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1. Introduction

Let Ω be a domain in R
N , for some N ∈ N, that we assume to have a smooth

boundary. Let a, b, c : I × Ω̄ → R and G : I × Ω̄ × R
2 → R be C2-functions, where

I := [0, 1] denotes – here and throughout the paper – the unit interval. We denote
by G′

u and G′
v the partial derivatives of G with respect to the components in R

2,
respectively, we assume that G′

u(λ, x, 0, 0) = G′
v(λ, x, 0, 0) = 0 for all (λ, x) ∈ I ×Ω

and we consider the systems of elliptic partial differential equations

−∆u = bλ(x)u + cλ(x)v + G′
v(λ, x, u, v) in Ω,

−∆v = aλ(x)u + bλ(x)v + G′
u(λ, x, u, v) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

depending on the parameter λ ∈ I. Clearly, under the mentioned assumptions the
constant function (u, v) ≡ 0 is a solution of (1.1) for all values of λ and the aim of
this article is to investigate bifurcation from this trivial branch of solutions I ×{0}.
Here, a bifurcation point of (1.1) is an instant λ∗ ∈ I for which there is a sequence
{(λn, un, vn)}n∈N such that (un, vn) �= 0 is a weak solution of (1.1) for λn, λn → λ∗

and un, vn → 0 in the Sobolev space H1
0 (Ω, R) for n → ∞. Our methods are

based on a bifurcation theorem for critical points of families of functionals due to
Fitzpatrick et al . [5], which was recently improved by Pejsachowicz and the author
in [11]. In order to explain this theorem briefly, let f : I ×H → R be a family of C2
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functionals that are defined on a Hilbert space H and such that 0 ∈ H is a critical
point of all fλ := f(λ, ·) : H → R. If we represent the second derivatives D2

0fλ of
f at the critical point 0 against the scalar product of H, then we obtain a path
L = {Lλ}λ∈I of self-adjoint operators.

The spectral flow is an integer-valued homotopy invariant for paths of self-adjoint
Fredholm operators, which has been used in global analysis for about 40 years. Its
relevance for bifurcation of critical points for families of functionals was clarified
in [5]: if the self-adjoint operators Lλ, which are induced by the Hessians of f at 0,
are Fredholm, then a non-vanishing spectral flow is a sufficient condition for the
existence of a bifurcation of critical points of f . Let us point out that if the operators
Lλ have finite Morse indices, then the spectral flow of L is just the difference of
the Morse indices of L0 and L1, and so the bifurcation theorem [5] is a classical
assertion in variational bifurcation theory in this case. In contrast, it is often hard
to compute the spectral flow of a given path of operators when the Morse indices
are infinite (see, for example, [14]).

The aim of this article is to show that for the indefinite elliptic systems (1.1),
where the Morse indices of the corresponding operators Lλ are indeed infinite, the
spectral flow can be computed, or at least estimated, so that [5] can be used to
derive bifurcation criteria. To the best of our knowledge, such easily computable
bifurcation invariants that are induced by the spectral flow have not been obtained
for partial differential equations before.

In the following section, we introduce a family of C2 functionals f : I×E → R that
is defined on the Sobolev space E := H1

0 (Ω, R2) and is such that the critical points
of fλ := f(λ, ·) : E → R are precisely the weak solutions of (1.1). In particular,
0 ∈ E is a critical point of each fλ and we can deduce the existence of a bifurcation
from the zero-solution of (1.1) by considering bifurcation of critical points from 0
for the family of functionals f . We will state below conditions on the map G that
ensure that the Hessians D2

0fλ of fλ at 0 ∈ E exist, and that elements in the kernel
of the representations Lλ of D2

0fλ on E are the solutions of the linearized equations

−∆u = bλ(x)u + cλ(x)v in Ω,

−∆v = aλ(x)u + bλ(x)v in Ω,

u = v = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (1.2)

Since the operators Lλ are readily seen to be Fredholm in this case, we can use the
abstract bifurcation theorem [5], and consequently we will be concerned with the
spectral flow of the corresponding path L = {Lλ}λ∈I . In theorem 4.2, which we
consider to be the main result of this paper, we estimate the spectral flow in terms
of the coefficients of (1.2) at λ = 0 and λ = 1, which is enough to conclude that
it does not vanish and so implies the existence of a bifurcation of solutions for the
nonlinear equations (1.1).

Another objective of this paper is to consider the special case in which the maps
a, b and c do not depend on x ∈ Ω, i.e.

−∆u = bλu + cλv + G′
v(λ, x, u, v) in Ω,

−∆v = aλu + bλv + G′
u(λ, x, u, v) in Ω,

u = v = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (1.3)
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For these equations, we compute the spectral flow of the corresponding path of
operators L exactly in terms of an integral index that can be constructed from the
coefficients of the linearized equations

−∆u = bλu + cλv in Ω,

−∆v = aλu + bλv in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.4)

for λ = 0 and λ = 1. The idea of this index goes back to Li and Liu [9], who used
a similar construction in their study of existence of periodic solutions of asymptot-
ically quadratic Hamiltonian systems. Their index was later applied in bifurcation
theory for periodic solutions of Hamiltonian systems, for example, by Szulkin in [17],
and by Fitzpatrick et al . in [6] who in particular used it to compute the spectral
flow for autonomous Hamiltonian systems. It has some interest in itself that we
compute in our theorem 3.2 the spectral flow for (1.4) by way of an index that is
very much reminiscent of Li and Liu’s index from [9]. The adaption of Li and Liu’s
index for Hamiltonian systems to the elliptic systems (1.4) closely follows Szulkin’s
work [17, § 5] (see also [8, § 9]), who investigated the bifurcation problem for (1.3)
in the special case in which a, b, c and G depend linearly on λ, i.e.

−∆u = λ(bu + cv + G′
v(x, u, v)) in Ω,

−∆v = λ(au + bv + G′
u(x, u, v)) in Ω,

u = v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.5)

by using infinite-dimensional Morse theory for strongly indefinite functionals. We
reobtain Szulkin’s results in corollary 3.4 as a consequence of our theorem 3.2, and
we will also assess our main theorem (theorem 4.2) for (1.5) below.

Let us finally point out that a more general index for self-adjoint operators was
recently introduced by Wang and Liu in [18], which accordingly might be applicable
to bifurcation theory along the lines of this paper. Moreover, Go�lȩbiewska and
Rybicki discussed in [7] equivariant decompositions of H1

0 (Ω) and obtained global
bifurcation results for equations that are similar to (1.5).

2. Spectral flow and bifurcation for (1.1)

Let Ω ⊂ R
N be a bounded domain with smooth boundary ∂Ω. In what follows we

assume that:

(A1) a, b, c : I × Ω̄ → R and G : I × Ω̄ × R
2 → R are C2-functions;

(A2) G′
u and G′

v are bounded and

|G′
u(λ, x, u, v)| + |G′

v(λ, x, u, v)| = o(|u| + |v|)

as |u| + |v| → 0 uniformly in (λ, x) ∈ I × Ω̄;

(A3) D2G(λ, x, 0, 0) = 0 for all (λ, x) ∈ I × Ω, where D2G(λ, x, u, v) denotes the
Hessian matrix of G(λ, x, ·, ·) : R

2 → R at (u, v) ∈ R
2.
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Moreover, if N > 1, we shall also assume that

(A4) there exists C � 0 such that

‖D2G(λ, x, u, v)‖ � C(1 + |u| + |v|)p−1, (λ, x) ∈ I × Ω̄, u, v ∈ R,

where 1 � p < (N + 2)/(N − 2) if N > 2 and 1 � p < ∞ if N = 2.

Note that the constant function (u, v) ≡ 0 is a solution of (1.1) for all λ ∈ I by
(A2), and the aim of this article is to study bifurcation of (weak) solutions of (1.1)
from this trivial branch.

Now let H1
0 (Ω, R) be the usual Sobolev space with scalar product

〈u1, u2〉H1
0 (Ω,R) =

∫
Ω

〈∇u1,∇u2〉 dx

and we set E := H1
0 (Ω, R) × H1

0 (Ω, R), which is a Hilbert space with respect to

〈(u1, v1), (u2, v2)〉E = 〈u1, u2〉H1
0 (Ω,R) + 〈v1, v2〉H1

0 (Ω,R).

We consider the map f : I × E → R given by

fλ(z) =
∫

Ω

〈∇u, ∇v〉 dx − 1
2

∫
Ω

aλ(x)u2 + 2bλ(x)uv + cλ(x)v2 dx

−
∫

Ω

G(λ, x, u, v) dx, (2.1)

where z = (u, v) ∈ E, and we note that f is C2 under assumptions (A1), (A2)
and (A4) (see [8, 15]). The critical points of fλ are precisely the weak solutions of
(1.1), and in particular 0 ∈ E is a critical point of all functionals fλ. We say that
λ∗ ∈ I is a bifurcation point of weak solutions for (1.1) if every neighbourhood of
(λ∗, 0) ∈ I ×E contains some (λ, z) �= (λ, 0), where z is a weak solution of (1.1), or,
equivalently, a critical point of fλ. Consequently, in order to investigate bifurcation
of (1.1) from the trivial branch of solutions we need to study bifurcation of critical
points of (2.1) from the branch I × {0} ⊂ I × E. For this we consider the Hessians
of fλ at 0 ∈ E, which are given by

D2
0fλ(z, z̄) =

∫
Ω

〈∇u, ∇v̄〉 dx +
∫

Ω

〈∇ū, ∇v〉 dx

−
∫

Ω

aλ(x)uū + bλ(x)(ūv + uv̄) + cλ(x)vv̄ dx,

z = (u, v), z̄ = (ū, v̄), (2.2)

where we use assumption (A3). Let us denote by Lλ the Riesz representations of
D2

0fλ, i.e. the bounded self-adjoint operators on E defined by

〈Lλz, z̄〉E = D2
0f(z, z̄), z, z̄ ∈ E. (2.3)

Then Lλ = T + Kλ, where T : E → E is the self-adjoint invertible operator given
by

Tz = T (u, v) = (v, u), z = (u, v) ∈ E. (2.4)
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Moreover, the operator Kλ, which is uniquely determined by

〈Kλz, z̄〉E = −
∫

Ω

aλ(x)uū + bλ(x)(ūv + uv̄) + cλ(x)vv̄ dx, z = (u, v), z̄ = (ū, v̄),

(2.5)

is compact since the right-hand side of (2.5) extends to a bounded quadratic form
on L2(Ω, R2) and E is compactly embedded in this space (see, for example, [20,
lemma 3.1]). Consequently, L = {Lλ}λ∈I is a path of self-adjoint Fredholm opera-
tors to which we can assign the spectral flow.

Now let H be an arbitrary separable real Hilbert space. The spectral flow is
an integer-valued index for paths L = {Lλ}λ∈I of self-adjoint Fredholm operators
Lλ on H, which we denote by sf(L, I). It was introduced in the 1970s by Atiyah
et al . [1] and since then it has reappeared in many different areas of geometry
and analysis (we refer the reader to [11] for a detailed list of references). Here we
introduce it along the lines of [5] and discuss an application to bifurcation of critical
points of families of functionals from [5,11]. In what follows, we call a path of self-
adjoint Fredholm operators admissible if its endpoints are invertible. Moreover, we
denote by ΦS(H) the space of all bounded self-adjoint Fredholm operators equipped
with the norm topology. In order to shorten the presentation, we use an axiomatic
description from [4]. Accordingly, the spectral flow is the unique map that assigns
to each admissible path L = {Lλ}λ∈I in ΦS(H) an integer such that the following
hold.

• Normalization: if Lλ is invertible for all λ ∈ I, then

sf(L, I) = 0.

• Additivity: if H = H1 ⊕ H2 and Lλ(Hi) ⊂ Hi for all λ ∈ I and i = 1, 2, then

sf(L, I) = sf(L |H1 , I) + sf(L |H2 , I).

• Homotopy: if {h(λ,s)}(λ,s)∈I×I is a family in ΦS(H) such that h(0, s) and
h(1, s) are invertible for all s ∈ I, then

sf(h(·, 0), I) = sf(h(·, 1), I).

• Dimension: if dimH < ∞, then

sf(L, I) = µMorse(L0) − µMorse(L1),

where µMorse denotes the Morse index, i.e. the number of negative eigenvalues
counted with multiplicities.

Clearly, by reparametrizing, the spectral flow can also be defined for paths that
are parametrized by a general compact interval [λ0, λ1]. If L = {Lλ}λ∈[λ0,λ1] is an
admissible path of self-adjoint Fredholm operators, then we denote its spectral flow
by sf(L, [λ0, λ1]), and we note the following property for later reference.

• Concatenation: if λ0 < λ1 < λ2 and Lλ1 is invertible, then

sf(L, [λ0, λ2]) = sf(L, [λ0, λ1]) + sf(L, [λ1, λ2]).
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Let us now consider continuous maps f : I × H → R of C2 functionals fλ :=
f(λ, ·) : H → R such that the derivatives Dfλ and D2fλ depend continuously on
λ, and let us assume that D0fλ = 0, i.e. 0 ∈ H is a critical point of fλ for all
λ ∈ I. Recall that a bifurcation point of critical points of f is an instant λ∗ ∈ I
such that every neighbourhood of (λ∗, 0) in I × H contains elements (λ, u), where
u �= 0 is a critical point of fλ. The main theorems in [5, 11] state that if the Riesz
representations Lλ of D2

0fλ are Fredholm for all λ and L0, L1 are invertible, then
there is a bifurcation of critical points of f if sf(L, I) �= 0. Even though the spectral
flow is an invariant that arose in elliptic topology, it is still unknown how this
bifurcation theorem relates to the classical topological bifurcation theory from, for
example, [10] and [2].

Let us now come back to the differential equations (1.1) and the functionals (2.1)
on the Hilbert space E for which the corresponding operators Lλ are the Riesz
representations of (2.2). By standard regularity theory, it follows that the kernels
of Lλ consist of solutions of the linearized equations (1.2). Since Lλ is Fredholm
and self-adjoint, its Fredholm index vanishes, and so we conclude that Lλ is non-
invertible if and only if (1.2) has a non-trivial solution. Let us mention in passing
that it is readily seen from the implicit function theorem that Lλ∗ is not invertible if
λ∗ is a bifurcation point, which provides information about the location of possible
bifurcation points. Finally, we can summarize the previous discussion as follows.

Theorem 2.1. Let Ω ⊂ R
N be a bounded domain having a smooth boundary and

let the functions a, b, c and G in (1.1) satisfy (A1)–(A4). If the linear systems
(1.2) have no non-trivial solution for λ = 0, 1 and sf(L, I) �= 0, then there is a
bifurcation point λ∗ ∈ (0, 1) for the family of equations (1.1).

Of course, the difficult point when applying theorem 2.1 to the equations (1.1) is
to compute sf(L, I), or at least to find conditions that ensure its non-triviality. In
the remainder of this article we will be concerned with this problem. At first, we
want to review a method for computing spectral flows that has been applied several
times in the past in other settings (for example, for Hamiltonian systems in [6] and
for partial differential equations in [12–14,19]).

Let us assume for the remainder of this section that the path {Lλ}λ∈I is C1 in
L(E). We call an instant λ0 ∈ I a crossing if Lλ0 is non-invertible, which is, as we
have already observed, the case if and only if (1.2) has a non-trivial solution. Given
a crossing λ0, we obtain a quadratic form on kerLλ0 by

Γ (L, λ0) : kerLλ0 → R, Γ (L, λ0)[u] =
〈

d
dλ

∣∣∣∣
λ=λ0

Lλu, u

〉
H

,

and we say that a crossing is regular if Γ (L, λ0) is non-degenerate. Now let λ0 be a
regular crossing of L. One can show that regular crossings are isolated, and hence
there is an ε > 0 such that Lλ is invertible for all λ in the punctured neighbourhood
[λ0−ε, λ0+ε]\{λ0}. We obtain from the previously mentioned bifurcation theorem
[5] that there is a bifurcation point for f in [λ0−ε, λ0+ε] if sf(L, [λ0−ε, λ0+ε]) �= 0.
As Lλ is not invertible at bifurcation points by the implicit-function theorem, it
follows in this case that the obtained bifurcation point is λ0. By a theorem due
to Robbin and Salamon [16] (see also [5, 21]), sf(L, [λ0 − ε, λ0 + ε]) is given by the
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signature of the quadratic form Γ (L, λ0) on kerLλ0 . From (2.2) and (2.3) we obtain
that

Γ (L, λ0)[z] = −
∫

Ω

ȧλ0(x)u2 + 2ḃλ0(x)uv + ċλ0(x)v2 dx, z = (u, v) ∈ ker Lλ0 ,

where the dot denotes the derivative with respect to the parameter λ. If we use that
a quadratic form is non-degenerate and of non-vanishing signature if it is positive
or negative definite, we obtain from Sylvester’s criterion the following result.

Theorem 2.2. Let Ω ⊂ R
N be a bounded domain having a smooth boundary and

let the functions a, b, c and G in (1.1) satisfy (A1)–(A4). If the linear systems
(1.2) have a non-trivial solution for λ = λ0 ∈ (0, 1), ȧλ0(x) �= 0 for all x ∈ Ω and

ȧλ0(x)ċλ0(x) − ḃ2
λ0

(x) > 0, x ∈ Ω, (2.6)

then λ0 is a bifurcation point for (1.1).

Equation (2.6) is a convenient criterion for the existence of bifurcation points.
However, we want to point out a drawback of this approach: the non-triviality of
ker Lλ0 , and so the existence of non-trivial solutions of (1.2), needs to be known. The
aim of the following sections is to present approaches to the bifurcation problem
of (1.1) that only use information about the coefficients of (1.2) and not about
possible solutions for parameter values λ ∈ (0, 1).

3. Index and bifurcation for (1.3)

In this section we consider (1.3), where we again assume throughout that (A1)–(A4)
hold. Our first aim is to construct an invariant for the equations (1.4), which we will
use below to compute the spectral flow of the associated path L = {Lλ}λ∈I intro-
duced in (2.3) in order to obtain the existence of bifurcation from theorem 2.1. The
following construction is based on Li and Liu’s work [9] for Hamiltonian systems,
which was adapted to (1.5) by Szulkin in [17].

Let {ek}k∈N be an orthonormal basis of H1
0 (Ω, R) such that −∆ek = λkek, and

let us recall that the eigenvalues λk are all positive and λk → ∞ for k → ∞. Now{
1√
2
(ek,−ek),

1√
2
(ek, ek)

}
k∈N

is an orthonormal basis of E and we get an orthonormal decomposition

E = H1
0 (Ω, R) ⊕ H1

0 (Ω, R) =
⊕
k∈N

Ek,

where Ek is the two-dimensional space generated by (ek,−ek) and (ek, ek). Since
T (u, v) = (v, u) for all (u, v) ∈ E (see (2.4)), we see that T (Ek) ⊂ Ek. Also, by the
following lemma, the operators Kλ in (2.5) leave the spaces Ek invariant.

Lemma 3.1. Let Pk and Pl denote the orthogonal projections in E onto Ek and El,
respectively. If k �= l, then

PkKλPl = 0, λ ∈ I.

https://doi.org/10.1017/S0308210517000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000324


1104 N. Waterstraat

Proof. If z, z̄ ∈ E, then Pkz and Plz̄ are linear combinations of (ek, ek), (−ek, ek)
and (el, el), (−el, el), respectively. Since the coefficients a, b, c do not depend on
x ∈ Ω, it follows from (2.5) that

〈PkKλPlz, z̄〉E = 〈KλPlz, Pkz̄〉E = m

∫
Ω

ekel dx

for some number m ∈ R. However,∫
Ω

ekel dx = − 1
λk

∫
Ω

(∆ek)el dx =
1
λk

〈ek, el〉H1
0 (Ω,R) = 0

by Green’s formula and so PkKλPl = 0 for k �= l.

We now define

Lk
λ := PkLλPk = Pk(T + Kλ)Pk|Ek

= T + Kλ|Ek
: Ek → Ek, k ∈ N,

where Pk : E → E denotes the orthogonal projection onto Ek. If we set

z = (u, v) =
α√
2
(ek,−ek) +

β√
2
(ek, ek), α, β ∈ R,

then

D2
0fλ(z, z) = (β2 − α2) − 1

2λk
((aλ − 2bλ + cλ)α2 + 2(aλ − cλ)αβ

+ (aλ + 2bλ + cλ)β2),

where we use that
∫

Ω
e2
k dx = 1/λk, k ∈ N. We obtain

Lk
λ =

(
−1 0
0 1

)
− 1

2λk

(
aλ − 2bλ + cλ aλ − cλ

aλ − cλ aλ + 2bλ + cλ

)
, λ ∈ I, (3.1)

with respect to the orthonormal basis{
1√
2
(ek,−ek),

1√
2
(ek, ek)

}

of Ek. In particular, since λk → ∞ as k → ∞, there exists k0 ∈ N such that Lk
λ is

an isomorphism and

sgn(Lk
λ) = µMorse(−Lk

λ) − µMorse(Lk
λ) = 0 for all k � k0 and all λ ∈ I.

Hence we can define for all λ ∈ I an index of the coefficient matrix

Aλ :=
(

aλ bλ

bλ cλ

)

of (1.4) by

i(Aλ) = 1
2

∞∑
k=1

sgn(Lk
λ).

Note that if Lλ is invertible, then Lk
λ is invertible for all k ∈ N and so sgn(Lk

λ) is
either −2, 0 or 2. Hence i(Aλ) is an integer if Lλ is invertible, whereas it is only a
half-integer in general. The main theorem of this section reads as follows.
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Theorem 3.2. Let Ω ⊂ R
N be a bounded domain having a smooth boundary and

let us assume that (A1)–(A4) hold. If (1.4) has only the trivial solution for λ = 0, 1
and

i(A0) �= i(A1),

then there exists a bifurcation point for (1.3) in (0, 1).

Proof. Let us recall that Lλ is of the form Lλ = T + Kλ, where the operators on
the right-hand side were introduced in (2.4) and (2.5), respectively. Moreover, L0
and L1 are invertible since, by assumption, (1.4) has no non-trivial solutions for
these parameter values.

We denote by Qn :=
∑n

k=1 Pk the orthogonal projection onto
⊕n

k=1 Ek and by
Q⊥

n the corresponding complementary projection, i.e. Q⊥
n = IE −Qn. We note that

Lλ = T + QnKλQn + Q⊥
n KλQn + QnKλQ⊥

n + Q⊥
n KλQ⊥

n

= T + QnKλQn + Q⊥
n KλQ⊥

n , n ∈ N, (3.2)

where the second equality is a simple consequence of lemma 3.1. We now claim that
there are n0 ∈ N and a constant C > 0 such that, for all n � n0,

‖Tu + QnKλQnu‖ � 2C‖u‖, u ∈ E, λ = 0, 1, (3.3)

and

‖Q⊥
n KλQ⊥

n ‖ � C, λ ∈ [0, 1]. (3.4)

It is a well-known fact that if {Sn}n∈N is a sequence in L(E) that converges strongly
to some S ∈ L(H), and Kλ, λ ∈ [0, 1], is a continuous family of compact operators,
then SnKλ converges in norm to SKλ as n → ∞, and the convergence is uniform
in λ. Consequently, since Q⊥

n converges strongly to 0 as n → ∞ and ‖Q⊥
n ‖ = 1, we

infer that

‖Q⊥
n KλQ⊥

n ‖ � ‖Q⊥
n Kλ‖ → 0, n → ∞. (3.5)

Since Lλ is invertible for λ = 0, 1, there is a C > 0 such that ‖Lλu‖ � 3C‖u‖ for
u ∈ E and λ = 0, 1. We obtain from (3.2) and (3.5) that there is an n0 such that
‖Tu + QnKλQnu‖ � 2C‖u‖ for all n � n0, u ∈ E and λ = 0, 1, which is (3.3).
After possibly increasing n0, we can assume that (3.4) holds for the same constant
C > 0, where we use that the convergence in (3.5) is uniform in λ.

We now assume that n0 in (3.3) and (3.4) is sufficiently large such that sgn(Lk
λ) =

0 for all λ ∈ I and all k � n0, and we consider for some n � n0 the homotopy
h : [0, 1] × [0, 1] → ΦS(E) defined by

h(t, λ) = T + QnKλQn + tQ⊥
n KλQ⊥

n .

By (3.3) and (3.4), we conclude that

‖h(t, λ)u‖ � C‖u‖, u ∈ E, λ = 0, 1,

and hence h(t, 0) and h(t, 1) are invertible for all t ∈ [0, 1] since they are Fredholm
of index 0. The homotopy invariance property of the spectral flow yields

sf(L, I) = sf({T + QnKλQn}λ∈I , I). (3.6)
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By lemma 3.1 we have

QnKλQn =
n∑

k,l=1

PkKλPl =
n∑

k=1

PkKλPk,

and since T is also reduced by the projections Pk it follows likewise that

QnTQn =
n∑

k,l=1

PkTPl =
n∑

k=1

PkTPk.

We obtain

T + QnKλQn = QnTQn + QnKλQn + Q⊥
n TQ⊥

n

=
n∑

k=1

(Pk(T + Kλ)Pk) + Q⊥
n TQ⊥

n .

Now the additivity and normalization properties of the spectral flow yield

sf({T + QnKλQn}λ∈I , I) = sf
({ n∑

k=1

(Pk(T + Kλ)Pk) + Q⊥
n TQ⊥

n

}
λ∈I

, I

)

=
n∑

k=1

sf({Pk(T + Kλ)Pk}λ∈I , I)

=
n∑

k=1

sf(Lk, I),

where we use that Q⊥
n TQ⊥

n is an invertible operator on the image of Q⊥
n . By the

dimension property of the spectral flow, we obtain
n∑

k=1

sf(Lk, I) =
n∑

k=1

(µMorse(Lk
0) − µMorse(Lk

1)). (3.7)

As L0 and L1 are invertible by assumption, we see that Lk
0 and Lk

1 are invertible
for all k ∈ N. Since the signature and the Morse index of an invertible symmetric
(2 × 2)-matrix B are related by 1

2 sgn B = 1 − µMorse(B), we can rewrite the right-
hand side in (3.7) by

n∑
k=1

(µMorse(Lk
0) − µMorse(Lk

1)) =
n∑

k=1

1
2 (sgn(Lk

1) − sgn(Lk
0))

= 1
2

n∑
k=1

sgn(Lk
1) − 1

2

n∑
k=1

sgn(Lk
0)

= i(A1) − i(A0),

where we have used in the last step that sgn(Lk
λ) = 0 for all λ ∈ I and all k � n0

by our choice of n0. Consequently, we have shown that

sf(L, I) = i(A1) − i(A0), (3.8)

and now the assertion follows from theorem 2.1.
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Remark 3.3. Let us point out that we have derived in the proof of theorem 3.2 in
(3.8) a spectral flow formula for the path {Lλ}λ∈I , which is of independent interest.
The spectral flow can also be defined for paths of unbounded self-adjoint Fredholm
operators (see, for example, [3, 21]). Let us consider on L2(Ω, R2) the differential
operators Aλ on the domain W = H2(Ω, R2) ∩ H1

0 (Ω, R2) defined by

Aλ

(
u

v

)
:=

(
−∆v

−∆u

)
+

(
aλ bλ

bλ cλ

) (
u

v

)
.

Note that elements in the kernel of Aλ are the solutions of (1.4). It can be shown
that the spectral flow of the path A = {Aλ}λ∈I coincides with the spectral flow of
the corresponding path L = {Lλ}λ∈I in (2.3) (see [20, theorem 2.6]), and so (3.8)
yields also a spectral flow formula for the differential operators Aλ.

As announced in the previous section, theorem 3.2 uses only the coefficients of
(1.2) and no information about solutions of the linearizations (1.4) for λ ∈ (0, 1).

Let us now consider (1.5), where Aλ = λA depends linearly on the parameter λ.
Here we want to change the setting slightly and instead of restricting λ to the unit
interval I, we consider the case in which λ ∈ R. As before, we have for each λ ∈ R

the integral number i(Aλ). We obtain from theorem 3.2 the following result, which
was proved by Szulkin in [17, § 5].

Corollary 3.4. Let Ω ⊂ R
N be a bounded domain having a smooth boundary and

let us assume that (A1)–(A4) hold, where aλ(x) = λa, bλ(x) = λb and cλ(x) = λc
for some real numbers a, b, c and λ ∈ R. If i(λA) jumps at some λ∗ ∈ R, then λ∗

is a bifurcation point.

Proof. We first note that the operators Lλ are of the form T + λK, where T is
invertible and K is compact and does not depend on λ. Hence, by the spectral
theory of compact operators, the set of all λ ∈ R for which Lλ is not invertible is
discrete. Secondly, if Lk

λ is non-invertible for some k ∈ N, then Lλ is non-invertible
as well.

Let us now assume that i(λA) jumps at some λ∗. Then there is a k ∈ N such
that Lk

λ∗ is not invertible. Hence, Lλ∗ is not invertible and there is an ε > 0 such
that Lλ is invertible if λ ∈ (λ∗ − 2ε, λ∗ + 2ε) \ {λ0}. Consequently, Lλ∗−ε and
Lλ∗+ε are invertible, and since i(Aλ∗−ε) �= i(Aλ∗+ε) the assertion follows from
theorem 3.2.

4. Bifurcation by comparison

For the considerations of this section, we want to introduce at first a theorem
about the spectral flow that was proved in [11]. Beforehand, we need to extend the
definition of the spectral flow, which we recalled in the second section, to paths
L = {Lλ}λ∈I in ΦS(H) that do not have invertible endpoints, i.e. that are not
admissible. Since 0 is an isolated eigenvalue of finite multiplicity (see, for example,
[19, lemma 2.2]), there exists a δ � 0 such that L0+µIH and L1+µIH are invertible
for all 0 < µ � δ, where IH denotes the identity operator on H. We set

sf(L, I) := sf(L + δIH , I).
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Of course, if L is admissible, then this definition coincides with the previous one
by the homotopy invariance property. In what follows, we write T � S for T, S ∈
ΦS(H) if

〈Tz, z〉E � 〈Sz, z〉H , z ∈ H.

A proof of the following proposition can be found in [11, § 7].

Proposition 4.1. Let L = {Lλ}λ∈I and M = {Mλ}λ∈I be paths in ΦS(H) such
that Lλ − Mλ is compact for all λ ∈ I. If

L0 � M0 and M1 � L1,

then
sf(M, I) � sf(L, I).

Let us now again consider (1.1). Note that the operators Kλ in (2.5) can be
written as

〈Kλz, z̄〉E =
∫

Ω

〈Aλ(x)z, z̄〉 dx,

where

Aλ(x) := −
(

aλ(x) bλ(x)
bλ(x) cλ(x)

)

is a symmetric matrix. Each Aλ(x) has two real eigenvalues µ1
λ(x), µ2

λ(x), which
depend continuously on (λ, x) ∈ I × Ω̄. We set, for λ ∈ I,

αλ := inf
x∈Ω̄

{µ1
λ(x), µ2

λ(x)} = inf
x∈Ω̄

inf
‖w‖=1

〈Aλ(x)w, w〉R2 ,

βλ := sup
x∈Ω̄

{µ1
λ(x), µ2

λ(x)} = sup
x∈Ω̄

sup
‖w‖=1

〈Aλ(x)w, w〉R2 ,

and note that these numbers can be easily obtained since µ1
λ(x), µ2

λ(x) are just the
zeros of quadratic polynomials. For example, for (1.3) we have

αλ = −aλ + cλ

2
−

√
1
4 (aλ − cλ)2 + b2

λ,

βλ = −aλ + cλ

2
+

√
1
4 (aλ − cλ)2 + b2

λ.

⎫⎪⎬
⎪⎭ (4.1)

Let us recall that we denote by {λk}k∈N the sequence of Dirichlet eigenvalues of
the domain Ω and that 0 < λ1 � λ2 � · · · . The main theorem of this section reads
as follows.

Theorem 4.2. Let Ω be a bounded domain having a smooth boundary and let us
assume that (A1)–(A4) hold and that the linear equations (1.2) have only the trivial
solution for λ = 0, 1.

(i) If β0 < α1 and there exists k ∈ N such that

β0 < λk < α1 or β0 < −λk < α1, (4.2)

then there is a bifurcation point for (1.1).
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(ii) If β1 < α0 and there exists k ∈ N such that

β1 < λk < α0 or β1 < −λk < α0, (4.3)

then there is a bifurcation point for (1.1).

Let us point out again that no knowledge about solutions of the systems (1.2)
for λ ∈ (0, 1) is used in theorem 4.2.

Proof. By definition of α0, α1, β0, β1, we have the inequalities

α0I2 � A0(x) � β0I2, α1I2 � A1(x) � β1I2, x ∈ Ω, (4.4)

where I2 denotes the 2×2 identity matrix. Let us now consider the paths of matrices
{Bλ}λ∈I and {Cλ}λ∈I given by

Bλ = (β0 + λ(α1 − β0))I2 and Cλ = (α0 + λ(β1 − α0))I2.

We obtain associated paths M = {Mλ}λ∈I and N = {Nλ}λ∈I in ΦS(E) by setting

〈Mλz, z̄〉E := 〈Tz, z̄〉E +
∫

Ω

〈Bλz, z̄〉 dx,

〈Nλz, z̄〉E := 〈Tz, z̄〉E +
∫

Ω

〈Cλz, z̄〉 dx

and we note that, by (2.2), Lλ − Mλ and Lλ − Nλ are compact for all λ ∈ I. Since

〈(Lλ − Mλ)z, z̄〉E =
∫

Ω

〈(Aλ(x) − Bλ)z, z̄〉 dx, z, z̄ ∈ E,

and

〈(Lλ − Nλ)z, z̄〉E =
∫

Ω

〈(Aλ(x) − Cλ)z, z̄〉 dx, z, z̄ ∈ E,

we obtain from (4.4) and proposition 4.1 that

sf(M, I) � sf(L, I) � sf(N, I). (4.5)

Because L0 and L1 are invertible by the assumption that (1.2) has no non-trivial
solutions for λ = 0 and λ = 1, the assertion follows from theorem 2.1 if we can
prove that sf(M, I) > 0 under the assumptions of (i), and sf(N, I) < 0 under the
assumptions of (ii), respectively.

Let us first consider the path M . Since M0 and M1 are not necessarily invertible,
we have by definition sf(M, I) = sf(M δ, I), where M δ := {Mλ + δIE}λ∈I for an
arbitrarily small δ > 0. From the results in § 3, we know that there is a decompo-
sition of E into two-dimensional subspaces Ek, k ∈ N, such that the operator T is
reduced by this decomposition. Clearly, the Ek reduce M δ too, and moreover it is
readily seen that

M δ
λ|Ek

=
(

−1 + δ 0
0 1 + δ

)
+

β0 + λ(α1 − β0)
λk

I2, λ ∈ I.
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By (3.8) we know that

sf(M, I) = 1
2

∞∑
k=1

sgn(M δ
1 |Ek

) − 1
2

∞∑
k=1

sgn(M δ
0 |Ek

). (4.6)

Let us now consider at first

M δ
1 |Ek

=

⎛
⎝−1 + δ +

α1

λk
0

0 1 + δ +
α1

λk

⎞
⎠ .

If α1 � 0, then 1 + δ + α1/λk > 0 for all k ∈ N and consequently sgn(M δ
1 |Ek

) is
either 0 or 2. The latter case happens if and only if −1 + δ + α1/λk > 0 and, since
δ > 0 is arbitrarily small, this is equivalent to −1 + α1/λk � 0, and so α1 � λk. If,
on the other hand, α1 < 0, then −1+δ+α1/λk < 0 for all k ∈ N and so sgn(M δ

1 |Ek
)

is either 0 or −2. Here the latter case happens if 1 + δ + α1/λk < 0, which means
that α1 < −λk. In summary, we obtain

1
2

∞∑
k=1

sgn(M δ
1 |Ek

) =

{
#{k ∈ N : α1 � λk} if α1 � 0,

−#{k ∈ N : α1 < −λk} if α1 < 0,

and by the very same argument we also get that

1
2

∞∑
k=1

sgn(M δ
0 |Ek

) =

{
#{k ∈ N : β0 � λk} if β0 � 0,

−#{k ∈ N : β0 < −λk} if β0 < 0.

Consequently, it follows from (4.6) that

sf(M, I) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#{k ∈ N : α1 � λk} − #{k ∈ N : β0 � λk} if α1, β0 � 0,

−#{k ∈ N : α1 < −λk} − #{k ∈ N : β0 � λk} if α1 < 0, β0 � 0,

#{k ∈ N : α1 � λk} + #{k ∈ N : β0 < −λk} if α1 � 0, β0 < 0,

−#{k ∈ N : α1 < −λk} + #{k ∈ N : β0 < −λk} if α1, β0 < 0,

(4.7)

which is positive if β0 < λk < α1 or β0 < −λk < α1 for some k ∈ N. This finishes
the proof of the first part of theorem 4.2.

For the second part we need to show that sf(N, I) = sf(N δ, I) < 0, where N δ =
{Nλ + δIE}λ∈I for an arbitrarily small δ > 0. We leave it to the reader to check
that a similar argument as above shows that

sf(N, I) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#{k ∈ N : β1 � λk} − #{k ∈ N : α0 � λk} if α0, β1 � 0,

−#{k ∈ N : β1 < −λk} − #{k ∈ N : α0 � λk} if β1 < 0, α0 � 0,

#{k ∈ N : β1 � λk} + #{k ∈ N : α0 < −λk} if β1 � 0, α0 < 0,

−#{k ∈ N : β1 < −λk} + #{k ∈ N : α0 < −λk} if β1, α0 < 0,

(4.8)

which is negative if β1 < λk < α0 or β1 < −λk < α0 for some k ∈ N.
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As an example of theorem 4.2, let us consider once again (1.5), where the matrix A
does not depend on x ∈ Ω and is linear in λ. Then we obtain from (4.1) that

α0 = β0 = 0,

α1 = −a + c

2
−

√
1
4 (a − c)2 + b2,

β1 = −a + c

2
+

√
1
4 (a − c)2 + b2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.9)

and see that there is a bifurcation point for (1.5) in (0, 1) if

−a + c

2
−

√
1
4 (a − c)2 + b2 > λ1 or − a + c

2
+

√
1
4 (a − c)2 + b2 < −λ1.

5. The N = 1 case

In this section we consider the special case in which N = 1, i.e. Ω is a bounded
interval in R. For the sake of simplicity, we restrict ourselves to the case in which
Ω = (0, π) and so the systems (1.1) are of the form

−u′′ = bλ(x)u + cλ(x)v + G′
v(λ, x, u, v) in (0, π),

−v′′ = aλ(x)u + bλ(x)v + G′
u(λ, x, u, v) in (0, π),

u(0) = v(0) = u(π) = v(π) = 0.

⎫⎪⎬
⎪⎭ (5.1)

We want to show that our previous results can be used to obtain an estimate
on the number of bifurcation points for (5.1). Let us note for later reference the
corresponding linearized equations, which are

−u′′ = bλ(x)u + cλ(x)v in (0, π),
−v′′ = aλ(x)u + bλ(x)v in (0, π),
u(0) = v(0) = u(π) = v(π) = 0.

⎫⎪⎬
⎪⎭ (5.2)

Before we can state the main result of this section, we need to make another digres-
sion about a property of the spectral flow. Let us assume that L = {Lλ}λ∈I is a
path of self-adjoint Fredholm operators such that Lλ is non-invertible only at the
finite number of instants 0 < λ1 � · · · � λm < 1. Then, by the concatenation
property of the spectral flow, there is an ε > 0 such that

sf(L, I) =
m∑

i=1

sf(L, [λi − ε, λi + ε]).

From the construction of the spectral flow in [5], it is intuitively clear (however, not
trivial to prove rigorously (see [11, lemma 4.5])) that

|sf(L, [λi − ε, λi + ε])| � dim kerLλi . (5.3)

Now let f : I ×H → R be a family of functionals as in § 2 such that Lλ is the Riesz
representation of D2

0fλ for λ ∈ I as in (2.3). By the implicit function theorem, if
λ∗ is a bifurcation point for f , then λ∗ = λi for some 1 � i � m. Moreover, λi is a
bifurcation point if sf(L, [λi − ε, λi + ε]) �= 0 by theorem 2.1. From these facts, the
following result is readily seen (see [11, theorem 2.1(ii)]).
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Lemma 5.1. Let f : I × H → R and L = {Lλ}λ∈I be as in § 2. We assume that L
is admissible and Lλ is non-invertible for only a finite number of λ ∈ (0, 1). Then
the number of bifurcation points for f is bounded from below by

|sf(L, I)|
maxλ∈(0,1) dim kerLλ

.

We now introduce a natural number Γ (α, β) for any pair of real numbers α > β
by

Γ (α, β) =

⎧⎪⎨
⎪⎩

#{k ∈ N : α � k2 � β} if α, β � 0,

#{k ∈ N : α � k2} + #{k ∈ N : β < −k2} if α � 0, β < 0,

#{k ∈ N : β < −k2 < α} if α, β < 0,

which we need to state the main result of this section.

Theorem 5.2. Let Ω = (0, π) ⊂ R and let us assume that (A1)–(A3) hold. We
suppose that there are only finitely many λ ∈ (0, 1) for which the linear equation
(5.2) has a non-trivial solution and, moreover, we assume that there is only the
trivial solution for λ = 0, 1.

(i) If α1 > β0, then there are at least 1
2Γ (α1, β0) bifurcation points for (5.1).

(ii) If α0 > β1, then there are at least 1
2Γ (α0, β1) bifurcation points for (5.1).

Proof. In the proof of theorem 4.2 we constructed paths M and N such that
sf(M, I) � sf(L, I) and sf(L, I) � sf(N, I), respectively. Note that the Dirichlet
eigenvalues of the domain Ω = (0, π) are λk = k2, k ∈ N. If now α1 > β0, we obtain
from (4.7) that sf(L, I) � sf(M, I) = Γ (α1, β0). If, however, α0 > β1, we get from
(4.8) that sf(L, I) � sf(N, I) = −Γ (α0, β1) and so |Γ (α0, β1)| � |sf(L, I)|.

Finally, the result follows from lemma 5.1 if we note that dim kerLλ � 2 as the
kernel of Lλ consists of solutions of the two-dimensional system of linear ordinary
equations (5.2).

Finally, let us consider (1.5) on Ω = (0, π). It follows from the spectral theory of
compact operators that the corresponding linearized equations (5.2) can only have
a non-trivial solution for a finite number of values of the parameter λ. Hence, if we
assume that there is only the trivial solution for λ = 1, then we obtain that there
are at least

1
2 max

{
k ∈ N : −a + c

2
−

√
1
4 (a − c)2 + b2 � k2

}
or

1
2 max

{
k ∈ N : −a + c

2
+

√
1
4 (a − c)2 + b2 � −k2

}

distinct bifurcation points for the nonlinear equations (1.5), where only one of these
numbers can be non-zero. In particular, we can easily construct systems having an
arbitrarily high number of bifurcation points in (0, 1).
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