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This paper focuses on modelling and predicting differential GPS corrections transmitted by
marine radio-beacon systems using artificial neural networks. Various neural network

structures with various training algorithms were examined, including Linear, Radial Biases,
and Feedforward. Matlab Neural Network toolbox is used for this purpose. Data sets used
in building the model are the transmitted pseudorange corrections and broadcast navigation

message. Model design is passed through several stages, namely data collection, preproces-
sing, model building, and finally model validation. It is found that feedforward neural net-
work with automated regularization is the most suitable for our data. In training the neural

network, different approaches are used to take advantage of the pseudorange corrections
history while taking into account the required time for prediction and storage limitations.
Three data structures are considered in training the neural network, namely all round,
compound, and average. Of the various data structures examined, it is found that the aver-

age data structure is the most suitable. It is shown that the developed model is capable of
predicting the differential correction with an accuracy level comparable to that of beacon-
transmitted real-time DGPS correction.
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1. INTRODUCTION. To enhance the safety of marine navigation some
countries around the world have established networks of reference stations around
their coastal areas which continuously broadcast real-time differential GPS (DGPS)
corrections in the RTCM format. These corrections are digitally modulated using
a special form of frequency modulation – the minimum shift keying (MSK). The
modulated correction data is then transmitted from the radio beacon at rates be-
tween 25 and 200 bps. Typical rates, however, are 100 and 200 bps. In most of
the cases, an integrity monitoring unit is co-located with the reference station to
monitor its performance (El-Rabbany, 2006).

In the past, a high transmission rate was necessary to mitigate the rapid changes in
selective availability (SA). Fortunately, SA was switched off on May 2, 2000, which
improved the standalone GPS positioning by a factor of seven or more (El-Rabbany,
2006). In addition, with SA switched off, the differential pseudorange correction
(PRC) changes relatively slowly over time (i.e. shows short-term stability). As a result,
a lower transmission rate is required which helps reduce the cost of installing and
operating a DGPS system. Furthermore, with the deactivation of SA the PRC is ex-
pected to have a high day-to-day repeatability (i.e. a long-term stability). This makes
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the PRC predictable, which helps further reduce the cost of beacon-based DGPS
systems. For example, if the PRC can be predicted with a high degree of accuracy, it
could be compared with the real-time PRC to monitor the system performance. This
would eliminate the need for integrity monitoring stations, which in turn translates
into lower operational costs.

This paper takes advantage of the day-to-day repeatability of differential correc-
tions to produce a predicted set of DGPS corrections using a neural network-based
model. Data sets used in building the model include the transmitted differential cor-
rections and the broadcast ephemeris. Model design is passed through several stages,
namely data collection, preprocessing, model building and finally model validation.
It is shown that the developed neural network-based model is capable of generating
predicted differential corrections which match that of the receiver-generated real-time
corrections.

2. PRC VARIABILITY. Prior to developing our neural network model, it was
necessary to verify the short- and long-term variability of the PRC data. PRC data
transmitted by Alexandria DGPS reference station were collected at different time
windows for this purpose. As shown in Figure 1, the PRC changes rather slowly over
time. The figure shows that the differential correction could be delivered to the DGPS
receiver with a latency of 90 seconds with no noticeable degradation in the DGPS
positioning accuracy. Similarly, Figure 2 shows the PRC data over three days for PRN
20. As can be seen there is a high day-to-day repeatability, which suggests that the
PRC data of a particular day can be predicted using data from previous days.

3. NEURAL NETWORK MODELLING. An Artificial Neural Network
(ANN) consists of a set of processing elements called neurons that interact by send-
ing signal to one another along weighted connections. These elements are inspired
by biological nervous systems. The connection weights, which can be determined
adaptively, specify the precise knowledge representation. The advantageous and
distinguishing feature of neural networks is their ability to learn. The network in

Figure 1. PRC for PRN 01 transmitted by Alexandria DGPS radio-beacon from

232223 to 232358 06/01/2003.
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the adaptive mode abstracts and generalizes the function character in the process of
learning from training patterns. The learning algorithm is an optimization method
capable of finding weight coefficients and thresholds for a given neural network and
a training set. Two approaches are used in training ANN: batch and incremental.
Batch training of a network proceeds by making weight and bias changes based on
an entire set (batch) of input vectors. Incremental training changes the weights and
biases of a network as needed after presentation of each individual input vector.
Incremental training is sometimes referred to as ‘‘on line’’ or ‘‘adaptive ’’ training.
ANN has been used extensively in GPS and other fields (Suna and Kalenderli,
2003; Watts, 2001; Chiang, 2004; Jwo and Pai, 2004).

To select the appropriate network architecture, modelling is divided into two
stages, short span fitting and long span fitting. PRC data transmitted by Alexandria
DGPS reference station were collected on 17 and 18 October, 2004 for this purpose.
The first 1000 samples of PRN 01 on 17/10/2004 were used for model training and the
first 1000 samples on 18/10/2004 were used for model testing. If the network suc-
ceeded in short span fitting then it was used for the long span fitting where the
pseudorange correction of PRN 01 on 17/10/2004 was used (for the whole period it
was over the horizon, 21 400 samples) in model training and the pseudorange cor-
rection of PRN 01 on 18/10/2004 in model testing.

Three types of neural network design were tested using MATLAB 6.5 (Hagan and
Denuth, 1995) to find the most appropriate one that matched the nature of the cor-
rection data. In the entire neural network the input data were arranged in matrix of
concurrent vector. The three network types are Linear Layer, Radial Bases, and
Feedforward. Table 1 lists the training algorithms used along with its category and
MATLAB abbreviation.

3.1. Linear Neural Network. The linear neural network has the following archi-
tecture:

’ Number of layers: one.
’ Number of neurons: one.
’ Transfer function: Linear Transfer Function.
’ Learning rules : Least Square Error.

Figure 2. PRC for PRN 20 transmitted by Alexandria reference station from 06/01/2003

to 08/01/2003.
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The construction of the linear layer is illustrated in Figure 3, where the figure shows
one neuron with three elements input vector. Figure 4 shows the same structure but
with MATLAB notation which will be used in the rest of this paper.

The output of liner neuron is given by:

a=flin(n)=flin(Wp+b)=(Wp+b) (1)

Where weights W and bias b are calculated from inputs vector p and targets T by
solving the linear equation to minimize the mean square error given by:

[Wb] * [p;11 . . . 1q]=T (2)

Where q is the number of training patterns. Linear layer managed to model the short
span training data set (when simulated with same data used in the training). However,
when the network was simulated with the test data set, it failed to retrieve the cor-
rection again.

3.2. Radial Basis Neural Network. A Radial Basis network is shown in Figure 5
and has the following architecture:

’ Number of layers: two.
’ Number of neurons: variable in the first layer and one in the second layer.

Table 1. Backpropagation training algorithms for Feedforward Neural Network architecture

used in modelling the pseudorange correction.

MATLAB

abbreviation Algorithm Category

traingdx 1-1-Variable Learning Rate 1-Gradient Descent

trainrp 1-2-Resilient Back

triancgp 2-1-Polak-Ribiere Update 2-Conjugate Gradient

triancgb 2-2-Powelle-Beale Restarts

trianscg 2-3-Scaled Conjugate Gradient

trianbgf 3-1-BFGS 3-Quasi-Newton

trainoss 3-2-One Step Secant

trainlm 4-1-Levenberg-Marquardt 4-Levenberg-Marquardt

trainbr 4-2-Levenberg-Marquardt with

Automated Regularization
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Figure 3. Single neuron with three elements input vector.
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’ Transfer function: Radial Biases Function in the first layer and Linear Transfer
Function in the second layer.

Three types of Radial Basis Network are tested, namely Exact Design, More
Efficient, and Generalized Regression Network. The output of both Exact Design
and More Efficient is given by:

a2=flin(n
2)=flin(LW2, 1a

1+b2)=(LW2, 1a
1+b2) (3)

a1i=frad(n
1)=frad(prod(kiIW1, 1xpk, b1i )) (4)

where : frad(n)=exp(xn2) (5)

kwxPk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

(wxP)2
q

(6)

where: H=prod(X,Y) for i=1 to lHi=Xi*Yi

The output of Generalized Regression Network is given by:

a2=flin(n
2)=flin(nprod(LW2, 1a

1)) (7)

where nprod(w, p)=
wpP
P
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Figure 4. Single neuron with three elements input vector in block diagram notation.
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Figure 5. Radial Basis Neural Network architecture for modelling PRC.
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In Exact Design, weights in the first layer are set to the inputs vector P’ where the
weights of second layer is given by solving the linear equation to minimize the mean
square error between a1 and T as in Equation 2. In More Efficient, a similar approach
is used, the only difference that it adds a single neuron each iteration until the sum of
the squared error falls beneath the error goal or the maximum number of neurons has
been reached. In Generalized Regression Network, weights of first layer are set as
Exact Design but weights in second layer are set to T.

3.2.1. Exact Design. Although the Exact Design managed to model the short-
term training data set, it failed with the test data set. Even if the Exact Design
had managed to model the test data set, it could be used because it created a
neuron for every record in its training data. For the long-term data set, the Exact
Design would need 2400 neurons, which is not practical for pseudorange correction
data.

3.2.2. More Efficient Design. More Efficient Design behaves in the same way as
Exact Design; it managed to model the short-term training data set, but failed with
the test data set.

3.2.3. Generalized Regression Network. Generalized Regression Network is
similar in architecture with the Radial Basis except that the input to the second layer
is normalized, as shown in Figure 6. Generalized Regression Neural Network man-
aged to model both the short-term training data set and test data set. However the
design of Generalized Regression Network is not efficient, it uses one neuron per
record in the training data. As such, it is not practical to use this network in PRC
modelling.

3.3. Feedforward Neural Network. The Feedforward Neural Network has a wide
variety of architectures and backpropagation training algorithms. To find a suitable
Feedforward architecture, one design was adopted and several training algorithms
were used to train the neural network. The Feedforward architecture selected was
based on guidelines in (Masters, 1993) and is shown in Figure 7.

’ Number of layers: three.
’ Number of neurons: three in the first layer, twenty in the second layer, one in the

third layer.
’ Transfer function: Tansig Function in both the first and the second layer, and

Linear Transfer Function in the third layer.
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Figure 6. Generalized Regression Neural Network architecture for modelling PRC.
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Figure 7. Feedforward Neural Network architecture for modelling the PRC.

Figure 8. Results of training the Feedforward neural network with different backpropagation

training algorithms for modelling pseudorange correction.

Figure 9. Difference between the predicted and transmitted PRC correction for PRN 13.
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The output of Feedforward Neural Network is given by:

a3=flin(n
3)=flin(LW3, 2a

2+b3)=(LW3, 2a
2+b3)

a2=fhts(n
2)=fhts(LW2, 1a

1+b2)

a1=fhts(n
1)=fhts(W1, 1P+b1)

(8)

where; fhts(n)=
2

(1+exp(x2n))
x1

The backpropagation training algorithms used were classified into four categories,
Gradient Descent, Conjugate Gradient, Quasi-Newton, and Levenberg-Marquardt
(Bose and Liang, 1996; Fausett, 1994).

3.3.1. Gradient Descent. In Gradient Descent (steepest descent) weights are
updated according to:

W(k+1)=W(k)+adk (9)

where a is the learning rate parameter and dk is the negative of the gradient

dk=xgk (10)

To speed the convergence of the steepest descent, two approaches were used;
Variable LearningRate andResilient Back. In Variable Learning Rate, themagnitude
of the learning rate was increased if the learning in the previous step had decreased
the total error function. Conversely, if the error function had increased, the learning
rate was decreased. The objective of the Resilient backpropagation training algorithm
is to eliminate the harmful effects of sigmoid functions on the magnitudes of the
partial derivatives, because the slope of sigmoid functions approaches zero as the
input gets large. Only the sign of the derivative is used to determine the direction of
the weight update; the magnitude of the derivative has no effect on the weight update.
The size of the weight change is determined by a separate update value.

3.3.2. Conjugate Gradient. In Conjugate Gradient weights are updated accord-
ing to

W(k+1)=W(k)+akdk (11)

where ak is the conjugate vector coefficient (step length) and dk is conjugate gradient
direction. Initially dk is taken to be the direction of the steepest descent.

d0=xg0 (12)

In the following iteration dk is computed from:

dk+1=xgk+1+bkdk+1 (13)

and in Polak-Ribiere, update bk is computed from:

bk=
DgTKx1xgK

gTKgKx1
(14)

In Powelle-Beale Restarts, the conjugate gradient direction is set to the negative of
the gradient if there is little orthogonality between the current gradient and the pre-
vious gradient. Computing the conjugate vector coefficient (ak) requires too much
computation, Scaled Conjugate Gradient is an algorithm developed to avoid such
computation.
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3.3.3. Quasi-Newton. In Newton methods weights are updated according to

W(k+1)=W(k)+akH
x1(xgk) (15)

Where ak is one, gk is the gradient (as in the steepest descent), and Hx1 is the inverse
of the Hessian matrix. For Quasi-Newton methodsHx1 is reached through a series of
matrices beginning with the unit matrix I and ending with the inverse of the Hessian
matrixHx1. TheQuasi-Newton algorithm that employs theBFGS (Broyden, Fletcher,
Golfarb, Shanno) formula for updating the Hessian matrix is called the BFGS
Algorithim.

3.3.4. Levenberg-Marquardt. In the Levenberg-Marquardt method weights are
updated according to

W(k+1)=W(k)x[JJT+IJ]x1JTe (16)

Where J is the Jacobian matrix that contains first derivatives of the network errors
with respect to the weights and biases and e is a vector of network errors.

All algorithms managed to train the proposed Feedforward Neural Network to
model the pseudorange correction with its input. The network modelled both short
and long span data sets. The best performance for accuracy and stability is the
Levenberg-Marquardt with Automated Regularization. Figure 8 shows the residual
error of modelling the short and long-term data sets using the training algorithms
listed in Table 1.

4. RESULTS AND DISCUSSION. The performance of the proposed neural
network-based model was assessed using a PRC data set collected over 24 hours from
14:00 21/10/2004 to 14:00 22/10/2004. The ANN-based predicted DGPS (PDGPS)
corrections were first compared with the transmitted PRC counterpart. As can be
seen in Figure 9, the difference between the predicted and transmitted PRC correc-
tions for PRN 13 is less than 2m most of the time. The PRC of other satellites ex-
hibit similar error differences. To further assess the performance of the proposedneural
network-based model, we compared the horizontal positioning accuracies from
three positioning modes, namely standalone GPS, DGPS, and PDGPS. Figures 10
and 11 show the results. It can be seen from Figure 10 that, although the accuracy
of the standalone GPS has dramatically improved as a result of SA removal, it is
still low compared to that of DGPS. On the other hand, the accuracies of DGPS
and PDGPS are comparable (Figure 11), which shows that the ANN-based model
is capable of modelling and predicting the differential corrections.

5. CONCLUSIONS. It has been shown in this paper that artificial neural net-
works can effectively be used to predict the pseudorange differential corrections
with a high accuracy level. In comparison with beacon-transmitted real-time DGPS
corrections, the ANN-based PDGPS model developed was found to deviate by a
maximum of 2m most of the time. This resulted in a positioning accuracy comparable
to that of DGPS. Practical applications of the proposed model include its use to
monitor the quality and integrity of beacon-transmitted real-time DGPS corrections.
This would eliminate the need for integrity monitoring stations, which in turn
translates into lower operational costs.
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Figure 11. Horizontal positioning accuracy from PDGPS and DGPS.

Figure 10. Horizontal positioning accuracy from standalone GPS and DGPS.
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