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Force moments of an active particle in a
complex fluid
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A generalized reciprocal theorem is formulated for the motion and hydrodynamic
force moments of an active particle in an arbitrary background flow of a (weakly
nonlinear) complex fluid. This formalism includes as special cases a number of
previous calculations of the motion of both passive and active particles in Newtonian
and non-Newtonian fluids.
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1. Introduction

The reciprocal theorem for low-Reynolds-number hydrodynamics is a method
in which one utilizes a (seemingly) unrelated ‘auxiliary’ flow field in order to
dramatically simplify calculations in Stokes flows (Happel & Brenner 1965). For
example, the reciprocal theorem can be used to find the motion of passive particles
in background flows, without solving for the disturbance flow the particle generates,
by instead using the flow the particle generates under rigid-body motion in an
otherwise quiescent fluid. This approach was extended to obtain the motion of an
active particle, one that is deforming or has a surface slip velocity, in a background
flow (Stone & Samuel 1996). Recently a method was developed to use the reciprocal
theorem to find the first moment of the hydrodynamic force on the surface of an
active particle in a quiescent fluid (Lauga & Michelin 2016). In this case the auxiliary
flow is the disturbance flow generated by a passive particle held fixed in a linear
background flow.

The reciprocal theorem has also been adapted to describe the motion of particles in
non-Newtonian flows (see Leal (1979, 1980) and references therein). In this case the
disturbance flow of a particle in a background flow of a Newtonian fluid is solved
and used to obtain the weakly nonlinear non-Newtonian result without solving the
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flow field in the complex fluid. This approach was extended to find the motion of
active particles in otherwise quiescent fluids (Lauga 2009, 2014) and background flows
(Datt et al. 2017), and may also be used to describe the motion of multiple particles
in complex fluids (Elfring & Lauga 2015) (and Newtonian fluids (Papavassiliou &
Alexander 2015)). Recently, the reciprocal theorem has also been used to find the first
force moment on a passive sphere in a viscoelastic linear flow (Koch & Subramanian
2006; Rallison 2012; Koch, Lee & Mustafa 2016; Einarsson, Yang & Shaqfeh 2017).

In this note, we show that all these examples may be treated as special cases
under a more general framework. We use a generalized reciprocal theorem to find
the motion and all force moments of an active (or passive) particle (or particles) in
a non-Newtonian (or Newtonian) flow. This approach does not depend on a specific
choice of auxiliary flow and renders all force moments in a transparent manner.

2. A generalized reciprocal theorem

Consider a free particle B with surface ∂B immersed in a background flow u∞
(note that u∞ describes the background flow without the presence of the particle) of
a complex fluid with deviatoric stress

τ = ηγ̇ + εΣ, (2.1)

where η is the viscosity and γ̇ is the strain-rate tensor. The symmetric tensor Σ[u]
is a nonlinear functional of the velocity field u while ε is a small dimensionless
parameter indicating the magnitude of the departure from linear behaviour (Leal
1980). This constitutive relationship may be interpreted as a perturbation from a
Newtonian flow field, where ε may be the Carreau number or viscosity ratio for
shear-thinning fluids (Datt et al. 2015) or Deborah number for weakly viscoelastic
fluids. This form is natural for ‘weak, slow’ flows of viscoelastic fluids (Leal 1980),
but more general viscoelastic constitutive relationships may be recast in this form
in Fourier space (Lauga 2014), where η would be complex. We assume that η is
constant in space but viscosity variations may be embedded in Σ . The particle may
be active so that the velocity boundary condition on the particle is

u(x ∈ ∂B)=U+Ω × r+ uS, (2.2)

where U and Ω are the rigid-body translation and rotation of the body, r = x − x0,
where x0 is a convenient point on the body (for instance, the centre of mass), while uS

is a velocity due to surface activity, such as diffusiophoretic slip (Michelin & Lauga
2014) or a swimming gait (see Elfring & Lauga (2015) for a detailed description of
swimming kinematics).

Consider as an auxiliary (or dual, or complementary) problem, here denoted by a
hat, a body of the same instantaneous shape moving as a rigid body, û(x ∈ ∂B) =
Û+ Ω̂× r, in a background flow û∞ of a Newtonian fluid, τ̂ = η̂ ˆ̇γ . To simplify matters
we define disturbance flows u′=u−u∞ and û′= û− û∞ and also disturbance stresses
σ ′ = σ − σ∞ and σ̂ ′ = σ̂ − σ̂∞. Note that the disturbance stress σ ′ is not necessarily
equivalent to the stress field associated with u′ due to the possible nonlinearity of
the constitutive equation. We consider all flow fields to be incompressible and neglect
inertia in the fluid so that

∇ · u′ =∇ · û′ = 0, (2.3)
∇ · σ ′ =∇ · σ̂ ′ = 0. (2.4)
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From the above we can construct the following identities from the products

(∇ · σ ′) · û′ = (∇ · σ̂ ′) · u′ = 0, (2.5)

and upon rearranging we can write equivalently

∇ · (σ ′ · û′)− τ ′ : ∇û′ =∇ · (σ̂ ′ · u′)− τ̂ ′ : ∇u′ = 0, (2.6)

where A :B=
∑

ij AijBij. Following substitution of the constitutive relations and use of
the identity ˆ̇γ ′ : ∇u′ = γ̇ ′ : ∇û′ the two equations may be combined to obtain

∇ ·

(
σ ′ · û′ −

η

η̂
(σ̂ ′ · u′)

)
= εΣ ′ : ∇û′. (2.7)

Integrating over the volume of fluid V exterior to B and applying the divergence
theorem we obtain∫

∂V
n ·
(

σ ′ · û′ −
η

η̂
(σ̂ ′ · u′)

)
dS=−

1
2

∫
V
εΣ ′ : ˆ̇γ ′ dV, (2.8)

where the surface ∂V that bounds the fluid volume V is composed of the surface
of the body, ∂B on the interior, and an outer surface. Here, n is the normal to the
surface, ∂V , pointing into V . Provided the fields, u′ and σ ′, decay appropriately in
the far field (Leal 1980), or the fluid is bounded by no-slip walls (Becker, McKinley
& Stone 1996), we may neglect the outer surface so that ∂V→ ∂B. If the fluid were
Newtonian, εΣ ′= 0, the above is then a standard version of the reciprocal theorem for
two Newtonian fluids and indicates the equality of the virtual powers of the motion
of ∂B and a dual flow field (Happel & Brenner 1965).

Applying the boundary conditions on the surface on ∂B we obtain

F′ · Û+ L′ · Ω̂ −
η

η̂
(F̂′ ·U+ L̂′ ·Ω)−

∫
∂B

n · σ ′ · û∞ dS

=
η

η̂

∫
∂B

n · σ̂ ′ · (uS
− u∞) dS−

1
2

∫
V
εΣ ′ : ˆ̇γ ′ dV, (2.9)

where the force and torque are respectively

F′ =F−F∞ =
∫
∂B

n · σ ′ dS, (2.10)

L′ = L− L∞ =
∫
∂B

r× (n · σ ′) dS. (2.11)

Moreover, because F∞ = L∞ = 0, we drop the primes on these terms.
A key point is that it is useful to express the background flow of the auxiliary

problem as a Taylor series in r= x− x0,

û∞ = Û∞ + r · (Ê∞ + Ξ̂∞)+ · · ·, (2.12)

where Ê∞ and Ξ̂∞ are the symmetric and antisymmetric parts of the velocity gradient
tensor of the background flow at x0. In this way (2.9) becomes

F · Û′ + L · Ω̂ ′ − S′ : Ê∞ − · · · −
η

η̂
(F̂′ ·U+ L̂′ ·Ω)

=
η

η̂

∫
∂B

n · σ̂ ′ · (uS
− u∞) dS−

1
2

∫
V
εΣ ′ : ˆ̇γ ′ dV, (2.13)

829 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

63
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.632


G. J. Elfring

where Û′ = Û− Û∞ and Ω̂ ′ = Ω̂ − Ω̂∞ while

S′ = S− S∞ =
∫
∂B

1
2
[n · σ ′r+ rn · σ ′] dS (2.14)

is the symmetric first moment (or stresslet (Batchelor 1970)) of the hydrodynamic
traction on the body due to the disturbance stress. The zeroth moment and the
antisymmetric first moment lead to a force and torque absorbed into the first two
terms of (2.13).

Introducing a more compact notation, where

F ′ = [F, L, S′, . . .], (2.15)

F̂ ′ = [F̂, L̂, Ŝ′, . . .], (2.16)

Û ′ = [Û′, Ω̂ ′,−Ê∞, . . .], (2.17)
U = [U,Ω, 0, . . .], (2.18)

we obtain

F ′ · Û ′ −
η

η̂
F̂ ′ · U =

η

η̂

∫
∂B

n · σ̂ ′ · (uS
− u∞) dS−

1
2

∫
V
εΣ ′ : ˆ̇γ ′ dV. (2.19)

Now, by the linearity of the flow of the Newtonian auxiliary problem, we may write

û′ = Ĝ · Û ′, (2.20)
ˆ̇γ ′/2= Ê · Û ′, (2.21)
σ̂ ′ = T̂ · Û ′, (2.22)

F̂ ′ =−R̂ · Û ′. (2.23)

These are, in principle, infinitely large tensors (for a completely a general flow); Ĝ, Ê
and T̂ are functions of position in space that map Û ′ to the fluid velocity, strain-rate
and stress fields respectively, while the grand resistance tensor, R̂, connects velocity
moments to force moments, in the auxiliary problem. Substitution of these linear
relationships into (2.19), upon discarding the arbitrary Û ′, leads to our main result

η

η̂
R̂ · U =−F ′ +

η

η̂

∫
∂B
(uS
− u∞) · (n · T̂ ) dS−

∫
V
εΣ ′ : Ê dV. (2.24)

Equation (2.24) is a tensorial relationship for the motion and all force moments of an
active (or passive) particle in an arbitrary background flow of a non-Newtonian (or
Newtonian) fluid. The details of the dual problem are irrelevant in that no specific
body motion nor background flow needs to be chosen, only the linear operators Ê ,
T̂ and R̂ enter the picture (even the viscosity does not matter as all instances of η̂
cancel in (2.24)). Indeed this is a fundamental point, the solution cannot depend on
a particular choice of auxiliary problem. A clever choice of auxiliary problem can be
useful to reduce the dimensionality of the problem a priori, but that ability is not
lost here and is equivalent to a carefully chosen inner product; although, care should
be taken because the rheology of the fluid can lead to non-trivial coupling between
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translation and rotation, even for symmetric particles (Oppenheimer, Navardi & Stone
2016). We also note that this same equation extends directly for systems of N bodies,
the derivation remains essentially unchanged except ∂B instead represents the union
of the surfaces of all bodies and tensors are extended to account for all bodies; for
example, U would include the translation and rotation of all N bodies (see Elfring
& Lauga (2015) and Papavassiliou & Alexander (2015) for the multibody mobility
problem). While the functional form of (2.24) is identical, resolution of the N-body
Newtonian problem can be considerably more complicated.

In an alternative form we may split the volume integral, upon an application of the
divergence theorem, into a boundary term and a volume term to obtain

η

η̂
R̂ · U =−F ′ +

η

η̂

∫
∂B
(uS
− u∞) · (n · T̂ ) dS+ εF ′Σ +

∫
V
(∇ · εΣ ′) · Ĝ dV, (2.25)

where the term εF ′Σ represents moments of the non-Newtonian stress εΣ ′. Although
less compact, this form allows one to differentiate between the non-Newtonian stress
acting directly on the body from the effects of the modification of the flow due to the
complex rheology (Einarsson & Mehlig 2017; Einarsson et al. 2017).

Because the tensor Σ depends on the velocity field u, non-Newtonian problems
are often tackled perturbatively, u = u0 + εu1 + · · ·. In this way, the non-Newtonian
term will depend only on the Newtonian solution to leading order Σ[u0]. The volume
integral in (2.25) may still be unwieldy, but symmetry arguments or a carefully chosen
basis may simplify analytical resolution (see, for example, Einarsson & Mehlig 2017)
and numerical integration is straightforward. This formalism may also be extended to
account for weak inertial effects, whereby the small parameter is then the Reynolds
number (Cox 1970; Leal 1980; Becker et al. 1996), but care should be taken due to
the singular nature of a weakly inertial expansion.

3. Rigid-body motion

In the generalized reciprocal relationship given by (2.24) or (2.25), the vector U
contains only rigid-body motion and because of this, only the rigid-body resistance
tensor

R̂FU =

[
R̂FU R̂FΩ

R̂LU R̂LΩ

]
, (3.1)

need be inverted to solve the mobility problem. In other words, we may first solve
the mobility problem in isolation

U =
η̂

η
R̂−1

FU ·

[
−F +

η

η̂

∫
∂B
(uS
− u∞) · (n · T̂ ) dS−

∫
V
εΣ ′ : Ê dV

]
, (3.2)

where here U, F are six-dimensional only (in the case of a single particle) comprising
translation/rotation and hydrodynamic force/torque, respectively, while T̂ and Ê are
similarly truncated (Elfring & Goyal 2016; Datt et al. 2017). If the inertia of the
body is negligible (small Stokes numbers) then the hydrodynamic force must balance
any external or interparticle force F =−F P (Brady & Bossis 1988), and so we may
alternatively write

U =
η̂

η
R̂−1

FU · [F P + F T + F NN], (3.3)
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where

F T =
η

η̂

∫
∂B
(uS
− u∞) · (n · T̂ ) dS (3.4)

is a Newtonian ‘thrust’ from the surface activity and ‘drag’ from the background flow,
while

F NN =−

∫
V
εΣ ′ : Ê dV = εF ′Σ +

∫
V
(∇ · εΣ ′) · Ĝ dV (3.5)

represents the extra non-Newtonian force/torque on the particle.
The external force may be prescribed (for example, weight due to gravity) and the

motion computed, or vice versa, the motion of the particle may be prescribed and
the hydrodynamic force computed. If the particle is passive, uS

= 0, then we have
an equation for the motion of a passive particle in a complex flow (Leal 1980). If
the particle is active, uS

6= 0, we recover the result of Stone & Samuel (1996) for a
Newtonian fluid, F NN = 0, and Lauga et al. for a complex fluid (Lauga 2009, 2014;
Elfring & Lauga 2015; Datt et al. 2017). In the case of two particles, Khair & Squires
(2010) showed that by prescribing the rigid-body motion of two passive spheres in
an otherwise quiescent fluid, and measuring of the non-Newtonian force which arises
from (3.5), one may extract normal stress coefficients for weakly nonlinear flows.

4. Force moments

Upon resolution of the mobility problem represented by (3.2), the higher force
moments may then be determined individually. For example, from (2.24) the
symmetric first moment is given by

S′ = S− S∞ = −
η

η̂
[R̂SU ·U+ R̂SΩ ·Ω]

+
η

η̂

∫
∂B
(uS
− u∞) · (n · T̂ E) dS−

∫
V
εΣ ′ : ÊE dV, (4.1)

where R̂SU and R̂SΩ connect rigid-body motion with the symmetric first moment in a
Newtonian fluid, whereas the subscript E indicates the part of the operator associated
with −Ê∞ in (2.21) and (2.22) (the fourth-order tensor EE is contracted −EE : Ê∞ to
give the rate of strain associated with −Ê∞). By way of (4.1) one may obtain the
stresslet of a passive or active particle in a Newtonian or non-Newtonian fluid in an
arbitrary background flow; below we demonstrate two particular cases from the recent
literature. Higher-order force moments are obtained in similarly systematic fashion by
considering the corresponding higher-order terms of the expansion of the background
flow in (2.12) (for example, second moments are obtained from the quadratic term).
For a swimmer in an otherwise quiescent (u∞ = 0) Newtonian fluid (εΣ ′ = 0) the
symmetric first moment,

S=−
η

η̂
[R̂SU ·U+ R̂SΩ ·Ω] +

η

η̂

∫
∂B

uS
· (n · T̂ E) dS, (4.2)

was recently derived by Lauga & Michelin (2016) by using a linear auxiliary flow.
For spherical particles R̂SU = R̂SΩ = 0, and so for squirmer-type swimmers only the
right-hand side integral remains, and T̂ E is well known for a sphere in straining flow.
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For the symmetric first moment due to a passive sphere (uS
= 0) in a complex fluid

we have instead

S′ =−
η

η̂

∫
∂B

u∞ · (n · T̂ E) dS−
∫
V
εΣ ′ : ÊE dV. (4.3)

If the background flow is an unbounded linear (straining) flow, u∞ =E∞ · r then the
first term on the right-hand side yields (η/η̂)Ŝ′ = 3ηE∞VB, where VB is the volume
of B, while

S∞ =
∫
B

σ∞ dV = 2ηE∞VB +

∫
B
εΣ∞ dV. (4.4)

Altogether we obtain

S = 5ηE∞VB +

∫
B
εΣ∞ dV −

∫
V
εΣ ′ : ÊE dV,

= 5ηE∞VB +

∫
B
εΣ∞ dV + S′Σ +

∫
V
(∇ · εΣ ′) · ĜE dV, (4.5)

which corresponds to recent results (Einarsson et al. 2017), except that here we used
disturbance fields for the non-Newtonian flow to obviate the evaluation of surface
integrals in the far field. To recover the form given by Einarsson et al. (2017), we
use far-field asymptotic results from that work to obtain

S∞Σ =
∫
B
εΣ∞ dV −

∫
V
(∇ ·Σ∞) · ĜE dV, (4.6)

which, when combined with (4.5), leads to

S= 5ηE∞VB + SΣ +
∫
V
(∇ · εΣ) · ĜE dV. (4.7)

5. Conclusions

In this note we have developed a generalized reciprocal theorem to find the
motion and all force moments of an active (or passive) particle in a non-Newtonian
(or Newtonian) fluid. This general approach eliminates the selection of specific
auxiliary flows for certain cases, and instead focuses on the linear operators which
connect force moments with velocity moments for particles in Newtonian fluids. This
approach encompasses a number of previous problems and provides a framework to
attack more complex problems in the future. We note that certainly not all problems
that are described by this framework have been solved. The effect of fluid rheology
on a single active particle with general deformation, or slip boundary conditions is far
from understood (Elfring 2015; Riley & Lauga 2015; Datt et al. 2017). The motion
of two active particles in quiescent Newtonian fluids was recently studied by means
of the reciprocal theorem, both for diffusiophoretic particles (Sharifi-Mood, Mozaffari
& Córdova-Figueroa 2016) and squirmers (Papavassiliou & Alexander 2017), likewise
the hydrodynamic interactions between two passive spheres in weakly nonlinear fluids
(Khair & Squires 2010; Pak et al. 2012), but hydrodynamic interactions amongst two
(or many) active bodies in non-Newtonian fluids remain largely unexplored and can
lead to quantitatively different dynamics (Elfring, Pak & Lauga 2010); the same
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can be said of active particles in non-Newtonian background flows (Mathijssen et al.
2016). If the particles are Brownian, fluid rheology can lead to significant differences
in observed trajectories (Gomez-Solano, Blokhuis & Bechinger 2016), and while it
is possible to include a stochastic force in the above theory, one requires proper
description of that forcing in nonlinear non-Newtonian flows (Squires & Mason 2010;
Zia & Brady 2015).
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