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In this work, Joukowski’s rotor wake model is considered for a two-blade rotor of radius
Rb rotating at the angular velocity ΩR in a normal incident velocity V∞. This model is
based on a description of the wake by a limited number of vortices of core size a: a tip
vortex of constant circulation Γ for each blade and a root vortex of circulation −2Γ on the
rotation axis. Using a free-vortex method, we obtain solutions matching uniform interlaced
helices in the far field that are steady in the frame rotating with the rotor for a large
range of tip-speed ratios λ = Rb�R/V∞ and vortex strengths η = Γ/(R2

b�R). Solutions
are provided for a two-bladed rotor for both helicopters and wind turbines. Particular
attention is brought to the study of the solutions describing steep-descent helicopter flight
regimes and large tip-ratio wind turbine regimes, for which the vortex structure is strongly
deformed in the near wake and crosses the rotor plane. Both the geometry of the structure
and its induced velocity field are analysed in detail. The thrust and the power coefficient
of the solutions are also provided and compared to the momentum theory. The stability
of the solutions is studied by monitoring the linear spatio-temporal development of a
localized perturbation placed at different locations. Good agreements with the theoretical
predictions for uniform helices and for point vortex arrays are demonstrated for the stability
properties in the far wake. However, a more complex evolution is observed for the more
deformed solutions when the perturbation is placed close to the rotor.

Key words: aerodynamics, wakes/jets, vortex flows

1. Introduction

Vortices are present in nature as well as in many engineering applications. They are
systematically created by lifting surfaces, such as wings. They take the form of trailing
vortices for airplanes but exhibit a helical shape when they are generated by a rotor as for
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Figure 1. Joukowski vortex model (from Joukowski 1929).

helicopters (Leishman 2006) or wind turbines (Hansen 2015). As they could significantly
contribute to the velocity felt by their generating surface, it is important to know their
structure and dynamics. In the present work, we consider the rotor wake model that was
first introduced by Joukowski (1929). In this so-called Joukowski model, the wake is
modelled by a set of vortices created by each blade: one bound vortex fixed on the blade
and two free vortices emitted from the tip and root of the blade (see figure 1). Our objective
is to provide the structure of the wake and its stability for all wind turbine regimes and all
vertical flight regimes of a helicopter.

In the wind turbine community, most researchers have been using the blade element
momentum theory for the design of wind turbines. This theory does not require a precise
description of the flow. It is based on a balance between, on the one hand, thrust and
torque applied to the rotor and, on the other hand, the change of axial and angular
momentum experienced by the flow. It has been progressively improved to consider the
presence of multiple blades, three-dimensional effects and a prescribed vortical wake (see
Sørensen 2016). Several wake models have been considered, either in the form of vortex
sheet (Betz 1920; Goldstein 1929; Chattot 2003; Branlard & Gaunaa 2015) or vortex
filaments (Okulov & Sørensen 2010; Wood, Okulov & Bhattacharjee 2017) but always
with a prescribed cylindrical or helical symmetry. For this reason, these models cannot
capture the contraction of helicopter wakes and the expansion of wind turbine wakes. In
our model, as no helical symmetry is prescribed, the spatial evolution of the wake is fully
described. We shall see that strongly deformed wake structures, evolving on either side of
the rotor can in particular be obtained.

Our framework is the same as in Durán Venegas & Le Dizès (2019). The vortices
are concentrated in thin filaments of small but finite core size. This allows us to use a
cutoff approach to compute the self-induced velocity of the vortices from Biot–Savart
law (see Saffman 1992, for details). The structure and dynamics of the vortices are
then computed using a free-vortex method, each vortex being discretized in straight-line
segments advected by the flow (Leishman 2006). To obtain the wake structure, we first
focus on steady solutions. More precisely, we look for solutions in a uniform normal
incident flow that are stationary in the rotor frame. The solutions are also assumed to keep
a 2π/N azimuthal symmetry for an N-blade rotor, and become in the far-field uniform
interlaced helices.

Perfect helical structures have been the subject of an enormous amount of work that
goes back to Kelvin (1880) and Da Rios (1916). They have the particularity to rotate
and translate without changing shape. Recent theoretical progress has mainly been made
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thanks to the expressions obtained by Hardin (1982). However, there are still some debates
about helix self-induced motion (Velasco Fuentes 2018; Okulov & Sørensen 2020). Our
objective is here to construct vortex solutions that take into account the presence of the
rotor but match uniform helices in the far wake.

The stability of the solutions is also addressed. So far, most works have been
concerned with the stability of uniform helices. Widnall (1972) and Gupta & Loewy
(1974) considered the full induction deduced from the Biot–Savart law and obtained
the long-wavelength stability characteristics of a single helix and multiple helices,
respectively. The effect of an axial flow in the vortex cores was analysed by Fukumoto
& Miyazaki (1991). More recently, global temporal stability characteristics were also
derived by Okulov (2004) and Okulov & Sørensen (2007) using Hardin’s expressions.
In all these works, the core size is assumed small and short-wavelength instabilities
(Blanco-Rodríguez & Le Dizès 2016, 2017; Hattori, Blanco-Rodríguez & Le Dizès 2019)
that may develop in vortex cores are neglected.

A number of authors have also considered the stability problem using numerical
simulations. Ivanell et al. (2010) and Sarmast et al. (2014) studied the instability of the
wind turbine wake using the actuator line method (Sørensen & Shen 2002) to model the
rotor. They were able to calculate the spatial growth rate of individual modes through a
spectral analysis of the nonlinear flow. A temporal linear stability analysis was recently
performed by Selçuk, Delbende & Rossi (2018) and Brynjell-Rahkola & Henningson
(2020), obtaining the growth rate of different unstable modes using time-stepping methods
on the linearized Navier–Stokes equations.

Experiments have also been performed in the wind turbine regime (Leweke et al.
2014). By perturbing the flow of a single blade rotor, Quaranta, Bolnot & Leweke (2015)
were able to measure the growth rates of the main unstable modes and demonstrated
a good agreement of their measurements with the theoretical predictions of Widnall
(1972). They also provided a convincing explanation of the instability mechanism in
term of local pairing. In Quaranta et al. (2018) a similar analysis was performed with a
two-blade rotor, and the unstable pairing modes predicted by Gupta & Loewy (1974) was
captured.

In our work, we shall also consider the spatial development of the perturbations, and
analyse how the stability changes from convective to absolute (Huerre & Monkewitz 1990).
A similar study has been performed for an array of vortex rings in Bolnot, Le Dizès &
Leweke (2014).

The paper is organized as follows. In § 2, we introduce the framework of the vortex
method applied to Joukowski’s model. We provide the numerical procedures to obtain
the base flow and analyse its stability. The parameters describing our problem are also
provided. In § 3, the base flow is characterized as function of the parameters for a fixed
blade number and a fixed vortex core size. We show that the geometry of the vortex
structure strongly varies close to the rotor as the direction of the incident velocity changes.
The characteristics of the induced velocity field are analysed in the rotor plane and in the
far wake. Thrust and power coefficients are also computed and compared to momentum
theory predictions. In § 4, the linear stability properties of the solutions are considered. The
spatio-temporal development of a localized perturbation is analysed for four characteristic
regimes. We first show that the theoretical temporal growth rate curves of Gupta & Loewy
(1974) are recovered in the far wake for all cases. We then analyse the change of nature
from convective to absolute of the instability. We show that in the far field, the spatial
growth is reasonably well described by a two-dimensional (2-D) point vortex model. In the
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Figure 2. Local reference frame used by Leishman, Bhagwat & Bagai (2002).

near wake, a more complex dynamics is, however, observed, especially when the vortex
structure is present on both sides of the rotor plane.

2. Framework

The Joukowski rotor model is a particular model for the wake generated by a rotor. It
assumes a bound vortex on the blade and two free vortices of opposite circulation emitted
from the root and tip of each blade, as illustrated in the sketch by Joukowski (1929) shown
in figure 1.

This model is adequate in the near wake of the rotor if the circulation profile on the
blade is uniform along the span. We are rarely in these conditions, so Joukowski model
should be considered instead as an approximate model for the intermediate wake where
the roll-up processes of the vorticity sheet shed from the blade trailing edge have already
formed two main vortices close to the tip and root for each blade. The hub vortex of the
Joukowski model then results from the merging of the root vortices of each blade. By
symmetry, this vortex can be positioned on the rotor axis as soon as there are at least two
blades. Its circulation is equal to −NΓ if there is a tip vortex of circulation Γ associated
with each of the N blades. The procedure used to construct a Joukowski wake model for
any circulation profile has been described in Durán Venegas, Le Dizès & Eloy (2019).
Note, however, that if the rotor has a single blade, the root vortex cannot be positioned on
the rotor axis and is expected to become helically deformed. More complex solutions are
expected in this case. The far wake associated with these solutions has been analysed in
Durán Venegas & Le Dizès (2019).

To describe the vortex system, we use a free-vortex method. Vortices are assumed to be
thin filaments of small core size that move in the fluid as material lines advected by the
velocity field

dξ

dt
= U(ξ) = U∞ + U ind(ξ), (2.1)

where ξ is the position vector of the vortex filament, U the velocity field,composed of the
external velocity field V ∞ = V∞ez and the induced velocity field U ind(ξ) generated by
the vortex filaments.

Because vortices are continuously created, it is necessary to introduce a second variable
that characterizes the age of the vortices. As explained by Leishman et al. (2002), a
convenient way to describe the vortex system of a rotor is actually to parametrize the
vortex position by two angular coordinates ψ and ζ measuring the angular positions of
the blade at time t, and at the time when the vortex element was created, respectively (see
figure 2). As we shall see, this second angle can be viewed as a spatial coordinate along
the vortex structure. This transforms (2.1) into

ΩR

[
∂ξ(ψ, ζ )

∂ψ
+ ∂ξ(ψ, ζ )

∂ζ

]
= U∞ + U ind(ξ), (2.2)
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where ΩR > 0 is the rotation speed of the rotor.
The induced velocity U ind(ξ) can be decomposed into four different contributions

U ind(ξ) = U tip(ξ)+ Uhub(ξ)+ Ublade(ξ)+ UFW(ξ), (2.3)

where U tip , Uhub, Ublade and UFW are the velocity fields induced by the tip vortices,
the hub vortex, the bound vortex on the blade and the far wake, respectively. All these
contributions are computed using the Biot–Savart law. The divergence of the Biot–Savart
integral on the vortices is solved by introducing a small vortex core size a. This allows
us to obtain the self-induced velocity by the so-called cutoff method (Saffman 1992). For
simplicity, the vortex core size is assumed constant and identical for all the vortices.

Both hub and bound vortices have prescribed positions on the rotor axis and blade
respectively. The difficulty is then to compute to position of tip vortices which are attached
to the blade on one side and connected to a perfect helical structure in the far wake.

The first objective of the analysis is to obtain steady wake solutions in the frame rotating
with the rotor. This amounts to find solutions of the following system of equations:

dr
dζ

= 1
ΩR

Uind
r ,

dφ
dζ

= 1
ΩR

(Ω ind −ΩR),
dz
dζ

= 1
ΩR

(Uind
z + V∞). (2.4a–c)

where r, φ and z are the radial, angular and axial positions of the vortex at ζ and Uind
r ,

Ω ind and Uind
z the radial, angular and axial components of the induced velocity. This

system can be directly obtained from (2.2) by requiring solutions to be independent of
ψ in the rotating frame. It could have also been obtained by enforcing the vector tangent
to the vortex trajectory described in cylindrical coordinates by (r(ζ ), φ(ζ ), z(ζ )) to be
always parallel to the velocity field U∞ + U ind − rΩReφ in the rotating frame. The vortex
structure and the velocity field are thus steady but the vortex elements are not: they are
moving along the steady vortex structure.

Each tip vortex structure is attached to the blade at a distance Rb from the rotation axis.
Assuming a 2π/N azimuthal symmetry for an N blade rotor, we can consider a single tip
vortex structure, whose starting position is chosen to be

r(0) = Rb, φ(0) = 0, z(0) = 0. (2.5a–c)

As in Durán Venegas & Le Dizès (2019) for generalized helical pairs, (2.4a–c) are
solved by an iterative method using a finite difference scheme. The tip vortex structure
is discretized in small elements with at least 25 points by turn. This allows us to use
explicit expressions for the induced velocity with distant vortex segments contributions
and a local self-induced contribution associated with local curvature (see Durán Venegas
& Le Dizès 2019). A sufficiently large number of turns are considered such that the
structure is almost helical at the end of the computation domain. This number depends
on the operational conditions and has varied between 15 and 40 in our study. At the end of
the computational domain, estimates for the helix pitch hFW and radius RFW are obtained
and used to construct the far-wake structure. At least 15 turns of this far-wake structure are
used to compute the induced velocity of the far wake (see figure 3).The dependence of the
results with respect to the numerical parameters (number of discretization points by turn,
number of turns in the computation domain, number of turns in the far wake) is analysed
in appendix A. The numerical parameters have been chosen such that the results are fully
converged. The iterative method is initiated by a perfect helix solution or by a solution
obtained for close parameters.

The vortices are defined by their circulation Γ and their core size a. Both are assumed
constant and uniform. Tip vortices are emitted at the radial coordinates Rb. If the rotor has
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Calculation domain Far-wake

RFW

hFW

Figure 3. Schematic of the complete vortical structure generated at the wake (to simplify the figure, only the
tip vortex from a single blade is represented). The solid line shows the calculation domain and the dashed line
shows the prescribed far-wake structure. A smaller number of turns are shown compared to that used for the
computation.

(b)(a) (c) (d )

Figure 4. Vortex geometry for a two-bladed rotor in wind turbine regimes; (a) λ = 3.3, (b) λ = 4.3,
(c) λ = 5.1, (d) λ = 6.1. For all cases η = 0.05 and ε = 0.01.

N blades, rotates at the angular velocity ΩR in an incident flow of axial velocity V∞, we
can then define four non-dimensional parameters

λ = RbΩR

V∞
, η = Γ

R2
bΩR

, ε = a
Rb
, N. (2.6a–d)

The parameter λ is known as the tip-speed ratio. It can be either positive or negative. By
convention, we consider that λ is negative for a helicopter in ascent flight (V∞ < 0), and
positive in descent flight (V∞ > 0). The wind turbine regime is then obtained for positive
values of λ. The parameter η measures the relative strength of the vortices: it is related
to the so-called blade loading. This parameter can be chosen positive if we define the
circulation of the bound vortex as Γ bound = Γ er. The parameter η is in general smaller
than 0.1. The parameter ε characterizes the vortex core size with respect to the rotor size.
This parameter will always be considered as small, and typically equal to 0.05 or 0.01. The
number, N, of blades will be kept fixed to 2.

3. Description of the steady solutions

3.1. Geometry
For fixed ε and N, when the tip-speed ratio λ and vortex strength parameter η are varied,
different vortex geometries are obtained. These geometries are illustrated for a fixed η and
different λ in figures 4 and 5.

Two main types of solutions are obtained according to the behaviour of the solution
away from the rotor: solutions in the wind turbine regime for which the vortex structure

911 A6-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.985


Joukowski rotor wake model

(b)(a) (c) (d )

Figure 5. Vortex geometry for a two-bladed rotor in helicopter regimes; (a) λ = −10, (b) λ = ∞, (c) λ = 19,
(d) λ = 11. For all cases η = 0.05 and ε = 0.01.

0.10

0.08

0.06

0.04

0.02

–0.2 –0.1 0 0.1 0.2 0.3

Helicopter
regimes

Wind
turbine
regimes

1/λ

η

Figure 6. Map of the rotor regimes as a function of λ and η. The grey region represents the region where no
solution has been obtained. On the left, helicopter regimes: the wake contracts and is advected downwards. On
the right, wind turbine regimes: the wake expands and is advected upwards. In both regimes, the dashed line
corresponds to the boundary of the domain where the tip vortices are on either side of the rotor plane. The
other boundary of that domain is the grey region.

expands and goes upwards (figure 4); solutions in the helicopter regime for which the
vortex structure contracts and goes downwards (figure 5). This corresponds to the two
domains of parameters, which are indicated in figure 6 for ε = 0.01 and N = 2 on either
side of the grey region where no solution has been obtained.

Before describing the geometry of the vortices close to the rotor, let us first look at the
characteristics of the far wake. By construction, the tip vortices form perfect helices in
the far wake. The radius RFW and pitch hFW of these helices are shown in figure 7 for
the parameters of figure 6. By convention, we have chosen the pitch to be positive when
the vortices go upwards, and negative when they go downwards. We can see that both the
wake contraction in the helicopter regime and the wake expansion in the wind turbine are
reduced as the tip-speed ratio |λ| decreases. An opposite tendency is by contrast observed
for the far-wake helix pitch that increases with |λ|.

An estimate for hFW can be deduced from simple arguments. As the helical structure
is stationary (in the frame rotating at the angular speed ΩR), its rotation must be
balanced by its axial displacement, that is VFW/�FW = −hFW/(2π) (assuming ΩFW <

0). An approximation to the axial displacement speed VFW can be obtained from the
displacement speed of a double array of opposite point vortices separated by a distance
hFW/N in a background axial flow V∞, that is VFW = −NΓ/(2hFW)+ V∞ in the wind
turbine regimes and Vz = NΓ/(2hFW)+ V∞ in the helicopter regimes. If we neglect the
self-induced rotation of the structure, that is assume that �FW ≈ −�R, the condition of
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Figure 7. Contour maps of the far-wake helix characteristics for ε = 0.01; N = 2, non-dimensionalized by
Rb. (a) Radius RFW/Rb; (b) pitch hFW/Rb. By convention, hFW is negative (respectively positive) when the
vortices are advected downwards (respectively upwards). The dashed lines represent the theoretical formulae
(3.3a) (yellow) and (3.3b) (red).

stationarity then gives

hFW = 2π

ΩR

(
NΓ

2hFW
+ V∞

)
, for helicopter regimes (hFW < 0), (3.1a)

hFW = 2π

ΩR

(
− NΓ

2hFW
+ V∞

)
, for wind turbine regimes (hFW > 0). (3.1b)

This gives a second-order equation for X = hFW/Rb of the form

X2 − 2π

λ
X ± Nπη = 0, (3.2)

where the sign − is for helicopter regimes, and the sign + for wind turbine regimes. The
adequate solution for each case is

hFW/Rb = π

λ
−
√

π2

λ2 + Nπη, for helicopter regimes (hFW < 0), (3.3a)

hFW/Rb = π

λ
+
√

π2

λ2 − Nπη, for wind turbine regimes (hFW > 0). (3.3b)

These contours are plotted with dashed lines in figure 7(b). We can see that these formulae
provide a reasonably good approximation of hFW/Rb, especially for small η.

The wind turbine regime is associated with large values of 1/λ. It also corresponds to
the so-called windmill brake regime of helicopters in rapid descent flight. In this regime,
the vortices move in the direction of the external wind, and the vortex structure expands.
As seen in figure 8(b), the radius of the structure increases monotonously up to its far-wake
value. By contrast, the vortex pitch does not seem to change much along the structure at
least as long as λ is not too large (figure 9b). The most interesting feature is the existence,
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Figure 8. Radial position of the wake in the axial direction for different tip-speed ratio values. With
η = 0.05, ε = 0.01 and N = 2. (a) Helicopter regimes. (b) Wind turbine regimes.
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φ/2π φ/2π

Figure 9. Evolution of the local pitch along the wake for different tip-speed ratio values. With η = 0.05 and
ε = 0.01. (a) Helicopter regimes. (b) Wind turbine regimes. By convention, hFW is negative (respectively
positive) when the vortices are advected downwards (respectively upwards).

for each η, of a critical value of λ above which the tip vortices are first emitted downwards
before being advected upwards.This transition is materialized by a dashed line on the right
of the grey region in figure 6. As λ gets larger, the expansion continues to increase and
finally gets too large to fit in the computation domain. This provides the limit of existence
of the wind turbine solutions.

The change of direction of the vortex emission as λ increases has been observed
experimentally. In figure 10(a,c) we visualize using dye the time-averaged trajectories
of the vortices in a rotor side view for values of λ before and after the transition.
We clearly see on the bottom view obtained for λ = 11.2 that the trajectory of the tip
vortex goes below the rotor plane. Unfortunately, vortex circulation and core size have
not been measured in the experiment, so we cannot perform a quantitative comparison.
Nevertheless, figure 10 demonstrates that we can obtain a good agreement for the geometry
with the numerical model for similar values of λ.

In the helicopter domain of parameters (left side of the grey region in figure 6), we cover
the normal flight conditions of a helicopter: climbing flight for negative 1/λ, hovering for
1/λ = 0 and weak descent flight for positive (and small) values of 1/λ. In all these cases,
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Figure 10. Time-averaged dye visualization of the wake behind half of the rotor plane in a wind turbine
configuration at λ = 7.23 (a,b) and λ = 11.2 (c,d) (from Quaranta 2017). (a,c) Qualitative comparison of the
wake geometry with the numerical model for wind turbine configuration at high tip-speed ratio (up: λ = 8,
down: λ = 10; η = 0.02, ε = 0.01). The rotor disc is represented in black dashed line. In black solid line, the
projection of the tip vortices and, in red, their radial evolution.

the vortex structure matches away from the rotor a helical structure that moves downwards,
although the external wind is downwards for negative λ and upwards for positive λ.

The main modifications of the geometry as λ varies are observed close to the rotor plane.
In figures 8(a) and 9(a) we display the variation in the wake of the radius and pitch of the
vortex structure, respectively. As already mentioned above, we can observe in figure 8(a),
that the contraction of the vortex structure becomes more important as 1/λ increases. As
for the wind turbine regime, we observe that there exists a critical value of 1/λ above which
tip vortices are no longer emitted towards its far wake, but in the opposite direction. This
transition is indicated by a dashed curve on the left of the hatched region in figure 6. For
values of 1/λ larger than this critical value, the vortices go upwards before being advected
downwards. Accordingly, the local pitch changes sign as we move along the structure: it is
positive when the vortices move upwards close to rotor, and becomes negative afterwards
when vortices start to be advected downwards (see figure 9a).

It is interesting to note that the transition curve is close to the line 1/λ = 0 but not
identical to this line. For small η (low loading), this transition occurs in a climbing flight
configuration, whereas this transition is observed in the descent flight regime for large η
(strong loading). As 1/λ is increased above the transition, the vortex excursion above the
rotor plane becomes more important. It becomes more and more difficult to follow the
solution as the number of turns above the rotor plane grows as 1/λ increases.

For all the parameters tested, we have not found any overlap between the wind turbine
domain and the helicopter domain. However, we cannot exclude this possibility if a larger
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Figure 11. Induced velocity contours in the rotor plane (z = 0 plane) for η = 0.05, ε = 0.01, N = 2 and
various λ (λ = −20, 11, 6.2, 4.3); (a–d) Vind

z /V∞, (e–h) Vind
φ 2πr/Γ .

computational domain is considered for wind turbine solutions or if helicopter solutions
are continued further.

3.2. Induced velocities
For applications, especially the design of rotors, it is useful to know the velocity field
induced by the vortex structure. In this section, we provide the induced velocity field for
four different configurations typical of each identified flow regime. We fix η, ε and N (η =
0.05, ε = 0.01, N = 2) and consider different values of λ (λ = −20, λ = 11, λ = 6.2,
λ = 4.3). For convenience, we normalize the induced axial velocity by the outer velocity
V∞, and the induced azimuthal velocity by the azimuthal velocity Γ/(2πr) of a vortex
filament of circulation Γ .

In figure 11 are shown contours plots of each velocity component in the rotor plane
for each case. In figure 12 we compare, for each case and each component, the induced
velocity on the blade (black dashed line), the mean (azimuthal average) induced velocity
in the rotor plane (black solid line) and the mean induced velocity in the far wake (red
solid line).

The first point to emphasize is the axisymmetric character of the induced flow
(figure 11). In the rotor plane, both velocity components are almost axisymmetric. In the
rotor plane, the difference between the azimuthally averaged field and the local field is
mainly concentrated in the close neighbourhood of the vortices (see figure 11). This is
also clearly visible in figure 12, where we can see that the velocity on the blade (black
dashed line) departs from its azimuthal average (black solid line) at specific locations: at
the blade tip, and at the location where one vortex crosses the rotor plane (r/Rb ≈ 0.6 for
λ = 11; r/Rn ≈ 2.1 for λ = 6.2).

The azimuthally averaged profiles of the induced velocity possess interesting features.
As soon as we are outside the vortex structure, both the axial and the azimuthal
components vanish. This is true in the far field and in the rotor plane as well (see figure 12).
In the far field, both components are also constant inside the vortex structure. This is in
agreement with known properties of the induced velocity of infinite helices (see Hardin
1982). In the rotor plane, we can note that both components are also constant inside
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Figure 12. Induced velocity profiles. (a,c,e,g) Axial velocity Vind
z /V∞, (b,d, f,h) azimuthal velocity

Vind
φ 2πr/Γ for various values of λ and η = 0.05, ε = 0.01 and N = 2. In black, the profiles in the rotor plane

(dashed: on the blade, solid: azimuthal average), in red, the azimuthal average in the far wake.

the vortex structure for λ = −20 and λ = 4.3. Moreover, for these cases, the constant is
approximatively equal to the half of the induced axial velocity in the far field, as assumed
in the momentum theory (e.g. Sørensen 2016). For the two cases where the vortices cross
the rotor plane, axial and azimuthal components are only almost constant by part: there is
a jump at each radial location where a vortex crosses the rotor plane. For these cases, the
relation between the mean induced axial flow in the rotor plane and in the far field is less
obvious. It corresponds to the situations where momentum theory does not apply.

In figure 13 we compare the azimuthal average of each component in the rotor for the
different values of λ. This figure is interesting to analyse the effect of λ on the mean profile
in the rotor plane. When normalized by Γ/(2πr), the azimuthal profile is particularly
simple: in the central part of the rotor, it is always, +1 in the helicopter regimes and
−1 in the wind turbine regimes. When no vortices cross the rotor plane, the azimuthal
velocity just jumps to zero at the rotor edge (λ = −20, λ = 4.3). In the more complex
configurations, where the vortices cross the rotor plane (λ = 11, λ = 6.2), the normalized
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Figure 13. Azimuthal average of the induced velocity in the rotor plane for different values of λ and
η = 0.05, ε = 0.01 and N = 2. (a) Axial velocity Vind

z /V∞. (b) Azimuthal velocity Vind
φ 2πr/Γ .

azimuthal velocity exhibits an addition jump at the radial location of crossing. For the
helicopter regimes (λ = 11), it jumps from +1 to −1 at the radial location of crossing then
back to 0 at the edge of the disk. For the wind turbine regimes (λ = 6.2), it jumps from
−1 in the centre to −2 at the edge of the disk then to 0 at the radial location of crossing.
Although complex, the azimuthal induced velocity is therefore easily modelled in all the
configurations. The axial component has also a simple structure: it is approximatively
constant by part. Except for λ = 11, the induced axial flow is found to be fairly constant in
the whole rotor disk, and therefore close to the mean value in the rotor disk. However, this
value strongly varies with λ. For λ = 11, that is in the helicopter descent flight regimes
where the vortices cross the rotor disk, the induced flow is strong between the centre and
the location where the vortices cross the rotor, and just compensates the mean advection
velocity in the external part of the rotor. The mean induced axial flow on the rotor disk is
therefore not expected to be a relevant quantity in that case as only a reduced inner part of
the rotor contributes.

In figure 14, the streamlines of the azimuthally averaged flow are displayed in the (r, z)
plane for the four typical regimes. In solid lines are plotted the streamlines of the induced
flow, while the streamlines of the total flow are represented with dashed lines. In fast
climbing helicopter regimes and in wind turbine regimes, the external flow is dominant,
so the total flow remains unidirectional. When the external flow is weaker and opposed to
the induced velocity, the flow can become bidirectional (see figure 14b,c); the vortex tube
that goes through the rotor disk starts and ends on the same side of the rotor plane. For
these configurations, as already mentioned above, momentum theory does not apply.

3.3. Thrust and power coefficients
In both the helicopter and the wind turbine communities, it is common to characterize a
rotor using the thrust and the power coefficient. These coefficients are non-dimensional
forms of thrust and power. They can be obtained using the local lift force dL derived from
Kutta–Joukowski theorem (e.g. Sørensen 2016, chap. 9.2)

dL = ρ(V ∞ + U ind)× Γ bound dr, (3.4)

where Γ bound = Γ er is the constant circulation of the bound vortex on the blade. The
thrust T and the torque Q are then defined by integrating on the blade the local thrust
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Figure 14. Streamlines of the azimuthally averaged flow in the (r, z) plane for (a) λ = −20, (b) λ = 19,
(c) λ = 6.1, (d) λ = 4.3 with η = 0.05, ε = 0.01 and N = 2. Black solid line: induced flow. Black dashed
line: total flow. Red solid line: radial position of the tip vortex. Black dotted line: rotor disc.

dT = dL · ez and the local torque dQ = (r × dL) · ez

T = ρNΓ
∫ R−a

a
(rΩR − Uind

θ ) dr, (3.5a)

Q = ρNΓ
∫ R−a

a
(V∞ + Uind

z )r dr. (3.5b)

Note that we neglect the contribution coming from the small intervals in the cores of hub
and tip vortices where the circulation of the bound vortex should in principle be modified.
The power P delivered (or received) by the rotor is then given by

P = ΩRQ = ρNΓΩR

∫ R−a

a
(V∞ + Uind

z )r dr. (3.6)

In agreement with our convention, T is always positive, but P may change sign. We expect
P < 0 in the helicopter regime, but P > 0 in the wind turbine regime.

For helicopters, thrust and power coefficients are usually defined by

C(Hel)
T = T

1
2ρπR4Ω2

R

, C(Hel)
P = P

1
2
ρπR5Ω3

R

. (3.7a,b)

In figure 15 we display the contour levels of these coefficients in the (1/λ, η) plane. Also
indicated by red dashed lines is the approximation obtained when the induced velocity in
the rotor plane is neglected

C(Hel)
T0 ≈ Nη

π
; C(Hel)

P0 ≈ Nη
πλ
. (3.8a,b)

As expected from the above formula, we observe that the thrust coefficient C(Hel)
T mainly

depends on η. Note, however, the effect of the azimuthal induced flow; it decreases the
thrust in the helicopter regime and increases it in the wind turbine regime.

The mean induced velocity Vi is an important quantity. It can be calculated directly
by integrating Uind

z in the rotor disk or by computing the ratio P/T that gives Vi + V∞.
In figure 16(a), we have plotted the ratio Vi/Vh versus V∞/Vh, where Vh is the mean
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Figure 15. (a) Thrust coefficient C(Hel)
T and (b) power coefficient C(Hel)

P for a Joukowski rotor with N = 2,
ε = 0.01. The red dashed lines are the contours of the approximation obtained without taking into account
the induced flow [(0.01, 0.02, 0.03, 0.04) for C(Hel)

T , (−0.004,−0.002, 0, 0.002, 0.004) for C(Hel)
P ]. The solid

yellow line in (b) is the contour C(Hel)
P = 0.

induced velocity in hover (that is when V∞ = 0). The calculation is performed for a fixed
C(Hel)

T . The results are compared to the momentum theory predictions which apply for
V∞/Vh < −2 (wind turbine regime) or V∞/Vh > 0 (helicopter climbing regime) and
to the experimental data fit proposed by Leishman (2006) for −2 < V∞/Vh < 0. The
best agreement with the momentum theory is obtained for low loading data (C(Hel)

T =
0.01, indicated by circles). A systematic departure is nevertheless observed when the
mean induced velocity is computed from the power. We suspect that it comes from an
overestimation of the contributions of the blade tip to the torque. Note also that the
agreement is less good on the wind turbine side for large C(Hel)

T . This is clearly an effect
of the azimuthal induced velocity in the rotor plane. When this contribution is neglected,
the departure from the momentum theory almost disappears, as seen in figure 16(b).

For wind turbines, a different normalization is used for the thrust and power coefficients.
They are defined by

C(W)T = T
1
2
ρπR2V2∞

= λ2C(Hel)
T , (3.9a)

C(W)P = P
1
2
ρπR2V3∞

= λ3C(Hel)
P . (3.9b)

The simplest version of the momentum theory provides formulae for these coefficients in
terms of the interference factor ai = Vi/V∞ (e.g. Sørensen 2016)

C(W)T = 4ai(1 − ai), C(W)P = 4ai(1 − ai)
2. (3.10a,b)

Our data are tested against these expressions in figure 17. This figure shows that
momentum theory is recovered for small ai. As expected, a departure is observed for
ai > 0.5. Thrust continues to increase as ai gets larger than 0.5 contrarily to the momentum
theory prediction. The induced field impact is clearly seen on these plots. It increases the
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Figure 16. Mean induced velocity Vi/Vh versus V∞/Vh, where Vh is the mean induced velocity in hover for a
fixed C(Hel)

T (C(Hel)
T = 0.01 with circles, C(Hel)

T = 0.02, 0.03, 0.04 with dots). The fixed parameters are N = 2,
ε = 0.01. The other parameters are such that −0.2 < 1/λ < 0.3 and 0.01 < η < 0.1. The mean induced axial
velocity Vi is obtained from Vi = P/T − V∞ (red symbols) or by taking the mean of Uind

z in the rotor plane
(blue symbols). The solid line is the momentum theory prediction (valid for V∞/Vh smaller than −2 or larger
than 0). The thick dashed line is a fit of experimental data provided by Leishman (2006, (2.96), p. 87). (a) The
data are computed using formula (3.5a) for T and (3.6) for P. (b) The data are computed neglecting Uind

θ in
(3.5a) for T and using 〈Uind

z 〉θ instead of Uind
z in (3.6) for P.
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Figure 17. Wind turbine thrust coefficient (a) and wind turbine power coefficient (b) versus the interference
factor ai = Vi/V∞. The solid lines are the momentum predictions (3.10a,b). All the data are in the wind turbine
regime for N = 2, ε = 0.01 and 0.01 < η < 0.1. The green symbols are obtained using formula (3.5a) for T
and (3.6) for P. The blue symbols are obtained using the same formulae but replacing the induced velocity on
the blade by its azimuthal average. The red symbols are when the induced velocity field is neglected.

thrust but strongly decreases the power. A difference between the data obtained with the
mean induced velocity and those with the induced velocity on the blade is only visible for
the power coefficient. When the induced velocity on the blade is used, the power is found
to be smaller and further away from the momentum theory prediction.
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It worth mentioning that in this section the local lift force on the blade has been
calculated assuming a uniform circulation profile along the span (see formula (3.4)). When
the circulation is not uniform on the blade, an equivalent Joukowski wake model can still
be constructed, as mentioned in § 2. But, in that case, the local lift force can be computed
differently, using the exact circulation profile on the blade and the azimuthal average of
the induced velocity field, as in Durán Venegas et al. (2019) for instance.

4. Stability

In this section, we analyse the evolution of linear perturbations to the base flow obtained
in the previous section.

4.1. Perturbation model
We now consider the full problem (2.2) and search for solutions of the form

ξ(ψ, ζ ) = ξ0(ζ )+ ξ ′(ψ, ζ ), (4.1)

where ξ0 = (r0(ζ ), φ0(ζ ), z0(ζ )) is a base flow satisfying (2.4a–c), and ξ ′ = (r′, φ′, z′) a
small perturbation. Linearizing (2.2), we obtain the following partial differential equations
for the perturbation:

∂r′

∂ψ
= −∂r′

∂ζ
+ 1
ΩR

[
∂Ur

∂r

∣∣∣∣
ξ0

r′ + ∂Ur

∂φ

∣∣∣∣
ξ0

φ′ + ∂Ur

∂z

∣∣∣∣
ξ0

z′
]
, (4.2)

∂φ′

∂ψ
= −∂φ

′

∂ζ
+ 1
ΩR

[
∂Ω

∂r

∣∣∣∣
ξ0

r′ + ∂Ω

∂φ

∣∣∣∣
ξ0

φ′ + ∂Ω

∂z

∣∣∣∣
ξ0

z′
]
, (4.3)

∂z′

∂ψ
= −∂z′

∂ζ
+ 1
ΩR

[
∂Uz

∂r

∣∣∣∣
ξ0

r′ + ∂Uz

∂φ

∣∣∣∣
ξ0

φ′ + ∂Uz

∂z

∣∣∣∣
ξ0

z′
]
. (4.4)

The system is solved numerically. For this purpose, a finite difference discretization
scheme has been implemented in ψ and ζ

ξ ′
j+1 − ξ ′

j


ψ
=
[
−Dζ + 1

ΩR
∇U |ξ0

]
ξ ′

j, (4.5)

where the index j represents the discretized position in ψ , 
ψ the discretization
interval in ψ , Dζ the discretization matrix on ζ and ∇U |ξ0 the Jacobian matrix of the
induced velocity field of the base flow. To avoid numerical stability problems, a robust
discretization scheme has to be chosen for the matrix Dζ . In our case, a four point backward
discretization scheme has been used.

The perturbation is introduced as a displacement impulse in the axial direction at the
azimuthal position ζp

ξ ′
j=0(ζ ) =

⎛
⎝ 0

0
Apδ(ζ − ζp)

⎞
⎠ , (4.6)

where Ap is the amplitude of the initial perturbation (that could be fixed to 1 since
the problem is linear) and δ is the Dirac delta function. We keep the 2π/N azimuthal
symmetry of the base flow, so the Dirac impulse is applied to the N tip vortices
simultaneously.
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Figure 18. Axial displacement induced by the perturbation at three different instants (ψ = 0, 2π, 4π).
Parameters of the base flow are λ = −10, η = 0.04, ε = 0.05, N = 2. Perturbation amplitude and initial
position Ap = 10−4Rtip and ζp = 4π.
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Figure 19. Illustration of the instability. (a) View of the tip vortices in the axial–azimuthal plane. Solid line:
perturbed solution. Dashed line: unperturbed solution. (b) View in longitudinal cross-cut of the tip vortices (on
one side). Top: unperturbed; bottom: perturbed.

In figure 18, the evolution of the axial displacement of the vortices induced by the
Dirac perturbation is shown for a helicopter climbing flight regime. Here, the initial
perturbation has been placed at ζp = 4π. We observe that the perturbation grows, extends
and propagates downstream. Moreover, it forms alternate peaks that are associated with a
particular interaction with the other parts of the helices.To understand this interaction, it is
useful to look at the deformation of the helices induced by the perturbation. In figure 19(a)
we plot in an axial–azimuthal view the undeformed helices as well as the helices deformed
by the perturbation; we clearly see that the two vortices tend to get closer at specific
locations. A similar behaviour has already been observed in experiments and shown to
correspond to a local pairing instability (Quaranta et al. 2015, 2018). A longitudinal cut
across the helices shows that the displacement of the vortices towards each other is actually
in phase opposition and makes a 45◦ angle with respect to line connecting both vortices
(see figure 19b), as for the pairing instability of an array of point vortices (Lamb 1932).

4.2. Temporal stability properties
In this section, we first consider the properties of the far field by introducing the
perturbation sufficiently far away from the rotor (typically ζp = 20π). As the flow is
approximatively homogeneous at this location, each perturbation wavenumber is thus
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Figure 20. Growth rate as a function of the (azimuthal) wavenumber k for ε = 0.05, η = 0.02, N = 2 and
ζp = 20π in different rotor regimes (solid line: λ = −20; dashed line: λ = 40; dotted line: λ = 9.5; dash-dotted
line: λ = 8). (a) Growth rate σ ∗ = σ/ΩR (normalized by ΩR). (b) Growth rate σ2h2

FW/(N
2Γ ) (normalized by

the characteristic advection time 2h2
FW/(N

2Γ )). Dashed red line is the theoretical prediction by Gupta & Loewy
(1974) for h/R = 0.35 and ε = 0.05.

expected to have its own independent amplitude evolution. One of the advantages of
using a Dirac perturbation is that it excites all the wavenumbers simultaneously. A single
simulation can therefore be used to obtain the complete stability diagram of the flow.
In practice, we proceed as follows.At each time step ψ , we perform a spatial Fourier
transform in ζ of the function z′(ψ, ζ ) in order to obtain the amplitude z′

k(ψ) associated
with each wavenumber k. We then estimate the growth rate σ(k) of each wavenumber, by
looking at the slope of log(z′

k(ψ)) in terms of ψ . For four typical cases corresponding
to the different regimes, we obtain the curves shown in figure 20(a). By construction,
the growth rate σ and the wavenumber k that we get by this method are dimensionless.
The growth rate has been normalized by the rotor rotation rate ΩR and the wavenumber
corresponds to an azimuthal wavenumber (k = 1 means an oscillation for a rotation of 2π).

In order to compare the characteristics of the instability in the different regimes, the
growth rate has to be non-dimensionalized by an advection time of the vortex structure.
We use, as we did above, the advection time 2h2

FW/(N
2Γ ) obtained for a double array

of 2-D point vortices (time needed to be advected by their separation distance hFW/N).
With such a rescaling, we observe in figure 20(b) that the stability curves obtained for
the different regimes superimposed on a single curve corresponding to the theoretical
prediction calculated by Gupta & Loewy (1974) for infinite helices. In principle, the
theoretical prediction depends on h/R and ε but for the parameters we have considered
this dependency is not significant, so a single curve has been plotted. The most unstable
mode is obtained for k = 1 with a value of σ 	 (π/2)Γ/(2(hFW/N)2). As already noticed
by Quaranta et al. (2015), it is worth mentioning that this maximum growth rate also
corresponds to the maximum growth rate of the pairing instability for an array of point
vortices of circulation Γ separated by a distance hFW/N (see also appendix B).

The good agreement with Gupta & Loewy (1974) for all the cases we have studied is a
confirmation that the evolution of the perturbation is not affected by the presence of the
rotor as soon as we are a few radii behind the rotor.

4.3. Spatio-temporal behaviour
Although the temporal stability properties do not change, the way the wave packet expands
and is advected does vary according to the regime. In figure 21 we display the local growth
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Figure 21. Spatio-temporal evolution of the perturbation for ε = 0.01, η = 0.05, N = 2. Contours of the
amplitude envelope (in log scale) in the (ζ, ψ) plane for a impulse placed atψ = 0 in ζ/2π = 10; (a) λ = −20,
(b) λ = 11, (c) λ = 6.2, (d) λ = 4.3.
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Figure 22. Maximum temporal growth rate in a frame moving at the angular speed Vψ (or equivalently at
the non-dimensionalized axial velocity Vz2π/(ΩRhFW ) = Vψ ) for ε = 0.01, η = 0.05, N = 2 and ζp = 20π

in different rotor regimes (solid line: λ = −20; dashed line: λ = 11; dotted line: λ = 6.2; dash-dotted line:
λ = 4.3). (a) Growth rate σV/ΩR (normalized byΩR) versus Vψ . (b) Growth rate σV 2h2

FW/(N
2Γ ) (normalized

by the characteristic advection time 2h2
FW/(N

2Γ )) versus (Vψ − 1)h2
FWΩR/(NΓπ). Dashed red line is the

theoretical prediction obtained from an array of 2-D point vortices σ ∗ = π/2(1 − X2).

rate contours in the (ζ, ψ) plane of four characteristic cases. The perturbation has been
introduced in the far field at ζp/(2π) = 10. For both the climbing regime (figure 21(a)
for λ = −20) and the wind turbine regime (figure 21(d) for λ = 4.3) the perturbation is
advected away as it grows. This is characteristic of convectively unstable regimes. For the
two other regimes, the wave packet does not completely move away as it expands. For
λ = 11, a part of it clearly moves upstream (see figure 21b). The flow is then absolutely
unstable in that case. For λ = 6.2, the wave packet amplitude remains constant at the
impulse location (see figure 21c). It corresponds to a marginally absolutely unstable
configuration.

To analyse quantitatively the wave packet evolution, it is interesting to consider the
growth rate σV = σ(Vψ) ≈ log(|z′(ψ, ζp + Vψψ)|)/ψ in the frame moving at a given
(dimensionless) speed Vψ from the impulse location ζp. The corresponding plot is shown
in figure 22(a). Of particular interest are the velocities v−

ψ , v+
ψ which delimit the frame

velocity interval in which the perturbation grows and the frame velocity vmax
ψ at which

the growth is maximum. These velocities correspond to the slopes of the green and red
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Figure 23. Spatio-temporal evolution of the perturbation for ε = 0.01, η = 0.05, N = 2. Contours of the axial
displacement |z′| (in log scale) in the (z, t) plane for a impulse placed at ψ = 0 in ζ/2π = 3; (a) λ = −20,
(b) λ = 11, (c) λ = 6.2, (d) λ = 4.3. The same colour map is used for all the figures. The red diamond
corresponds to the impulse location. The rotor is located at z = 0.

lines indicated in figure 21(b). One can see in figure 22(a) that vmax
ψ is close to 1 in

all the regimes. This is not surprising as the maximum growth rate is expected to be
reached in the frame moving with the vortex elements. These elements move at a negative
angular velocity close to −�R, corresponding to the dimensionless velocity vψ = 1. The
difference comes from the self-inducted angular motion of the helices. As observed in
figure 12, the azimuthal induced velocity is positive in helicopter regimes, and negative
in wind turbine regimes. This explains why vmax

ψ is slightly smaller than 1 for helicopters,
and slightly larger than 1 for wind turbines.

In the far field, as the pitch is constant and equal to hFW , a 2π increases of ζ corresponds
to an axial displacement of a distance hFW . It follows that Vψ can also be considered as
an axial speed Vz normalized by hFWΩR/(2π).This can be used to compare the results
with a 2-D point vortex model. As shown in appendix B, for an array of point vortices
of circulation Γ separated by hFW/N, the pairing instability develops in a frame moving
at the velocity V∗

rel = Vrel2hFW/(NΓ ) with respect to the vortex frame with a growth rate
given by

σV2h2
FW/(N

2Γ ) = π

2

(
1 − (V∗

rel)
2
)
. (4.7)

For the far-wake helices, the relative velocity is given by V∗
rel = (Vψ − 1)h2

FWΩR/(NΓπ).
We have compared our numerical results with formula (4.7) in figure 22(b). We can
observe that the 2-D point vortex model works quite well. A similar agreement was already
observed for the instability developing in an array of vortex rings (Bolnot et al. 2014).
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When the Dirac impulse is placed close to the rotor plane, the spatio-temporal
development of the perturbation becomes more complex, especially for the configurations
where the vortices are on both sides of the rotor. A few illustrations of the behaviour of the
displacement amplitude are shown in figure 23. Whereas for the classical cases (λ = −20
and λ = 4.3) a well-defined wavepacket forms and is advected away from the rotor. For the
two other cases, a dominant part of the wavepacket is still advected away as in the far field,
but a small part of the wavepacket is now advected upstream. The wake has then become
absolutely unstable. This part of the wavepacket is now trapped in the close neighbourhood
of the rotor in the region where the vortices move on the other side of the rotor. No simple
model is able to describe the evolution of the wavepacket in those cases.

5. Conclusion

In this work, we have provided a vortex wake model for a rotor in any incident normal
wind. It applies to all the vertical flight regimes of a helicopter (ascent, hover, descent) as
well as all the regimes of a wind turbine. This model, which was first introduced a century
ago by Joukowski, is based on a simple description of the wake by tip and root vortex
filaments for each blade. Contrarily to the classical studies where a helical geometry was
in general prescribed for the wake, here we have solved the governing equations to obtain
the geometry of the vortex structure. This has allowed us to account for the contraction
of the wake in the helicopter regimes and for its expansion in the wind turbines regimes.
In the helicopter regimes, we have been able to obtain solutions up to the regimes of
rapid descent, for which the vortices move above the rotor before being advected below it.
Similarly, in the wind turbine regimes, we have shown that for large tip ratios the vortices
could also cross the rotor plane. The properties of these new types of solutions have been
analysed in detail, by providing their geometric characteristics, their induced velocity field
in the rotor plane and in the far wake as well as their thrust and power coefficients. The
stability of the solutions has also been considered by analysing the linear impulse response.
All the solutions have been found to be unstable with respect to a local pairing instability,
and well described in the far wake by the theoretical predictions for uniform helices
(Gupta & Loewy 1974) and for an array of 2-D point vortices. However, the more complex
solutions have been found to be more unstable, with perturbations propagating upstream
(absolute instability) and exhibiting a non-trivial spatio-temporal behaviour close to the
rotor.

It is clear that for those cases, the vortex structure is expected to be globally unstable.
We suspect that it is replaced by a time-dependent solution corresponding to the so-called
vortex ring state. This state is characterized by the presence of a ring structure in the rotor
plane that is periodically shed (Drees & Hendal 1951; Green, Gillies & Brown 2005; Stack,
Caradonna & Savaş 2005).
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Figure 24. Effect of numerical parameters on the far-wake and near-wake geometries for λ = −40, ε = 0.05,
η = 0.02 and N = 2. The default parameters are 30 discretization points per turn, 30 turns for the computation
domain and 30 turns for the far-wake domain. (a,d,g) Radius RFW in the far wake; (b,e,h) pitch hFW in the far
wake; (c, f,i) near-wake maximum distance dmax

NW . (a–c) Number of discretization points per turn; (d–f ) number
of turns in the computation domain; (g–i) number of turns in the far wake.

Appendix A. Numerical convergence study

In this appendix, we analyse the convergence of the results with respect to discretization
parameters that are the number of discretization points per turn, the number of turns in
the computation domain and the number of turns used to describe the far-wake structure.
We consider the highly deformed case obtained for the parameters λ = −40, ε = 0.05,
η = 0.02 and N = 2 which corresponds to one of the most challenging configuration.
Both the helical structure and the stability results are analysed.

In figure 24, we show the effect of the numerical parameters on the far-wake and the
near-wake geometries. The effect on the far wake is analysed by considering the radius
RFW and the pitch hFW . For the near wake, we consider the position of the points of the
first two turns. More specifically, we define the maximum distance dmax

NW between the points
of the first two turns of the helix compared to a well-converged case. For this analysis, the
converged reference case has 60 points per turn, 40 turns for the computation domain and
40 turns for the far wake.

The effect of the number of the discretization points per turn was already analysed in
Durán Venegas & Le Dizès (2019) for periodic configurations. Similar results are obtained
for semi-infinite configurations: when one changes the number of points per turn from 30
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Figure 25. Effect of the numerical parameters on the growth rate as a function of the (azimuthal) wavenumber
k for λ = −40, ε = 0.05, η = 0.02, N = 2 and ζp = 16π. The default parameters are 60 points per turn, 30
near-wake turns and 30 far-wake turns. (a) Variation of the number of points per turn: 20 (dotted), 40 (dashed
dotted), 60 (solid) and 80 (grey thick solid). (b) Variation of the number of turns in the near wake domain: 15
(dotted), 20 (dashed dotted), 30 (solid) and 40 (grey thick solid). (c) Variation of the number of turns in the
far-wake domain: 5 (dotted), 10 (dashed dotted), 20 (solid) and 30 (grey thick solid).

to 60, we observe a difference smaller than 0.1 % for RFW and 0.8 % for hFW . For the
near-wake structure, dmax

NW /Rb is found to be 5 × 10−3.
Concerning the number of turns in the computation domain, RFW and hFW are found

not to vary much above 10 turns. Between 20 turns and 40 turns, we obtain variations of
0.05 % for RFW , of 0.2 % for hFW while dmax

NW /Rb is 2 × 10−4. Concerning the number of
turns in the far wake, the difference between taking 10 and 40 turns is 0.02 % for RFW
and 0.08 % for hFW . This difference is reduced by one order of magnitude if one compares
30 turns with 40 turns. In the near wake, dmax

NW /Rb is found to be 10−3 when 30 turns are
compared to 40 turns.

The effect of the numerical parameters on the instability growth rate is shown in
figure 25. We observe that larger numerical parameters are needed to reach convergence
for first two instability bands. For instance, if one takes 20 points per turn, the wake
structure is well described, as well as the first instability band (see figure 25a), but
the second instability peak is not properly reproduced. One needs 60 points per turn to
obtain converged results for this instability band. Concerning the number of turns in the
computation domain (figure 25b), no significant differences are observed when the number
of turns varies from 15 to 40. The limitation actually comes from the advection of the
perturbation; the domain has to be sufficiently large such that the wave packet has not
reached the far wake before being completely developed. Finally, for the number of turns
in the far wake (figure 25c), a quite good convergence is already obtained as soon as it is
larger than 10. Above 20 turns, the difference becomes imperceptible (see figure 25c).

Appendix B. Spatio-temporal development of the pairing instability in an array of
2-D point vortices

In this appendix, we review the stability properties of an infinite array of point vortices of
circulation Γ located at zp = ph, where p covers all the integers and h is the separation
distance. As shown by Lamb (1932, § 156), this array is linearly unstable in the frame
of the vortices with respect to a displacement of the form z′

p = δ exp(ikhp − iωt) with a
complex frequency ω = ω∗Γ/(2h2) that is related to the wavenumber k = k∗/h by

ω∗ = i
π

2

(
1 −

(
k∗

π
− 1

)2
)
. (B1)

911 A6-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.985


Joukowski rotor wake model

In a frame moving at the velocity Vrel = V∗
relΓ/(2h) with respect to the vortices, the

dispersion relation is

ω∗
V = ω∗ − k∗V∗

rel = i
π

2

(
1 −

(
k∗

π
− 1

)2
)

− k∗V∗
rel. (B2)

As explained in Huerre & Monkewitz (1990), in order to find the maximum growth rate of
a wave packet in this moving frame, one should consider the wavenumber k∗

V that cancels
the group velocity

∂ω∗
V

∂k∗ (k
∗
V) = 0, (B3)

which gives
k∗

V = π
(
1 + iV∗

rel
)
. (B4)

The maximum growth rate of the wave packet in the frame moving at the velocity V∗
rel is

thus given by σ ∗
V = 
m(ω∗

V(k
∗
V)) with

ω∗
V(k

∗
V) = i

π

2

(
1 − (V∗

rel)
2
)

− πV∗. (B5)

In dimensional form, we then obtain

σV = πΓ

4h2

(
1 −

(
Vrel2h
Γ

)2
)

(B6)

for the growth rate of a wavepacket moving at a velocity Vrel with respect to the vortices.
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