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Abstract In previous work by Coates, Galkin and the authors, the notion of mutation between lattice
polytopes was introduced. Such mutations give rise to a deformation between the corresponding toric
varieties. In this paper we study one-step mutations that correspond to deformations between weighted
projective planes, giving a complete characterization of such mutations in terms of T-singularities. We
also show that the weights involved satisfy Diophantine equations, generalizing results of Hacking and
Prokhorov.
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1. Introduction

In [1] we described a combinatorial notion of mutation between convex lattice polytopes.
In this paper we begin to explore the geometry behind this idea. Given a convex lattice
polytope P containing the origin and having primitive vertices, there is a corresponding
toric variety X defined by the spanning fan of P. A mutation between polytopes P
and () determines a deformation between Xp and X [6]. Our main result characterizes
mutations between triangles; we therefore characterize certain deformations, over P!, with
fibres given by fake weighted projective planes. We recover and generalize certain results
of Hacking and Prokhorov [5, Theorem 4.1] connecting the fake weighted projective
planes with T-singularities to solutions of Markov-type equations. We prove the following
proposition.

Proposition 1.1. Let X = P()\g, A1, \2) be a weighted projective plane. Up to reorder-
ing of the weights, there exists a one-step mutation to a weighted projective plane Y if
and only if 1/X\g(A\1, A2) is a T-singularity. When this is the case,

(M1 + A2)?
Ao '

More generally, there exists a one-step mutation from the fake weighted projective plane

X/(Z/n) to the fake weighted projective plane Y/(Z/n') only if n = n’ and 1/Ag(A1, A2)

is a T-singularity.

Y = ]P’<)\1,/\2,
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In Proposition 3.12 we associate with a weighted projective plane X a Diophantine
equation
maoriry = k(cord + c123 + coxl). (1.1)

The weights (Ao, A1, A2) of X correspond to a solution (ag,a;,as), where \; = c;a?

1 =20,1,2, and the degree of X is given by

m2

2
(_KX) o CoClchz.

One-step mutations of X correspond to transformations of the solutions to (1.1), and all
such solutions can be generated from the so-called minimal weights by mutation.

When X = P2, (1.1) becomes the celebrated Markov equation [10]. Certain other
special cases were studied by Rosenberger [11]. These cases all have finitely many minimal
weights. In §4 we give an example where the corresponding Diophantine equation has
infinitely many minimal weights.

2. Mutations of Fano polytopes

Let N = Z™ be a lattice with dual M := Hom(N,Z). A lattice polytope P C Ng :=
N ®z Q is called Fano if it satisfies three conditions:

(1) P is of maximum dimension, dim P = dim N;
(2) the origin is contained in the strict interior of P, 0 € int(P); and

(3) the vertices vert(P) of P are primitive lattice points, i.e. for any v € vert(P) there
are no other lattice points on the line segment Ov joining v and the origin.

The dual of P is defined to be the polyhedron
PY :={u€ Mg | u(v) > —1 for all v € P} C Mg.

By condition (2) this is a polytope with 0 € int(P"), although it need not be a lattice
polytope. See [8] for an overview of Fano polytopes.

We briefly recall the notation of [1, §3]. Any choice of primitive vector w € M deter-
mines a lattice height function w: N — Z, which naturally extends to Ng — Q. A subset
S C Ny is said to lie at height h € Q with respect to w if w(S) := {w(s) | s € S} = {h};
we write w(S) = h. The set of all points of Ng lying at height h with respect to a given
w is an affine hyperplane H,, j, := {v € Ng | w(v) = h}. In particular,

wp(P) := conv(H,, NPNN)C Ny

will denote the (possibly empty) convex hull of all lattice points in P at height h.
Define
hmin := min{w(v) | v € P}, hmax := max{w(v) | v € P}.

Since P is a lattice polytope, both Ay and hpyay are integers. Condition (2) guarantees
that hmin < 0 and Apax > 0.
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Definition 2.1. A factor of P with respect to w is a lattice polytope F' C Ng satisfying
(1) w(F) =0;

(2) for every integer h, hyin < h < 0, there exists a (possibly empty) lattice polytope
G C Ng at height h such that

Hy, nNvert(P) C Gy + (—h)F C wy(P).

Note that, for given polytope P C Ng and width vector w € M, a factor F' need not
exist. When a factor does exist we make the following construction.

Definition 2.2 (Akhtar et al. [1, Definition 5]). Let P C Ng be a polytope
with width vector w € M, factor F, and polytopes {Gp}. We define the corresponding
combinatorial mutation to be the convex lattice polytope

mut,, (P, F; {Gr}) —conv( U G U U wp (P —|—hF)> C Ng.
h=hmin
For brevity we will refer to a combinatorial mutation simply as a mutation.

We now summarize the key properties of mutation [1].

(1) Since for any v € N such that w(v) = 0 we have that
mut,, (P, F; {Gr}) = mut,,(P,v + F;{Gp, + hv}),

we need only consider factors F' up to translation. In particular, choosing F' to be
a point leaves P unchanged (up to isomorphism).

(2) If {Gy} and {G},} are any two collections of polytopes for a factor F', then
mut,, (P, F'; {Gp}) = mut, (P, F;{G},}).
The choice of collection {G},} is therefore irrelevant and we write mut,, (P, F).
(3) P is a Fano polytope if and only if mut,, (P, F') is a Fano polytope.
(4) Let @ := mut,, (P, F). Then mut_,,(Q, F') = P, so mutations are invertible.

In [1] it was also shown that mutations have a natural description as a piecewise linear
transformation of the lattice M. We require the following definition.

Definition 2.3. The inner normal fan in M of a polytope F' C Ng is generated by
the cones o, consisting of those linear functions that are minimal on a given vertex vg
of F'. That is,

opp = {u € Mg | u(vp) = min{u(v') | v € F}}.
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9 ?

Figure 1. A mutation from the triangle associated with P?
to the triangle associated with P(1,1,4).

5) A mutation of P C Ng induces a piecewise linear transformation ¢ of Mg such
Q Q
that (p(PV))Y = mut, (P, F), given by

QU U~ UninW, U € Mg,

where Uiy = min{u(vg) | vp € vert(F)}. The inner normal fan of F C Ny
determines a chamber decomposition of Mg, and ¢ acts as a linear transformation
on the interior of each maximal dimensional cone of this fan.

(6) As a consequence of (5), the toric varieties Xp and X defined by the spanning
fans of P and @ := mut,, (P, F') have the same degree (in fact, they have the same
Hilbert series).

Example 2.4. Consider the triangle P = conv{(1, —1),(—1,2),(0,—1)} C Ng corre-
sponding to the toric variety P2. Let w = (0,1) € M and set F' = conv{0, (1,0)} C Ng.
This defines a mutation from P to the triangle @ = conv{(1,2), (—1,2),(0,—1)} C Ng,
as illustrated in Figure 1. On the dual side, this corresponds to a piecewise linear map
v: u— uM, for u = (o, 8) € Mg, where

1 0 .

if a >0,
1 -1

otherwise.
0 1

Mutations are particularly simple in the two-dimensional case. In this setting, w € M
defines a non-trivial mutation of P C Ny if and only if w € {a | u € vert(PY)} C M,
where 4 € M is the unique primitive lattice vector on the ray passing through u. Non-
trivial factors F' C Ng are just line segments, so it suffices to restrict attention to those
F that have vertex set {0, f}, for some f € N with w(f) = 0. The inner normal fan of
any factor I’ of P with respect to a given w is just the linear subspace of Mg spanned
by w. This divides Mg into two chambers; the piecewise linear transformation ¢ acts
trivially in one of the chambers, and as u — u — u(f)w in the other.

M, =

In particular, p(PV) = QV.
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3. One-step mutations of triangles

Set N = Z? and let P := conv{vg,v1,v2} C Ng be a Fano triangle. Since 0 € int(P),
there exists a (unique) choice of coprime positive integers Ao, A1, A2 € Z~ with Agvg +
A1v1 + Aovg = 0. The projective toric surface X given by the spanning fan of P has
Picard rank 1 and is called a fake weighted projective plane with weights (Ag, A1, A2); X
is the quotient of P(\g, A1, A2) by the action of a finite group of order mult(X) acting
freely in codimension one [2,3,7].

Remark 3.1. Since the vertices of P are primitive, the weights (Mg, A1, A2) are well
formed: that is, gcd{\;; \;} =1, ¢ # j. In this paper we will always require that weights
are well formed.

Definition 3.2. We say that a fake weighted projective plane Y with defining Fano
triangle @ C Ng is obtained from X by a one-step mutation if Q = mut,, (P, F') for some
choice of w and factor F.

3.1. One-step mutations in Mg and weights

First we address how the weights (Mg, A1, \2) associated with a Fano triangle T' C
Ng transform under mutation. We will require the following fact (see, for example, [3,
Lemma 5.3]): let TV = conv{ug,u1,us} be the triangle in Mg dual to T. Then, after
possible reordering, Agug + Aju1 + Agus = 0. Hence the weights of T' and the weights of
TV are equivalent.

Proposition 3.3. Let X be a fake weighted projective plane with weights (Ao, A1, A2).
Suppose there exists a one-step mutation to a fake weighted projective plane Y. Then,
up to relabelling, Ao | (A1 + X\2)? and Y has weights

2
<)\1; A27 (>\1 * A2) >
Ao

Proof. Consider a lattice triangle Ty C Ng, 0 € int(71), and suppose that there
exists a width vector w € M and factor F' C Ng, w(F) = 0, such that the mutation
Ty = mut,, (T, F) is also a triangle. Without loss of generality we can assume that
w=(0,1) € M and F = conv{0, (a,0)} for some a € Z~(. The mutation corresponds to
a piecewise linear action on Mg via u — uM, given by

1 0
ifue MT,

01

1 _
“ otherwise,

0 1

where M is the half-space {(a,3) € Mg | a > 0}. Let Ty = conv{ug, ui,us} C Mg
be the (possibly rational) triangle dual to T}, where us € M, and so is fixed under the
action of the mutation, and u; € M~ := {(a, f) € Mg | @ < 0}. Since T C My is also

M, =
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ug = (0, Bg)

I
I

I

I

I

- I

S 1
I

I

I

I

|

ug = (0, By)

up = (0, By)
u3=(0, B3)

I
|
I
! uy = (0, B)

Figure 2. A one-step mutation, depicted in Mg, of the triangle
conv{uo, u1,u2} to the triangle conv{usz, us, ua}.

a triangle, the only possibility is that ug lies on the line (w) := {yw € Mgy | v € Q},
Ty = conv{ug,us,us}, where ug is contained in the line segment Uz joining us and ug,
and wug is contained in the line segment uius. This situation is illustrated in Figure 2.
Since 0 € T, there exist unique weights (Ao, A1, A2) € Z2 4, ged{Ao, A1, A2} = 1, such
that
AoUo + Aquq + Asug = 0. (31)

Since uz = (0, 83) € uruz, there exists some 0 < p < 1 such that pay + (1 — p)ay = 0.
But A\ja; + A2as = 0, hence
A1 Ao
oy + Qg =
MAAe N A

0.

By uniqueness of p,
A1 A2

A1+ A ! A1+ A 2
Similarly, since ug = (0, 8p) € Uzug, there exists some 0 < v < 1 such that ug =
vug + (1 — v)uy, giving

(3.2)

us

1 v
Uy — u
1—1/0 1—v

Uy =

Comparing coefficients we see that

v
«
1—v

o] = —

But ug = u3 + kug for some x > 0. Combining this with (3.1) we see that

)\1/‘6— /\0 )\2
= U — T Uu3.

b A ¥
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Comparing coefficients, we obtain

I
1 N 2
Equating (3.3) and (3.4) gives
Uy = A1t )\2u — &u
S VI A Vi

277

(3.4)

(3.5)

Notice that, since both ug and ug are contained in (w), there exists some v > 0 such

that —yus = ug. Substituting into (3.5) we have

A
220y + ug +y'ug = 0,
A1

where 7' = (A1 + A2)/A1 > 0. Substituting in (3.2) we obtain

A2 7'\ 7' X2
— U + ug + ur + Uy =
VD VINED VS VNI P

Using (3.5) to rewrite the first two terms and clearing denominators gives

()\1 + /\Q)QUO + ’}/I)\%’U,l + ’7’)\1)\2U2 =0.

(3.6)

(3.7)

Set h:= Ao+ A1+ A2 and I" := (A1 +X2)? +7' A2 +7'A\;1 Aa. By comparing (3.1) and (3.7),

uniqueness of barycentric coordinates gives

h(A1 + A2)? = I'Xo,
hy' A2 = Ty,
h’}//)\1>\2 = F)\Q
In particular,
; ()\1 + /\2)2
Aodr
Substituting this expression for v/ back into (3.6) gives

)\0)\211,2 + ()\1 + )\Q)zu:), + )\0)\111,4 =0.

(3.8)

Finally, we consider the situation where T3 C Ng is the triangle associated with a
fake weighted projective plane with weights (Mg, A1, A2), and assume that there exists a
one-step mutation to some triangle 75 C Ng. If A\¢ does not divide (A + )\2)2, then by

(3.8) the associated weights are
(MoA1; AdoAz, (A1 + A2)?),

and these fail to be well formed when Ao > 1. Therefore, we must have Ao | (A1 + A2)?,

giving weights

2
(Al,A%(’\lW).
Ao
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Remark 3.4. Let (\g, A1, A2) be well-formed weights such that \g | (A1 + A\2)?, and
suppose that there exists some prime p such that

(M + /\2)2

A d
in i |1t

Then p | A3 and so p | A2. But this contradicts (Ao, A1, A2) being well formed. Hence

2
(,\1,&7(&4”‘2))
Ao

are also well formed.

Example 3.5. There exists no one-step mutation from P(3,5,11) to any other
weighted projective space, since 31 (5+ 11)%, 51 (3 +11)? and 111 (3 +5)2.

Example 3.6. The requirement that Ao | (A1 + X2)? in Proposition 3.3 is necessary
but not sufficient. For example, consider the triangle T' = conv{(10, —7), (=5,2),(0,1)} C
Ng. This has weights (1, 2, 3); however, there exist no one-step mutations from 7.

3.2. One-step mutations in Ng and T-singularities

Our aim in this section is to characterize when a mutation exists. In order to do this,
we require the definition of a T-singularity.

Definition 3.7 (Kollar and Shepherd-Barron [9, Definition 3.7]). A quotient
surface singularity is called a T'-singularity if it admits a Q-Gorenstein one-parameter
smoothing.

T-singularities include the du Val singularities 1/r(1,r—1), and they are cyclic quotient
singularities of the form 1/nd?(1,dna — 1), where gcd{d,a} =1 [9, Proposition 3.10].

Lemma 3.8. An isolated quotient singularity 1/r(a,b) is a T-singularity if and only
ifr | (a+b)2.

Proof. We begin by noting that the condition that r | (a + b)? is independent of the
choice of representation of 1/7(a,b). Let ¢ be any integer coprime to r. Then r | (a + b)?
if and only if r | ¢2(a + b)? = (ca + cb)?.

Suppose that we are given a T-singularity. If we write the singularity in the form
1/nd?(1,dna — 1), where ged{d,a} = 1, we see that nd? | d>n?a?. Conversely, consider
the isolated quotient singularity 1/r(a,b). Since a is invertible mod r, we can write this
as 1/r(1,b' — 1), where ' = ba~! + 1 (mod r). Write r = nd?, where n is square-free.
Since nd? | b'? by assumption, we see that nd | b’. In particular, we can express our
singularity in the form 1/nd?(1,dna — 1) for some a € Zsq. Finally, we note that this
really is a T-singularity: if ged{d,a} = ¢, then we can absorb this factor into n’ = nc?
while rescaling d’ = d/c and o/ = a/c. O

Proposition 3.9. Let X be a fake weighted projective plane corresponding to a
triangle T' C Ng, and suppose that the cone C spanned by an edge E of T' corresponds
to a 1/r(a,b) singularity. There exists a one-step mutation to a fake weighted projective
plane Y given by mut,, (T, F') with w(E) = huyy if and only if 1/7(a,b) is a T-singularity.

https://doi.org/10.1017/50013091515000115 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000115

Mutations of fake weighted projective planes 279

Proof. Let X correspond to the lattice triangle T' = conv{v;, v, v3} C Ng, where 0 €
int(7") and the vertices vert(7') C N are all primitive. Consider the cone C = cone{vy, v2}
spanned by the edge E = 770z; this is an isolated quotient singularity (possibly smooth),
so is of the form 1/r(a,b) for some r,a,b € Z~¢, ged{r,a} = ged{r,b} = 1.

Let w € M be a primitive lattice point such that w(vy) = w(ve) = h for some
h < 0. Then, up to translation, there exists a factor F' C Ng, w(F) = 0, such that
T := mut, (T, F) is a triangle if and only if vy + (—h)F = E. Equivalently, if and only
ifh||ENN|-1.

Finally, we express the values of h and |[ENN|—1 in terms of the singularity 1/r(a,b).
Set k := ged{r,a+b}. Then the height h = —r/k, and the number of points on the edge
FE is given by

[{m |m € {0,...,r} and (a +b)m =0 (mod r)}| =1—|—%:1+k.
Hence h | |[EN N|—1if and only if r/k | k. But r/k | k if and only if r | ged{r,a +b}? =
ged{r?, (a + b)?}, and r | ged{r?, (a + b)?} if and only if 7 | (a + b)2. The result follows
by Lemma 3.8. O

Example 3.10. Returning to Example 3.6, we see that the corresponding fake
weighted projective space X is a quotient of P(1,2,3) with mult(X) = 5. The three
singularities are 1/5(1,3), 1/10(1, 3) and 1/15(1,11), none of which is a T-singularity.

When X is a weighted projective plane, Proposition 3.9 tells us that the condition that
Mo | (A1 + X2)? in Proposition 3.3 is both necessary and sufficient.

3.3. One-step mutations and Diophantine equations

Given the results of §§ 3.1 and 3.2, we are now in a position to relate one-step mutations
of Fano triangles to solutions of certain Diophantine equations.

Lemma 3.11. Let (Ao, A1, \2) € Z3, with d = ged{\o, A1, Ao }. Write
(1) \; = dc;a2, where a;, c; € Zso and ¢; is square-free;

(2) (Mo + A1+ X2)2/ (Mo A2) = m?/(rk?), where m, k,r € Z~q and r is square-free;

(3) cocico = gS? and dr = hT?, where g, h,S,T € Z~q and both g and h are square-
free.

Then (dag, day,das) is a solution to the Diophantine equation
Smaorize = Tk(cord + c103 + coxd). (3.9)
Proof. By substituting expressions (1) and (3) into (2) we obtain
95%m?(dag)?(dar)*(daz)® = hT?k*(co(dao)® + e1(dar)? + ea(daz)?)?.

Comparing square-free parts, we conclude that g = h. Cancelling and taking square roots
on both sides establishes the result. |
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Since the weights are assumed to be well formed, d =S =T =1 and (3.9) becomes
miori1re = k(C()SIJg + Cl"E? + CQ.’,C%). (310)

Suppose that (ag, a1,az) is a positive integral solution to (3.10), so that \; = ¢;a?. The
expression
(Ao + A1+ Ag)?
AoA1 A2
occurring in Lemma 3.11 is equal to the degree of P(Ap, A1, A2). More generally, if X
is a fake weighted projective plane with weights (Mg, A1, A2), then (3.11) is equal to
mult(X)(—Kx)?2.

(3.11)

Proposition 3.12. Let X be a fake weighted projective plane and suppose that there
exists a one-step mutation to a fake weighted projective plane Y. Then the weights of X
and Y give solutions to the same Diophantine equation (3.10). In particular, mult(X) =
mult(Y).

Proof. With notation as in Lemma 3.11, we can write the weights (Ag, A1, A2) of X in

2

the form A\; = ¢;a;, where the ¢; are square-free positive integers. From Proposition 3.3

we know that Y has weights

2 2 212
(/\17)\2,(/\1+>\2)) = (claicw%,(claﬁ'@a?))

2
Ao CoQyg

The final weight is an integer; in particular, it has square-free part cg. Thus the ¢; are
invariant under mutation. Furthermore,

(AL + A2+ (A1 4 22)%/20))% _ (Aods + Aoda + (A1 + A2)?)?
)\1)\2(()\1 + )\2)2/)\0> o )\0)\1)\2()\1 + )\2)2
Ao+ A1+ )\2)2
AoA1 A2
m2
= 3
and so the ratio m/k is also preserved by mutation. Hence the weights of X and of YV
both generate solutions to the same Diophantine equation (3.10).

Finally, we recall that degree is fixed under mutation, hence (—Kx)? = (—Ky)?. But

2
rk2

and so mult(X) = mult(Y). O

= mult(X)(—Kx)* = mult(Y)(—KY)27

By combining Propositions 3.3, 3.9 and 3.12 we obtain Proposition 1.1.

Remark 3.13. The weights of a fake weighted projective plane correspond to a solu-
tion (ag,a1,az) of (3.10). A one-step mutation gives a second solution via the transfor-

mation

m ajaz
(ag,ai,az) — | — — ap,a1,0a2 |.
k Co

https://doi.org/10.1017/50013091515000115 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000115

Mutations of fake weighted projective planes 281

Example 3.14. Consider P2. In this case, m/k =3, co = c; = c3 = 1, and (1,1,1) €
73 is a solution of
3roT179 = TH + T3 + 73, (3.12)
Up to isomorphism, there is a single one-step mutation to P(1,1,4), giving a solution
(1,1,2) € Z3 ; of (3.12). Proceeding in this fashion we obtain a graph of one-step muta-
tions corresponding to solutions of (3.12), which we illustrate to a depth of five mutations:
(1,1,1)

(1,1,2)

(1,2,5)

/\

(2,5,29) (1,5,13)

(5,29,433) (2,29,169) (5,13,194) (1,13,34)

AN N N

(29,433,37666) (5,433,6466) (29,169,14701) (2,169,985) (13,194,7561) (5,194,2897) (13,34,1325) (1,34,89)

Definition 3.15. The height of the weights (Ao, A1, A2) is given by the sum h :=
Ao+ A1+ A2 € Z~o. We call the weights minimal if for any sequence of one-step mutations
Aoy A1, A2) = - = (A, A, Ay) we have that h < /.

Lemma 3.16. Given weights (Ao, A1, A2) at height h, there exists at most one one-step
mutation such that h/ < h. Moreover, if h' = h, then the weights are the same.

Proof. Without loss of generality suppose we have two one-step mutations
A1+ A2)? Ao + A2)?
/\17/\27@ and /\O,M,/\z
)\0 >\1
with respective heights A’ and h” such that A’ < h and h” < h. Since b/ < h we obtain
(A1 + X2)? < A2, and so
M4 < AL (3.13)
From h"” < h we obtain
N+ A2 < M (3.14)
Combining (3.13) and (3.14) gives a contradiction, hence there exists at most one one-step
mutation such that b’ < h. If we suppose that A’ = h, then
(A1 4 A2)?
Ao

and equality of the weights is immediate. O

=\

The height imposes a natural direction on the graph of all one-step mutations generated
by the weight (Ao, A1, A2). Lemma 3.16 tells us that this directed graph is a tree, with a
uniquely defined minimal weight.
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4. Example: an infinite number of minimal weights
In this section we shall focus on the Diophantine equation
12202179 = 323 + 5a] + T23. (4.1)

Any solution (ag, a1, a) such that (3a2, 5a%, 7a3) is well formed corresponds to a weighted
projective space P(3aZ, 5a%, 7a3) of degree 144/105. One possible such solution is (2,1, 1),
giving P(12,5,7). Consider the graph G of all such solutions. Two solutions lie in the
same component if and only if there exists a sequence of one-step mutations between the
corresponding weighted projective planes. Furthermore, each component is a tree with
unique minimal weight. We will show that there exists an infinite number of components,
and that every component contains at most two solutions; in fact, the only component
with a single solution is (2,1, 1).

4.1. Coprime solutions give well-formed weights

Let (ag,a1,az2) be a solution of (4.1) such that ged{ag, ar,a2} = 1. Clearly, this is a
necessary condition for the corresponding weights (3a3, 5a%, 7a3) to be well formed. We
will show that it is sufficient. Suppose that there exists some prime p such that p | ¢;a?
and p | cja?, i # j. Since p cannot simultaneously divide both ¢; and ¢;, we have that
p must divide either a; or a;. In particular, p | 12apaia2 and so, by (4.1), p divides
the remaining weight cia?. Similarly, since p can divide at most one of 3, 5 and 7, we
see that p? | 12apajas and so p? divides each of the three weights. We conclude that
p | ged{agp, a1, as}, contradicting coprimality.

4.2. A necessary and sufficient condition for rational solutions when a; and
as are fixed

Fix ay,as € Z~o and consider the quadratic
12za;ay = 3x* + 5a3 + Ta3. (4.2)
The discriminant is given by
122a2a2 — 12(5a% + 7a3) = 12(5a%(a3 — 1) + 7a2(a? — 1)),

which is always non-negative. The discriminant is zero only in the case a1 = as = 1,
corresponding to the solution (2,1, 1) of (4.1). Furthermore, we see that a rational solution
to (4.2) exists if and only if

5a3(a3 — 1) 4+ 7a3(a? — 1) = 3N? for some N € Z+y. (4.3)
4.3. Any rational solution is an integral solution
Suppose that «, 8 € R are the two solutions of (4.2). We obtain

a+ (3 =4dajaq, (4.4)
3af = 5a? + Ta3. (4.5)
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In particular, since the right-hand side in each case is a strictly positive integer, we see
that «, 8 > 0. Furthermore, « is rational if and only if 3 is rational. Since we are only
interested in rational solutions, we can assume that both « and (3 are rational. Let us
write

1 n2
a=— and ([=—F7,
my m2

where the fractions are expressed in their reduced form, i.e. ged{n;, m;} = 1. Then

mims | 3ning,

4
4

SR
S~—

)

By (4.7), ma | my and m;y | mg, forcing m; = mo. Without loss of generality, from (4.6)
we may assume that m; | 3nz and mg | ny. But then my | ny, forcing my = my = 1.
Hence a, 3 € Z~y.

mime | ni1Mmeo + NomMmy.

—~~ o~

4.4. The values a; and as are fixed under one-step mutations

We now show that, given a solution (ag, a1, a2) such that ged{ag, a1, a2} = 1, the values
of a; and a9 are fixed under one-step mutation. Suppose that

(3a + 7a3)?

€Z. (4.8)
5a?

Without loss of generality we may take o = ag. We see that 5 | 3a2+7a3 = 3a?+3a3—5a3
by (4.5), hence 5 | 3a(a+5) = 12apaiaz by (4.4). Since the weights are pairwise coprime,
the only possibility is that 5 | a;. Returning to (4.8) we see that 52 | 3aZ + 7a3, and
proceeding as before we find that 52 | a;. Clearly, we can repeat this process an arbitrary
number of times, increasing the power of 5 at each step. This is a contradiction. The case

when
(3a3 + 5a?)?

Z
Ta3 €

is dealt with similarly.

4.5. An infinite number of components

Set a; = 1 in condition (4.3). The condition becomes a2 — 1 = 15M?2, where 5M = N.
This is a Pell equation, and Emerson [4] has shown that there exists an infinite number
of integer solutions given by a recurrence relation. In this case we see that aén) and M (™)
are generated by

aéO) =5 MO = 0,
s =4, MO =1,
agn-i-l) _ 8aén) - aén—l)7 M(n+1) _ 8M(n) _ M(nfl).

Substituting these expressions back into the original quadratic (4.2) gives

al"™ = 248" £ 50
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These solutions are coprime (since a; = 1) and so correspond to well-formed weights. We
will focus on the smaller of the two solutions, corresponding to the minimum of the two
weights. Substituting the expressions for aén) and M) gives

aén—i—l) _ 2aén+1) _ 5D
= 8(2a8"” — 5M) — (205" — 50 )
= Sag)n) — oY,

0

Hence we obtain the recurrence relation

a(()o) =2,
a(()l) =3,

a(()nH) = 8aén) — a(()nfl).

Remark 4.1. If instead we insist that as = 1, we obtain the Pell equation a? — 1 =
21M?, where TM = N. In this case the recurrence relation is given by

ago) = ]., M(O) = Oa
alt) =55, MO =12,
a"™ =110a{" —a{""Y, MO = 110M ™ — M),

Proceeding as above we find that

a(()o) =2,
a(()l) = 26,
al"™ = 110a{" — a{" Y.

Hence we have a second infinite family of components of G. Notice that these two families
do not exhaust all the possibilities: for example, a1 = 5, ay = 4 satisfies condition (4.3),
giving the two solutions (1,5,4) and (79, 5,4).
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