis), three different regimes in the p, 1/ρ-
diagram, and in the following, identified by the parameter n have to be distinguished.
Undisturbed states located in regions n= 2 of figure 2(b) are characterized by Γ ∼ 1
and consequently density variations are too small to lead to a sign change of the
fundamental derivative. In that case, Γ can exhibit either positive or negative values.
However, situations in which Γ can change its sign in the flow region of interest
are possible for reference states which are located sufficiently close to the transition
line Γ = 0. The region n= 3 in figure 2(b) is characterized by Γ0 ∼ (ρ − 1), Λ0 ∼ 1,
while region n= 4 (small neighbourhood of the point where an isentrope touches the
transition line in figure 2b) is characterized by Γ0 ∼ (ρ − 1)2, Λ0 ∼ (ρ − 1), N0 ∼ 1. The
case n= 3 identifies situations in which Γ changes sign only once during isentropic
expansion, whereas Γ changes sign twice in the case n= 4.

3.2. Formal asymptotic expansions and fundamental problem

This section is a short summary of the corresponding section in Kluwick & Meyer
(2010), included here for the sake of completeness. Deviations from Kluwick & Meyer
(2010) result from the modified geometry of the problem and the alternative approach
to the derivation of the upper-deck flow regime based on the solvability condition
(3.4); however, since we implicitly require the nozzle geometry to be compatible with
the triple-deck scaling found in the previous paper, in fact, all the former arguments
carry over to the new problem. In the following, (a)b indicates that the flow quantity
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Figure 2. (a) Sketch of the pressure versus density diagram for a typical BZT fluid. The
subscript c indicates thermodynamic quantities evaluated at the critical thermodynamical
point TCP. (b) A close-up of the region of negative Γ and subdivision in regions with
the asymptotic properties: Γ ∼ 1, Γ � 0 (n= 2); |Γ | � 1, (∂Γ/∂ρ)s ∼ 1 (n=3) and |Γ | � 1,
|(∂Γ/∂ρ)s | � 1, (∂2Γ/∂ρ2)s ∼ 1 (n=4).

a is evaluated in the deck denoted by the subscript b, with b either l, m, u for lower-,
main- or upper deck, respectively, and 0 < |	a| � 1 denotes a small perturbation
of a. As outlined in § 3.1.2, the parameter n ∈ {2, 3, 4} serves to characterize the
thermodynamic regime of interest, cf. figure 2(b). The choice of n influences the
scaling laws of the various decks.

Before starting with the discussion of formal asymptotic expansions, it is useful to
recall the underlying physics of the triple-deck theory of strong interactions where
boundary layer displacement no longer represents an effect of higher order as in the
classical boundary layer theory but has to be accounted for at the same level of
approximation as the behaviour of the outer inviscid flow.

As is well known, conservation of mass requires that the relative changes 	F/F of
the cross-sectional area F of stream tubes are of the same order of magnitude as the
relative velocity changes 	u/u. Consequently, most of the displacement exerted by
the interacting boundary layer is generated in a thin low-speed sublayer (lower deck)
adjacent to the wall where the no-slip condition holds, cf. figure 3. Density changes in
this region are negligible due to the smallness of the local Mach number and, therefore,
the flow is governed by the incompressible form of the boundary layer equations. In the
outer part of the boundary layer, the velocities are comparable in magnitude with
those in the inviscid core and this (main deck) region thus simply acts to transfer
the displacement resulting from velocity disturbances inside the lower deck essentially
unchanged to the part of the core flow (upper deck), playing an active role in the
interaction process where it causes an inviscid pressure response. The requirement
that the flow in the upper-deck region is transonic and quasi-one-dimensional implies
that its extent both in the streamwise and wall-normal directions is large compared
with the boundary layer thickness. As a result, the pressure disturbances inside the
main deck are independent of y, as in the classical boundary layer theory, thereby
revealing its second important role as far as the interaction process is concerned: to
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U0(ym)

∼U′
0(0)

x = 1

H
0 
∼ 

ε
–n

 +
 9

/2

R
e−

1/
2 δ

∗ (
1)

∼ 
ε

n+
7/

2

∼ 
ε

n+
9/

2

y m
 =

 ε
 −

(n
+

7/
2)

y

x1 = ε −3 (x − 1)

∼ ε3

Ad

�(υ)u ∼ ∂x Ad �(p)u

Upper deck

Lower deck

Main deck

CL

Figure 3. Triple-deck structure, scales of interaction region and sketch of the viscous–inviscid
interaction mechanism. The displacement Ad generated in a thin sublayer of the upstream
boundary layer, the lower deck, is transmitted unchanged to the upper deck by a passive main
deck. There the induced vertical velocities 	(v)u evoke an inviscid pressure response 	(p)u,
which is transmitted unaltered back to the lower deck closing the ‘interaction loop’. The small
perturbation parameter ε is defined by (3.9).

transfer the pressure disturbances present at the base of the upper deck unchanged
to the lower deck which, in fact, closes the ‘interaction loop’ included in figure 3.

Order-of-magnitude estimates based on the preceding physical considerations are
summarized in table 2 of Kluwick & Meyer (2010) and uniquely determine the
length scales of the various regions shown in figure 3 as well as the magnitudes of
the perturbations of the field quantities therein. This has been outlined in detail in
Kluwick & Meyer (2010) and, therefore, not repeated here, where we show that these
scalings are consistent with deformations of the channel walls (originally taken to be
flat) large enough to allow for a transition through the sonic state, i.e. large enough
to act as the walls of a slender Laval nozzle.

We define the small perturbation parameter ε by

ε = Re−1/(7+2n). (3.9)

For the main deck, which comprises most of the interacting boundary layer, the
analysis of Kluwick & Meyer (2010) suggests

x = 1 + ε3x1, y = εn+7/2ym, t = ε5−2nt1, (3.10)

where the subscript ‘1’ denotes quantities used in all three decks, and

(u)m = U0(ym) + εu(1)
m (x1, ym, t1) + · · · ,

(v)m = εn+3/2v(1)
m (x1, ym, t1) + · · · ,

(ρ)m = R0(ym) + ερ(1)
m (x1, ym, t1) + · · · ,

(p)m = p0 + ε2p
(1)
1 (x1, ym, t1) + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

Here, U0(ym) and R0(ym) represent the velocity and density profiles, respectively, in
the undisturbed boundary layer at x = 1 with U0 = R0 = 1 for ym → ∞ at the edge
of the boundary layer, see figure 3. Substitution of (3.11) and (3.10) into the full
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Navier–Stokes equations (2.4a)–(2.4c) and taking the limit Re → ∞ yields that the
leading-order perturbations of the velocity components and density are unaffected
by pressure and viscous forces and can be expressed in terms of a (so far unknown)
displacement function −A1(x1, t1) :

u(1)
m = A1U

′
0, v(1)

m = −∂x1
A1U0, ρ(1)

m = A1R
′
0. (3.12)

The main-deck problem does not depend explicitly on the time to the leading order
under the applied time scaling (3.10). The pressure disturbances

p
(1)
1 = p

(1)
1 (x1, t1) (3.13)

are enforced by the induced pressure disturbances in the upper deck and, therefore, do
not depend on the lateral distance ym. As pointed out before, the main deck behaves
passively and primarily acts to transfer the pressure disturbances generated in the
upper-deck flow unchanged to the lower deck and the displacement effects exerted
by the lower-deck reaction to the pressure disturbances unchanged back to the upper
deck. The displacement effect evoked by the interacting boundary layer, which can
be observed by evaluating equation (3.12) at the edge of the boundary layer,

u(1)
m = ρ(1)

m = 0, v(1)
m = −∂x1

A1, ym → ∞, (3.14)

leads to a reduction Ad = εn+7/2δ∗(1) − εn+9/2A1(x1, t1) of the effective area of cross-
section for the upper-deck flow, cf. figure 3,

(H )u = ε−n+9/2H01 − 2(εn+7/2δ∗(1) − εn+9/2A1(x1, t1) + · · · ). (3.15)

Here, the first term within the brackets accounts for the contribution of the oncoming
unperturbed boundary layer. The value δ∗(1) at x = 1 (defining the location of the
interaction region) depends on the upstream history of the flow but does not affect
the essential properties of the interaction process. The vertical coordinate

(y)u = ε−n+9/2yu (3.16)

in the upper deck has to scale in the same way as the height H0 of the channel. For
the other relevant flow quantities of the upper-deck flow, we write

(u)u = 1 + ε2u(1)
u (x1, yu, t1) + · · · ,

(v)u = εn+3/2v(1)
u (x1, yu, t1) + · · · ,

(ρ)u = 1 + ε2ρ(1)
u (x1, yu, t1) + · · · ,

(c)u = 1 + ε2c(1)
u (x1, yu, t1) + · · · ,

(p)u = p0 + ε2p(1)
u (x1, yu, t1) + · · ·

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.17)

and

1 − M2
0 = ε2(n−1)K, (3.18)

Γ0 = ε2(n−2)Γ̄ , Λ0 = εmax{2(n−3),0}Λ̄, N0 = N̄ . (3.19)

Here K = O(1) denotes a scaled transonic similarity parameter; for K > 0 the
oncoming undisturbed core-region flow is subsonic and for K < 0 supersonic.
Furthermore, the material-dependent parameters Γ̄ , Λ̄, N̄ defined in (3.19) are O(1).

From (2.4a) and (2.4b) after integration with respect to x1, one then finds to leading
order that u(1)

u , ρ(1)
u and p(1)

u do not depend on yu and have to satisfy the relationships

u(1)
u (x1, t1) = −ρ(1)

u (x1, t1) = −p(1)
u (x1, t1), (3.20)
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also known from other studies of transonic flows and expressing the fact that a sonic
state corresponds to an extremum (maximum in the case of regular, perfect-gas-like
fluids) of the mass-flux versus Mach number diagram. Matching with the main-deck
flow (3.14) reveals that the pressure in the upper deck is, to the leading order, the
same as in the main deck (and in the lower deck as well):

p(1)
u (x1, t1) = p

(1)
1 (x1, t1). (3.21)

As shown in § 3.1.1, the pressure, density and velocity components in the upper deck
have to satisfy the solvability condition (3.4), its asymptotic representation being

∂p
(1)
1

∂t1
+

1

2

∂

∂x1

J[n]

(
p

(1)
1 ; K, Γ̄ , Λ̄, N̄

)
= −1

2

(
∂v

∂y

)
u

+ · · · . (3.22)

Here we have used relation (3.20) and, from Kluwick & Meyer (2010), the expansion

(u − c̄) = M0 − 1 − Γ0(ρ − 1) + 1
2

(
Γ 2

0 − Γ0 − Λ0

)
(ρ − 1)2

+ 1
6

(
3Γ 3

0 − 3Γ 2
0 + 14Γ0 − 4Λ0 + 5Γ0Λ0 − N0

)
(ρ − 1)3 + · · · . (3.23)

As in Kluwick & Meyer (2010), the perturbation of the mass flux density is defined
as

J[n](p; K, Γ̄ , Λ̄, N̄) :=

⎧⎪⎨
⎪⎩

−Kp − Γ̄ p2, n = 2,

−Kp − Γ̄ p2 − 1
3
Λ̄p3, n = 3,

−Kp − Γ̄ p2 − 1
3
Λ̄p3 − 1

12
N̄p4, n = 4.

(3.24)

Since the upper-deck flow is one-dimensional to leading order, the continuity equation
has to satisfy (

∂

∂t
(ρH ) + ∂x(ρuH )

)
u

= 0 + · · · (3.25)

at this level of approximation, which after some manipulations yields(
∂

∂t
ρ + ∂x(ρu) + ρu

∂xH

H

)
u

= −
(

ρ
1

H

∂

∂t
H

)
u

+ · · · . (3.26)

A comparison with the two-dimensional form of the continuity equation (2.4a),

∂

∂t
ρ + ∂x(ρu) + ∂y(ρv) = 0, (3.27)

and taking into account the asymptotic expansions (3.17) and (3.15) and the scalings
t and x according to (3.10) suggests the dependence of the local boundary-layer
displacement perturbation on the induced vertical upper-deck velocity perturbations:(

∂v

∂y

)
u

= ε2n−3 2

H01

∂x1
A1 + · · · . (3.28)

The requirement of quasi-one-dimensional flow in the core region forces the v-
component there to vanish in leading order. Evaluation of the continuity equation
then implies that the next higher correction must vary linearly with distance from the
channel axis. As a consequence, (∂v/∂y)u is proportional to vu at the channel wall so
that (3.28) is seen to represent the proper generalization of a relationship between v

and the streamwise variation of the displacement thickness known from the classical
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boundary layer theory to the case of strong interactions. The solvability condition
then takes on the final form

∂p
(1)
1

∂t1
+

1

2

∂

∂x1

J[n]

(
p

(1)
1 ; K, Γ̄ , Λ̄, N̄

)
= − 1

H01

∂A1

∂x1

, (3.29)

relating the induced pressure disturbances inside the upper deck and the displacement
function accounting for the boundary-layer flow response. It is worthwhile to note
that in Kluwick & Meyer (2010) the interaction law (3.29) has been obtained
from the compatibility relations along left-running characteristics employing physical
arguments. Here, (3.29) is obtained from a mathematical solvability condition, which
has been shown to be related to the gasdynamic equation for inviscid flow in § 3.1.1.
Because of this connection, (3.29) can be interpreted as a version of the continuity
equation, which is the reason for originally introducing J[n] as the leading-order
perturbation of the upper-deck mass flux density. Indeed, as shown heuristically by
Kluwick (2009), the qualitative form of the interaction equation for steady flows can
be inferred directly from a mass balance which has the advantage that it applies
equally well to the different and at first sight unrelated problem of weak hydraulic
jumps (Kluwick et al. 2010).

The displacement function −A1(x1, t1) is an outcome of the solution to the lower-
deck problem which is obtained by introducing the following expansions (given here
in a form which eliminates most of the parameters characterizing the unperturbed
flow in the resulting distinguished limit):

(u)l = εR0(0)−1/2|2Γ̄ /K |−1/2U (X, Y, T ) + · · · ,

(v)l = εn+5/2µwR0(0)−1/2U ′
0(0)|2Γ̄ /K |1/2 (V (X, Y, T ) + U ∂S(X)/∂X) + · · · ,

(ρ)l = R0(0) + · · · ,

(p)l = p0 + ε2|2Γ̄ /K |−1P (X, T ) + · · · ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.30)

where

(y)l = εn+9/2R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2(Y + S(X)) (3.31)

and

x1 = µ−1
w R0(0)−1/2U ′

0(0)−2|2Γ̄ /K |−3/2X, (3.32)

t1 = µ−1
w R0(0)−1/2U ′

0(0)−2|Γ̄ |−1|2Γ̄ /K |−1/2T , (3.33)

A1 = R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2(A(X, T ) − S(X)). (3.34)

Here, S(X) denotes the scaled variation of the channel area of cross-section

sN(x) = εn+9/2R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2S(X), (3.35)

with lim
X → ∞

S(X) : = S∞ satisfying the downstream condition

−δH0 = εn+9/2R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |−1/2S∞. (3.36)

Here U ′
0(0), R0(0) and µw are, respectively, the slope of the horizontal velocity flow

field, the density and the dynamic viscosity in the oncoming undisturbed boundary
layer at x =1 (cf. figure 3) evaluated at the channel wall. Insertion into the full
Navier–Stokes equation yields the fundamental lower-deck equations in canonical, i.e.
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parameter-free, form as

∂U

∂X
+

∂V

∂Y
= 0, (3.37)

U
∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y 2
, (3.38)

supplemented by the no-slip condition at the wall

U = V = 0, Y = 0, (3.39)

the conditions of matching with the undisturbed non-interacting oncoming boundary
layer

U = Y, V = 0, P = 0, X → −∞, (3.40)

and the conditions of matching with the main-deck flow

U = Y + A(X, T ), Y → ∞. (3.41)

Because of the special functional form of (3.30)–(3.34), also known as Prandtl’s
transposition theorem (Prandtl 1938), the transformed lower-deck problem (3.37)–
(3.41) becomes independent of the contour of the surface-mounted hump S(X), and
the no-slip condition is prescribed at an undisturbed plane wall. To this end, the
boundary layer displacement exerted on the upper deck, −A1, is split into a purely
viscous part, −A, and a purely geometrical part, S, cf. (3.34). The interaction relation
(3.29), which closes the quasi-steady lower-deck problem (3.37)–(3.41), then takes on
the canonical form

−∂P

∂T
+

∂

∂X
G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q

∂

∂X
(A − S), (3.42)

where G[n] is a scaled version of −J[n] defined by

G[n](P ; K, Γ, Λ, N ) :=

⎧⎪⎨
⎪⎩

sign(K)P + 1
2
Γ P 2, n = 2,

sign(K)P + 1
2
Γ P 2 + 1

6
ΛP 3, n = 3,

sign(K)P + 1
2
Γ P 2 + 1

6
ΛP 3 + 1

24
NP 4, n = 4.

(3.43)

The remaining parameters in the canonical formulation are defined as

Γ−∞ = Γ̄
∣∣Γ̄ ∣∣−1

, (3.44)

Λ−∞ = Λ̄|2Γ̄ /K |−1
∣∣Γ̄ ∣∣−1

, (3.45)

N−∞ = N̄ |2Γ̄ /K |−2
∣∣Γ̄ ∣∣−1

, (3.46)

Q = 2−1R0(0)−1/2U ′
0(0)−1|2Γ̄ /K |3/2

∣∣Γ̄ ∣∣−1
H −1

01 > 0, (3.47)

and represent similarity parameters insofar as they account for both material and
fluid mechanic properties of the oncoming flow. The subscript −∞ indicates that the
material parameters are evaluated immediately upstream of the interaction region
(X → −∞). Integration of the interaction law (3.42) for steady flows (which is the
focus of the present paper) with respect to X gives

G[n](P ) − Q (A − S) = j
(1)
1 = 0, (3.48)

where the dependence of G[n] on the parameters has been suppressed. Since for

X → − ∞ (P, A, S) → (0, 0, 0), the integration constant j
(1)
1 has to be zero.
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The leading order of the Mach number variation in the interacting channel core
follows from the relation (cf. Kluwick & Meyer 2010)

(M − 1)/ε2(n−1) = −4−1|K |2|Γ̄ |−1dG[n]/dP + · · · . (3.49)

From (3.49), it is evident that the Mach number varies non-monotonically in the case
of dense gases exhibiting mixed nonlinearity, i.e. n= 3 and n= 4.

In the following, we give a brief summary of important properties of the solution
to the interaction problem (3.37)–(3.48) outlined in Kluwick & Meyer (2010), which
is relevant for the discussion of specific numerical solutions in § 4.

3.3. Some properties of general solutions to the interaction problem

In Kluwick & Meyer (2010), the far downstream (X → −∞) and upstream behaviours
(X → ∞) of the existing non-trivial eigensolutions to the interaction problem for a
constant area of cross-section have been discussed in detail. However, the results of
the asymptotic analysis apply equally well to the description of the far upstream and
downstream behaviours of an arbitrary solution to the general problem under the
weaker condition that the variation of the wall contour only vanishes upstream and
downstream of the nozzle S(X), i.e.

∂S

∂X
= 0, |X| > C, (3.50)

for some given constant 0 <C < ∞.
Given a nozzle satisfying condition (3.50), it then follows:
(i) If the oncoming flow is supersonic, an upstream influence of the nozzle on the

flow can be observed, i.e. a free-interacting part of the solution, which extends into
regions of a constant channel crossflow section and is linked to the existence of non-
trivial eigensolutions. In this connection, it is interesting to note that perturbations
cannot propagate upstream in supersonic flows but they can in the subsonic portion
of the boundary layer which gives rise to the Oswatitsch–Wieghardt mechanism, cf.
Lighthill (2000) or Stewartson (1981): ‘The underlying physical argument of this
phenomenon has been given earlier by Oswatitsch & Wieghardt (1946) – in supersonic
flow any change in pressure produces changes in the displacement thickness of the
boundary layer which tend to reinforce the original change’. The asymptotic form of
the free-interaction part far upstream of the nozzle is expressed by exactly the same
expansions given in Kluwick & Meyer (2010). Since the objective of this paper is to
discuss the conversion of subsonic flow to the supersonic flow regime, the associated
properties of supersonic oncoming flows will not be treated here in more detail.

(ii) However, if the oncoming core-region flow is subsonic, ‘the Oswatitsch–
Wieghardt argument is reversed and the disturbance to the basic flow must die
away’ (Stewartson 1981). Consequently, there exist no non-trivial eigensolutions and
deviations from undisturbed flow states are triggered within the nozzle part and the
resulting flow field evolves downstream. Upstream of the nozzle, no influence of its
presence can be felt.

(iii) Far downstream of the nozzle, the interacting boundary layer flow approaches
the undisturbed boundary layer flow again in a weak algebraic manner, i.e.

A(X) ∼ A(1)X−1/3 + · · · , C < X → ∞, (3.51)

where A(1) denotes a problem-dependent constant.
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G[4]M > 1

M > 1

M < 1

M < 1

–QS∞

P∞

2 234

Figure 4. Downstream pressure P∞ in dependence of the variation of the downstream channel
area of cross-section proportional to −S∞ for the example of a fourth-order mass flux density
G[4].

(iv) Consequently, because of (3.48) taking into account (S, A) → (S∞, 0) for X → ∞,
the far downstream flow state in the upper deck has to satisfy the relation

G[n](P∞) = −QS∞, (3.52)

which gives n-possible solutions for the downstream value P∞, in general. Which
far downstream state is realized depends, as discussed in § 4.2, on the geometrical
properties of the nozzle. Again, the downstream state of P is reached in a weak
algebraic manner, e.g. if ∂G[n](P )/∂P : = G′

[n](P ) �= 0,

P (X) ∼ P∞ +
QP (1)

G′
[n](P∞)

X−1/3 + · · · , C < X → ∞, (3.53)

where P (1) denotes a problem-dependent constant.

3.4. The far-downstream state in slender nozzles

An important, if not the most important, parameter in the Laval nozzle operation
is the pressure level, or, in other words, the Mach number (cf. (3.49)) attainable far
downstream of the nozzle, that is, in the present case downstream of the interaction
region for X → ∞. As is evident by relation (3.52), the downstream pressure P∞
depends only on the value of the parameter Q governing the intensity of the interaction
process and the (scaled) variation of the area of cross-section at nozzle exit with
respect to the area of cross-section at nozzle entry given by −2S∞ (cf. (3.35) and
figure 1), provided that S ≡ S∞ for X >C > 0. Since G[n] is a polynomial of order n

(cf. (3.43)), the accessible downstream state P∞ is not unique (cf. (3.52)), and each
value of P∞ corresponds to a different Mach number regime in the core region far
downstream of the interaction region (cf. (3.49)). Considering the example shown in
figure 4 illustrating the situation for a mass-flux density perturbation −G[n] of fourth
order, two, three or even four downstream states are possible for a given value of
QS∞, as indicated by the vertical lines labelled 2, 3 and 4, respectively, in figure 4.
(Note that M − 1 is proportional to the slope of −G[n], cf. (3.49) and, consequently,
the three extrema of G[4] in figure 4 correspond to three sonic states, i.e. M∞ = 1.)

In the following discussion of the various resulting flow patterns in slender Laval
nozzles obtained by numerical solutions presented in §§ 4.2.1 and 4.2.2, we assume that
S ≡ S∞ =0 for X >C > 0. As far as the discussion of the observed flow phenomena
is concerned, this assumption does not mean a loss of generality. In § 4.3, we briefly
comment on the more general case S → S∞ for X → ∞.
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4. Numerical results
4.1. Numerical method

The fundamental lower-deck problem equations (3.37)–(3.41) and the interaction law
(3.42) for steady flows with ∂P/∂T ≡ 0 in § 3.2 are discretized by means of finite
differences of second order. In Kluwick & Meyer (2010), we adopted a marching or
shooting technique in order to obtain numerical solutions integrating the equations
downstream in the main-flow direction starting from a known initial flow profile
far upstream. For conventional boundary layer equations, where the pressure is
imposed by the known outer solution, the well-posedness of such a marching
technique is guaranteed by the parabolic character of the equations. For triple-deck
problems involving a local interaction relationship, the well-posedness requires that
U > 0 in the lower-deck flow field throughout, i.e. the boundary layer flow remains
attached. Consequently, special precautions have to be taken, like the usage of the
FLARE approximation (Reyhner & Flügge 1968), when dealing with separated flow
regions in a marching approach. In contrast, here we aim to solve the full set of
algebraic equations obtained by the finite-difference representation of the governing
equations on a computational grid comprising the whole physical domain in one single
computational step, thus bypassing the issue of stability of the marching technique.
In addition, parameter variations can now be achieved in a very efficient way, making
up for the increased main-memory consumption, cf. § 4.1.1.

To this end, the physical domain (X, Y ) ∈ � × �+ is mapped onto the bounded
computational domain (ξ, η) ∈ [−1, 1] × [0, 1/αs]. The mapping ξ 
→ X(ξ ) ∈ C1

([−1, 1]) is sought in the form

X(ξ ) =

⎧⎪⎨
⎪⎩

Xu(ξ ), −1 � ξ < Ξu,

Xm(ξ ), Ξu � ξ � Ξd,

Xd(ξ ), Ξd < ξ � 1,

(4.1)

introducing three functions Xu, Xd and Xm:

Xu(ξ ) = Xsu +
Xsd − Xsu

Ξd − Ξu

1 + Ξu

2mu

⎛
⎜⎜⎝ 1(

1 − ξ − Ξu

1 + Ξu

)mu
− 1(

1 +
ξ + Ξu

1 + Ξu

)mu

⎞
⎟⎟⎠, (4.2)

Xm(ξ ) = Xsu +
Xsd − Xsu

Ξd − Ξu

(ξ − Ξu), (4.3)

Xd(ξ ) = Xsd +
Xsd − Xsu

Ξd − Ξu

1 − Ξd

2md

⎛
⎜⎜⎝ 1(

1 − ξ − Ξd

1 − Ξd

)md
− 1(

1 +
ξ + Ξd

1 − Ξd

)md

⎞
⎟⎟⎠. (4.4)

The parameters mu and md control the grid spacing in the X-direction far upstream
and downstream of the nozzle. Most importantly, Xm is a linear mapping of an
interior region [Xsu, Xsd] of the physical domain onto an interior region [Ξu, Ξd] of
the computational domain. The complicated form of Xu and Xd is a consequence
of the requirement X(ξ ) ∈ C1([−1, 1]), which is accounted for by the conditions
X′

u(Ξu−) = X′
m(Ξu+) and X′

m(Ξd−) = X′
u(Ξd+). Here, the prime denotes the derivative
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with respect to ξ . With the map η 
→ Y (η) ∈ C2([0, 1/αs]) in the form of

Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)
, (4.5)

introducing the scaling parameters Ys and αs , the representation of the uniform
numerical grid in the new coordinates (ξ, η) is given by

(ξi, ηj ) = (−1 + i	ξ, j	η), i = 0, . . . , Ni, j = 0, . . . , Nj − 1. (4.6)

The uniform grid spacings in the ξ -direction and the η-direction are given by
	ξ = 2/Ni and 	η = 1/Nj , respectively, where Ni denotes the number of grid points
in the X-direction and Nj denotes the number of grid points in the Y -direction.

For the numerical treatment of the fundamental lower-deck problem, the
transformation Ū = U − Y is introduced and V in the momentum equation (3.38) is
expressed by means of the continuity equation (3.37):

V = −
∫ Y

0

∂Ū

∂X
(X, Ȳ )dȲ = −

∫ η

0

1

X′(ξ )

∂Ū

∂ξ
(ξ, η̄)Y ′(η̄)dη̄. (4.7)

The momentum equation then can be cast into the following form:

(Y + Ū )ξ ′ ∂Ū

∂ξ
−

(
1 + η′ ∂Ū

∂η

)∫ η

0

ξ ′ ∂Ū

∂ξ
Y ′dη̄ = −ξ ′ ∂P

∂ξ
+ η′′ ∂Ū

∂η
+ η′ ∂

2Ū

∂η2
, (4.8)

where we make use of the correlation between the derivative of a function and its
inverse

ξ ′(X) = 1/X′(ξ ), η′(Y ) = 1/Y ′(η), η′′(Y ) = −Y ′′(η)/Y ′(η)3. (4.9)

All field quantities are computed at the grid points; we write (·)i,j for a field quantity
at the grid point (ξi, ηj ) and (·)i−1/2,j for an interpolated value at the intermediate
point

(ξi−1/2, ηj ) = (−1 + (i − 1/2)	ξ, j	η), i = 1, . . . , Ni, j = 0, . . . , Nj − 1. (4.10)

As mentioned earlier, the momentum equation in the form (4.8) is discretized by
means of finite differences of second-order accuracy. Specifically, different versions,
one for regions with and one for regions without flow separation, are used. In the
attached flow regions characterized by Ui,j = Yi,j + Ūi,j > 0, (4.8) is approximated
at the intermediate grid points (ξi−1/2, ηj ), whereas in regions of separated flow
(4.8) is approximated at the grid points (ξi, ηj ); cf. table 2 for details of the finite-
difference formulae. The integral in (4.7) is evaluated according to the trapezoidal
rule. Numerical experiments showed that the discretization based solely on the first
type of discretization is superior to a discretization based on backward differences
in regions without flow separation, also in the light of a reduced computational
main-memory consumption. However, we also found that it is not always satisfactory
in larger regions of flow separation as indicated by a significantly jagged wall shear-
stress distribution close to the reattachment point, which are successfully suppressed
by the combined scheme. Finally, we noted that the condition number of the whole
algebraic system of equations becomes very poor in such cases apparently leading to
numerical errors which are not small in comparison to the relatively small Ū -values in
separation regions. The idea behind the different type of discretization in regions with
flow separation is to use information at three neighbouring grid points instead of only
two in order to compute the derivatives in the ξ -direction. The combined scheme did
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U
i,
j
>

0
Expression Finite-difference representation of second order(
∂(·)
∂ξ

)
i− 1

2 ,j

(
(·)i,j − (·)i−1,j

	ξ

)
(

∂Ū

∂η

)
i− 1

2 ,j

1

2

(
Ūi,j+1 − Ūi,j−1

2	η
+

Ūi−1,j+1 − Ūi−1,j−1

2	η

)
(

∂2Ū

∂η2

)
i− 1

2 ,j

1

2

(
Ūi,j+1 − 2Ūi,j + Ūi,j−1

	η2
+

Ūi−1,j+1 − 2Ūi−1,j + Ūi−1,j−1

	η2

)

Vi− 1
2 ,j − 1

X′(ξi−1/2)

j∑
k=1

1

2

{(
∂Ū

∂ξ

)
i− 1

2 ,k

+

(
∂Ū

∂ξ

)
i− 1

2 ,k−1

}
{Y (ηk) − Y (ηk−1)}

U
i,
j
<

0

Expression Finite-difference representation of second order(
∂(·)
∂ξ

)
i,j

(
3(·)i,j − 4(·)i−1,j + (·)i−2,j

2	ξ

)
(

∂Ū

∂η

)
i,j

(
Ūi,j+1 − Ūi,j−1

2	η

)
(

∂2Ū

∂η2

)
i,j

(
Ūi,j+1 − 2Ūi,j + Ūi,j−1

	η2

)

Vi,j − 1

X′(ξi)

j∑
k=1

1

2

{(
∂Ū

∂ξ

)
i,k

+

(
∂Ū

∂ξ

)
i,k−1

}
{Y (ηk) − Y (ηk−1)}

Table 2. Different formulae used in the numerical scheme. Here, Ui,j > 0 denotes attached
flow regions and Ui,j < 0 denotes separated flow regions.

seem to lead to the best results in the end. Note that an initial strategy of a problem
formulation on the basis of the streamfunction has been abandoned in favour of the
described procedure because of the numerical problems in regions of flow separation.

The matching condition (3.41) is implemented as A= Ū (X, Ymax = Y (1)). This is
justified because of the exponential decay of Ū for Y � 1 (cf. Kluwick & Meyer 2010).
The no-slip condition at the wall requires Ūi,0 = 0, for i = 0, . . . , Ni , and matching
with the undisturbed boundary layer upstream results in the conditions Ū0,j = 0, for
j =0, . . . , Nj − 1.

The interaction law for the steady upper-deck flow (3.42),

d

dX

(
G[n](P ) − Q(A − S)

)
=

1

X′(ξ )

d

dξ

(
G[n](P ) − Q(A − S)

)
= 0, (4.11)

is approximated by Gi =0 ∀i, where Gi is defined by

Gi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

X′
i

(
G[n](Pi+1) − Q(Ai+1 − Si+1)

)
−

(
G[n](Pi−1) − Q(Ai−1 − Si−1)

)
2	ξ

,

i = 1, . . . , Ni − 1,

1

X′
i−1/2

(
G[n](Pi) − Q(Ai − Si)

)
−

(
G[n](Pi−1) − Q(Ai−1 − Si−1)

)
	ξ

,

i = Ni,

(4.12)
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Section Ni Nj Ξu Ξd mu md Xsu Xsd Ys αs

4.2.1 800 50 100/Ni 500/Ni 1.3 1.3 0 3 0.2 0.98
4.2.2 800 50 100/Ni 500/Ni 1.3 1.3 0 35 0.2 0.98 (LN = 10)
4.2.2 800 50 100/Ni 500/Ni 1.3 1.3 −10 25 0.2 0.98 (LN = 15)
4.3 1400 100 300/Ni 1100/Ni 1.3 1.3 −6 6 0.2 0.98

Table 3. Various parameter values used in the numerical computations discussed in §§ 4.2
and 4.3; LN is defined in § 4.2.

and X′
i−1/2 = X′(−1+(i −1/2)	ξ ). Equation (4.12) is a finite-difference approximation

to (4.11) of second order at the point (ξi).
The resulting system of d = Ni (Nj + 1) algebraic nonlinear equations

F(s) = 0, F, s ∈ �d, (4.13)

with s being the d-dimensional solution vector is solved by a variant of Powell’s hybrid
algorithm (e.g. Powell 1970). The sparsity of the Jacobian Ds F of F is exploited by the
implementation of the sparse solver routine PARDISO (Schenk, Gärtner & Fichtner
2000; Schenk & Gärtner 2004; Schenk & Gärtner 2006).

Table 3 lists the different parameter values used in the numerical computations
discussed in the following sections.

4.1.1. Numerical homotopy method

In general, the problem under consideration depends on several parameters.
However, we will be interested in the influence of only one parameter on solutions,
while the other parameters will be kept fixed. In the following section, the essential
parameter is the height λ of a surface-mounted hump given by S(X; λ) = λS0(X).
Consequently, the numerical scheme and the resulting system of algebraic equations
(4.13) will depend on λ as well, i.e. F(s; λ) = 0. For small heights of the surface-
mounted obstacle, the trivial solution of the interaction problem Ū ≡ V ≡ 0 is found
to be a reasonable initial guess to be used by the numerical equation solver and
the solution is converged after several iteration steps. However, for larger λ, no
convergence is observed and a numerical homotopy strategy (cf. e.g. Seydel &
Hlavacek 1987; Stoer & Bulirsch 2002) is adopted. The sought after solution sk

of F(s; λk) = 0 is considered to be part of a family of solutions s(λ) of F(s; λ) = 0.
From the solutions of two neighbouring problems F(s; λi−1) = 0 and F(s; λi) = 0, an
initial guess si+1,est for the solution of F(s; λi+1) = 0 is constructed by tangential
updating. If the initial guess is good enough to obtain a new solution for λi+1,
the updating procedure described can be used to obtain a solution for λi+2 and
so forth until λk is obtained. The numerical homotopy method is supplemented by
a continuation strategy to account for the observed sensitivity of solutions under
parameter variation. To this end, the parameter λ is considered to be a variable
itself and thus part of the solution. The system of equations F(s, λ) = 0 has to be
supplemented by an additional equation f (s, λ) = 0 in order to close the problem.
The new problem

�d+1 � F̄(s̄) = F̄((s, λ)T) =

{
F(s, λ) = 0,

f (s, λ) = 0,
(4.14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

61
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006130


Viscous–inviscid interactions in transonic flows through slender nozzles 507

can be solved in the manner previously described. The phase condition f (s, λ) = 0 is
chosen as

f (s, λ) = ‖(s − si , λ − λi)‖ − 	λi = 0. (4.15)

The new solution s̄i+1 lies on the surface of a sphere in the phase space with its centre
at s̄i and a radius 	λi . Here 	λi is adapted in each new step taking into account
information of the convergence rate obtained in the previous homotopy step.

4.2. Viscous Laval nozzle

The oncoming subsonic, near-critical flow regime in a slender channel is affected by a
small surface-mounted hump given by the relation, already written in the lower-deck
scaling,

S(X) =

⎧⎨
⎩

0, LN < |X|,
λ

2
(1 + cos(πX/LN)), |X| � LN.

(4.16)

The surface-mounted hump forms a small Laval nozzle of length 2LN located within
a channel of constant cross-section, the dimensions of both the channel and the
nozzle shall be consistent with the length scales proposed for a given Reynolds
number regime in § 3.2. In particular, ∂S(X)/∂X = 0 for |X| >LN and the stationary
solutions of the interaction problem have to satisfy the far upstream and downstream
properties discussed in § 3.3. In the case of λ> 0, the nozzle consists of a converging,
i.e. S ′(X) > 0, for X < 0, and a diverging part, i.e. S ′(X) < 0, for X > 0, which is the
conventional design of Laval nozzles used to accelerate a regular working fluid, i.e.
Γ > 0, from subsonic to supersonic flow conditions. In contrast, in order to convert
the subsonic flow of a dense gas with Γ < 0 to the super sonic flow regime a nozzle
is needed, which has a diverging upstream part and a converging downstream part,
i.e. λ< 0 (cf. e.g. Kluwick 1993).

Sections 4.2.1 and 4.2.2 discuss the influence of the viscous–inviscid interaction on
the resulting flow pattern for different heights λ in the case of a conventional type of
fluid and a dense gas type of fluid, where Γ < 0 in the entire flow regime, respectively.

4.2.1. Perfect-gas-like fluids: thermodynamic regions Γ > 0

The working medium under consideration behaves as a conventional regular fluid,
i.e. Γ > 0 in the entire flow regime of interest. Consequently, the parameter n,
characterizing the thermodynamic properties of the working fluid, is of value 2. Since
the oncoming flow is supposed to be subsonic, i.e. characterized by a positive value of
the transonic similarity parameter K > 0, the negative mass-flux density perturbation
G[2] (cf. (3.43)) takes on the quadratic functional form depicted in figure 5(a).
Furthermore, we take Q =1 in the interaction law (3.48); a discussion of the influence
of Q on the flow regime is given at the end of this section. From an inspection
of the expansion of the Mach number variation (3.49), it is evident that supersonic
upper-deck flow is encountered for P < −1 and sonic flow conditions are reached for
P = −1, where G[2] becomes extremal.

Recalling the discussion of the far upstream and downstream properties of possible
solutions in § 3.3, we find that the flow upstream of the nozzle, i.e. for X < −LN,
is unaffected by the presence of the surface-mounted hump, because under subsonic
flow conditions no non-trivial eigensolutions exist, which could contribute to a free-
interacting part of the solution. Hence, the flow in the interaction region for X < −LN
is identical to the oncoming flow conditions (P, A) = (0, 0). Once the nozzle is reached,
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G[2]

P

M > 1M > 1

M < 1M < 1

0
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λ3

λ2

λ1

λ2

λ1

λs

λc

λc − mp < λ < λc

λc − mp < λ < λc

λc − mp < λ < λc

–A

0

1

–1

–2
λs λc

X

τw

0

1

2

3
λs

λc

Figure 5. Plot of (a) the P -, (b) −A- and (c) τw (= ∂U/∂Y |Y=0)-distributions for various
heights λ of the surface-mounted hump of length LN = 2 for n= 2, Γ > 0 and Q = 1. The
numerical values for λ are λ1 = 0.5, λ2 = 1.0 and λ3 = 1.5. A sonic state, indicated by �, is first
encountered for λs ≈ 1.335. Transition from subsonic to supersonic flow for λc = 1.60512 . . . ,
for λ→ λc− pseudo-shocks form, leading to a smooth transition from supersonic to subsonic
flow; mp denotes machine precision. For λ> λc , no steady solutions exist.

the interaction process is triggered and the flow deviates from undisturbed oncoming
flow conditions. Naturally, the resulting flow pattern in the nozzle depends on the
chosen properties of the nozzle and can only be obtained by numerical solutions, in
general. Far downstream of the nozzle, however, the asymptotic form of the solutions
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–1

0

1
2

3

x̃/L̃0
(p̃

 −
 p̃

0)
/p̃

0 M < 1

M > 1

Bifurcation

Figure 6. Sketch of the pressure distribution in an ideal Laval nozzle according to classical
theory (inviscid one-dimensional, non-interacting flow, perfect gas).

again is known and has to satisfy (3.51) and (3.53). Obviously, there exist two possible
flow regimes far downstream of the interaction region, namely (P∞, A∞) = (0, 0) and
(P∞, A∞) = (−2, 0), which are approached in the weak algebraic manner indicated
by (3.51) and (3.53). The first state, which is identical to the flow conditions in
the oncoming flow, indicates subsonic, whereas the second state indicates supersonic
downstream flow conditions.

In order to understand the observed multivaluedness of the far downstream state,
one has to give attention to the evolution of the flow in the nozzle part of the
channel. Therefore, turning now to numerical solutions, we consider a nozzle of a
shape given by (4.16) with LN = 2. Figure 5(a–c) shows the numerical results for
the perturbations of the pressure P (figure 5a), the negative displacement thickness
evoked by the viscous lower-deck reaction −A (figure 5b) and the wall shear stress
τw = ∂U/∂Y |Y=0 (figure 5c). For small heights of the surface mounted hump, cf. the
distribution of the pressure for λ1 = 0.5 and λ2 = 1.0 in figure 5(a), the upper-deck flow
remains subsonic in the entire interaction region. This behaviour is very much in line
with the well-known behaviour of the perfect-gas-like flow through a Laval nozzle of
a minimal throat area, which is larger than the critical minimal throat area, according
to the classical, purely inviscid and one-dimensional theory; see e.g. Oswatitsch (1956)
and the sketch in figure 6. Initially, the oncoming upper-deck flow is accelerated in the
converging part of the nozzle indicated by the decreasing pressure. However, unlike
classical theory, where the flow decelerates immediately after traversing the minimum
throat area, which is located at X = 0, the interacting core-region flow is accelerating
right into the first part of the diverging section of the nozzle, before, finally, it is
decelerated back to the undisturbed subsonic downstream flow state (P, A) = (0, 0).
The cause of the observed deviation from classical behaviour is that the interacting
boundary layers themselves are forming a ‘viscous’ Laval nozzle which adds up to the
geometrical (solid) shape S of the nozzle. Thus, the effective crossflow reduction felt by
the upper-deck flow, which is a result from the boundary layer displacement exerted
on the core-region flow (cf. figure 3), consists of the ‘geometric’ contribution S and
a purely viscous contribution −A, shown in figure 5(b), generated by the lower-deck
reaction to the induced pressure variation in the upper deck. Both effects contribute
to the perturbation of the boundary layer displacement in the interaction region −A1,
which is expressed by the relation (3.34) of Prandtl’s transposition theorem, which is
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Figure 7. Plot of the P -, −A-, S- and −A� = −A + S-distributions for various heights λ
of the surface-mounted hump of length LN =2 for n= 2, Γ > 0 and Q = 1. (a) λ2 = 1.0,
(b) λs ≈ 1.335, (c) λ3 = 1.5 and (d ) λc = 1.60512. . . .

given here in canonical form

−A� := −R0(0)1/2U ′
0(0)|2Γ̄ /K |1/2A1 = −A + S (4.17)

for the overall perturbation of the negative displacement thickness −A�. Insertion
into the interaction law (3.42) for steady flow, which governs the core-region flow,
yields the alternative form of the interaction law

G′
[n](P ; K, Γ−∞, Λ−∞, N−∞)

dP

dX
= Q

dA�

dX
= Q

d

dX
(A − S). (4.18)

Figure 7(a) once again shows the distribution of P for the case of λ2 = 1.0, but now
together with the distributions of S, −A and −A�. The compressible inviscid upper-
deck flow is accelerated as long as dP/dX < 0. Initially, the incompressible lower-deck
flow is accelerated as well and by continuity arguments this results in a thinning of
the boundary layer indicated by d(−A)/dX < 0 leading to −A< 0. Therefore, the
contribution of the surface-mounted hump S on the displacement effect is reduced by
A and the point of deceleration of the upper-deck flow (dP/dX =0) is delayed into
the diverging part of the nozzle. In the classical picture of a non-interacting inviscid
flow, a nozzle would have to have a shape given by −A� in order to obtain the same
pressure distribution as observed in the case of an interacting flow through a nozzle of
shape S. In fact, the interacting boundary layer can be seen to form a ‘viscous’ nozzle
of shape −A� for the inviscid core-region flow in the upper deck, which, however,
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because of the interaction has to adapt to and, at the same time, interact with the
inviscid channel core flow. Interestingly, the deceleration of the upper-deck flow is
preceded by a deceleration of the boundary layer flow (indicated by a thickening of
the boundary layer d(−A)/dX > 0), so that the resulting effective displacement −A�

has an extremum at Pmin, the beginning of the retardation of the upper-deck flow. The
location of the minimal effective throat area of this viscous nozzle now corresponds
with the minimum of the pressure distribution Pmin, as one would have guessed by
application of the classical Laval nozzle theory and which follows from (4.18) taking
into account that G′

[2](Pmin) �= 0 in figure 7(a).
If the height of the surface-mounted hump is increased successively to λs ≈ 1.335,

the minimum of the pressure distribution approaches Ps = −1, eventually. At this
point, sonic flow conditions are obtained for the first time in the nozzle. In the
classical Laval nozzle theory, this is the limiting case of the critical minimal throat
area and no steady solutions exist in the case of a further reduction of the throat
area, i.e. increase of the surface-mounted hump. Moreover, the sonic state located
at the minimal throat area would correspond to a bifurcation point in the pressure
distribution branching two solutions. One solution branch would correspond to a
subsonic decelerating flow regime, and the other would correspond to a supersonic
accelerating flow; cf. branch 1 and branch 3 in figure 6, respectively. The numerical
results for the pressure distribution in figure 5(a) clearly show that the bifurcation
point for λs is eliminated under the action of the viscous–inviscid interaction, which in
a sense regularizes the idealization of a purely inviscid flow required by the classical
picture. Only one branch of the former two solution branches remains accessible,
which leads to a reversion to the subsonic flow regime. Interestingly enough, the
height of the surface-mounted hump can be increased above λs , cf. the case λ3 = 1.5
in figure 5(a). The pressure distribution for λ3 indicates that the upper-deck flow
is accelerated first to supersonic, but afterwards smoothly decelerated to subsonic
conditions again. Such a solution has no counterpart in the classical Laval nozzle
theory. Figure 7(c) reveals that the interacting boundary layers are forming a viscous
nozzle consisting now of two throats and one anti-throat and that the local supersonic
flow regime is confined between the two throats. The two sonic states are located at
the minima of the two viscous throats and the minimum of the pressure distribution
is located at the maximum of the viscous anti-throat. This immediately follows from
(4.18), since in the case of an extremum of A�(X), i.e dA�/dX = 0, P (X) has to become
extremal too, i.e. dP/dX = 0, if M �= 1, and thus G′

[2] �= 0. Only at a sonic state, i.e.
G′

[2] = 0, it is possible to pass the sonic state and to enter a different flow regime (from
subsonic to supersonic or vice versa), since only then dP/dX �= 0 in accordance with
(4.18).

As expected, the height of the surface-mounted hump cannot be increased
indefinitely. The numerical investigation indicates the existence of a critical value
λc ≈ 1.60512 above which no steady solutions can be found. Very much like the case
of an ideal Laval nozzle according to the classical theory (cf. the solution branch 3 in
figure 6), the solution for λc is just the solution, which leads to a transition from the
subsonic into the supersonic regime with P∞ = −2. In this limiting case, the viscous
nozzle of shape −A� in figure 7(d ) is found to form a nozzle, which now consists
of only one throat and one anti-throat, leading to a shock-free acceleration of the
upper-deck flow into the supersonic flow regime. Quite in contrast to the classical
Laval nozzle theory (cf. figure 6), the supersonic downstream pressure state is not
approached in a monotonous way (cf. figure 5a), but rather exhibits a pressure
minimum within the nozzle because of viscous–inviscid interactions.
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Moreover, with λ approaching λc from below, the region around the location of
the minima in the corresponding pressure distributions is almost forming a cusp (cf.
figure 5a). From a numerical point of view, such solutions are indistinguishable to the
machine precision mp, i.e. 0 < λc −λ<mp, from the solution for λc as long as the flow
in the nozzle is accelerated, i.e. dP/dX < 0 in figure 5(a). Then, the solutions seem to
branch from the solution for λc, leading to a relatively rapid transition from super-
to subsonic flow conditions. Interestingly enough, there exists a classical counterpart
which is depicted in figure 6, cf. branch 2. A normal shock in the diverging part of
the nozzle leads to the transition from supersonic to subsonic flow, the position of
the shock depends on the outflow condition at the nozzle exit. However, taking into
account the results presented in Kluwick & Meyer (2010), it follows that such a weak
normal shock is smoothed out by the mechanism of viscous–inviscid regularization
because of strong shock-boundary layer interactions taking place in slender channels,
and the shock discontinuity resolves into a pseudo-shock. By means of the numerical
homotopy continuation method (cf. § 4.1.1), an infinite number of solutions can
be found for 0 < λc − λ<mp (cf. figure 5). The position of the pseudo-shock is
moved successively further downstream until it eventually leaves the physical domain,
resulting in the limiting case for λ= λc. The flow in such a regime, in analogy to the
classical Laval nozzle theory, can be considered to be nearly choked. Eventually, the
strength of such a pseudo-shock forming in the choked flow regime is large enough to
force the lower-deck flow to separate (cf. figure 5c). Such a phenomenon is well known
and frequently encountered in technical transonic diffusers and is very susceptible to
self-sustained shock oscillations (cf. e.g. Matsuo, Miyazato & Kim 1999).

Whether flow separation is caused by pseudo-shocks in the diffuser part of the
nozzle depends on several parameters, amongst them the chosen length of the nozzle
LN and the parameter Q governing the coupling between the lower- and upper-deck
flows. This is exemplified by figure 8. Figure 8(a) shows two pseudo-shocks and the
solution for λc for different values of the parameter Q. Apart from the different critical
heights of the surface-mounted hump necessary for different values of Q, the shape
of the nozzle S remains unchanged with respect to the already discussed situation
of Q =1, which is depicted by the bold solid lines in figure 8(a). In particular, the
length of the surface-mounted hump LN = 2. A reduction of Q, and linked to it a
reduction of the strength of the regularizing influence, the interaction process can be
achieved for instance by increasing the height of the channel H01 while keeping the
inflow conditions fixed at the same time (cf. (3.47)). The minimum of the pressure
distribution in the nozzle, which, as pointed out before, is the direct consequence of
the viscous–inviscid interaction mechanism, decreases with increasing values of Q, i.e.
with increasing strength of the coupling between the interacting boundary layer flow
and the upper deck. Consequently, the strength of a pseudo-shock in the diffuser part
is increased and the pseudo-shock initiated approximately between X = 0 and X = 2
causes flow separation in the boundary layers for all depicted values of Q. On the
other hand, from the results presented in Kluwick & Meyer (2010), it is evident that
the steepness of the shock profiles and thus the likelihood to encounter flow separation
in compressive pseudo-shocks of similar strength increases with decreasing values of
Q. Thus, considering the pseudo-shock solutions starting at approximately between
X = 2 and X = 4, i.e. outside the nozzle, only the pseudo-shock corresponding to the
lowest value of Q = 0.7 is found to cause flow separation. Note that the calculated
values of the critical surface contour λc for the different values of Q do not vary
monotonically with Q. This exemplifies the significance of the strong interaction
between the boundary layer flow and the flow regime in the inviscid core in slender
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Figure 8. (a) Plot of the P - and τw ( = ∂U/∂Y |Y=0)-distributions for various values of the
parameter Q in the choked flow regime of a surface-mounted hump of length LN = 2 for
λ→ λc−. (b) Plot of the P - and τw-distributions for various heights λ of the surface-mounted
hump of length LN = 10 and Q = 1. The numerical values for λ are λ1 = 0.5 and λ2 = 1.5. A
sonic state, indicated by �, is first encountered for λs ≈ 1.075. Transition from subsonic to
supersonic flow for λc = 1.28210 . . . , for λ→ λc− pseudo-shocks form; mp denotes machine
precision.

nozzles, since, as discussed before, the geometric shape of the nozzle alone is no longer
responsible for the transition from subsonic to supersonic, but has to be considered
together with the boundary layer displacement.

If LN is increased for a given shape of a nozzle and a given value of Q, then flow
separation can be avoided for all pseudo-shock solutions (cf. figure 8b). Figure 8(b)
shows various pressure distributions for a surface-mounted hump of length LN =10
for Q =1. The strength of the pseudo-shocks that form is decreased in comparison to
the case of LN = 2 (cf. figures 8a and 5a), which is sufficient to avoid flow separation
in the case of a nozzle with LN = 10 for Q =1, in general.

In conclusion, note that flow separation can also be obtained by a proper design
of the nozzle diffuser part, so that flow separation would be caused by the adverse
pressure gradient developing in the subsonic flow regime downstream of the pseudo-
shock. Instead of the shock-induced flow separation caused by a pseudo-shock, we
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then would have to deal with pressure-gradient-induced flow separation caused by a
sufficient steepness of the diffuser part in the nozzle. However, since these observations
do not add much to the discussion already presented, we state these facts for the sake
of completeness, but refrain from a more detailed discussion.

4.2.2. Real gas effects: thermodynamic regions Γ < 0

The working medium under consideration is taken to be a real gas in the dense
gas regime having Γ < 0 in the entire flow region of interest. Thus, as before, the
parameter n is of value 2 and the negative mass-flux density perturbation G[2]

(cf. (3.43)) again takes on a quadratic functional form. Since the oncoming flow is
supposed to be subsonic once again, the transonic similarity parameter K > 0 has to
be positive. The sonic state, however, is now attained at P =1 and the supersonic flow
regime is accessed for P > 1. As before, the interacting flow for X < −LN is given
by (P, A) = (0, 0), since under subsonic flow conditions no upstream influence of the
surface-mounted hump can develop (cf. the discussion in § 3.3). The two possible flow
regimes far downstream of the interaction region are (P∞, A∞) = (0, 0) (subsonic) and
(P∞, A∞) = (2, 0) (supersonic), which are approached in the weak algebraic manner
indicated by (3.51) and (3.53). The appropriate nozzle to obtain supersonic flow
conditions (note that in a dense gas with Γ < 0, the flow has to decelerate in order
to enter the sonic flow regime) has to consist of one anti-throat rather than one
throat as in § 4.2.1. Consequently, we chose the height of the surface-mounted hump
λ governing the nozzle geometry in relation (4.16) to be of negative values.

Figure 9 illustrates the influence of the height of the surface-mounted hump λ on
the distributions of the corresponding induced pressure P , the effective boundary-
layer displacement −A� (cf. (4.17)), and the wall shear stress τw = ∂U/∂Y |Y=0 in the
interaction region for two different values of LN. The results with LN = 10 are
plotted in the left column of figure 9 and the results with LN = 15 in the right.
Different solutions in the charts of figure 9 correspond to different heights λα; the
numerical values of λα are defined by their index α.

The qualitative behaviour of the solutions obtained for the various values of λ in
figure 9 is found to be very similar to that discussed in the previous section, aside from
the reversed nozzle shape and the indicated rarefactive nature of pseudo-shocks. The
shape of the viscous nozzle −A�, which is formed by the boundary layers interacting
with the induced pressure perturbations in the core region (cf. figure 9b), consists either
of one anti-throat (subsonic), of two anti-throats confining a supersonic regime and
one throat located at the maximum of the pressure distribution (supersonic pocket), or
of one anti-throat and one throat (ideal Laval nozzle). Since the admissible type of
shocks in dense gases with Γ < 0 are rarefaction shocks (Kluwick 1993), pressure-
induced flow separation is avoided, in general. Because of the favourable influence of
a negative pressure gradient in the resulting pseudo-shock profile, the boundary layer
flow remains firmly attached; cf. the positive peaks in the wall-shear distribution in
figure 9(c). By an inspection of the wall-shear distributions in the case of LN = 10,
for which no flow separation has been observed in the case of Γ > 0 (cf. figure 8b),
it becomes evident that the risk of flow separation in Laval nozzles is by no means
eliminated by the use of dense gases, since transition from subsonic to supersonic flow
is caused by a suitable deceleration of the flow and a net increase of the Mach number
is achieved by the even stronger decrease of the speed of sound. Consequently, the
boundary layer flow is decelerated initially when subjected to the subsonic retarded
core-region flow and, thus, the risk of flow separation is shifted from the supersonic
flow regime (shock-induced flow separation) into the subsonic flow regime of the
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Figure 9. Plot of (a) the P -, (b) −A�- and (c) τw (= ∂U/∂Y |Y=0)-distributions for various
heights λ of the surface-mounted hump with LN = 10 (left) and LN = 15 (right) and Q = 1
for a dense gas characterized by n= 2 (Γ < 0). The numerical values for λ in the figures are
given by their indices. A sonic state, indicated by �, is first encountered for λs . Transition from
subsonic to supersonic flow for λc; mp denotes machine precision.

diffuser part of the nozzle (pressure-gradient-induced flow separation). Naturally, the
tendency to cause flow separation should decrease for nozzles of greater length LN;
cf. the case LN =15 in figure 9, where the boundary layer flow remains attached for
all possible values of λ. Interestingly, in the case of a pressure-gradient-induced flow
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Figure 10. Inverse design of a nozzle for perfect-gas-like fluids (n= 2); Q = 1.

separation taking place, λ can be decreased significantly below the values possible in
the case without separation. Even so, the values for λs , where sonic flow conditions
are encountered in the nozzle for the first time, are of comparable numeric values in
both cases. Furthermore, flow separation leads to a slight depression in the pressure
distribution, where the pressure rise achieved in the separation region is comparably
small as λ is pushed further towards the critical value λc. Consequently, the maximal
pressure values observed in the nozzle of LN =10 and LN = 15 are of about 3 in
both cases (cf. figure 9a), whereas the maximal boundary displacement −A� and the
wall shear stress are significantly higher in the case LN = 10, where flow separation
occurs, than those in the case LN = 15 without any separation region (cf. figures 9b
and 9c). Quite in contrast to the behaviour found for a regular fluid in § 4.2.1, the
formation of pseudo-shocks is eased somewhat, so that they are already present for
values of λ well below λc (and even more so, when the pressure-gradient-induced
flow separation precedes the pseudo-shock). Experiments in the dense gas regime may
possibly benefit from this fact, since it should facilitate the adoption of a proper
maximal flow cross-section in a nozzle in order to obtain a specific choice of a
pseudo-shock solution suitable for the experimental detection.

4.3. Inverse problem: Laval nozzle design

From a practical viewpoint, it seems more natural to ask for the appropriate nozzle
shape in order to generate a certain desired pressure distribution, which e.g. ensures
a smooth conversion of the subsonic oncoming flow into the supersonic downstream
flow conditions. The changes required in the numerical scheme are straightforward,
instead of S(X) we simply prescribe P (X) and S(X) is considered to be unknown in
advance. The numerical results for the desired pressure distribution of a regular fluid
given by the functional form

P (X) = P∞(tanh(X) + 1)/2, (4.19)

with the chosen downstream pressure P∞ = −2, are plotted in figure 10. It is evident
that a nozzle forming the desired pressure distribution has to have a slowly diverging
part reaching far downstream. The exponential approach of the downstream pressure
P∞, which is desired by relation (4.19), forces the same exponential behaviour of the
effective boundary layer displacement −A� according to (4.18). And, consequently,
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Figure 11. Inverse design of a Laval nozzle for dense gas (n= 4, K > 0, Γ−∞ > 0,
Λ−∞ = 0.44, N−∞ = 0.08); Q =1.

the weak algebraic decay of −A shown in figure 10 has to be balanced by the weak
algebraic decay of the solid nozzle shape S.

So far, the discussion has been restricted to regular fluids or dense gases, where it has
been assumed that the flow states within the nozzle never leave the dense gas regime,
i.e. Γ < 0 for all possible flow situations encountered. If, however, the operation mode
of the nozzle is located close to the transition line Γ =0, we have to consider dense
gases exhibiting mixed nonlinearity, i.e. the fundamental derivative (1.1) is likely to
change its sign as well. The conversion of the working media from subsonic to
supersonic flow cannot be accomplished by means of a nozzle consisting out of one
single throat in that case (cf. Kluwick 1993). Rather, a combination of throats and
anti-throats has to be used. In such a case, the inverse design of a Laval nozzle is most
useful, since the procedure to increase the height of a nozzle of otherwise given shape
until a critical value of the nozzle height is obtained will not result in a transition from
subsonic to supersonic flow conditions, in general. Figure 11 shows numerical results
for the instructive case of a dense gas flow in which the unperturbed state upstream
of the interaction region is characterized by Γ−∞ > 0, Λ−∞ =0.44 and N−∞ = 0.08.
The actual numerical values used in figure 11 are chosen in such a way that they
result in a mass-flux density with three well-separated sonic states. Inspection of the
mass-flux density G[4] depicted in figure 11 reveals the existence of three sonic states
separating four Mach number regimes. In the actual case, the fluid is accelerated
from subsonic conditions with (P, A) = (0, 0) to supersonic downstream conditions
with (P∞, A∞) = (−10, 0) traversing first a supersonic region and a successive subsonic
region before entering the desired second supersonic flow regime. The required shape
of the nozzle is shown in figure 11 together with the effective shape of the viscous
nozzle −A�, which indeed exhibits the two throats and the one throat as indicated
earlier. The first throat is necessary to accelerate the flow from subsonic to supersonic,
in the following anti-throat it is accelerated further to subsonic, and in the second
anti-throat it is finally forced into the second supersonic flow regime.

5. Summary and conclusions
The problem of viscous–inviscid interactions in internal, transonic, single phase and

two-dimensional high-Reynolds-number flows of regular and dense gases through
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narrow channels has been consistently generalized to deal with small Laval nozzles
located in a channel of an otherwise constant cross-section. The resulting problem can
be described in the framework of the triple-deck theory. The channel is required to be
so narrow that the interacting core-region flow becomes one-dimensional to leading
order, the interacting core region is then represented by a single upper deck which is
shared by the two interacting boundary layers at the lower and upper channel walls.
The resulting model equations have been applied to study the conversion of subsonic
to supersonic flows for fluids of general type. Because of the nature of the asymptotic
analysis employed here, the emphasis has been laid on identifying and describing the
underlying physical agencies at work.

The first part of the discussion of the resulting steady flow field through nozzles of
different minimum cross-sections, but of otherwise similar shape, focuses on the case
of a regular fluid for example an ideal gas. The nozzle is of conventional shape in the
sense that it consists of a converging part followed by a diverging part. Because of the
regularizing effect of the viscous–inviscid interactions, the occurrence of a single sonic
state in the inviscid core-region flow no longer corresponds to a bifurcation point, as
is the case in the classical inviscid one-dimensional Laval nozzle theory. The numerical
results show that the purely subsonic solution remains the only possible solution and
no supersonic branch bifurcates at the sonic state. Moreover, the sonic point moves
slightly downstream of the location of the minimum throat area of the nozzle. A quite
similar behaviour concerning the location of the sonic point has been reported in
computational fluid dynamics (CFD) results for transonic flow through micro nozzles
(see for example Hao et al. 2005), and for nozzle flow at moderately high Reynolds
numbers where the viscous effects are important in the whole flow field (Williams III
1963). Unlike classical theory, at this point the minimum throat area is still larger
than the critical minimum cross-section, so that there is the potential in interacting
flows to further increase the geometrical constriction of the core-flow region. The
explanation of such a behaviour is the ‘freedom’ of the interacting boundary layers
to form a ‘viscous’ nozzle, which adapts and at the same time interacts with the
inviscid channel core flow similar to the shock-regularizing mechanism of viscous–
inviscid interactions discussed in Kluwick & Meyer (2010). Therefore, the effective
shape of the viscous nozzle is now a combination of the purely viscous lower-deck
response and the geometrical nozzle shape. The minimum cross-section of the nozzle
cannot be reduced without bounds. In the vicinity of the minimal critical cross-
section, which leads to a smooth transition from subsonic to supersonic conditions,
pseudo-compression shock solutions start to form in the diffuser part of the nozzle,
leading to a rapid transition of the supersonic flow to subsonic conditions. The
pseudo-shock has been found to move successively downstream when the minimum
cross-section is approached. This flow regime has been denoted as nearly chocked
flow, in analogy to the classical Laval nozzle theory. Eventually, depending on the
shape of the nozzle and the strength of the coupling between the lower and upper-
deck flows represented by the parameter Q in (3.42), the pseudo-shock is strong
enough to force flow separation to occur. Preliminary results obtained by a linear
stability analysis for steady solutions show that separation is linked to the loss of
stability of the steady solutions. The emphasis of this work is to establish how this
is related to the well-known phenomenon of self-sustained shock wave oscillations in
transonic diffusers (cf. e.g. Matsuo et al. 1999).

Turning to the analogous problem for dense gases where the fundamental derivative
Γ < 0 is negative in the entire flow regime of interest, the proper shape of a nozzle
to convert the oncoming subsonic flow to supersonic conditions consists now of a
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diverging part followed by a converging part and the obtained pseudo-shock solutions
correspond to rarefaction shocks rather than to compression shocks (cf. e.g. Kluwick
1993). Because of the rarefactive nature of the pseudo-shocks, no risk of the shock-
induced flow separation is encountered here. However, the numerical solutions reveal
a tendency to exhibit pressure-gradient-induced flow separation in the preceding
subsonic diffuser part of the nozzle, again depending on the shape of the nozzle
under consideration. In comparison with the behaviour found for a regular fluid, the
formation of pseudo-shocks is eased in general, so that they are already present for
nozzles with a maximum flow cross-section well below the critical limiting situation of
an ideal Laval nozzle resulting in a smooth transition to supersonic downstream flow
conditions (and even more so, when the pressure-gradient-induced flow separation
precedes the pseudo-shock). Experiments in the dense gas regime may possibly benefit
from this situation, since it should facilitate the adoption of a proper maximal flow
cross-section in a nozzle in order to obtain a specific choice of a pseudo-shock solution
suitable for the experimental detection.

The formulation of the problem presented so far, that is to say, prescribing the
shape of the nozzle, has turned out to be quite revealing in the discussion of the family
of solutions to be encountered; however, it allows limited control over the obtained
pressure distribution. Moreover, it is quite demanding to obtain a smooth transition
from subsonic to supersonic flow conditions of a dense gas undergoing a change of
the sign of the fundamental derivative Γ in the flow field by simply prescribing a
fixed nozzle shape. Therefore, the appropriate problem formulation is in terms of an
inverse design of Laval nozzle, where the desired pressure distribution is given at the
beginning and the corresponding unknown shape of the Laval nozzle is calculated in
the end.

This work has been financed by the Austrian Science Fund in the framework of
the WK Differential Equations. Additionally, G.M. thanks R. Szeywerth for his help
with the implementation of the PARDISO routine.
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