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We introduce what are called regular materials for which, by de¯nition, the
corresponding solution of the classical periodic homogenization problem remains
bounded in H2

loc . We give examples of two types of such materials depending on
whether the coe± cients representing them belong to W 1; 1 or not. A complete
characterization is obtained in the former case.

1. Introduction

We consider the operator

A
d ef
= ¡ @

@yk

³
ak`(y)

@

@y`

´
; y 2 RN ;

where the matrix a(y) = [ak`(y)] is symmetric and positive de nite a(y) > ¬ I
with ¬ > 0. Its entries belong to L 1

# (Y ) (Y is the cube ]0; 2 º [N and subscript `#’
means that the space consists of Y -periodic functions). In the sequel, we will make
various further length-scale regularity assumptions on the coe¯ cients ak` which
play a central role throughout the paper. Some of them are as follows:

ak` 2 W 1; 1
# (Y ) 8k; ` = 1; : : : ; N; (1.1)

@ak`

@yk
2 L 1

# (Y ) 8` = 1; : : : ; N: (1.2)

In (1.2) above, and throughout this paper, usual summation convention with respect
to repeated indices is followed, unless stated otherwise explicitly. For each " > 0,
we introduce the operator A", where

A" d ef
= ¡ @

@xk

³
a"

k`(x)
@

@x`

´
with a"

k`(x) = ak`

³
x

"

´
; x 2 RN :
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500 C. Conca and M. Vanninathan

Let « » RN be an arbitrary domain and let f 2 H¡1( « ). We consider a sequence
u" in H1( « ) such that

A"u" = f in « ;

u" * u ¤ in H1( « )-weak:

)

(1.3)

Our aim in this work is to seek necessary and su¯ cient conditions on a(y) for u"

to be bounded in H2
loc( « ) under the hypothesis that

f 2 L2
loc( « ) (1.4)

(see theorem 4.3 below). Even when the hypothesis (1.1) holds good, classical results
(see the book by Gilberg and Trudinger [6, p. 175]) when applied to (1.3) yield the
estimate

ku"kH2
loc( « ) 6 c"¡1kfkL2

loc( « );

which is clearly not uniform in ". On the other hand, in the classical book by
Bensoussan et al . [1], the authors obtain an asymptotic expansion (with y = x=")
of the form

u"(x) = u ¤ (x) + "

»
À `(y)

@u¤

@x`
(x) + ~u1(x)

¼

+ "2

»
À `m(y)

@2u ¤

@x`@xm
(x) + À `(y)

@~u1

@x`
(x) + ~u2(x)

¼
+ ¢ ¢ ¢ : (1.5)

Here, À ` is the unique solution of the cell problem

AÀ ` =
@ak`

@yk
in Y;

À ` 2 H1
# (Y ); Y ( À `)

d ef
=

1

jY j

Z

Y

À ` dy = 0:

9
>>=

>>;
(1.6)

The function À `m is characterized as the unique solution of

AÀ `m = a`m + a`k
@À m

@yk
¡ @

@yk
(ak` À m) ¡ Y (a`m) ¡ Y

³
a`k

@À m

@yk

´
in Y;

À `m 2 H1
# (Y ); Y ( À `m) = 0:

The  rst term in (1.5) satis es the homogenized equation

A ¤ u ¤ d ef
= ¡ @

@xk

³
qk`

@u ¤

@x`

´
= f in « ;

where the homogenized coe¯ cients qk` are given by

qk` = Y

³
ak` + akm

@À `

@ym

´
8k; ` = 1; : : : ; N:

The above method also proves that ~u1(x), ~u2(x); : : : are independent of " and satisfy
equations of the type A ¤ ~uj = ~gj in « , where, for instance,

~g1(x) = bjk`
@3u ¤

@xj@xk@x`
(x);
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where bjk` are constants,

bjk` = Y

³
ajm

@À k`

@ym
+ ak` À j

´
8j; k; ` = 1; : : : ; N:

Some comments on the expansion (1.5) are now in order. Because it contains
in nitely many terms, it is not very useful to establish H2

loc-estimates on u", even
though the e¬ects of f and the medium are separated at various powers of ".
However, it o¬ers important insight into the di¯ culties in the o¯ ng. For instance,
it shows that the second-order derivatives of the "-term involve

"¡1 @2 À `

@yj@yk
(y)

@u ¤

@x`
(x);

@ À `

@yk

@2u ¤

@xj@x`
(x); "À `(y)

@3u ¤

@xj@xk@x`
(x):

Because of the presence of the negative power of " in the  rst of these terms, an easy
way out of the di¯ culty is to annihilate it by requiring that À ` = 0 8` = 1; : : : ; N .
At one stroke, this eliminates other terms as well. However, it is not at all clear
whether this condition is going to be su¯ cient to overcome the di¯ culties coming
from higher powers of ". This is due to the following reasons.

(i) The second-order derivatives of the terms containing "2 involve derivatives
of u¤ of higher order on which we have no control with our hypothesis (1.4).
More and more higher-order derivatives of u ¤ appear, and thus this di¯ culty
is ampli ed when we go up in powers of ".

(ii) The second-order derivatives of u ¤ are multiplied by the second-order deriva-
tives of À k` and so it is natural to require that À k` 2 W 2; 1

# (Y ). It is classically
known that such a regularity result involving L 1 (Y )-space is hard to come
by if it is not impossible.

These fundamental issues and di¯ culties may be the reason why H2-regularity
questions have not been tackled in the literature. Thus the results obtained in this
work seem to be new and are not easily obtainable using other classical methods.
Given the above picture of di¯ culties, our results may be interpreted as follows:
individually considered, the above troublesome terms are not in H2

loc under the
hypothesis (1.4); however, taken together, they seem to behave nicely.

The plan of this short paper is as follows. Bloch waves (which are our tool to
understand the issues involved) are introduced in x 2. In x 3, we rapidly introduce
a condition on the coe¯ cients which seems necessary to eliminate the e¬ects of
the boundary. Main results are stated in the next section in the form of several
theorems. Their proofs are presented in xx 5 and 6. Notion of regular materials is
introduced in x 7, wherein examples of such materials are also furnished.

Finally, a word about the notation adopted in this work. The constants appearing
in various estimates independent of " are generically denoted by c, c1, c2, etc. Apart
from the usual norms in Sobolev spaces H1(Y ), H2(Y ), we will also use the following
semi-norms,

jvjH1(Y ) =

» NX

j = 1

®®®®
@v

@yj

®®®®
2

L2(Y )

¼ 1=2

; jvjH2(Y ) =

» NX

k;` = 1

kD2
k;`vk2

L2(Y )

¼ 1=2

;

where D2
k;`v = @2v=@yk@y`.
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2. Bloch waves

To overcome the di¯ culties mentioned in x 1, we will adapt a di¬erent strategy,
which involves the use of the Bloch waves associated with A. We have used them in
the homogenization of eigenvalue problems and boundary-value problems associated
with elliptic operators (see [3,4]). For an application of Bloch waves in the case of
Schr�odinger equation with periodic potential, we refer to [5].

The basic idea of the method consists in representing the solution in terms of
Bloch waves. We will thereby be able to transfer the questions of estimates on u" or
its derivatives in an equivalent way to that of Bloch waves via Parseval’s identity.
Thus the method yields optimal results. Bloch waves are de ned as eigenvectors of
the problem

A( ² ) ¿ (¢; ² ) = ¶ ( ² ) ¿ (¢; ² ) in RN ;

¿ (¢; ² ) is Y -periodic;

)

(2.1)

where A( ² ) is the following operator,

A( ² )
d ef
= ¡

³
@

@yk
+ i ² k

´µ
ak`(y)

³
@

@y`
+ i² `

´¶
;

and ² is the Bloch parameter con ned to Y 0 = [ ¡ 1
2 ; 1

2 [N . This operator is referred
to as the shifted operator in the literature. As is well known, for each ² , these
eigenvectors form a countable orthonormal basis in L2

# (Y ), and they are denoted
by f ¿ m(¢; ² )g 1

m = 1:
Z

Y

¿ m(y; ² ) ·¿ m 0 (y; ² ) dy = ¯ mm0 :

The corresponding eigenvalues form a countable sequence with the following prop-
erties:

0 6 ¶ 1( ² ) 6 ¢ ¢ ¢ 6 ¶ m( ² ) 6 ¢ ¢ ¢ ! 1;

8m > 1; ¶ m( ² ) de nes a Lipschitz continuous function of ² in Y 0:

)

(2.2)

With the help of the above parametrized eigenvalues and eigenfunctions, one
can describe the spectral resolution of A as an unbounded self-adjoint operator in
L2(RN ). Roughly, the results are as follows,

feiy¢ ² ¿ m(y; ² ) j m > 1; ² 2 Y 0g forms a basis of L2(RN ) in a generalized sense;

and L2(RN) can be identi ed with L2(Y 0; `2(N)) via Parseval’s identity. The oper-
ator A corresponds to an operator with multipliers ¶ m( ² ),

A(eiy¢² ¿ m(y; ² )) = ¶ m( ² )eiy¢ ² ¿ m(y; ² ):

What we need below are Bloch waves f¿ "
m(x; ¹ )g in the "-scale and the correspond-

ing eigenvalues f ¶ "
m( ¹ )g. By homothecy, the following relations hold,

¶ "
m( ¹ ) = "¡2 ¶ m( ² ); ¿ "

m(x; ¹ ) = ¿ m(y; ² );

where (x; ¹ ) and (y; ² ) are related by

y =
x

"
; ² = "¹ :
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It is clear that ¹ varies in "¡1Y 0. The spectral decomposition of A" is described
in terms of these waves in the following result, a proof of which can be found, for
example, in [1] or [4].

Theorem 2.1. Let g 2 L2(RN). The mth Bloch coe± cient of g is de¯ned as follows:

B"
mg( ¹ ) =

Z

RN

g(x)e¡ix¢ ¹ ·¿ m

³
x

"
; "¹

´
dx 8 ¹ 2 "¡1Y 0; m > 1: (2.3)

Then the following inverse formula holds:

g(x) =

Z

" ¡ 1Y 0

1X

m = 1

B"
mg( ¹ )eix¢ ¹ ¿ m

³
x

"
; "¹

´
d ¹ 8x 2 RN : (2.4)

Further, we have Parseval’s identity,

Z

RN

jg(x)j2 dx =

Z

" ¡ 1Y 0

1X

m = 1

jB"
mg( ¹ )j2 d ¹ : (2.5)

The above result, which has been exploited by us in homogenization (see [3]),
does not seem to be fully adequate for the purposes of the present paper. As will be
pointed out later, some intermediate steps leading to the above-mentioned result
are necessary.

We present these now. For full details, the reader is referred to the literature
already cited (see, for example, [4, paragraph III.2]).

Theorem 2.2. Any g 2 L2(RN ) can be decomposed as

g(x) = "N

Z

" ¡ 1Y 0
g"

# (x; ¹ ) d ¹ ; (2.6)

where g"
# is ("¹ ; "Y )-periodic with respect to x (see [4, p. 187]), i.e.

g"
# (x + 2º "q; ¹ ) = e2 º "q¢ ¹ g"

# (x; ¹ ) 8q 2 ZN :

Further, we have Parseval’s relation,
Z

RN

jg(x)j2 dx = "N

Z

"Y

Z

" ¡ 1Y 0
jg"

# (x; ¹ )j2 d ¹ dx: (2.7)

Remark 2.3. The element g"
# associated to g in theorem 2.2 is, in fact, explicitly

given by

g"
# (x; ¹ ) =

X

p2 ZN

g(x + 2 º "p)e¡2 º i"p¢ ¹ : (2.8)

For  xed ¹ , expanding this in terms of the basis functions feix¢ ¹ ¿ "
m(x; ¹ ) j m > 1g,

we arrive at theorem 2.1.

3. Localization

Since we are dealing with estimates in H2
loc( « ), the  rst step in the method is to

reduce to the case « = RN by means of a cut-o¬ function ³ 2 ( « ). Indeed, a
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simple calculation shows that

A"( ³ u") = ³ f + g" + h" in RN ; (3.1)

where

g" = ¡ 2a"
k`

@u"

@x`

@³

@xk
¡ a"

k`

@2 ³

@xk@x`
u";

and

h" = ¡ @a"
k`

@xk

@³

@x`
u":

It is easily seen that the right-hand side of (3.1) is bounded in L2(RN), provided

@ak`

@yk
= 0 in RN 8` = 1; : : : ; N: (3.2)

This hypothesis is obviously equivalent to saying that À ` = 0 for all ` (see (1.6)).
It is somewhat surprising that the above condition, which we came across in x 1 for
obtaining H2

loc-estimates, appears in the localization process, too.
The above reduction procedure leads us to the following question. Consider

u" * u ¤ in H1(RN ) weak such that A"u" = f in RN . Under what conditions on
a(¢) does there exist a constant c > 0 independent of " such that

ju"jH2(RN ) 6 ckfkL2(RN )? (3.3)

We give an answer to this question in theorem 4.3 below.

4. Main results

The aim of this section is to state the principal results of this paper. Proof of
some of these results are indicated, while others are deferred to later sections. We
start with a consequence of theorem 2.1, which established that the operator A"

corresponds, under Bloch transform, to an operator on L2("¡1Y 0; `2(N)) given by
multipliers f¶ "

m( ¹ ) j m > 1; ¹ 2 "¡1Y 0g. This can be considered as a diagonal
integral operator on `2(N) parametrized by ¹ 2 "¡1Y 0. The following result shows
that the operator @2=@xk@x`, for  xed k; ` = 1; : : : ; N , corresponds to a more
general integral operator on `2(N).

Theorem 4.1. For k; ` = 1; : : : ; N , we have

@2g

@xk@x`
(x) = "¡2

Z

"¡ 1Y 0

1X

n= 1

» 1X

m= 1

B"
mg( ¹ ) ¬ mn("¹ )

¼
eix¢ ¹ ¿ "

n(x; ¹ ) d ¹ ;

for some coe± cients f¬ mn("¹ ) j m > 1; n > 1; ¹ 2 "¡1Y 0g. Therefore, by Parse-
val’s relation, we get

®®®®
@2g

@xk@x`

®®®®
2

L2(RN )

= "¡4

Z

" ¡ 1Y 0

1X

n= 1


1X

m= 1

B"
mg( ¹ ) ¬ mn("¹ )


2

d ¹ :
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Proof. Di¬erentiating (2.4) with respect to xk and x`, we get

@2g

@xk@x`
(x) = "¡2

Z

" ¡ 1Y 0

1X

m = 1

B"
mg( ¹ )eix¢ ¹ » m

³
x

"
; "¹

´
d ¹ ;

where we have set

» m(y; ² ) = ¡ ² k ² ` ¿ m(y; ² ) + i

»
² `

@¿ m

@yk
(y; ² ) + ² k

@¿ m

@y`
(y; ² )

¼
+

@2 ¿ m

@yk@y`
(y; ² ):

Since » m(¢; ² ) is Y -periodic, we can expand it in terms of the Bloch basis
f ¿ n(¢; ² ) j n > 1g,

» m(y; ² ) =

1X

n = 1

¬ mn( ² ) ¿ n(y; ² ) 8m > 1;

with the coe¯ cients ¬ mn de ned by

¬ mn( ² ) =

Z

Y

» m(y; ² ) ·¿ n(y; ² ) dy:

The proof in now complete.

Though we will need the above result in the sequel for other purposes, it does
not seem to be useful in estimating the second-order derivatives D2

k;`u" in L2(RN )
because it has the drawback of mixing the indices m, n. In other words, the operator
D2

k;` is not diagonal in the decomposition of theorem 2.1. We prefer a decomposition
invariant under the above operator. The decomposition provided by theorem 2.2
seems to be more suitable for the above purpose, since it is invariant under D2

k;`

and A". Indeed, it follows directly that

D2
k;`g"

# (x; ¹ ) = (D2
k;`g)"

# (x; ¹ )

and, as a consequence, it follows that

D2
k;`g(x) = "N

Z

"¡ 1Y 0
(D2

k;`g)"
# (x; ¹ ) d ¹ ; (4.1)

Z

RN

jD2
k;`g(x)j2 dx = "N

Z

"Y

Z

" ¡ 1Y 0
j(D2

k;`g)"
# (x; ¹ )j2 d ¹ dx: (4.2)

Applying the above general decomposition results, we see that our equation
A"u" = f in RN is equivalent to the following parametrized problems:

A"u"
# (x; ¹ ) = f "

# (x; ¹ ) for x 2 RN ;

u"
# (¢; ¹ ) is ("¹ ; "Y )-periodic:

)

(4.3)

Our main result is the following estimate on the above problem. There exists a
constant c2 > 0 independent of " > 0 and ¹ 2 "¡1Y 0, but depending on kakW 1;1 (Y ),
such that

kD2
k;`u"

# (¢; ¹ )kL2("Y ) 6 c2kf "
# (¢; ¹ )kL2("Y ); (4.4)

provided (3.2) is satis ed.
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Our strategy of proving (4.4) consists of transforming the problem (4.3) into a
Y -periodic problem by means of the change of variables

u"
# (x; ¹ ) = eix¢¹ U"(y; ² ); f "

# (x; ¹ ) = eix¢¹ F "(y; ² ): (4.5)

This idea is standard in Bloch analysis. It is well known that U " and F " satisfy

A( ² )("¡2U "(y; ² )) = F "(y; ² ) for y 2 RN ;

U "(¢; ² ) is Y -periodic:

)

(4.6)

Our following theorem is concerned with establishing estimates on problems of
the type (4.6).

Theorem 4.2. Consider the problem where a 2 W 1; 1 (Y ),

A( ² )U = F in RN ;

U is Y -periodic:

)

(4.7)

Then there exists a constant c2 > 0 depending on kakW 1;1 (Y ), but independent of
² 2 Y 0, such that

j² j2kUkL2(Y ) + j ² jjU jH1(Y ) + j² jjU jH2(Y ) 6 c2kFkL2(Y ):

If, in addition, we suppose (3.2), then

jU jH2(Y ) 6 c2kFkL2(Y ):

A proof of this result will be presented in the next section. For the moment, we
observe the singular behaviour of the second-order derivatives of U as ² ! 0. The
assertion is that it disappears if we suppose (3.2). A simple application of the above
theorem to problem (4.6) yields the desired estimate (4.4). Indeed,

kD2
k;`u"

# (¢; ¹ )k2
L2("Y ) 6 c"N fj¹ j4kU "(¢; ² )k2

L2(Y )

+ "¡2j ¹ j2jU"(¢; ² )j2H1(Y ) + "¡4jU"(¢; ² )j2H2(Y )g

6 c2"NkF "(¢; ² )k2
L2(Y ) (by theorem 4.2)

= c2kf "
# (¢; ¹ )k2

L2("Y ):

Thanks to (2.7), it is an easy matter to deduce the required estimate from (4.4).
More precisely, we have the following result.

Theorem 4.3. We assume that the coe± cients satisfy (1.1) and (3.2). Then there
exists a constant c2 > 0 independent of " > 0, but depending on kakW 1; 1 (Y ), such
that, for all f 2 L2(RN ), we have

ju"jH2(RN ) 6 c2kfkL2(RN ):

Our next result presents estimates on the Bloch eigenvectors ¿ m(¢; ² ). We high-
light the singular behaviour of the  rst Bloch mode ¿ 1(¢; ² ) as ² ! 0. Though the
Bloch eigenvector problem (2.1) is of the form (4.7), the following estimate does not
immediately follow from the one stated in theorem 4.2. This is one of the reasons
why we prefer to state this result separately.
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Theorem 4.4.

(i) There is a constant c1 depending on kakL1 (Y ), and independent of m and ² ,
such that

j ¿ m(¢; ² )jH1(Y ) 6 c1 ¶ m( ² )1=2 8 ² 2 Y 0; m > 1:

(ii) There is a constant c2 depending on kakW 1; 1 (Y ), but independent of m and
² , such that

j¿ 1(¢; ² )jH2(Y ) 6 c2 ¶ 1( ² )1=2 8 ² 2 Y 0;

j¿ m(¢; ² )jH2(Y ) 6 c2 ¶ m( ² ) 8 ² 2 Y 0; m > 2:

(iii) With the additional hypotheses (3.2), we have

j¿ 1(¢; ² )jH2(Y ) 6 c2 ¶ 1( ² ) 8 ² 2 Y 0: (4.8)

Theorem 4.3 above establishes the su¯ ciency of the condition (3.2) to have H2-
estimates uniform with respect to ". We now proceed to show the necessity of
the condition. It is worthwhile to recall that the heuristic arguments advanced
in x 1 already indicate this fact. Our aim here is to show how this property can
be rigorously deduced using Bloch analysis. The  rst result in this direction is the
following converse of theorem 4.4.

Theorem 4.5. Assume that the coe± cients ak` have the regularity (1.1). If the
¯rst Bloch mode satis¯es the estimate (4.8), then condition (3.2) is true.

Our next result gives an equivalent formulation of the uniform H2-estimates. In
doing so, we  nd theorem 4.1 very useful.

Theorem 4.6. We assume (1.1). Then the following statements are equivalent.

(A) The estimate (3.3) holds for all f 2 L2(RN).

(B) There exists a constant c > 0 independent of ² 2 Y 0 such that

1X

n = 1


1X

m = 1

 m
¬ mn( ² )

¶ m( ² )


2

6 c

1X

m = 1

j mj2 8 = ( m) 2 `2(N);

where the coe± cients ¬ mn( ² ) are the ones introduced in theorem 4.1.

As a corollary of the previous two results, we will deduce our  nal conclusion.

Theorem 4.7. We assume (1.1). Then the following statements are equivalent.

(i) The condition (3.2) holds.

(ii) There exists a constant c2 > 0 depending on kakW 1; 1 (Y ), but independent of
", such that, for all f 2 L2(RN ), we have

ju"jH2(RN ) 6 c2kfkL2(RN ):
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Classically, it is well known that under the hypothesis (3.2), one can pass to the
limit in the product ¼ "

k = a"
k`(@u"=@x`) in L2(RN)-weak by using the compensated-

compactness theory of Murat [8] and Tartar [9]. The new aspect of the above
theorem is the H2-estimate, which allows the use of Rellich’s lemma to pass to the
limit and obtain

a"
k`

@u"

@x`
* Y (ak`)

@u¤

@x`
in L2(RN )-weak:

Since (3.2) implies À ` = 0 for all `, we have Y (ak`) = qk`, and the classical
homogenization result is therefore recovered from the above convergence result.
Of course, it should be mentioned that compensated-compactness method is very
general and goes beyond the case of periodically oscillating coe¯ cients.

As an immediate application of our theorem and the Hardy space regularity result
of Coifman et al . [2, paragraph III.2, p. 258], we can deduce that

¼ "
k is bounded in 1

loc(RN);

where 1
loc(RN ) is the localized Hardy space. The above bound on ¼ "

k is better
than the classical L2-estimate on ¼ "

k, especially at points where ¼ "
k vanishes.

5. Estimates on cell problems

This section in devoted to the proof of theorems 4.2, 4.4, 4.5. We introduce the
bilinear form associated with the operator A( ² )

b( ² ; ¿ ; Á) =

Z

Y

ak`(y)

³
@¿

@y`
+ i ² ` ¿

´³
@Á

@yk
+ i ² kÁ

´
dy

for all ¿ ; Á 2 H1
# (Y ). The basic estimate on this bilinear form is as follows (cf. [4,

p. 190]. For all ¿ 2 H1
# (Y ) and ² 2 Y 0, we have

d1(j¿ j2H1(Y ) + j² j2k ¿ k2
L2(Y )) 6 b( ² ; ¿ ; ¿ ) 6 d2(j ¿ j2H1(Y ) + j² j2k¿ k2

L2(Y )); (5.1)

where d1 and d2 depend only on ¬ and kakL1 (Y ). As a consequence, we have the
Poincaŕe inequality

j¿ jH1(Y ) + j ² jk¿ kL2(Y ) 6 ckr¿ + i² ¿ kL2(Y ) 8 ¿ 2 H1
# (Y ): (5.2)

Here, c is a constant depending only on ¬ and kakL1 (Y ).

Proof of theorem 4.2. Multiplying (4.7) by U and using the above estimates, we
deduce

krU + i ² Uk2
L2(Y ) 6 1

¬
kF kL2(Y )kUkL2(Y )

6 c

¬ j ² j kF kL2(Y )krU + i ² UkL2(Y ):

Thus

krU + i² UkL2(Y ) 6 c

j² jkFkL2(Y ):
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The above inequality immediately implies

j ² j2kUkL2(Y ) + j² jjU jH1(Y ) 6 ckF kL2(Y ): (5.3)

So far, we have not used our hypothesis that a 2 W 1;1 (Y ). We will use it now to
estimate jU jH2(Y ). To this end, we rewrite (4.7) as

AU = ~F ;

U is Y -periodic;

)

(5.4)

where

~F = F + i ² kak`
@U

@y`
+ i² `

@

@yk
(ak`U ) ¡ ak` ² k ² `U:

Thanks to (5.3), we see that

k ~FkL2(Y ) 6 c

»
kFkL2(Y ) + j² j

®®®®
@ak`

@yk

®®®®
L1 (Y )

kUkL2(Y )

¼
: (5.5)

Multiplying the above inequality by j² j and using again (5.3), we deduce

j² jk ~FkL2(Y ) 6 c

³
1 + k@ak`

@yk
kL1 (Y )

´
kFkL2(Y ): (5.6)

On the other hand, regarding the problem (5.4), it is well known (see, for
instance, [6, p. 173]) that under the hypothesis (1.1) there exists a constant
c2 = c2(kakW 1; 1 (Y )) such that

jU jH2(Y ) 6 c2k ~FkL2(Y ): (5.7)

Combination of the estimates (5.5){(5.7) completes the proof of theorem 4.2.

Proof of theorem 4.4. The technique of the proof is the same as the one followed for
the proof of theorem 4.2. The only di¬erence is that we need to use the additional
information on the behaviour of Bloch eigenvalues,

d1j ² j2 6 ¶ m( ² ) 8m > 1; ² 2 Y 0; (5.8)

0 < ¶ 6 ¶ m( ² ) 8m > 2; ² 2 Y 0: (5.9)

While (5.8) is a direct consequence of (5.1), the inequality (5.9) is a consequence of
min{max principle of eigenvalues. It is proved in [3, p. 1653] that (5.9) holds, where
¶ is the second eigenvalue for A in the cell Y with Neumann boundary condition
on @Y . It is also proved in [3] that

¶ 1(0) = ¶ 0
1(0) = 0;

¶ 1( ² ) 6 cj ² j2:

)

(5.10)

The above inequalities clearly illustrate the singular behaviour of the  rst eigenvalue
which is distinct from the rest of the eigenvalues. This accounts for the singular
behaviour of the  rst Bloch mode ¿ 1(¢; ² ) as ² ! 0 stated in theorem 4.4.
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The estimate on j¿ m(¢; ² )jH1(Y ) is a direct consequence of (5.1) and the fact
that b( ² ; ¿ m; ¿ m) = ¶ m( ² ). To estimate j¿ m(¢; ² )jH2(Y ), we rewrite the eigenrela-
tion (2.1) in the form A¿ m(¢; ² ) = ~Fm, where

~Fm = ¶ m( ² ) ¿ m + i² kak`
@¿ m

@y`
+ i² `

@

@yk
(ak` ¿ m) ¡ ak` ² k ² ` ¿ m:

It is immediate that
k ~FmkL2(Y ) 6 c¶ m( ² ) if m > 2

and, for m = 1, we have

k ~F1kL2(Y ) 6 c¶ 1( ² )1=2 in general;

k ~F1kL2(Y ) 6 c¶ 1( ² ) provided (3.2) holds:

The proof is complete if we apply the estimate (5.7) to the equation A¿ m = ~Fm.

Proof of theorem 4.5. We begin by rewriting A( ² ) ¿ 1 = ¶ 1( ² ) ¿ 1 as follows:

¡ @ak`

@yk

³
@¿ 1

@y`
+i² ` ¿ 1

´
= ak`

@2 ¿ 1

@yk@y`
+ ¶ 1( ² ) ¿ 1 +i ² kak`

@¿ 1

@y`
+i² `ak`

@¿ 1

@yk
¡ ak` ² k ² ` ¿ 1:

Thanks to (4.8) and previously stated inequalities, we see that the right-hand side
of the above relation can be estimated in L2(Y ), and hence we obtain

®®®®
@ak`

@yk

³
@¿ 1

@y`
+ i² ` ¿ 1

´®®®®
L2(Y )

6 c2 ¶ 1( ² ) 8 ² 2 Y 0:

We now con ne ² to a small neighbourhood V of the origin where, by results of [3],
we know that ¿ 1(¢; ² ) is analytical, and can be developed as follows:

¿ 1(¢; ² ) =
1

jY j1=2
(1 + i ² j À j(¢)) + O(j² j2):

Thus we get

j ² jj
®®®®

@ak`

@yk

³
¯ j` +

@À j

@y`

´®®®®
L2(Y )

6 c2 ¶ 1( ² ) for ² 2 V:

Using (5.10) and letting ² ! 0, we obtain

@ak`

@yk

³
¯ j` +

@À j

@y`

´
= 0 8j = 1; : : : ; N: (5.11)

Thanks to the de nition of À j (cf. (1.6)), the above condition is equivalent to

ak`(y)
@2 À j

@yk@y`
= 0 in Y 8j = 1; : : : ; N:

This is an elliptic equation in non-divergence form for which the uniqueness result
of [6, p. 170] applies, and gives À j ² 0. Now (3.2) follows simply from (5.11). It
is worthwhile to remark that the above uniqueness result requires only (1.2) and
not (1.1).
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6. Proof of the main result

This section is devoted to the proof of theorem 4.7. The implication (i) ) (ii) was
already established in theorem 4.3. For the reverse implication, we need theorem 4.6
and thus we start by proving it.

Proof of theorem 4.6. The proof is based on theorem 4.1. Since we have

¶ "
m( ¹ )B"

mu"( ¹ ) = B"
mf ( ¹ ) 8 ¹ 2 "¡1Y 0; m > 1; (6.1)

we have

kD2
k`u"k2

L2(RN ) =

Z

"¡ 1Y 0

1X

n= 1


1X

m = 1

B"
mf( ¹ )

¬ mn("¹ )

¶ m("¹ )


2

d ¹ : (6.2)

We show  rst (B) ) (A), which is easy. Since fB"
mf ( ¹ ) j m > 1g 2 `2(N) for almost

all ¹ , we get, by applying the inequality in (B),

1X

n = 1


1X

m= 1

B"
mf ( ¹ )

¬ mn("¹ )

¶ m("¹ )


2

6 c

1X

m = 1

jB"
mf ( ¹ )j2

for almost all ¹ . Integrating this inequality with respect to ¹ over "¡1Y 0 and applying
Parseval’s identity (2.5), we deduce (A).

The other implication (A) ) (B) in theorem 4.6 involves a localization in ¹ in
the following inequality which results from (A):

Z

"¡ 1Y 0

1X

n = 1


1X

m = 1

B"
mf( ¹ )

¬ mn("¹ )

¶ m("¹ )


2

d ¹ 6 c

Z

" ¡ 1Y 0

1X

m = 1

jB"
mf ( ¹ )j2 d ¹ : (6.3)

More precisely, for arbitrary  = ( m) 2 `2(N) and test function ³ 2 ("¡1Y 0),
we can choose f 2 L2(RN) such that B"

mf ( ¹ ) =  m ³ ( ¹ ) 8 ¹ 2 "¡1Y 0, m > 1. This
is possible because Bloch transform establishes a unitary isomorphism between
L2(RN ) and L2("¡1Y 0; `2(N)). A simple application of (6.3) to f yields

Z

"¡ 1Y 0

1X

n = 1


1X

m = 1

 m
¬ mn("¹ )

¶ m("¹ )
j2j ³ ( ¹ )


2

d ¹ 6 c

Z

" ¡ 1Y 0

³ 1X

m = 1

j mj2
´

j ³ ( ¹ )j2 d ¹ :

Since ³ is arbitrary, the inequality given in (B) follows.

Completion of the proof of theorem 4.7. As pointed out earlier, it remains to show
(ii) ) (i). According to theorem 4.6, part (ii) implies that there is a constant c > 0
such that 1X

n= 1


1X

m = 1

 m
¬ mn( ² )

¶ m( ² )


2

6 c

1X

m = 1

j mj2 8 2 `2(N):

To extract information from the above inequality, we make the choice of

 = f0; 0; : : : ; 1mth ; 0; 0; : : : g:

This yields
1X

n = 1

j¬ mn( ² )j2 6 c¶ m( ² )2 8 ² 2 Y 0; m > 1: (6.4)
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At this point, let us make the observation that f¬ mn( ² )g 1
n = 1 are nothing but Fourier

coe¯ cients of » m(¢; ² ) in the orthonormal basis f ¿ n(¢; ² )g1
n = 1 (cf. theorem 4.1), and

hence by Parseval’s relation we get

k » m(¢; ² )k2
L2(Y ) =

1X

n = 1

j¬ mn( ² )j2 8m > 1: (6.5)

From the de nition of » m, it then follows that ¿ m 2 H2(Y ). To estimate its norm,
we introduce

© `
m =

@¿ m

@y`
+ i ² ` ¿ m 8m > 1; ` = 1; : : : ; N:

It is then easy to express

» m(y; ² ) =
@© `

m

@yk
+ i ² k © `

m:

Combining all this information, we arrive at

kr © `
m + i² © `

mk2
L2(Y ) 6 c¶ m( ² )2 8m > 1; ` = 1; : : : ; N: (6.6)

Thanks to (5.2), we can write the following chain of inequalities where k is  xed,


@¿ m

@yk


2

H1(Y )

6 c

®®®®r
³

@¿ m

@yk

´
+ i²

@ ¿ m

@yk

®®®®
2

L2(Y )

= c

NX

` = 1

®®®®
@2 ¿ m

@yk@y`
+ i² `

@¿ m

@yk

®®®®
2

L2(Y )

= c
NX

` = 1

®®®®
@© `

m

@yk

®®®®
2

L2(Y )

6 c

NX

` = 1

kr © `
mk2

L2(Y )

6 c

NX

` = 1

kr © `
m + i² © `

mk2
L2(Y )

6 c¶ m( ² )2;

the last inequality being a consequence of (6.6). The above inequality with m = 1
implies the estimate j¿ 1(¢; ² )jH2(Y ) 6 c¶ 1( ² ), which, according to theorem 4.5,
implies (3.2). The proof is  nished.

7. Regular materials

We call the material represented by the matrix a(y) = [ak`(y)] regular if it admits
H2

loc-estimates uniform in ", i.e. statement (ii) of theorem 4.7 is true. Results of the
previous sections establish that materials satisfying (1.1), (3.2) are regular materi-
als. More precisely, among the materials with regularity (1.1), the regular materials
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are precisely those which satisfy (3.2). Thus it seems natural to keep (3.2) in seek-
ing other examples of regular materials. Another motivation for working with (3.2)
is that it was already shown to be necessary in the localization process (cf. (3.1)).
From the classical results of Murat and Tartar in homogenization theory, it is well
known that L 1 -weak ¤ limit provides an upper bound for all homogenized coef-
 cients. As remarked at the end of x 4, the homogenized coe¯ cients associated
with regular materials are arithmetic averages of ak`, which are nothing but the
L 1 -weak¤ limit of a"

k`. Viewed in this manner, regular materials possess an opti-
mal property, namely that their homogenization limit coincides with the upper
bound.

Examples of regular materials satisfying (3.2) (but not (1.1)) are presented in
this section. The proof of theorems 4.2, 4.3 show that we will have uniform H2

loc-
estimates if the following regularity property holds: the solution u of

Au = f in Y; u 2 H1
# (Y ) (7.1)

(note that u is determined uniquely up to an additive constant) admits a bound

NX

k;` = 1

®®®®
@2u

@yk@y`

®®®®
L2(Y )

6 ckfkL2(Y ) (7.2)

for all f 2 L2(Y ) with Y (f) = 0.
We will now exhibit situations where the above property holds without the coef-

 cients ak`(Y ) being Lipschitz. More precisely, apart form (3.2), let us make the
following hypothesis on the coe¯ cients:

there exists q 2 [N; 1] such that ak` 2 W 1;q
# (Y ) \ L 1

# (Y ) for all k; ` = 1; : : : ; N:
(7.3)

This index q, which depends on Meyer’s exponent p0 (see theorem 7.2 below), can
be quite large and will be suitably restricted (cf. (7.6) below). Nevertheless, it is
somewhat surprising to know that uniform H2

loc-estimates hold without coe¯ cients
ak`(y) being Lipschitz. In this direction, let us state and prove our  rst result.

Lemma 7.1. Under the assumptions (3.2) and (7.3), we have the following identity
for all u in H2

# (Y ):

Z

Y

ak`amn
@2u

@yk@yn

@2u

@y`@ym
dy =

Z

Y

ak`
@2u

@yk@y`
amn

@2u

@ym@yn
dy

+

Z

Y

³
am`

@akn

@ym
¡ amn

@ak`

@ym

´
@2u

@yn@yk

@u

@y`
dy:

(7.4)

Proof. We have

kAuk2
L2(Y ) =

Z

Y

ak`
@2u

@yk@y`
amn

@2u

@ym@yn
dy:
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Integrating by parts several times and using (3.2) repeatedly, we arrive at

kAuk2
L2(Y ) =

Z

Y

@amn

@yk

@u

@yn

@

@ym

³
ak`

@u

@y`

´
dy

+

Z

Y

ak`amn
@2u

@yk@yn

@2u

@y`@ym
dy +

Z

Y

amn
@ak`

@ym

@u

@y`

@2u

@yn@yk
dy:

One more integration by parts and application of (3.2) in the  rst term of the
right-hand side of the above relation obviously leads us to the required identity.
Thanks to (7.3) and the Sobolev inclusion, we note that the last integral in the
above identity is well de ned and this completes the proof.

Taking into account the structure of the left-hand side of (7.4), we now proceed
to prove that there exists ¸ > 0 such that

ak`(y)amn(y) ² kn ² `m > ¸ k² k2 (7.5)

for all symmetric matrices ² = [ ² k`] and for y 2 Y almost everywhere. We will
see that the above inequality is a consequence of our assumptions that the matrix
a(y) = [ak`(y)] is symmetric and uniformly positive de nite. First of all, a simple
computation shows that

ak`amn ² kn ² `m = Trace(a² a² ):

Next, the matrix a can be diagonalized in an orthonormal basis consisting of eigen-
vectors of a. There exists an orthogonal matrix Q such that

Q ¤ aQ = ¤ ;

where ¤ = diag(¶ 1; ¶ 2; : : : ; ¶ N ), ¶ k being eigenvalues of A. Exploiting the fact that
Trace is invariant under change of variables, we see that

Trace(a² a² ) = Trace(¤ ² 0 ¤ ² 0);

where ² 0 = Q ¤ ² Q. Note that ² 0 is symmetric. Thus we are reduced to the case
where the matrix a is diagonal. Another simple computation shows that

Trace(¤ ² 0 ¤ ² 0) = ¶ k ¶ `( ²
0
k`)2:

From this expression, we see that (7.5) holds with ¸ = ¬ 2, provided we use ¶ k > ¬
for all k and the fact that k ² 0k = k ² k.

One consequence of (7.5) is that the left-hand side of (7.4) is bounded below by
the semi-norm juj2H2(Y ). We will now exploit this to prove the regularity result (7.2).
To this end, let us denote by

_D(A) = fv 2 L2(Y )=R j Av 2 L2(Y )g:

The Lax{Milgram lemma implies that kAvkL2(Y ) is a norm on _D(A) \ _H1
# (Y )

equivalent to jvjH1(Y ) + kAvkL2(Y ). (Here we have used ¢ to mean the space modulo
R.) Under additional assumptions on a, we are going to prove that this norm is
equivalent to kvk _H2

#(Y ). Before this, let us recall the following important result of
Meyers [7], whose proof can be found, for example, in [1, p. 38].
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Theorem 7.2. There is a p0 > 2 (which depends on kakL1 (Y )) such that, for all
2 6 p 6 p0, the solution u of (7.1) belongs to W 1;p

# (Y ) whenever f 2 W ¡1;p
# (Y ).

Further, we have the estimate

krukLp(Y ) 6 ckfk
W ¡ 1;p

# (Y );

where c depends on kakL1 (Y ).

Theorem 7.3. We assume (3.2). We suppose further that (7.3) holds with

q > max

»
2p0

p0 ¡ 2
; N

¼
; (7.6)

where p0 is the exponent occurring in theorem 7.2. Then the solution u of (7.1) is
in H2

# (Y ) whenever f 2 L2(Y ), and we have the estimate

jujH2(Y ) + jujH1(Y ) 6 ckfkL2(Y ):

Proof. First of all, we will prove the estimate

jujH2(Y ) 6 ckAukL2(Y ) 8u 2 H2
# (Y ): (7.7)

Indeed, this follows from (7.4) because we can estimate the second integral on the
right-hand side of (7.4) by

ckakL1 (Y )kryakLq(Y )jujH2(Y )krukLr (Y )

with 1=q + 1=r = 1
2 . Because of (7.6), we have r 6 p0 and so by theorem 7.2, it

follows that
krukLr (Y ) 6 ckAuk

W ¡ 1;r
# (Y ):

Finally, we use the inclusion L2(Y ) ,! W ¡1;2¤
(Y ) to deduce

kAukW ¡ 1;r
# (Y ) 6 ckAukL2(Y ):

Combination of all these estimates easily leads to (7.7).
Next, we assert that the inequality (7.7) is valid for u 2 _D(A) \ _H1

# (Y ). For this,
it is su¯ cient to verify that _H2

# (Y ) is dense in _D(A) \ _H1
# (Y ) with respect to the

norm kAvkL2(Y ), which is stronger than jvjH1(Y ). Indeed, an element u is in the
orthogonal complement of _H2

# (Y ) if and only if u satis es
Z

Y

Au ¢ Av dy = 0 8v 2 H2
# (Y ):

This is equivalent to saying that

u 2 _D(A2) and A2u = 0:

Taking the scalar product with u, we deduce that Au = 0, and hence u ² const:
This completes the proof.

We now conclude this section by giving two types of examples of materials for
which the results established in this paper would apply and show that they are
regular.
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Example 7.4. Here we seek ak` of the form

ak`(y) = ak(y) ¯ k` 8k; ` = 1; : : : N; (7.8)

where the vector (ak) is required to satisfy

ak 2 L 1
# (Y ) \ W 1;q

# (Y ) and ak(y) > ¬ > 0 y 2 Y a.e.; (7.9)

where q is chosen according to (7.6). Furthermore, in order to satisfy (3.2), we chose
ak such that

ak(y) is independent of yk for each k = 1; : : : ; N:

Example 7.5. We take N = 2. In this case, it is well known that any symmetric
matrix a0 = [a0

k`] satisfying (3.2) is of the form

a0 =

0
BBB@

@2Á

@y2
2

¡ @2Á

@y1@y2

¡ @2Á

@y1@y2

@2Á

@y2
1

1
CCCA ;

where Á is the so-called Airy potential. We assume

Á 2 W 2; 1
# (Y ) \ W 3;q

# (Y );

where q satis es (7.6). What remains to be imposed is the positive de niteness
condition. Obviously, this cannot be done directly on a0 de ned above. However, it
is a simple matter to check that this can be achieved by adding a suitable constant
matrix to a0,

a =

0
BBB@

@2Á

@y2
2

+ b1 ¡ @2Á

@y1@y2
+ b2

¡ @2Á

@y1@y2
+ b2

@2Á

@y2
1

+ b3

1
CCCA :

There are constants b1, b2, b3 such that a is positive de nite. Thus the above matrix
de nes a regular material in two dimensions, and conversely all regular materials
in two dimensions are obtained in this way.
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