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Buffelgrass (Pennisetum ciliare) is a fire-prone, African bunchgrass spreading rapidly across the southern Arizona

desert. This article introduces a model that simulates buffelgrass spread over a gridded landscape over time to

evaluate strategies to control this invasive species. Weed-carrying capacity, treatment costs, and damages vary across

grid cells. Damage from buffelgrass depends on its density and proximity to valued resources. Damages include

negative effects on native species (through spatial competition) and increased fire risk to land and buildings. We

evaluate recommended ‘‘rule of thumb’’ control strategies in terms of their ability to prevent weed establishment in

newly infested areas and to reduce damage indices over time. Two such strategies—potential damage weighting and

consecutive year treatment—used in combination, provided significant improvements in long-term control over no

control and over a strategy of minimizing current damages in each year. Results suggest specific recommendations

for deploying rapid-response teams to prevent establishment in new areas. The long-run population size and spatial

distribution of buffelgrass is sensitive to the priority given to protecting different resources. Land managers with

different priorities may pursue quite different control strategies, posing a challenge for coordinating control across

jurisdictions.

Nomenclature: Buffelgrass, Pennisetum ciliare (L.) Link.

Key words: Biological invasion, buffelgrass, dynamic spatial processes, environmental studies, integer
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This study examines the spread and management of
invasive weeds as a spatial-dynamic problem (Smith et al.
2009; Wilen 2007), which Wilen (2007, p 1134) defines as
‘‘some (generally biophysical) process that generates
potentially predictable patterns that evolve over space and
time.’’ Here, the underlying dynamics of biophysical (and
economic) systems have important spatial dimensions.
Although studies of invasive species account for spatial
aspects of population growth, they usually do not consider
other important aspects of spatial variations over land-
scapes. For example, they may treat control costs as

independent of the terrain where invasive weeds are found,
or they may model damage as a function of the total
invasive weed population but not the location of that
population. New work has begun to formally model critical
spatial-dynamic relationships in the study of biological
invasions. For example, Epanchin-Niell and Wilen (2012)
consider how optimal control of invasive weeds is affected
by landscape size and landscape shape and by where an
initial invasion occurs.

Buffelgrass Invasion Risks in Southern Arizona. The
spatial-dynamic framework is applied to answer questions
about the management of buffelgrass [Pennisetum ciliare
(L.) Link], an invasive, fire-prone, African bunchgrass that
is spreading rapidly across the desert landscapes of southern
Arizona. This region represents the northern stretches of
the Sonoran Desert, home of unique species, such as
saguaro [Carnegiea gigantea (Engelm.) Britton & Rose].
The Sonoran Desert ecosystem has sparse vegetation and is
not adapted to fire (Burquez-Montijo et al. 2002; Rogstad
et al. 2006; Stevens and Falk 2009). Buffelgrass forms
dense stands, crowding out native species, reducing species
diversity, and increasing wildfire risk (Bowers et al. 2006;
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Clarke et al. 2005; Jackson 2005; McDonald and
McPherson 2011, 2013). The saguaro cactus, an iconic
symbol in southern Arizona, is particularly vulnerable to
fire (Esque et al. 2004). Betancourt (2007) has warned that
buffelgrass and other invasive perennial grasses are ‘‘rapidly
transforming fireproof desert into flammable grassland.’’
Wildfire not only threatens native species but also poses
risks to commercial and residential property in natural,
urban, and suburban areas.

This work is an extension of Büyüktahtakin et al. (2011)
that introduced a large-scale, nonlinear, zero-one integer
programming model for the dynamic control of invasive
weeds. That model used a rolling-horizon solution in
which they solved single-period problems 1 yr at a time and
fed the result into the next period’s problem. The earlier
study emphasized model construction, structure, and
solution algorithm concepts, whereas this article focuses

more heavily on the management implications of model
results. This study considers explicitly how resource
protection priorities can affect the long-term size and
distribution of buffelgrass populations.

We begin by introducing a dynamic-spatial model of
weed invasion with multiple sources of spatial heterogene-
ity developed in Büyüktahtakin et al. (2011). Buffelgrass
spreads across a gridded landscape. Each cell in the grid
represents 0.4 ha (1 ac) of land. The potential for an
invasive weed to become established, the weed’s carrying
capacity (maximum achievable population density), the
costs of its control, and the damage it causes can vary across
the landscape. Previous work has focused on a subset of
these features, usually treating damage as a function of total
weed population. Here, we emphasize that damage caused
by invasive species depends on their location relative to
resources of value. Damage caused by buffelgrass in a given
cell depends on the buffelgrass population density in that
cell and whether valued, threatened resources are in or near
that cell. A land manager’s problem is to minimize damage
over time, subject to budget and labor constraints. A
damage index is specified as a weighted sum of damages to
different resources, with weights reflecting management
priorities. Buffelgrass can be treated in a cell, at most, once
per period. Given constraints, the manager must choose
which cells to treat during each period. In this article, an
optimization model is developed and calibrated to replicate
historical spread behavior.

An optimization model seeks the best (optimal) solution
to a problem, often subject to some constraints. In our case,
the problem is to minimize damage caused by buffelgrass
invasions over time, sometimes given labor and budget
constraints. A dynamic optimization model is forward
looking; it fully accounts for how current decisions affect
all future options and decisions. Choices to treat or not to
treat certain locations of the grid today affect future
treatment options and the costs and benefits of all future
treatment choices. In a fully dynamic optimization model,
the decision maker knows how each current decision affects
future decisions. Thus, the decision maker accounts for
how decisions taken in each period affect the best
achievable long-run path of damage reduction. Although
we introduce such a general dynamic optimization model
as a guiding concept, our problem involves literally
thousands of nonlinear, interrelated equations. A fully
dynamic, optimal solution to the general model is not
tractable. Therefore, we simplify the problems to address
specific buffelgrass management questions. The initial
approach is to simply allocate resources to minimize
damage by buffelgrass in each current year. In each new
year, past decisions and consequences are taken as givens.
Then, we have the model follow ‘‘rules of thumb’’ that land
managers actually implement or that have been recom-
mended by the Buffelgrass Working Group (Rogstad

Management Implications
A key challenge facing land managers is how best to allocate

limited resources to control invasive plant species across space and
time. Optimization models are useful tools for exploring
alternative strategies to optimally allocate scarce resources, such
as treatment control teams and budgets, and to protect valued
resources from invasion of nonnative species. In this article, we
developed a mathematical model to provide guidance to land
managers for addressing the following concerns: (1) the optimal
size of treatment teams; (2) where, when, and what size of
infestation those teams should target; and (3) the number of years
for which follow-up treatments should continue. Because of the
many variables interrelated across both space and time, solving
such a completely forward-looking (i.e., takes full account of how
all current decisions affect all future options and decisions)
problem may prove intractable. Instead, we compare three ‘‘rules-
of-thumb’’ strategies: (1) minimize current invasive species
damage; (2) minimize current damage, given that any areas
treated are treated in at least 3 consecutive yr; and (3) prioritize
treatment based not only on current damages but also on the
potential future damages of leaving an infested area untreated. The
second and third strategies are also considered in combination. We
evaluate those rules of thumb for their ability to prevent weed
establishment in newly infested areas and to reduce damage indices
over time. The rules have the advantage of telling land managers to
‘‘treat these lands now.’’

Another advantage of this approach is its applicability because
Microsoft Excel spreadsheets—used broadly by land and resource
managers in the area—are customized to (1) manage data layers,
(2) use cell formulae to maintain relationships across space and
time, and (3) use the chart function to produce maps of costs,
damages, weed population, and treatment recommendations. The
ILOG CPLEX software package (IBM), a powerful tool for solving
linear integer (binary) programs, interfaces with Excel programs so
that model solutions can be readily converted to treatment priority
(and other) maps. We found that the long-run population size and
spatial distribution of buffelgrass are sensitive to priority weights
for protecting resources. Results also indicate that resources must
be increased because they are currently insufficient to control the
spread of buffelgrass.
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2008). As discussed below and in Büyüktahtakin et al.
(2011), those rules of thumb mimic considerations of a full
forward-looking decision maker solving a dynamic opti-
mization problem.

First, we use the model to estimate labor requirements to
prevent buffelgrass from becoming established in a recently
invaded area. Costs of delay are evaluated in terms of
growing labor requirements needed to eradicate new
infestations. The National Invasive Species Council (NISC)
was established by Executive Order 13112 in 1999 to
improve coordination of invasive species control programs.
The Council’s management plan stresses the importance of
rapid response to invasive species and calls for the use of
‘‘rapid-response teams’’ to control new invasions before they
spread (NISC 2001). Model results have direct implications
for the staffing and deployment of rapid response teams to
prevent buffelgrass establishment. They suggest the follow-
ing: (a) how large those teams should be, (b) what size of
infestation those teams should target, and (c) how many
years follow-up treatments should continue.

Second, we conduct positive analysis of treatment
recommendations from the Southern Arizona Buffelgrass
Strategic Plan (Rogstad 2008). That plan recommended
using potential-damage weighting and consecutive-year
treatment rules to prioritize which areas to treat. Those
recommendations are specified as heuristic treatment rules
and are applied as integer programming problems in the
spatial-dynamic framework. Those heuristic rules do not
represent fully dynamic optimization; however, they do
optimize objective functions that account for certain
dynamic relationships. The heuristic rules are evaluated in
terms of their effectiveness at (1) preventing buffelgrass from
becoming established in a newly invaded area, and (2)
reducing damage over time. They are also evaluated in terms
of damage reduction compared with no treatment and with
treatments minimizing current damages in each year.

The approach here is in the tradition of research
comparing specific strategies for invasive species manage-
ment. For example, Moody and Mack (1988) and Martin
et al. (2007) compare the efficiency of targeting new, small,
invasive weed populations over larger, established popula-
tions. They found that, for the landscapes with lower levels
of infestation, detecting and eliminating small, new
infestations was more effective than controlling large,
known infestations, although with higher levels of in-
festation, containing the edges of large infestations and
simultaneously detecting and eliminating new foci is an
ideal strategy. Using a state-and-transition model, Frid
and Wilmhurst (2009) and Frid et al. (2013) formally
evaluated similar strategies for invasive species control and
obtained the same results regarding different level of
infestations. Wadsworth et al. (2000) compared random
treatment with alternative strategies based on proximity to
human settlements and weed population size, age, and

spatial distribution. Jetter et al. (2003) estimated the
benefits and costs of biological control programs and
subsidies for private rangeland restoration to control yellow
starthistle (Centaurea solstitialis L.). Cacho et al. (2004)
compared the net benefits of immediate eradication vs.
containment and no-control strategies, examining under
what conditions each of the three alternatives dominate.

A limitation to this approach is that we identify superior
strategies among selected strategies, but do not know if
there are other, even better strategies. However, many
optimal control or dynamic programming models of
invasive species management often fail to provide specific,
useful recommendations. As Wilen (2007) points out, ‘‘the
more important questions seem to be where to spray, when,
and at what intensity in a landscape setting (p 1139).’’ The
rules introduced here have the advantage of telling land
managers, ‘‘treat these locations now.’’

Materials and Methods

Ecological and Economic Components of the Problem.
In this article, a gridded landscape model is considered.
Treatment decisions are taken as a function of the possible
damages and costs estimated across time and space from an
invasion emanating from already-invaded areas. We model
growth using a logistic growth function that is spatially and
population dependent, incorporating the dispersal that a
cell receives from neighboring cells. In our case, we use a
negative exponential-kernel function to formulate the
dispersal in the grid model.

We model treatment costs as an area-specific linear
function of population, and damages as area-specific
functions of resources threatened by the species’ presence.
A numerical, biological spread model is calibrated using
historical data (aerial photography and population moni-
toring data) from the University of Arizona Desert
Laboratory and environs laid out on a 40 by 50 cell grid.
The Desert Laboratory on Tumamoc Hill is a 370 ha reserve
west of downtown Tucson, AZ, where ecological research
has been conducted for more than 100 yr. The 809-ha study
area includes Desert Laboratory lands; Sentinel Peak (the A
Mountain), a city-managed park; other open space; and
some homes. More homes, commercial real estate, and
schools surround the area. Buffelgrass populations have been
monitored regularly around the Desert Laboratory since
1983 (Bowers et al. 2006). Figure 1 shows the study area in
relationship to the city of Tucson, AZ, and Pima County,
AZ. Parameters of the numerical buffelgrass-spread model
were calibrated to replicate actual, historic spread behavior.

Buffelgrass Population Spread and Growth Equations.
Let t M {0, …, T} be any year of the entire time horizon T.
Define an index on the x-axis i M X 5 {1, …, I} and an
index on the y-axis j M Y 5 {1, …, J} giving the coordinates
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of cell (i,j). At any time t, the pretreatment population density
of buffelgrass in a cell depends on the population density in
that cell and in surrounding cells in the previous year:

Ni,j,t~g Ni,j,t{1, N *i,*j,t{1, K sð Þi,j
h i

½1�

where Ni,j,t is the pretreatment buffelgrass population density
in cell (i,j) in year t; N,i,,j,t is the pretreatment buffelgrass
population density in eight cells surrounding cell (i,j) in year
t; K(s)i,j is the carrying capacity (maximum buffelgrass
population density) possible in cell (i,j); and s is the vector
of attributes affecting carrying capacity, such as soils, altitude,
climate, slope, aspect, and past land disturbance.

The function g(.) has a logistic growth form, where
population grows at an increasing rate at first, then at a
decreasing rate as the population approaches the cell’s
carrying capacity. Growth slows as the cell becomes
saturated with buffelgrass. The logistic growth function is
shown in Equation 2:

g Ni,j,t , N ei,ej,t , K sð Þi,j
h i

~

exp rð ÞK sð Þi,jd Ni,j,t , N ei,ej,t

� �h i
= K sð Þi,jzd Ni,j,t , N ei,ej,t

� �
exp rð Þ{1ð Þ

h i ½2�

where function d(.) represents the population in cell (i,j) in
year t after accounting for the dispersal from neighboring
cells, and r is the intrinsic growth rate. Using the published
assessments of individual plant growth rates (Halvorson
and Guertin 2003) and following discussion with local
buffelgrass experts, the term r is estimated to be 1. The
term K(s)i,j, carrying capacity, is computed based on the
predicted suitability of the landscape, considering attributes
such as soils, altitude, climate, slope, aspect, and past land
disturbance (Frid et al. 2013). Using a logistic regression
model, K(s)i,j, is estimated to vary between 0 and 6 plants
m22 (between 0 and 5 plants yd22).

A cell receives propagules from plants within the cell and
from the eight neighbor cells surrounding it. The rate at
which a cell receives propagules from neighboring cells is
obtained using an exponential decay function, which is a
simple, but widespread, dispersal-kernel model (Levin et al.
2003). Therefore d(.) represents a linear combination of
Ni,j,t, and N,i,,j,t, where N,i,,j,t is weighted using the
negative exponential dispersal kernel:

y~l exp {lzð Þ ½3�

where z is the distance from the cell center (i,j) to the
neighboring cell center, and l is a parameter. Using
a nonlinear least-squares regression based on historical
reconstructions of the spread in the nearby Catalina
Mountains (Olsson et al. 2012), the term l is estimated
to be 1.

Buffelgrass Treatment Equations. The most effective
means of controlling buffelgrass is treatment with the
herbicide glyphosate. Buffelgrass can be manually removed
using pry bars, but that method is labor intensive.
Moreover, many sites in Arizona (including the Desert
Laboratory) have Native American cultural resources lying
below ground, limiting the extent to which removal via
digging is permitted.

The decision about whether to treat a cell is a discrete
choice, such that a cell is either treated (sprayed) or not. In
each year t, the decision variables represent the treatment
choice defined as

xi,j,t~
1 if cell i,jð Þ is treated in year t

0 otherwise

�
½4�

for all i, j, and t.
The posttreatment buffelgrass population density in a

cell, ni,j,t, is

ni,j,t~Ni,j,t 1{kxi,j,t

� �
½5�

where k is the kill rate of the herbicide treatment, where k
5 0.9 if Ni,j,t . Ni,j,t and k 5 1.0 if Ni,j,t # Ni,j,t; and Ni,j,t

is the critical population, below which, it is possible to
remove buffelgrass completely from a cell.

Figure 1. The study area: Tumamoc Hill and environs, west of
Tucson, AZ, in Pima County.
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Treatment reduces the buffelgrass population by 90% in
each year of treatment. Because herbicide treatment is only
effective for a short time following (rare) rainfall events, we
assume that cells are treated once a year, at most. Successive
treatments reduce the population by 90%, based on recent
data for treatment effectiveness in the Saguaro National
Park and the Organ Pipe National Monument (Hunter
2011). If the population falls below the minimum
threshold Ni,j,t, however, we allow for the possibility that
an additional treatment can drive the population to zero in
a cell. In our computations, we set Ni,j,t to 0.00001 plants
0.4 ha21.

Treatment Cost Equations. The cost of treating a cell (i,j),
Ci,j increases with pretreatment buffelgrass population,
average cell slope, and distance of the cell from the closest
road:

Ci,j~c1zc2Ni,j,tzc3slopei,jzc4distancei,j ½6�

where the coefficients c1, c2, c3, and c4 are estimated by the
least-squares method based on recent treatment records in
and around the Desert Laboratory (Bowers et al. 2006)
and were set to U.S. $0.31, $2.91, $0.19, and $0.04,
respectively. The cost model was developed based on daily
progress maps of treatment made at the Desert Laboratory
in the summer of 2006. The boundary of each day’s work
was digitized, and the area was calculated. The mean
buffelgrass density (based on mapping performed in 2005),
the mean distance from the nearest road (which served as
staging areas for herbicide treatments), and mean slope
(based on U.S. Geological Survey [USGS] National
Elevation Data Set 30-m digital elevation models) were
calculated and treated as data samples. The cost for each
sample was registered as the cost of herbicide and of crew
hours for each day. Treatment costs can vary for each cell,
but the cost of treating an individual cell in a given year is
constant. The cost of treating an individual cell can change
because pretreatment of the buffelgrass population, Ni,j,t,
changes. Without treatments to reduce the buffelgrass
population, the cost of treating a landscape will increase
over time. Treatment costs increase until they reach a
maximum, where the buffelgrass population is at its
carrying capacity in each cell.

Resource Constraints. The land manager faces a budget
constraint in treating buffelgrass as follows:X

i[X

X
j[Y Ci,j,t xi,j,tƒBt ½7�

where Bt is the annual control budget in time t. In reality,
land managers are likely to face both a monetary budget
constraint and a labor availability constraint. Volunteer
labor provides a significant amount of buffelgrass treat-
ment. Moreover, chemical treatment is only effective at

certain times of the year (not too long after rainfall), so
time constraints can be as important as monetary ones.

Buffelgrass Damage Function. Posttreatment damage
caused by buffelgrass in a cell (i,j) depends on its density in
the cell, whether there are resources that it threatens in that
cell, and whether there are resources in neighboring cells
that are threatened:

Di,j,t~Di,j,t ni,j,t , Ri,j,t , R*i,*j,t

� �
½8�

where Di,j,t is the damage caused by buffelgrass in cell (i,j);
ni,j,t is the posttreatment buffelgrass population; Ri,j,t is the
proportion of resource at risk in cell (i,j); R,i,,j,t is the
proportion of resource at risk in cells surrounding cell (i,j).

The term Ri,j,t M [0, 1] is obtained by a distribution map
of different resources in the landscape using the exotic plant
surveys performed in 1983 and 2005 at Tumamoc Hill
(Bowers et al. 2006). We identified the following values at
risk at Tumamoc Hill: saguaros, riparian areas, historic
buildings, critical infrastructure, viewsheds, and residences.
For each value at risk, a new R was calculated. Different
values of R can be combined linearly to represent different
value viewpoints because different stakeholders would view
resource values differently.

Damage from buffelgrass follows an exponential decay
pattern. Buffelgrass in any cell contributes to damage by
threatening resources. As a resource at risk is further away
from the buffelgrass, the buffelgrass causes less damage.
Distance is measured from a centroid of a cell to the
centroid of another cell. We assume damage depends on
resources in a cell (i,j) and the eight cells adjacent to it. The
relevant risk factors for cell (i,j) are shown in Table 1.

Damage from buffelgrass depends not only on the total
buffelgrass population, but also on its location relative to
resources of value throughout the landscape. There can be
more than one resource at risk, so there is a different
damage function for each resource.

In this article, we focus on risks to buildings, to saguaro
cactus, and to (ephemeral) riparian vegetation. Saguaros
and vegetation may be threatened by crowding out from
dense buffelgrass stands. Buffelgrass can increase the
frequency and intensity of wild fires. This could create a
positive feedback loop where fire-prone grassland replaces
fire-vulnerable native desert vegetation (MacDonald and
McPherson 2011, 2013; Stevens and Falk 2009). Build-
ings, saguaros, and vegetation may all be at increased risk
from wildfires. The Southwest’s iconic saguaro cactus can
suffer 68 to 85% mortality after fires. (MacDonald and

Table 1. Relevant risk factors for cell (i,j).

Ri21,j21 Ri21,j Ri21,j+1

Ri,j21 Ri,j Ri,j+1

Ri+1,j21 Ri+1,j Ri+1,j+1
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McPherson 2013). According to the Southern Arizona
Buffelgrass Strategic Plan (Rogstad 2008, p 6), ‘‘Areas most
at-risk to buffelgrass invasion are also highly prized real
estate where multi-million dollar homes are nestled among
the saguaros and paloverde trees of the mountain foothills.’’
Concerns over buffelgrass-induced fire risk to homes have
also been raised in a Congressional field hearing (Subcom-
mittee on National Parks, Forests and Public Lands, 2010).

Spatial Dynamic Model of Buffelgrass Control. The
land manager’s problem of controlling buffelgrass is to
minimize long-term damage by choosing which cells to
treat. Cells are either treated or not. The land manager’s
objective function is a damage index (DI), which is the sum
of damages caused by buffelgrass in each cell over the time
horizon (T). Formally, the land manager’s objective is as
follows:

minimize DI~
X

i[X

X
j[Y

X
t[T Di,j,t ½9�

subject to constraints in Equations 4 through 8.
For completeness, optimization is also subject to initial

conditions at t 5 0. The problem can be generalized
further to account for multiple types of damage:

min DI~
X

i[X

X
j[Y

X
t[T

X
r[Rrr Di,j,t ½10�

subject to constraints in Equation 4 through 8, where r
denotes different resources the manager wants to protect,
and rr represents the relative-importance weight placed on
protecting resource r in the overall objective function. The
term rr measures how much priority a manager places on
protecting the given resource r. Different managers may
have different priorities. For example, a natural resource
specialist may be interested in protecting saguaros and
riparian areas from the harmful effects of buffelgrass
invasion as well as preserving biodiversity, whereas a
county manager may be more interested in lowering the
fire risk around critical infrastructure and buildings. For
simulations, we examine extreme cases where all weight is
given to protecting a single resource to highlight the
sensitivity of results with different priorities. Other
weighting schemes are possible (e.g., equal weighting).
Economic estimates of the costs of different damages if
they were available could also be used to assign weights to
different types of damage.

For a 40 by 50 cell grid, the problem involves 2,000
nonlinear, interrelated state equations. Full, dynamic
optimization of this problem is not tractable. Instead, we
consider the resource requirements necessary to prevent
buffelgrass from becoming established in an area. Critical
issues here are the costs of delay in response to new
invasions and the implications for the design of invasive-
species rapid-response teams. Next, we consider alternative
rules of thumb to minimize buffelgrass damage under

resource constraints. The rules are evaluated in terms of
their ability to reduce the path of damage over time.

Model Implementation. Our first simulations consider
how much labor is required to prevent buffelgrass from
becoming established after it first appears in an area. A
related question is how much any delays in initiating a
treatment regime would increase those labor requirements.
We focus on labor requirements because land managers in
Arizona frequently face binding labor constraints for
buffelgrass control.

It is assumed that buffelgrass is initially discovered on 48
cells of the 40 by 50-cell grid (about 2.4% of cells). The
48-cell invasion represents the population at the time that a
systematic control regime was initiated in 2005. Actual
control practices from this initial period to the present were
used to estimate control costs and labor requirements in the
model simulations. In the initial year (year 0), median,
mean, and maximum buffelgrass densities on infested cells
are 0.2, 0.5, and 2.6 plants m22. The maximum density
possible is about 6 plants m22. Next, we consider a
program of most rapid local eradication (MRLE). Under
MRLE, each infested cell is treated each year until the
population across the entire area is driven to zero, thus
preventing buffelgrass establishment. Labor requirements
can be measured in hours or in terms of 400-hr team-wk.
Each team-wk represents a 40-hr work week of a 10-person
team. Currently in the Tucson, AZ, metro area, various
volunteer groups supply roughly 6,000 labor h yr21 toward
buffelgrass control (or the equivalent of about 15 team-
wk). This is in addition to any professional control labor
applied by federal, state, or local entities.

We consider labor required for MRLE given different start
years for the local eradication program: years 1, 3, 5, 9, and
13 (Figure 2). If the local eradication program is initiated in
year 1 or 3, labor requirements are modest. Fewer than 3
team-weeks would be required in any single year. It takes at
least 6 years, however, to drive the population to zero. If
treatment is delayed until year 5, then 5 team-weeks are
needed in year 5, with declining labor requirements in
subsequent years. If treatment is delayed to year 9, however,
15 team-weeks are needed initially. By year 13, requirements
exceed 27 team-weeks in the initial year of treatment.

Treatment on a scale of 15 team-wk or more is likely
infeasible for two reasons. First, land management agencies
face budget and labor time constraints. Second, backpack
spraying with glyphosate is only effective when the plants
have turned green after sufficient rainfall. In Arizona’s arid
climate, there may simply be too few weeks in a year when
glyphosate treatment is viable. The short time window
when laborers can be deployed is thus an additional
constraint.

One may also consider how delaying treatment increases
the costs of preventing buffelgrass establishment. The
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Buffelgrass Strategic Action Plan prices labor currently at
$18.50 h21, based on trained applicator costs (Rogstad
2008). If one assumes costs rise at the rate of inflation, and
using a real discount rate of 4%, the cumulative labor costs
of MRLE can be calculated. If treatment begins by year 1,
total discounted costs are $64,000. If treatment begins in
year 3, costs rise to $70,000. Delays beyond year 5 begin to
increase costs more sharply. Costs are $105,000 when
starting in year 5; $367,000 for year 13; and $422,000 for
year 17. All values are in 2012 constant (inflation-adjusted)
dollars.

Our results have direct implications for the staffing and
deployment of rapid response teams to prevent buffelgrass
establishment. They suggest the following: (1) how large
those teams should be, (2) what size of infestation those
teams should target, and (3) how many years the follow-up
treatments should continue. Our results suggest that three
work-teams operating 400 h yr21 each would be sufficient
to prevent buffelgrass from becoming established in a
newly infested area if the following apply: (1) they began
treatment within 3 yr of initial infestation, and (2) they
continue with follow-up treatments over 6 to 8 yr. In most
years, just two work-teams would be sufficient. Delaying
treatment from 1 to 3 yr has little effect on overall labor
requirements. Beyond year 3, however, preventing buffel-
grass establishment in the area begins to have large labor
requirement. Beyond year 3, land managers would need to
consider shifting strategies from local eradication in an area
to longer-term management and damage containment.

Heuristic Decision Rules. We now consider the effective-
ness of rules of thumb to reduce different types of damage.
In southern Arizona, a Buffelgrass Working Group was

established through a Memorandum of Understanding
between federal, state, and county agencies along with
private organizations. In 2008, that Working Group
published a Strategic Plan, which included recommenda-
tions for coordinating and implementing buffelgrass
control across jurisdictions (Rogstad 2008). One Working
Group recommendation was to ‘‘Set and implement
control priorities based on actual and potential impacts
(p vii) (emphasis added).’’ Another recommendation was
for land managers to ‘‘institute a minimum three-year
treatment and management program’’ (Rogstad 2008, p 16,
32) to control buffelgrass.

In this section, we specify how these heuristic rules are
incorporated as decision rules in our dynamic spatial model.
Although fully dynamic optimization is not tractable, we
can obtain solutions following those rules of thumb. In
subsequent sections, we examine how those rules perform in
terms of their ability to prevent buffelgrass establishment and
in terms of reducing the long-run path of damage indices.

Rule 1—Static Optimization. We first establish static
optimization, which involves solving single-period optimi-
zation problems using a rolling-horizon method as a
baseline rule (Büyüktahtakin et al. 2011). Subsequent rules
may be evaluated both for their performance relative to no
treatment and relative to this static rule. The static
optimization decision rule is as follows:

1. Reduce current damage as much as possible, subject to a
labor constraint.

2. If all cells generating positive, current damage are
treated, and labor remains, then treat cells to minimize
buffelgrass population, subject to remaining labor
availability.

We define the damage function such that buffelgrass
causes damage only if a resource of value is either in that
same cell or in an adjacent cell. This leaves open the
possibility that buffelgrass would not be treated if it first
appeared in a cell distant from resources of value, even
though it could contribute considerably to future damages.
Hence, the second rule prevents lands from going untreated
when the labor constraint is not binding. (An alternative
approach is to reduce the decay rate of the damage function
so that buffelgrass damage depends on more-distant cells;
that, however, increases the computational complexity of the
model.) Rule 1 does not consider how current treatment
affects future damages or subsequent treatment costs.

Minimizing current damage is equivalent to maximizing
the reduction in current damage. The reduction in damage
from treating a cell is

DRi,j,t xi,j,t~ Di,j,t Ni,j,t , Ri,j,t , Rei,ej,t

� �h
{Di,j,t ni,j,t , Ri,j,t , Rei,ej,t

� �i
xi,j,t

½11�

Figure 2. Labor required per year to prevent buffelgrass
establishment in a newly infested area, varied by the starting year
of the control efforts. Labor is measured for 400-h work teams.
(Color for this figure is available in the online version of this paper.)
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where xi,j,t denotes the binary decision of whether to treat
the cell, with the first term in brackets being the damage
due to the pretreatment population, and the second term
being the posttreatment damage.

The first part of rule 1 is treated as a static integer linear
programming (ILP) problem. The first objective is

max DR1~
X

i[X

X
j[Y DRi,j,t ½12�

subject to the constraints in Equations 4 through 8 from
the dynamic spatial model, with an additional labor con-
straint as follows:X

i[X

X
j[Y Li,j,t xi,j,tƒLt ½13�

where Lt is a labor-availability constraint. Labor require-
ments are assumed to be linearly increasing in the
pretreatment buffelgrass population, cell average slope,
and cell distance from the nearest road. We assume the
labor constraint becomes binding before the monetary
budget constraint does, rendering the latter redundant;
therefore, throughout the rest of the article, we focus on
labor constraints. This model includes the well-known
zero-one knapsack problem formulation as a subproblem
(Wolsey 1998).

The second part of rule 1 takes effect if the damage
reduction function (Equation 12) is maximized and the
labor constraint is not binding. In this case, current damage
is reduced to zero. However, buffelgrass may remain in the
landscape that is currently distant from resources of value. It
may not contribute to the current damage index but can
increase potential future damage. Let L�t represent the
optimal amount of labor used to maximize Equation 12. If
L�t vLt , then the second part of rule 1 implies that the land
manager faces the following problem:

min
X

i[X

X
j[Y ni,j,t ½14�

subject to the constraints in Equations 4 through 8, similar
to before, with a labor constraint:X

i[X

X
j[Y li,j,t xi,j,tƒLt{L�t ½15�

where ni,j,t is the total posttreatment buffelgrass population,
Lt{L�t is left over (if any) labor after current damage is
reduced to zero, and li,j,t is the application of remaining
labor to treatment. Rule 1 might be summarized as follows:
first, minimize current buffelgrass damage; second, if
damage is reduced to zero, use any remaining labor to
minimize the current buffelgrass population.

Rule 2—Potential Damage Weighting. Under rule 1, cells
are prioritized for treatment based on their contribution to
current damage. Rule 2 simulates the recommendation of
the Buffelgrass Working Group to prioritize areas to treat
‘‘based on actual and potential impacts.’’ Rule 2 employs

potential damage weighting as a way of simulating the
recommendation of the Buffelgrass Working Group. Cells
are prioritized for treatment based not only on their
contribution to the current damage but also on their
potential contribution to future damages. The maximum
potential damage Dz

i,j,t that buffelgrass can cause in cell (i,j)
depends on resources of value in proximity to that cell and
the buffelgrass carrying capacity K(s)i,j of the cell (i,j) if the
cell is left untreated from the current period to the end of
the planning horizon:

Dz
i,j,t~Dz

i,j,t K sð Þi,j,Ri,j,t , R*i,*j,t

h i
½16�

Rule 2 is, therefore,

max DR2~
X

i[X

X
j[Y wDRi,jz 1{wð ÞDz

i,j,t

h i
xi,j,t ½17�

subject to labor and other constraints (as under rule 1). The
first objective is to maximize DR2, whereas the second
objective is to minimize buffelgrass population with any
remaining labor after maximizing DR2. Rule 1 is simply a
special case of rule 2, where w 5 1. In subsequent
discussion, we focus on an equal weighting scheme where
w 5 0.5.

Rule 2 prioritizes cell treatment considering the
following: (1) how much current damage buffelgrass
causes, and (2) how much potential damage could be
caused if the population were allowed to reach its carrying
capacity. Cells with higher carrying capacity will receive
higher priority for treatment. This rule accounts for factors
that affect the suitability of an area to foster buffelgrass
establishment and growth, such as soils, aspect, elevation,
or climate. Low populations in suitable areas may cause
more future damage than higher populations in less-suitable
areas. Although rule 2 is not a dynamic optimization, it is
forward looking in one sense. It considers potential future
damage of leaving a cell untreated.

Rule 3—Treat Three Times. This rule simulates the
recommendation of the Buffelgrass Working Group to
treat areas in at least 3 consecutive yr. Because of the
logistic growth of buffelgrass populations, treating a cell
with a population near its carrying capacity will push the
population back to the fast part of its growth path. Thus, if
a high-population cell is treated only once, the population
will rebound quickly the following year. Repeated treat-
ments can push populations down to the slow portions of
their growth paths and may even reduce cell populations to
zero. Specifically, rule 3 is as follows:

1. First, treat any cell that was treated in the previous year
and that has not already been treated for 3 consecutive
yr.

2. Next, use any remaining resources to follow rule 1
above.

Büyüktahtakin et al.: Dynamic model of invasive species control N 139

https://doi.org/10.1614/IPSM-D-13-00057.1 Published online by Cambridge University Press

https://doi.org/10.1614/IPSM-D-13-00057.1


In the initial year, the treatment strategies under rules 1
and 3 are identical. After that, priorities shift to emphasize
repeated treatments of cells.

Rule 4—Treat Three Times with Potential Damage
Weighting. Rule 4 combines the heuristics of the previous
rules (treat three times consecutively, then follow rule 2,
potential damage weighting):

1. Treat any cell that was treated in the previous year that
has not already been treated in 3 consecutive yr.

2. With remaining resources, follow rule 2 above,
assuming w 5 0.5.

Solution Algorithm, Software, and Data Management.
A linear programming–based tree-search algorithm, called
branch and bound methods (Nemhauser and Wolsey 1988),
was used to derive model solutions. Büyüktahtakin et al.
(2011) provide more details on the solution methods. We
used ILOG CPLEX (Version 10.0, IBM ILOG CPLEX),
which has a straightforward interface with Microsoft Excel
spreadsheets. Data inputs and outputs can be managed and
represented in Excel, whereas computations can be carried
out efficiently using ILOG CPLEX. Data layers for
buffelgrass population, treatment costs, resources at risk,
and damages are maintained as Excel worksheets. Each cell
in the worksheets corresponds to a specific 0.4-ha area of
land. Three resources-at-risk layers are measured in terms
of saguaro density, presence or absence of buildings/
structures, and presence or absence of ephemeral riparian
vegetation. In principle, money metrics for these risk layers
could be developed and applied.

The interface with Excel also makes it possible to
generate simple, gridded maps. Thus, land managers following
heuristic decision rules could print out maps indicating which
lands to treat. Our study area is a 40 by 50 gridded rectangle
west of downtown Tucson, AZ (Figure 1). Figure 3 is a
portion of that rectangle from a simple Excel worksheet with
binary code transformed to symbols (0 is no treatment to
a blank cell; 1 is treatment to a marked cell). Each cell of
Figure 3 represents a specific 0.4-ha area of land on Tumamoc
Hill and its environs (Figure 1). Marked cells indicate the lands
that the model recommends be treated, given resource-
protection priorities and labor constraints. These priorities
and constraints are inputs entered by the model user.

Results and Discussion

Simulation Results and Sensitivity Analysis. We now
compare the performance of the four decision rules for
their scope in preventing buffelgrass establishment (achiev-
ing local eradication) under binding labor constraints. Our
previous analysis of MRLE assumed that labor supplies
were unconstrained. Using our 40 by 50–cell grid and
initial infestation assumption as in the MRLE problem, we

consider three different damage indices: risk to buildings
and structures, risk to saguaro cacti, and risk to (ephemeral)
riparian vegetation. The four decision rules are applied
to maximize damage reduction separately to the three
different resources at risk. Given binding labor constraints,
we are interested in whether these rules can achieve local
eradication.

MRLE of buffelgrass was possible using no more than
1,200 h of labor in any single year with treatment initiated
by year 3 in the model (Figure 2). If treatment did not
begin until year 5, then nearly 2,000 h were needed in the
first year, more than 1,600 h were needed in years 6 and 7,
and more than 1,200 h were needed in year 8.

Local eradication is also possible using less labor than
under the MRLE rule, although it takes more years to
accomplish (Table 2). Under rules 3 and 4, which call for
treating infested cells a minimum of 3 consecutive yr, local
eradication is possible using no more than 800 labor h yr21

if treatment is initiated in year 1. Under rules 1 and 2,
however, buffelgrass is eradicated when the objective is to
minimize risk to saguaros but not when it is attempting to
reduce the other risk factors. Ironically, because minimiz-
ing saguaro risk leads to local eradication, it performs better
at reducing risk to buildings or risk to vegetation than rules
directly targeting those risks. This is a peculiarity (and
problem) of relying on rules of thumb, instead of true,
constrained, dynamic optimization.

Figure 3. Buffelgrass treatment recommendations. Each cell
represents a specific 0.4-ha area of land on Tumamoc Hill.
Marked cells indicate the lands the model recommends be
treated, given resource-protection priorities and labor constraints
entered by the model user.
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If treatment is delayed until year 5, and labor is
constrained to 1,200 hours, local eradication is possible
only by following rule 4 to minimize saguaro risk. If the
labor constraint is relaxed to 1,600 hours, then rules 3 and
4 (requiring three treatments) lead to eradication, whereas
the other two, again, lead to eradication only when
targeting saguaro risk.

Long-Term Damage Reduction. The decision rules may
also be compared for their effects on long-run damage
paths. Damage indices DIr,t for each resource r (property,
saguaros, riparian vegetation) are as follows:

DIr,t~
X

i[X

X
j[Y Dr,i,j,t ½18�

which are just the single-year values of the objective
function from the full dynamic programming problem, as
shown previously in Equation 9. The indices for each
resource are scaled so that, absent any treatment, each index
approaches 1,000 after 30 yr. We then evaluate the four
decision rules for how well they reduce the path of each
damage index over time, given varying labor constraints.

We can examine how well the four decision rules reduce
damage indices for vegetation (Figure 4) and for saguaros
(Figure 5) when treatment begins in year 9 and labor is
constrained at 400 h. In both cases, rule 4 (combining the
treatment three times with potential damage weighting)
reduces the path of the damage index the most. Without
treatment, the damage indices approach 1,000 by year 29.
Simple, static optimization (rule 1) consistently performs
the worst. Even under static optimization, however, the
terminal value of the vegetation damage index is 20%
lower than under no treatment (Figure 4). Following rule
4, however, the terminal value of the vegetation damage

index falls about by 33%. Under rule 1, the terminal value
of the saguaro damage index is reduced by 22%, whereas
under Rule 4, the index’s terminal value falls 40%

Table 2. Occurrence of eradication depending on labor constraints, treatment starting year, and decision rule followed.

Rule 1 Rule 2 Rule 3 Rule 4

Static
optimization

Potential
damage weighting Treat 33

Treat 33 + potential
damage weighting

Labor, 800 h; start, year 1

Vegetation risk No No Yes Yes
Building risk No No Yes Yes
Saguaro risk Yes Yes Yes Yes

Labor, 1,200 h; start, year 5

Vegetation risk No No No No
Building risk No No No No
Saguaro risk No No No Yes

Labor, 1,600; start, year 5

Vegetation risk No No Yes Yes
Building risk No No Yes Yes
Saguaro risk Yes Yes Yes Yes

Figure 4. Long-term path of the vegetation damage index
(from buffelgrass invasion) without treatment and with alterna-
tive treatment rules and a constraint of 400 labor h yr21. Rule
1—minimizing current damage in each year. Rule 2—weight
priority based on current damages and maximum, potential,
future damages from infestation of 4,047 m2 of land; assign 50%

weight to current damage reduction and 50% to potential
damage reduction: 1 3 w 5 0.5. Rule 3—minimizing current
damage in each year, given that all treated cells must be treated
for 3 consecutive yr; giving 100% weight to minimizing current
damage: 3 3 w 5 1. Rule 4—combine rules 2 and 3:
minimizing the average of current and potential damage in each
year, given that all treated cells must be treated for 3 consecutive
yr. All treatments begin in year 9. (Color for this figure is
available in the online version of this paper.)
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(Figure 5). Treating at least three times (rule 3) or applying
potential damage weighting (rule 2) are modest improve-
ments over static optimization. Combining both approach-
es (rule 4) provides the greatest damage reduction.

Reducing fire risk to buildings is relatively easy because
structures are primarily on the periphery of the grid,
whereas initial infestations are not close to that periphery
(Figure 6). Protecting buildings, then, involves maintain-
ing a ‘‘defensible space’’ in front of properties. Starting
treatment in year 9 with 800 h of labor yr21, each rule
reduces the terminal value of damage below 120 on a
1,000-point scale (Figure 6). Again, rule 4 outperforms the
others. Under rule 1, however, the buffelgrass populations
exceed pretreatment levels by year 27, even with constant
use of 800 labor h yr21.

The ordering of how well each rule performed was
consistent across the three resources at risk and at different
labor levels (see Büyüktahtakin et al. 2011 for more
scenarios varying labor availability). Rule 1 always resulted
in the highest damage trajectory, whereas rule 4 always
resulted in the lowest.

Figures 7 and 8 illustrate how labor constraints affect
damage index trajectories for buildings and saguaros.
Trajectories are shown when rule 4 is applied, labor is
constrained at constant annual levels, and treatment
commences in year 13. For saguaros, treatment stabilizes
damages at decreasing levels as more annual labor is
applied. The damage trajectories have relatively small
slopes after year 20. With 400 h of labor annually, the

damage index stabilizes at about 600 (compared with the
no-treatment baseline). With 800 labor h, the index
stabilizes around 400; with 1,200 h, around 225. It
requires about 2,000 h yr21 to drive the damage index to
zero and keep it there. For building damage, the damage
index is driven close to zero if 800 h or more of labor are
applied annually. Although buffelgrass populations near
structures are kept at low levels, they are continually

Figure 5. Long-term path of the saguaro damage index (from
buffelgrass invasion) without treatment and with alternative
treatment rules and a constraint of 400 labor h yr21. Rule 1—
static optimization. Rule 2—uses potential damage weighting to
prioritize treatments; 1 3 w 5 0.5. Rule 3—requires treated cells
to be treated in 3 consecutive yr; 3 3 w 5 1. Rule 4—combines
rules 2 and 3; 3 3 w 5 0.5. (Color for this figure is available in
the online version of this paper.)

Figure 6. Long-term path of the damage index for building risk
from wildfires without treatment and with alternative treatment
rules and a constraint of 800 labor h yr21. Rule 1—static
optimization. Rule 2—uses potential damage weighting to
prioritize treatments; 1 3 w 5 0.5. Rule 3—requires treated
cells to be treated in 3 consecutive yr; 3 3 w 5 1. Rule 4—
combines rules 2 and 3; 3 3 w 5 0.5. (Color for this figure is
available in the online version of this paper.)

Figure 7. Long-run effect of increasing annual labor hours
devoted to buffelgrass control on the saguaro damage index. All
treatments begin in year 13. Abbreviation: L, annual labor hours.
(Color for this figure is available in the online version of this
paper.)
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reinfested from untreated cells that are farther away. Thus,
creating a defensive space requires modest but continuous
applications of labor. There is virtually no improvement in
building damage reduction beyond 800 labor h (Figure 8).

Resource Protection Priorities and Long-Run Invasive
Species Populations. The resources that a land manager
chooses to protect can have important effects on the total
number and spatial distribution of the invasive species.
Reducing the damage indices is not the same as reducing
the buffelgrass population. Figure 9 shows buffelgrass
population densities of buffelgrass in year 29, assuming
treatment commences in year 9, rule 4 is used to control
buffelgrass, and 2,000 h yr21 of labor are applied. The
objectives are to minimize damage to saguaros (Figure 9a),
buildings (Figure 9b), and riparian vegetation (Figure 9c).
Recall that buildings border the northern, eastern, and
southern edges of the grid. When the objective is to
minimize risk to buildings, the terminal population of
buffelgrass is cleared from these boundary regions. In
contrast, when the objective is to protect saguaros,
buffelgrass is allowed to grow along the upper edge of
the grid. However, terminal buffelgrass populations are
cleared from a patch in the central part of the grid where
there is a large stand of saguaros.

Figure 9 also illustrates that the long-run populations of
invasive species can be quite sensitive to the choice of
weights in a multiattribute damage index. For policy
makers, this means that the choice of weights is not an
innocuous assumption. The approach described here can
be used to develop maps illustrating the consequences of
different weighting schemes. The figures also illustrate what
could happen if different agents have different priorities in

Figure 8. Long-run effect of increasing annual labor hours
devoted to buffelgrass control on the damage index for building
risk from wildfire. All treatments begin in year 13. Abbreviation:
L, annual labor hours. (Color for this figure is available in the
online version of this paper.)

Figure 9. (a) Buffelgrass population density (plants m22) in
year 29; 100% priority weight given to protecting saguaros. (b)
Buffelgrass population density (plants m22) in year 29; 100%

priority weight given to reducing wildfire risk to buildings. (c)
Buffelgrass population density (plants m22) in year 29; 100%

priority weight given to protecting riparian vegetation.
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damage reduction. For example, private homeowners or the
city government may care about protecting buildings and
structures, whereas federal land agencies may have
mandates to protect endangered species. Different land
managers may treat lands quite differently. This may pose
challenges for coordinating control across jurisdictions.

The model presented here is neither the only nor the
first model developed to address buffelgrass control in
southern Arizona. Frid et al. (2013) presented a spatial
state-and-transition simulation-modeling framework,
the Tool for Exploratory Landscape Scenario Analyses
(TELSA) to inform allocation of resources between
treating buffelgrass and gathering information about new
infestations. They integrated data management systems,
vulnerability, and risk assessments into their decision-
analysis framework, which accounted for habitat suitabil-
ity, invasion rates, dispersal dynamics, and treatment costs
and effectiveness.

The modeling approach presented by Frid et al. (2013)
and the one presented here differ in some key respects,
emphasizing different aspects of invasive species manage-
ment. Although differing, the approaches can be seen as
complementing each other. For example, the Frid et al.
(2013) approach emphasizes trade-offs between managing
known populations and searching for newly emerging ones.
This trade-off is of keen interest to the Southern Arizona
Buffelgrass Coordinating Committee that must struggle
with decisions over allocating scarce resources across the
two activities. Our model does not address the search for
new populations. However, it (1) identifies the resources
needed to prevent nascent populations from becoming
established, and (2) defines how soon treatment needs to
begin once buffelgrass is introduced into a new area to
prevent establishment (3 yr or less). The value of finding
new outbreaks depends on whether there are sufficient
resources to act on that information. Our model
incorporates varying damages and control costs over a
landscape. Frid et al. (2013) did not consider spatial
differences in control costs. Those differences, however, can
have important implications for strategy. For example, the
finding that treating nascent foci is superior to treating
established populations is sensitive to assumptions about
the costs of reaching and treating nascent foci in remote
areas. Our own findings corroborate those of Frid et al.
(2013, p 44), which point out that ‘‘a large upfront
investment can reduce total management cost substantially
over the long term.’’ In our ‘‘Results’’ section, we provide
dollar-value estimates of the costs of delaying treatments to
prevent buffelgrass establishment in new areas.

Managerial Implications. This article developed a general
spatial-dynamic model of invasive weed spread and
management and applied it to address questions about
management of buffelgrass in southern Arizona. A

numerical simulation model was developed and calibrated
to match historic buffelgrass spread, treatment effective-
ness, and treatment cost data. Although full dynamic
optimization of the model proved intractable, we were
nevertheless able to solve simplified problems to address
relevant policy questions.

First, the Management Plan of the National Invasive
Species Council (NISC 2001) calls for ‘‘rapid-response
teams’’ to control new invasions before they spread. Our
first simulations quantified labor requirements needed for
such teams to prevent new buffelgrass establishment. Those
simulations also illustrated how requirements increase
with delay of program initiation. Results quantified the
following: (1) how large the response teams need to be (2)
what size of infestation the teams should target, and (3)
how many years the follow-up treatments should continue
for team efforts to be effective. The approach developed
here is readily applicable to rapid response to other invasive
species. Furthermore, results show that current resources
must be increased because they are currently not sufficient
to control the spread of buffelgrass.

Next, we evaluated two control recommendations—
potential damage weighting and consecutive-year treatment
rules—from the Southern Arizona Buffelgrass Strategic
Plan (Rogstad 2008). These recommendations were
modeled as heuristic treatment rules and solved as
special-case integer programming problems in a spatial-
dynamic framework. Applying those rules together in-
creased the scope for preventing buffelgrass establishment
under resource constraints. They also reduced buffelgrass
damage trajectories substantially, both relative to the no-
treatment option and relative to static optimization.

Third, the long-run population size and spatial
distribution of buffelgrass are sensitive to priority weights
for protecting different resources. Land managers with
different priorities may pursue quite different control
strategies, which may pose a challenge for coordinating
control across jurisdictions. Extensions of this model could
consider coordination problems between land managers
with different priorities for buffelgrass control. Büyüktah-
takin et al. (2013) considered how land managers with
different resource-protection priorities might develop
cooperative strategies for buffelgrass control. Work by
Grimsrud et al. (2008) suggested that such multiagent
problems could provide important insights concerning
invasive species control.

Optimization Implications. Although the simulation
results showed that heuristic rules could be significant
improvements over static optimization, static optimization
is a lower bound of performance. The key question is this:
‘‘How far are these heuristic rules from full, dynamic
optimization?’’ Our ongoing research seeks to answer that
important question. A weakness of many invasive species
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optimal-control models is their failure to provide specific,
useful recommendations. If those heuristic rules are good
approximations of the dynamic optimum, it means that
easy-to-determine treatment strategies can be effective. If,
however, those rules are not good approximations of the
optimal solution, then that information is also important.
The rules could be investigated to determine conditions
where they were (or were not) reasonable approximations.
This could lead to other rules of thumb that are easy to
implement, but closer to optimal.

Conclusions: From Theory to Practice. As illustrated in
Figure 3, the model presented here uses an interface with
Excel to print out worksheet maps that recommend to land
managers which lands should be treated in the current year
given inputted information about the labor constraints
and resource protection priorities. Neither our approach,
however, nor the TELSA-based approach of Frid et al.
(2013) is yet user friendly enough to work as a ‘‘turnkey’’
technology, where the researchers simply hand the models
off to managers. That could, however, be achieved through
an extension activity in which the university keeps engaged
with the community.
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