
J. Fluid Mech. (2022), vol. 932, A19, doi:10.1017/jfm.2021.942

Turbulence modulation in buoyancy-driven
bubbly flows

Vikash Pandey1, Dhrubaditya Mitra2 and Prasad Perlekar1,†
1TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally,
Hyderabad 500046, India
2Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23,
10691 Stockholm, Sweden

(Received 12 May 2021; revised 15 October 2021; accepted 19 October 2021)

We present a direct numerical simulation (DNS) study of buoyancy-driven bubbly flows
in the presence of large-scale driving that generates turbulence. On increasing the
turbulence intensity: (a) the bubble trajectories become more curved and (b) the average
rise velocity of the bubbles decreases. We find that the energy spectrum of the flow
shows a pseudo-turbulence scaling for length scales smaller than the bubble diameter
and a Kolmogorov scaling for scales larger than the bubble diameter. We conduct a
scale-by-scale energy budget analysis to understand the scaling behaviour observed in the
spectrum. Although our bubbles are weakly buoyant, the statistical properties of our DNS
are consistent with the experiments that investigate turbulence modulation by air bubbles
in water.
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1. Introduction

The flow of suspensions of deformable objects (bubbles or droplets) is omnipresent in
a variety of natural and industrial processes (Mudde 2005; Balachandar & Eaton 2010;
Risso 2018; Said 2019; Mathai, Lohse & Sun 2020). The presence of particles dramatically
alters the rheological and thereby mixing properties of flows (Alméras et al. 2015; Rosti &
Brandt 2018; Rosti, Brandt & Mitra 2018; Almeras et al. 2019). A swarm of rising bubbles
in an otherwise quiescent fluid, at moderate volume fraction, generates pseudo-turbulence
that has been studied by several experiments and numerical simulations over the last three
decades (Lance & Bataille 1991; Mudde 2005; Risso 2018; Mathai et al. 2020; Pandey,
Ramadugu & Perlekar 2020).
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A more complex but ubiquitous scenario is where large-scale external stirring that
generates turbulence is also present along with the bubbles (Deckwer 1992; Tabib, Roy
& Joshi 2008; Mathai et al. 2020). In the absence of bubbles, a nonlinear transfer of
energy (maintaining constant energy flux) from forcing to dissipation range characterizes
turbulence (Kolmogorov 1941; Frisch 1997; Pope 2012). How does the presence of bubbles
modify this flow? The answer, in principle, depends on the ratio of the bubble diameter
to the dissipation scale, the bubble volume fraction and its density and viscosity contrast
with the ambient fluid.

Experiments with large-scale forcing that generates nearly homogeneous and isotropic
flows, at large Reynolds number, show that the presence of bubbles dramatically alters
the energy spectrum for scales smaller than the bubble diameter (Prakash et al. 2016;
Almeras et al. 2017). Although liquid velocity fluctuations have been well characterized,
an understanding of the energy transfer mechanisms remains mostly unexplored.

Direct numerical simulation (DNS) studies of bubbly flows have explored: (a)
buoyancy-driven flows that generate pseudo-turbulence or bubble-induced agitation in the
absence of external stirring (Bunner & Tryggvason 2002b,a; Roghair et al. 2011; Pandey
et al. 2020; Ramadugu, Pandey & Perlekar 2020; Innocenti et al. 2021), (b) modulation
of turbulence by suspension of neutrally buoyant particles (Rosti et al. 2019; Yousefi,
Ardekani & Brandt 2020) and (c) Lagrangian investigations of an isolated bubble in the
presence of external stirring (Loisy & Naso 2017). However, to the best of our knowledge,
a numerical study designed to unravel the statistical properties of buoyancy-driven bubbly
flows in the presence of external stirring is still missing.

Most numerical studies are restricted to low or moderate Galilei numbers because
extremely fine grids are required to fully resolve bubbles with high density and viscosity
contrasts (e.g. air bubbles in water) (Cano-Lozano et al. 2016; Innocenti et al. 2021).
Furthermore, the use of second-order finite-difference methods limits the range of
Reynolds numbers accessible to these simulations (Canuto et al. 2012).

Fortunately, the DNS studies of buoyancy-driven bubbly flow have shown that the
statistical properties of pseudo-turbulence such as the probability distribution function
(p.d.f.) of velocity fluctuations, the scaling of the energy spectrum and the energy transfer
mechanisms are universal and do not depend upon density and viscosity ratios (Pandey
et al. 2020; Ramadugu et al. 2020; Innocenti et al. 2021). A key finding of these
studies is the presence of energy flux from length scales corresponding to the bubble
diameter to small scales. This has also been confirmed in a recent study of bubble-laden
turbulent channel flow (Ma et al. 2021). Motivated by these findings, in this article, we
investigate turbulence modulation in suspensions of weakly buoyant bubbles. Similar
to the experiments, we characterize the flow in terms of the ‘bubblance’ parameter
b = Φ (V0/u0)

2, where Φ is the bubble volume fraction, V0 is the rise velocity of an
isolated bubble in a quiescent fluid and u0 is the root-mean-square velocity of the turbulent
flow in the absence of bubbles. The two extreme limits b = 0 and b = ∞ correspond to
pure fluid turbulence and buoyancy-driven bubbly flow, respectively.

2. Model

We simulate the Navier–Stokes equations with a surface tension force to investigate the
suspension of bubbles. Since we are interested in studying the weakly buoyant regime, we
invoke the Boussinesq approximation (Chandrasekhar 1981; Pandey et al. 2020) to get

Dtu = ν∇2u − ∇P + F σ + F g + F s, and ∇ · u = 0. (2.1a,b)
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Here u is the velocity field, Dt ≡ ∂t + u · ∇ is the material derivative, P is the pressure
field and ν is the viscosity (assumed to be identical in the two phases). The two phases are
distinguished using an indicator function c which is equal to 1 in the liquid and 0 inside
a bubble (Popinet 2018; Tryggvason et al. 2001). The buoyancy force F g ≡ 2At[c − ca]g,
where ca is the mean value of the indicator function, At ≡ (ρf − ρb)/(ρf + ρb) is the
Atwood number, g ≡ −gẑ is the acceleration due to gravity, ẑ is a unit vector along the
vertical (positive z) direction and ρf (ρb) is the fluid (bubble) density. The surface tension
force is F σ ≡ σκn̂, where κ is the local curvature of the bubble front whose unit normal is
n̂ and σ is the coefficient of the surface tension. Turbulence is generated using a large-scale
stirring force F s. For a detailed discussion of the Boussinesq approximation, we refer the
reader to Appendix A. Experimentally small-At flows (weakly buoyant regime) can be
realized in a mixture of oils (Shukla et al. 2019; Yi, Toschi & Sun 2021).

We use a pseudo-spectral method (Canuto et al. 2012) for the DNS of (2.1a,b) in
a periodic cube with each side of length L ≡ 2π. The bubbles are resolved using a
front-tracking method. The same method had been earlier employed by us to investigate
buoyancy-driven bubbly flows in the absence of turbulent stirring (Pandey et al. 2020;
Ramadugu et al. 2020). For a detailed discussion of the numerical implementation of
the front-tracking method to study a variety of multiphase flows, we refer the reader to
Tryggvason et al. (2001) and Popinet (2018).

For time evolution, we use a second-order exponential time differencing scheme (Cox
& Matthews 2002) for (2.1a,b) and a second-order Runge–Kutta scheme to update the
front. A substantial part of the computational effort is spent in resolving the front; DNS
with the bubbles is four times slower than that without them. The large-scale stirring force
is implemented in Fourier space, i.e. F̂ s = εsû/

∑
k |û|2 with |k| � kinj (Machiels 1997;

Petersen & Livescu 2010; Perlekar 2019), where û is the Fourier transform of u and kinj =
2. This implementation ensures a constant rate of energy injection, εs.

We discretize the simulation domain with N3 collocation points, set the initial velocity
field such that the corresponding energy spectrum E(k, t = 0) = εsk4 exp(−4k2) and place
Nb = 80 non-overlapping spherical bubbles of diameter d = 0.46 at random locations such
that no two bubbles overlap.

The dimensionless numbers that characterize the flow are the Taylor-scale Reynolds
number Reλ ≡ u0λ/ν, the Galilei number Ga ≡

√
2Atgd3/ν2, the Bond number Bo ≡

2Atρagd2/σ , and the bubblance parameter b ≡ Φ (V0/u0)
2, where Φ ≡ Nb(π/6)(d/L)3 is

the volume fraction occupied by the bubbles, V0 ≈ 0.8 is the rise speed of a single bubble

of diameter d in quiescent fluid, λ ≡
√

15νu2
0/ε

s is the Taylor microscale, u0 ≡ √
2E/3 is

the root-mean-square velocity in the absence of bubbles and E ≡ 〈| u |2〉 /2 is the average
kinetic energy. We set the average density ρa = 1. The parameters used in our DNS are
summarized in table 1. We conduct a grid-resolution study in Appendix B to show that
our simulations are well resolved.

3. Results

In what follows, we first investigate the statistical properties of bubbles rising in
the turbulent flow; we then investigate the statistical properties of the fluid velocity
fluctuations. Although we study turbulence modulation in the presence of weakly buoyant
bubbles, we show in the subsequent sections that the statistical properties of the flow
are in qualitative agreement with experiments that typically have large density and
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Run N Reλ εν × 10−2 εs × 10−2 εg × 10−3 λ η × 10−2 b

R0 720 — 0.7 — 7.0 — — ∞
R1 720 79 0.9 0.25 6.8 0.37 2.0 0.35
R2 720 95 1.2 0.5 6.7 0.34 1.8 0.21
R3 720 110 1.5 1.0 6.0 0.31 1.5 0.13

Table 1. Parameters for our DNS runs R0–R3. Here, εν = ν
〈|∇u|2〉 is the viscous dissipation rate, η ≡

(ν3/εs)
1/4 is the Kolmogorov dissipation scale, λ is the Taylor microscale and the energy injection rates due

to large-scale stirring and buoyancy are εs ≡ 〈u · F s〉 and εg ≡ 〈u · F g〉, respectively. The angular brackets
denote spatio-temporal averaging in the statistically steady state. For all the runs, L = 2π and d = 0.46, and
the dimensionless numbers Ga = 302, Bo = 1.8, At = 0.04 and Φ = 1.64 % are kept fixed. We run simulations
R1–R3 at least for a period of ≈ 5τL in the steady state, where τL ≡ L/(2u0) is the large eddy turnover time.
The simulation R0 runs for a period of 10L/V0 in the steady state. The values of Φ, Ga, Bo and Re used in our
study are comparable to those used in experiments (Prakash et al. 2016; Almeras et al. 2017).

viscosity contrast. Finally, we present the results for the spectral properties of the flow
by using a scale-by-scale energy budget analysis.

3.1. Bubble trajectories and rise velocity
For every bubble, we monitor the time evolution of its centre of mass X i(t) after every δt =
0.08τη time interval, where i denotes the bubble index and τη = √

ν/εs is the Kolmogorov
dissipation time scale. From the bubble tracks, we obtain the centre-of-mass velocity V i(t)
and the acceleration Ai(t) using centred, second-order finite differences.

The plots in figures 1(a) and 1(b) show a representative snapshot of bubbles and
iso-vorticity surfaces for Reλ = 79, b = 0.35 and Reλ = 110, b = 0.13, respectively. In
figure 1(c,d) we show a few typical trajectories for the same parameters. It is clear
that higher Reynolds number and small ‘bubblance’ parameter correspond to more
complex trajectories. To quantify this behaviour, we plot the p.d.f. of the curvature
K ≡ | A × V | / | V |3 in figure 1(e). Consistent with the observation that the trajectories
are more curved for larger Reλ, we find that the p.d.f. P(K) is broader – has an exponential
tail.

Note that Bhatnagar et al. (2016) showed that the p.d.f. of curvature of trajectories of
heavy inertial particles in homogeneous and isotropic turbulence has a power-law tail with
an exponent of −5/2. To the best of our knowledge, no such results exist for bubbles.

Another consequence of large-scale turbulent stirring is that the average bubble rise
velocity U ≡ (1/Nb)

∑Nb
i=1 V i(t) · ẑ (see figure 1 f ) increases with increasing b (decreasing

Reλ), where (·) represents temporal averaging.
In a recent study, Salibindla et al. (2020) showed that the rise velocity of the bubbles

can be enhanced by turbulence provided the velocity ratio γ ≡ (V2
0/(εsd)2/3) < 1. Our

DNS (see table 2) and the experiments that investigate turbulence modulation by bubbles
(Lance & Bataille 1991; Prakash et al. 2016) have γ 	 1.

Note that even for b = ∞, the rise velocity of a bubble in a swarm is slightly smaller
than the rise velocity of an isolated bubble due to bubble–wake interactions (Riboux, Risso
& Legendre 2010). Using the definition of F g and noting that 〈uz〉 = 0 in the Boussinesq
regime, we obtain εg = 2AtgΦU and verify it in figure 1( f ).
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b = ∞ (R0) εg/(2AtgΦ)

b = 0.35 (R1)
b = 0.21 (R2)
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U
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(e)

(b)(a)

(c) (d )
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Figure 1. Representative steady-state snapshot of the bubbles and superimposed iso-surfaces of the z

component of the vorticity field ωz = ẑ · ∇ × u for ωz = ±3
〈
ω2

z
〉1/2 for (a) b = 0.35 and (b) b = 0.13.

Typical trajectories of the centre of mass of bubbles in a turbulent flow for (c) Reλ = 79, b = 0.35 (R1) and
(d) Reλ = 110, b = 0.13 (R3). (e) The p.d.f. of the curvature K for different values of b. ( f ) Plot showing that
the bubble rise velocity increases with increasing b or decreasing Reλ. We also show that U obtained directly
from the trajectories and the estimate εg/(2AtgΦ) are in excellent agreement.

Run R1 R2 R3

γ 58.3 36.7 23.1

Table 2. Velocity ratio γ for our DNS runs R1–R3.
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Figure 2. (a) The separation vector r = X i − X j and the angle θ between X ij and ẑ. The bubbles are
represented as shaded ellipses. (b) The angular distribution function G[r, cos(θ)] versus cos(θ) for r = 2d and
r = 4d in the absence (b = ∞) and presence (b = 0.13) of turbulence. The area under the curve is normalized
to unity for each G[r, cos(θ)] curve.

3.2. Pair distribution function
To understand the distribution of bubbles in the domain, following Bunner & Tryggvason
(2002a), we define the pair distribution function:

G[r, cos(θ)] = L3

Nb(Nb − 1)

Nb∑
i=1

Nb∑
j=1,j /= i

δ(r − X ij, t), (3.1)

where δ(·) is the Dirac delta function and X ij = X i − X j. In figure 2(a), we sketch a
bubble pair configuration to show the coordinate system used for evaluating (3.1). Plots
of G[r, cos(θ)] for r = 2d and 4d are shown in figure 2(b). At b = ∞, we observe a peak
in G[r, cos(θ)] for r ≈ 2d and cos(θ) ≈ 0 indicating a horizontal alignment of bubbles
that are separated by a distance 2d. Bubbles separated by distances r � d are uniformly
distributed. Our results are consistent with earlier numerical studies of pseudo-turbulence
(Bunner & Tryggvason 2002a; Roghair, Annaland & Kuipers 2013). In contrast, as
turbulence makes flow more isotropic, for b = 0.13 we find that G[r, cos(θ)] is uniform
which indicates that the bubbles are uniformly distributed for all separations r.

3.3. Average flow around a bubble
In this section, we study the average wake structure of the bubbles for different values of
bubblance b. At a given time t, the velocity field in the centre-of-mass frame of the bubble
i is given by

uCM
i (ξ , t) = u(ξ , t) − V i, (3.2)

where ξ ≡ x − X i and −L/2 < (ξx, ξy, ξz) � L/2. The average flow around a bubble is
then obtained by performing temporal averaging over every bubble as follows:

uCM(ξ) = 1
Nb

Nb∑
i=1

uCM
i (ξ , t). (3.3)

In figure 3(a,b) we plot the velocity streamlines of the average velocity field uCM(ξ) for
b = ∞ (R0) and b = 0.13 (R3). Although the flow structures look qualitatively similar,
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Figure 3. Streamline plots of the average velocity field in the frame of the bubble for (a) b = ∞ (run R0) and
(b) b = 0.13 (run R3). The streamlines are coloured according to uCM · ẑ.
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Figure 4. (a) The average bubble wake velocity v(ξz) for runs R0 (b = ∞), R1 (b = 0.35) and R3 (b = 0.13).
(b) Same as (a), but in semi-log scale to highlight the exponential decay of the velocity field in the wake region.
The dash-dotted lines show the exponential fits ∼ exp(−Az/d) to the data. We find A = 0.67, 1.15 and 1.6 for
R0, R1 and R3, respectively.

we find that the bubble in the absence of large-scale stirring is more ellipsoidal. This can
be understood by noting that the presence of stirring imposes stronger isotropy on the flow.

To quantify the behaviour of the average bubble wake, similar to experiments (Risso
et al. 2008; Almeras et al. 2017) we plot v(ξz) ≡ uCM(0, 0, ξz) · ẑ in figure 4 and find that
it decays exponentially as v(ξz) ∼ C exp(−Aξz/d) in the wake region for all values of b.
However, consistent with earlier observations, the presence of stirring leads to a faster
decay of the wake. Therefore, for small b (or large Reλ) we expect (see next section) the
velocity fluctuations to be similar to those of homogeneous, isotropic turbulence.
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Figure 5. The p.d.f. of the horizontal (a) and the vertical (b) component of the liquid velocity fluctuations for
different values of b (blue, b = ∞ (R0); orange, b = 0.35 (R1); green, b = 0.21 (R2); maroon, b = 0.13 (R3);
purple, b = 0 (Reλ = 110)). The black dashed line indicates a Gaussian distribution, and the brown dash-dotted
line in (a) shows the exponential distribution. Inset: variance of the horizontal and vertical velocity fluctuations
increases with an increase in the stirring intensity 1/b.

3.4. Liquid velocity fluctuations
The p.d.f.s of the normalized horizontal and vertical liquid velocity fluctuation with
varying b are shown in figure 5. For b = ∞, our results agree with those of the earlier
studies on pseudo-turbulence (Riboux et al. 2010; Risso 2016; Pandey et al. 2020):
the p.d.f. of the horizontal component shows exponential behaviour and the p.d.f. of
the vertical component has a Gaussian core and is positively skewed. The presence of
external stirring dramatically alters the p.d.f.s as they tend to a Gaussian distribution with
decreasing b (increasing Reλ). Indeed, in the inset of figure 5(a), we verify that 〈u2

h〉 ∼ 〈u2
z 〉

on decreasing b confirming that the stirring makes the flow isotropic. This is consistent
with earlier experimental observations of turbulent bubbly flows (Prakash et al. 2016;
Almeras et al. 2017).

3.5. Energy spectrum
Earlier DNS studies (Roghair et al. 2011; Pandey et al. 2020; Innocenti et al. 2021) only
investigated the nature of the energy spectrum in the absence of large-scale turbulent
forcing. These studies, consistent with experiments, confirm the presence of a k−3 scaling
in the spectrum that appears because of the balance of net energy production in the wakes
with viscous dissipation.

Experiments have investigated temporal spectra of the Eulerian liquid velocity
fluctuations in the presence of a large-scale stirring. They observe a Kolmogorov spectrum
for frequencies smaller than the bubble frequency and a pseudo-turbulence scaling for
higher frequencies (Lance & Bataille 1991; Prakash et al. 2016; Almeras et al. 2017).

Hence we expect that in our simulations we would find a Kolmogorov scaling for
wavenumbers k < kd, with a crossover to pseudo-turbulence scaling for k > kd, where
kd ≡ 2π/d is the wavenumber corresponding to the bubble diameter.

In figure 6, we plot the scaled energy spectrum for different values of b
(Reλ). As expected, we observe Kolmogorov scaling E(k) ∼ k−5/3 for k < kd and a
pseudo-turbulence scaling E(k) ∼ k−3 for k > kd. In figure 7 we plot the compensated
spectrum to highlight the region showing −5/3 and −3 scaling. Note that none of the
scaling ranges are large enough to make possible an accurate determination of the scaling
exponent.
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Figure 6. Log–log plot of the kinetic energy spectrum E(k) versus k/kd for (a) b = 0.35, Reλ = 79 (R1) and
(b) b = 0.13, Reλ = 110 (R3).
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Figure 7. Compensated plot of the kinetic energy spectrum highlighting the (a) −5/3 and (b) −3 scaling
ranges. Horizontal dashed line and the shaded region indicate the scaling range.

3.6. Scale-by-scale energy budget and flux
To lay bare the mechanism by which bubbly turbulence emerges we study the
scale-by-scale energy budget. Following Pope (2012) we define a low-pass-filtered velocity
field coarse-grained at scale � = 2π/K as

u<
K (x) ≡

∫
exp(iq · x)GK(q)û(q) dq, with GK(q) ≡ exp

(
− π2q2

24K2

)
. (3.4)

Note that Frisch (1997) and Pandey et al. (2020) use a sharp stepdown function as a
filter: GK(q) = 1 for | q |� K and zero otherwise. In contrast, we use a smooth Gaussian
filter (Pope 2012). In what follows, we use the symbol (·)<K to denote the filtering operation
(Frisch 1997). In real space, this corresponds to

u<
K (x)=

∫
G�(r)u(x − r) dr, with G�(r)=

(
6

π�2

)1/2

exp
(

−6r2

�2

)
and � ≡2π/K.

(3.5)

Using the filtered velocity field, we obtain the following scale-by-scale energy budget
equation from (2.1a,b):

ΠK + F σ
K = −DK + F g

K + F s
K . (3.6)
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Here F σ
K ≡ 〈

u<
K · (F σ )<K

〉
is the contribution from surface tension forces, F g

K ≡〈
u<

K · (F g)<K
〉

is the contribution from buoyancy and F s
K ≡ 〈

u<
K · (F s)<K

〉
is the

contribution due to large-scale forcing. To obtain the contribution from the nonlinear term
and viscous dissipation, following Eyink (1995), Borue & Orszag (1998) and Pope (2012),
we define a filtered version of the Reynolds stress tensor

Tαβ
K (x) ≡ (

uαuβ
)<

K − (
uα

)<

K

(
uβ

)<

K , (3.7)

the rate-of-strain tensor

Sαβ
K (x) ≡ 1

2

[(
∂αuβ

)<

K + (
∂βuα

)<

K

]
(3.8)

and the local nonlinear energy flux

πK(x) ≡ −Tαβ
K Sαβ

K . (3.9)

Using (3.4), (3.7), (3.8) and (3.9), we get the net nonlinear flux ΠK ≡ 〈πK〉, and the

viscous contribution to the budget DK ≡ 2ν
〈
Sαβ

K Sαβ
K

〉
which is always positive.

3.6.1. Scale-by-scale energy budget in the absence of bubbles (b = 0)
In this case buoyancy makes no contribution to the fluxes and (3.6) simplifies to

ΠK = −DK + F s
K . (3.10)

The plot in figure 8(a) shows the energy budget for b = 0 (Reλ = 110). Since the stirring
force is limited to small Fourier modes k � kinj, F s

K = εs is a constant for K > kinj.
The viscous contribution DK is significant only for very large K � kη. Hence, for
intermediate values of K in the inertial range (kinj < K < kη), the flux ΠK = F s

K remains
a constant. The four-fifths law of Kolmogorov and the Kolmogorov scaling, E(k) ∼ k−5/3,
are a consequence of this constancy of flux (e.g. Frisch 1997, § 6.2). Because of the
moderate Reλ = 110 used by us, the range of wavenumbers over which the flux is constant
is very small. A significant range of constant flux is observed in very-high-Reλ and
large-resolution DNS (Ishihara, Gotoh & Kaneda 2009).

3.6.2. Scale-by-scale budget in the absence of stirring (b = ∞)
Next, in figure 8(b) we study the other extreme, b = ∞. Stirring makes no contribution
here. Energy injection by buoyancy forces happens around the scale of the bubble
diameters and the flux due to buoyancy F g

K becomes almost a constant for K 	 kd. Hence
for K 	 kd we obtain

ΠK + F σ
K = −DK + F g

K, (3.11)

with F g
K approximately a constant. By taking a derivative of both sides of (3.11) with

respect to K at K = k we obtain

d(ΠK + F σ
K )

dK

∣∣∣∣
K=k

= νk2E(k). (3.12)

Our DNS shows that the net production ΠK + F σ
K ∼ log(K) (Lance & Bataille 1991;

Pandey et al. 2020). Although taking a derivative can enhance approximation errors, we
directly confirm the scaling relation in figure 9. Generalizing the argument of Lance &
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Figure 8. Scale-by-scale energy budget: plot of the energy flux ΠK , cumulative viscous dissipation DK , the
surface tension contribution F σ

K , the cumulative energy injected due to buoyancy F g
K and the energy injected

due to turbulent forcing F s
K for b = 0 (Reλ = 110) (a), b = ∞ (b), b = 0.35 (c) and b = 0.13 (d). The black

dashed line indicates log(K) scaling. In (a–d) we normalize the ordinate by the viscous dissipation εν . In (a,c,d)
we mark the injection wavenumbers by a shaded region.

Bataille (1991), if we now assume locality of net transfer then by dimensional analysis
d(ΠK + F σ

K )/dK |K=k∼ k−1 follows. Substituting in (3.12) we obtain E(k) ∼ k−3 – the
spectrum of pseudo-turbulence (Lance & Bataille 1991; Mercado et al. 2010; Prakash et al.
2016; Almeras et al. 2017; Bunner & Tryggvason 2002b; Roghair et al. 2011; Pandey et al.
2020; Ramadugu et al. 2020). Risso (2011) has shown that the same k−3 spectrum can be
obtained, under certain conditions, as a sum of localized random, statistically independent,
bursts, which comes from localized velocity disturbances caused by the bubbles.

3.6.3. Scale-by-scale budget in the presence of both bubbles and stirring
In figure 8(c,d) we plot the energy budget for the two intermediate cases with b = 0.35 and
b = 0.13. For K � kd both the buoyancy force and the surface tension contribute very
little to the flux. The viscous contribution is also very small as kd < kη, the dissipation
wavenumber. Let us also assume that there is a scale separation between the stirring scale,
kinj and kd, with kinj � kd. Then for range of scales kinj < K < kd the flux balance gives
ΠK = F s

K , equal to a constant. Consequently we obtain E(k) ∼ k−5/3 for kinj < k < kd.
Next we consider K 	 kd: the net contribution from both stirring and buoyancy forces
F s

K + F g
K is almost a constant, hence we again obtain (3.12). Our DNS shows that for

bubblance values of both b = 0.35 and 0.13, ΠK + F σ
K ∼ log(K) (see figure 9). Although

the individual contribution to the energy budget does depend on b, in particular, for
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Figure 9. Log–log plot of (K/kd)| d(F σ
K + ΠK)/dK| versus K/kd for different values of the bubblance

parameter b. Horizontal dashed lines represent K−1 scaling.

b = 0.13, ΠK is larger than F σ
K , but for b = 0.35, ΠK is smaller than F σ

K . Hence for
both of these cases we obtain E(k) ∼ k−3 for k > kd and E(k) ∼ k−5/3 for k < kd.

In Appendix C, we show that qualitatively similar results are obtained even when using
a sharp filter instead of a Gaussian filter.

3.6.4. Spatial distribution of the nonlinear energy flux πK(x)
For homogeneous and isotropic turbulence, for any K in the inertial range, the net nonlinear
flux ΠK is positive, i.e. on average energy flows from small to large K or from large to
small spatial scales. Kraichnan (1974) and Eyink (1995) argued that the local nonlinear
energy flux πK (3.9) satisfies the refined similarity hypothesis. Using DNS, Chen et al.
(2003) verified this and showed that the scaling exponents of the flux show multiscaling.
The multiscale analysis of the flux is also crucial to model subgrid-scale dissipation in
large-eddy simulations (Meneveau & Katz 2000).

To the best of our knowledge, the spatial distribution of local energy flux in bubbly
flows remains unexplored. How does the sign of this flux correlate with the bubbles? For
example, is the flux predominantly positive in the wake of a bubble? In the following
discussion, we address this question by performing a multiscale analysis of the local
nonlinear energy flux πK(x) with varying filtering scale � ∼ 1/K.

In figure 10, we show a typical snapshot from the run with no external stirring, b = ∞.
The position of the bubbles is shown by plotting the indicator function in figure 10(a–d).
In figure 10(e–l), we plot the local nonlinear flux πK . In each panel, we use four different
values for the filtering wavenumber K/kd = 0.6, 1.0, 1.4 and 2.2, from left to right. Note
that we use a Gaussian filter; therefore, a proper distinction between liquid and bubble
phase can be made only for K > kd. We make the following observations:

(i) In the front of the bubble, the energy is primarily transferred downscale, i.e. to scales
smaller than � ∼ 1/K.

(ii) Depending on the filtering scale, we observe both upscale and downscale transfer of
energy in the wake of the bubble. For large K (small �), downscale transfer of energy
dominates the wake region, but there are also regions of upscale transfer.

(iii) On reducing the filter wavenumber K (large �), we observe that the region of upscale
transfer is enhanced in the rear region of the bubble. For the smallest filtering
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Figure 10. Buoyancy-driven flow in the absence of stirring (b = ∞, R0). The pseudo-colour plot of the
filtered indicator function c (a–d) and the local nonlinear flux πK/ max(πkd ) (e–h) in the y = L/2 plane.
Constant-πK iso-surfaces for |πK | = 0.03 max(πkd ) in a slab L × 2d × L around the y = L/2 plane (i–l). The
filter wavenumber (scale) is increased (decreased) from left to right: K/kd = 0.6, 1.0, 1.4 and 2.2.

wavenumber K/kd = 0.6, the front–rear region of the bubble has a similar structure
but appears with opposite signs.

We can understand the fore–aft structure of the energy flux in the vicinity of a
bubble in a straightforward manner. Consider a Stokesian spherical bubble with the same
viscosity as ambient fluid rising in a quiescent flow; the stream function is given by the
Hadamard–Rybczynski solution (Hadamard 1911; Rybczynski 1911; Clift, Grace & Weber
1978):

Ψ (r, θ) = V0r2 sin2(θ)

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

1 − 5d
8r

+ d3

32r3

)
for r � d/2,

1
4

(
1 − 4r2

d2

)
for r < d/2.

(3.13)

The radial and angular components of the velocity field are ur = ∂θΨ/r2 sin(θ) and uθ =
−∂rΨ/r sin(θ). Using (3.13), we calculate the nonlinear flux πK and plot it in figure 11
for four different values of the filtering wavenumber K/kd = 0.6, 1.0, 1.4 and 2.2. There
is a downscale energy transfer in the front and an upscale energy transfer at the back side
of the bubble. Note that the net energy flux ΠK is zero for the Hadamard–Rybczynski
solution. Comparing figure 10 with figure 11, it seems that the spatial distribution of the
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Figure 11. The space-dependent nonlinear flux πK/ max(πkd ) in the y = L/2 plane for the
Hadamard–Rybczynski flow (3.13). The filter wavenumber (scale) is increased (decreased) from left to
right: K/kd = (a) 0.6, (b) 1.0, (c) 1.4 and (d) 2.2. The green line represents the bubble interface.

energy flux comprises a Hadamard–Rybczynski-like solution superimposed with turbulent
fluctuations generated in the wake region of a rising bubble. Thus our multiscale analysis
of the spatial energy flux provides direct evidence that the net forward energy flux in
figure 8(b) is due to the bubble wakes.

The situation is more complex in the presence of stirring, as now both the large-scale
forcing as well as the wake of the bubble creates complex spatio-temporal patterns for
πK(x) with regions of downscale and upscale transfer (see figure 12). In figure 13 we
plot the p.d.f. of πK(x) with K = kd for b = 0, b = 0.13 and b = ∞. For all the cases
we observe that the p.d.f. is positively skewed confirming a net positive flux of energy.
The skewness of the p.d.f. for b = 0 is nearly 1.3 times larger than that for b = ∞,
indicating the presence of stronger inverse energy transfers in buoyancy-driven bubbly
flows in comparison with homogeneous, isotropic turbulence. This is further verified by
noting that the skewness for b = 0.13, where both stirring and buoyancy-driven bubbles
generate turbulence, is smaller than the case with b = 0.

3.7. Total energy budget
Using (2.1a,b) we obtain the steady-state total energy budget equation as

εg + εs = εν, (3.14)

i.e. energy injected by buoyancy and stirring is dissipated by viscosity. Using table 1, (3.14)
is easily verified.

In this section, we study the contribution to the total budget from each of the phases.
The two phases are characterized by the indicator function c which takes value 1 in the
liquid phase, 0 inside the bubble and an intermediate value at the interface. In a DNS
of two-phase flows, usually the interface is diffused over 3–4 grid points. Thus, using c
to distinguish the phases implies that the interface region contributes to both the phases.
In order to avoid this conundrum, we construct a new indicator function c′ such that the
interface points are included inside the bubble. To construct c′ we first initialize it to be the
same as c. The points that lie closest to c′ = 1/2 contour are identified as bubble interface
points. For points where c′ < 1/2, c′ is set to zero and it is unity outside. Next we set c′ = 0
at all points that are within a distance of 0.16d from the interface points. This completes
the procedure of generating an inflated region around each bubble.

932 A19-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.942


Turbulence modulation in buoyancy-driven bubbly flows

1.0

0.8

0.6

0.4

0.2

0

0.2

0.1

0

–0.1

–0.2

(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

Figure 12. Buoyancy-driven flow in presence of stirring (b = 0.13, R3). The pseudo-colour plot of the
filtered indicator function c (a–d) and the local nonlinear flux πK/ max(πkd ) (e–h) in the y = L/2 plane.
Constant-πK iso-surfaces for |πK | = 0.03 max(πkd ) in a slab L × 2d × L around the y = L/2 plane (i–l). The
filter wavenumber (scale) is increased (decreased) from left to right: K/kd = 0.6, 1.0, 1.4 and 2.2.
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Figure 13. The p.d.f. of the scaled nonlinear flux πK/〈π2
K〉1/2 for different values of b, and with K = kd .
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Figure 14. Pseudo-colour plot of the local dissipation εν
loc in y = L/2 plane for (a) b = ∞ (run R0) and

(b) b = 0.13 (run R3). The black line represents the bubble interface (c = 0 contour) and the blue line indicates
the contour c′ = 0.

Henceforth we use the term bubble to indicate the regions where c′ = 0. Using c′ we
define the net injection and dissipation rates in the liquid as

εν
l = 2ν

〈
c′S : S

〉
, (3.15a)

ε
g
l = 〈

c′u · F g〉 , (3.15b)

εs
l = 〈

c′u · F s〉 . (3.15c)

The contribution from the bubble phase can be obtained by subtracting the contribution
from the liquid phase from the total. For instance, dissipation rate in the bubble phase is
εν

b = εν − εν
l .

In figure 14(a,b) we show the pseudo-colour plot of the local viscous dissipation
εν

loc(x) = 2νS : S. For the case with no stirring, b = ∞, the dissipation is strongly
concentrated inside and in the wake of the bubbles, whereas when stirring is present,
b = 0.13, strong dissipation is also observed in the liquid phase away from the bubbles.

In figure 15(a) we look at the balance between energy injection and dissipation in each
phase for the case of no stirring, b = ∞. In the liquid phase, viscous dissipation εν

l far
exceeds energy injected due to buoyancy ε

g
l , whereas in the bubble phase the situation is

reversed. Note that the overall viscous dissipation inside the bubble phase is larger than
the overall dissipation in the liquid phase.

We can now summarize the flow of energy completely for the case of no stirring, b = ∞.
Buoyancy force injects energy at the scale of the bubbles, largely in the gas phase. A large
fraction of this energy is dissipated within the bubble itself. The rest of it is transferred to
the liquid phase by bubble–liquid interaction. Both the nonlinear flux and the flux due to
the surface tension cascade this energy to smaller and smaller scales in the fluid. Energy
dissipation happens in both the gas and liquid phases starting from the scale of the bubble
down to the smallest scales.

We next plot the injection and dissipation rates obtained for different phases for the
case b = 0.13 in figure 15(b). Here, we find that dominant energy injection is due to the
stirring. This appears largely in the liquid phase. The net energy dissipated in the liquid
phase exceeds the energy injected by stirring due to the additional energy transfer from the
bubble phase to the liquid phase. In the bubble phase, energy is injected by the buoyancy
forces. Most of this energy is dissipated in the bubble phase, but as pointed out above, a
part of it is also transferred to the liquid phase.
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Figure 15. The dissipation and injection rates in the steady state evaluated in the liquid and bubble phases for
(a) b = ∞ (run R0) and (b) b = 0.13 (run R3). The ordinate in both panels is normalized by εν .

4. Conclusion

We conduct a DNS study of buoyancy-driven bubbly flow in the presence of large-scale
stirring. We investigate the statistical properties of the flow and compare our findings with
experiments. Our key results are summarized as follows.

(i) The rise velocity of a bubble in the suspension reduces and the liquid velocity
fluctuations are rendered isotropic on increasing the stirring intensity.

(ii) Consistent with experiments (Lance & Bataille 1991; Prakash et al. 2016),
we find the energy spectrum shows a Kolmogorov scaling for k � kd and a
pseudo-turbulence scaling – E(k) ∼ k−3 – for k 	 kd.

(iii) We rationalize the scaling observed in the energy spectrum by using a scale-by-scale
energy budget analysis. For k � kd, energy flux is the dominant energy transfer
mechanism although viscous dissipation is effective for all scales k < kd. The
balance of net production with viscous dissipation leads to the pseudo-turbulence
scaling for k 	 kd.

We want to emphasize that although we study turbulence modulation by weakly buoyant
bubbles, the statistical properties of the flow are in qualitative agreement with experiments
(Lance & Bataille 1991; Prakash et al. 2016; Salibindla et al. 2020). Therefore, we believe
that the energy transfer mechanisms discussed in our study should also apply to the
experimental scenario of high density and viscosity contrast; our previous study (Pandey
et al. 2020) already verified this in the absence of stirring.

However, we expect that the details of the wake structure in the vicinity of the bubble
would depend on the density and viscosity contrast. How relevant this is for the energy
transfer mechanism that we have proposed remains to be investigated. We hope that our
results will motivate further investigations in this direction.
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Appendix A. Boussinesq-approximated Navier–Stokes equations

In this appendix we derive the Boussinesq approximate equations (2.1a,b) starting from
the following multiphase Navier–Stokes equations (Pandey et al. 2020):

ρ(c)Dtu = ∇ · (μ(c)S) + f σ + f , (A1)

where the density field
ρ(c) = ρf c + ρb(1 − c), (A2)

the dynamic viscosity field μ(c) = μf c + μb(1 − c), ρf (μf ) is the density (viscosity) of
fluid phase, ρb (μb) is the density (viscosity) of the bubble phase, f σ is the surface tension
force, the external force f ≡ [ρ(c)a − ρ(c)a], a is the acceleration and in this appendix
(·) denotes spatial averaging. Note that as we work with periodic boundaries, our choice
of external force ensures that no net momentum is added to the flow.

We assume small density contrast (At � 1) and identical dynamical viscosity of the two
phases (μf /μb = 1). Thus we invoke the Boussinesq approximation, whereby ρ(c) on the
left-hand side of (A1) is replaced by the average density:

ρa ≡ ρ(c) = (ρf − ρb)ca + ρb ≈ (ρf + ρb)/2. (A3)

The above assumptions drastically simplify (A1) to give

Dtu = ν∇2u + F σ + F , (A4)

where F σ = f σ /ρa and F = f /ρa. The above equation is identical to the Boussinesq
equation (2.1a,b) that we use. Next we derive the buoyancy and the turbulent stirring force
in the Boussinesq regime.

Using the definitions (A2) and (A3) in F , we get

F =
[

1 − (ρf − ρb)ca

ρa

]
(a − ā) + (ρf − ρb)

ρa
(ca − ca). (A5)

When a = g, the first term on the right-hand side of (A5) is zero and we obtain the
buoyancy force

F g = (ρf − ρb)

ρa
(c − ca)g ≈ 2At(c − ca)g. (A6)

On the other hand for turbulence stirring, we use an acceleration field with ā = 0.
Therefore, (A5) simplifies to

F s =
[

1 − (ρf − ρb)ca

ρa

]
a + (ρf − ρb)

ρa
(ca − ca). (A7)

In the Boussinesq regime, (ρf − ρb)/ρa � 1 and we get F s = a to leading order, i.e. the
stirring force is applied irrespective of the phase or the indicator function. In the main text
we choose ρa = 1 everywhere.
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Figure 16. The kinetic energy spectra for R1 (a) and R3 (b) at resolutions N = 360, 512 and 720.
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Figure 17. Scale-by-scale energy budget: plot of the energy flux ΠK , cumulative viscous dissipation DK , the
surface tension contribution F σ

K , the cumulative energy injected due to buoyancy F g
K and the energy injected

due to turbulent forcing F s
K for (a) b = ∞ and (b) b = 0.13. In both the panels we normalize the ordinate by

the viscous dissipation εν .

Appendix B. Resolution test

To study grid convergence, we conduct DNS of turbulent bubbly flows for our runs R1 and
R3 with increasing grid resolution N = 360, 512 and 720. The plot of the energy spectrum
(figure 16) clearly shows that even with N = 360, the inertial range as well as the k−3

scaling of pseudo-turbulence are well captured. However, as expected, on increasing the
grid resolution, the range of k−3 scaling obtained due the balance of net production with
viscous dissipation extends. The departure from the k−3 scaling around k ≈ kmax is an
artifact of finite resolution.

Appendix C. Energy budget using sharp filter

We now present the result of the scale-by-scale energy budget analysis obtained using a
sharp low-pass filter instead of the Gaussian filter. The low-pass-filtered velocity field for
a sharp filter is defined as (Frisch 1997; Verma 2019; Pandey et al. 2020)

u<
K (x) =

∑
q�K

uq exp(iq · x). (C1)
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In figure 17(a) we show the scale-by-scale budget obtained for the case b = ∞ and in
figure 17(b) we plot the budget for b = 0.13. By comparing with figure 8, it is clear that
the choice of filtering does not qualitatively change the scale-by-scale energy budget. Our
observations are consistent with the recent finding of Alexakis & Chibbaro (2020) who
did a similar comparison for homogeneous, isotropic turbulence.
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