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This paper considers the nonlinear stability of travelling wavefronts of a time-delayed
diffusive Nicholson blowflies equation. We prove that, under a weighted L2 norm, if a
solution is sufficiently close to a travelling wave front initially, it converges
exponentially to the wavefront as t → ∞. The rate of convergence is also estimated.

1. Introduction and main results

Blowflies are an important parasite of the sheep industry in countries like Australia.
For the purposes of prevention, control and elimination, it is of interest to investigate
both temporal and spatial variations of the blowflies population using mathematical
models. Based on the experimental data of Nicholson [14, 15], Gurney et al . [5]
established a dynamical model, the Nicholson blowflies equation,

dN(t)
dt

+ dN(t) = pf(N(t− r)),

where N(t) denotes the total mature population of the blowflies at time t, d > 0 is
the death rate of the mature population, r > 0 is the maturation delay, the time
required for a newborn to become matured, p > 0 is the impact of the death on the
immature population and

f(N(t− r)) = N(t− r)e−aN(t−r)

is Nicholson’s birth function, where a > 0 is a constant. One can approximate the
spatial variability of blowflies by considering a nonlinear time-delayed reaction–
diffusion equation,

∂N(t, x)
∂t

− ∂2N(t, x)
∂x2 + dN(t, x) = pf(N(t− r, x)). (1.1)

So and Yang [23, 31] investigated (1.1) and established Hopf bifurcations for the
Neumann problem, and the stability of the steady-state solutions for the Dirichlet
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problem. So et al . [25] investigated Hopf bifurcations for the Dirichlet problem
of (1.1). So and Zou [24] proved the existence of travelling waves for (1.1).
Equation (1.1) admits two constant equilibria, N− = 0 and N+ = (1/a) ln(p/d).

If p > d, then N− < N+. We will always assume p > d for the rest of the paper.
A travelling wavefront connecting N− and N+ is a solution to (1.1) of the form
N(t, x) = φ(x + ct) with speed c > 0, and the front profile φ(ξ) satisfies φ′(ξ) > 0
and

cφ′(ξ)− φ′′(ξ) + dφ(ξ) = pf(φ(ξ − cr)), φ(±∞) = N±, (1.2)

where ξ = x + ct ∈ (−∞,+∞) and a prime indicates differentiation with respect
to ξ. So and Zou [24] proved the existence of travelling wave solutions to (1.1) with
monotone wave profile φ(ξ).

Proposition 1.1 (cf. [24]). Suppose 1 < p/d < e. Then there exists

0 < c∗ < 2
√
p− d

such that, for any c > c∗, there exists a monotone front travelling wave φ(x + ct)
for equation (1.1) connecting N±, with φ′(ξ) > 0 and 0 = N− < φ(ξ) < N+ for
ξ = x+ ct ∈ (−∞,∞).
In the present paper, we consider the Cauchy problem to (1.1) with initial con-

ditions
N(s, x) = N0(s, x), s ∈ [−r, 0], x ∈ R, (1.3)

that satisfies
N0(s, x) → N± for s ∈ [−r, 0] as x → ±∞.

We provide a stability analysis of travelling wave solutions to (1.1). More specifi-
cally, we prove that there exists a unique global solutionN(t, x) to the Cauchy prob-
lem (1.1) and (1.3), and N(t, x) → φ(x+ct) as t → ∞ provided N0(s, x)−φ(x+cs)
is sufficiently small in a weighted norm, for each s ∈ [−r, 0].
For reaction–diffusion equations without delay, stability of travelling waves has

been extensively studied in the literature (see, for example, [1, 2, 4, 8, 18–20, 28, 29]
and the references therein). There is also a survey paper of Xin [30] and a textbook
of Volpert et al . [26]. Sattinger [20] used the spectrum-analysis method to prove
the wave stability for the Fisher–KPP nonlinearity, when the initial perturbation
has an exponential decay. Stability of wavefronts with critical speeds was studied in
Kirchgässner [8] and Gallay [4]. For reaction–diffusion equations with time delays,
few results exist on the stability of travelling waves (see the interesting papers by
Schaaf [21], Ogiwara and Matano [16] and Smith and Zhao [22]). Schaaf [21] proved
linearized stability for Fisher–KPP nonlinearity by a spectral method. Smith and
Zhao [22] considered a ‘bi-stable’ nonlinearity of the form f(N) = N(1−N)(N − b)
(b ∈ (0, 1)), and proved a global stability result for the travelling wave solution.
The methods used in [21,22] do not apply to the nonlinearity in (1.1), because our
N− = 0 is an ‘unstable node’. Here we adopt a weighted energy method in our
stability analysis of wave front solutions to (1.1).
For a travelling wavefront φ(x + ct) with speed c > 2

√
p− d > c∗, we define a

weight function

w(x) =

{
e−α(x−x∗−cr) for x � x∗ + cr,

1 for x > x∗ + cr,
(1.4)
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where

α = η0c, η0 =
c2 + 4(p− d)

2c2
>
1
2
, (1.5)

and x∗ is determined by

d

p
= [1− aφ(x∗)]e−aφ(x∗). (1.6)

The existence and uniqueness of such a number x∗ is given in lemma 3.5 below. It
is also easy to get 0 < η0 < 1, since c > 2

√
p− d.

For an interval I ⊂ R, let L2(I) denote the space of square-integrable functions
on I, and Hk(I) (k � 0) the Sobolev space of L2 functions f(x) defined on I whose
derivatives ∂i

xf , i = 1, . . . , k, also belong to L2(I). Let L2
w(I) be the weighted

L2 space with weight w(x) > 0 and norm

‖f‖L2
w
=

(∫
I

w(x)f(x)2 dx
)1/2

,

and Hk
w(I) be the weighted Sobolev space with norm

‖f‖Hk
w
=

( k∑
j=0

∫
I

w(x)|∂j
xf(x)|2 dx

)1/2

.

For T > 0 and a Banach space B, we denote by C0([0, T ];B) the space of B-
valued continuous functions on [0, T ], and by L2([0, T ];B) the space of B-valued
L2 functions on [0, T ]. The corresponding spaces of B-valued functions on [0,∞)
are defined similarly.
Our main results are stated in the following.

Theorem 1.2 (global existence and uniqueness). Suppose that N0(s, x) � 0 and is
continuous for (s, x) ∈ [−r, 0]×R. For a given travelling wave solution φ(x+ ct), if
N0(s, x)−φ(x+ cs) ∈ C0([−r, 0];H1(R)), then there exists a unique global solution
N(t, x) of the Cauchy problem (1.1) and (1.3) such that N(t, x) − φ(x + ct) ∈
C0([0,+∞);H1(R)) and N(t, x) � 0 in (0,∞)× R.

Theorem 1.3 (stability). For a given travelling wave solution φ(x+ct) with speed c
satisfying

c > 2
√
p− d, (1.7)

if N0(s, x) − φ(x + cs) ∈ C0([−r, 0];H1
w(R)), where w(x) is the weight function

given in (1.4), then there exist positive constants δ0 = δ0(d, p, φ(x∗ + cr)) and
µ = µ(d, p, φ(x∗+cr)) such that, when ‖N0(s, ·)− φ(·+ cs)‖H1

w
� δ0 for s ∈ [−r, 0],

the unique solution N(t, x) of the Cauchy problem (1.1) and (1.3) satisfies

N(t, x)− φ(x+ ct) ∈ C0([0,∞);H1
w(R)) ∩ L2([0,∞);H2

w(R))

and
sup
x∈R

|N(t, x)− φ(x+ ct)| � Ce−µt, 0 � t � ∞. (1.8)
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Noting the weight w(x) given in (1.4) and (1.5), we recognize from theorem 1.3
that, as the sufficient condition, the initial perturbation must converge to 0 in the
form

|u0(x, s)− φ(x− cr)| ∼ e−η0c|x|/2, η0 >
1
2 , as x → −∞.

Comparing this with the sufficient condition for the initial data by Sattinger in [20]
for the Fisher–KPP equation

|u0(x)− φ(x)| ∼ e−c|x|/2 as x → −∞,

our condition is much weaker.
Furthermore, we can improve the stability in theorem 1.3 by allowing the initial

perturbation to satisfy

|u0(x, s)− φ(x− cr)| ∼ e−c|x|/4 as x → −∞,

if the coefficients p, d and r satisfy

4p[1− e−r(p−d)] > 5(p− d). (1.9)

Theorem 1.4 (improved stability). Let the weight function be as follows,

w2(x) =

{
e−c(x−x∗−cr)/2 for x � x∗ + cr,

1 for x > x∗ + cr,
(1.10)

and suppose that (1.9) holds. For a given travelling wave solution φ(x + ct) with
speed c satisfying (1.7), if N0(s, x)− φ(x+ cs) ∈ C0([−r, 0];H1

w2
(R)), then there

exist positive constants δ2 = δ2(d, p, φ(x∗ + cr)) and µ2 = µ2(d, p, φ(x∗ + cr)) such
that, when ‖N0(s, ·)− φ(·+ cs)‖H1

w2
� δ2 for s ∈ [−r, 0], the unique solution N(t, x)

of the Cauchy problem (1.1) and (1.3) satisfies

N(t, x)− φ(x+ ct) ∈ C0([0,∞);H1
w2
(R)) ∩ L2([0,∞);H2

w2
(R))

and
sup
x∈R

|N(t, x)− φ(x+ ct)| � Ce−µ2t, 0 � t � ∞. (1.11)

In § 2, we prove theorem 1.2, the global existence and uniqueness of solutions
to the Cauchy problem (1.1) and (1.3). In § 3, we prove theorems 1.3 and 1.4, the
stability of travelling wave solutions.

2. Global existence and uniqueness

The method used in the proof of theorem 1.2 is standard (see, for example, [27]).
We only outline the important steps. First we establish the non-negativity of all
global solutions.

Theorem 2.1. Let N(t, x) be the solution of (1.1) and (1.3) in (0,∞) × R. If
N0(s, x) � 0 holds in [−r, 0]× R, then N(t, x) � 0 holds in (0,∞)× R.
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Proof. For t ∈ [0, r], we have
f(N(t− r, x)) = N(t− r, x)e−aN(t−r,x) = N0(t− r, x)e−aN0(t−r,x) � 0.

Thus N(t, x) satisfies the differential inequality

Nt −Nxx + dN = pN(t− r, x)e−aN(t−r,x) � 0, t ∈ [0, r].
Applying the standard comparison principle for linear parabolic equations, we have
N(t, x) � 0 on [0, r]. The proof is completed by repeating this procedure to each of
the intervals [nr, (n+ 1)r], n = 1, 2, . . . .

Let
u(t, x) = N(t, x)− φ(x+ ct),

where φ(x+ ct) is a given travelling wave solution. Then the Cauchy problem (1.1)
and (1.3) can be rewritten as

ut(t, x)− uxx(t, x) + du(t, x) = pG(t− r, x), (t, x) ∈ R+ × R,

u(s, x) = N0(s, x)− φ(x+ cs) =: u0(s, x), (s, x) ∈ [−r, 0]× R,

}
(2.1)

where

G(t− r, x) = f(u(t− r, x) + φ(x+ ct− cr))− f(φ(x+ ct− cr)).

We have the following result.

Theorem 2.2. Under the assumptions of theorem 1.2, there exists a unique global
solution u(t, x) of the Cauchy problem (2.1) such that u(t, x) ∈ C0([0,∞);H1(R)).

Theorem 1.2 follows immediately from theorems 2.1 and 2.2. The rest of this
section is devoted to the proof of theorem 2.2. The following result on the local
existence, uniqueness and extension of solutions is standard. It can be proved using
the standard iteration method (cf. [3, 6, 9, 17]). The proof is omitted.

Proposition 2.3 (local existence and uniqueness). Given u0(s, x) ∈ C0([−r, 0];
H1(R)), there exists t0 > 0 such that problem (2.1) has a unique solution u(t, x) ∈
C0([0, t0);H1(R)). Furthermore, let [0, T ) be its maximal interval of existence and
u(t, x) ∈ C0([0, T0);H1(R)). Then either T0 = +∞ or T0 < +∞, and in the latter
case limt→T −

0
‖u(t, ·)‖H1(R) = ∞.

Proposition 2.4 (boundedness). Let u(t, x) be a solution in C0([0, T );H1(R)) for
0 < T < ∞. Then there exists positive constant C0, independent of T , such that

‖u(t)‖2
H1 � C0

(
‖u0(0)‖2

H1 +
∫ 0

−r

‖u0(s)‖2
H1 ds

)
e(p

2/2d)t, 0 � t < T. (2.2)

Proof. Multiplying (2.1) by 2u(t, x) and integrating over [0, t] × R, t ∈ [0, T ), we
have

‖u(t)‖2
L2 + 2

∫ t

0
‖ux(s)‖2

L2 ds+ 2d
∫ t

0
‖u(s)‖2

L2 ds

= ‖u0(0)‖2
L2 + 2p

∫ t

0

∫ ∞

−∞
G(s− r, x)u(s, x) dxds, t ∈ [0, T ). (2.3)
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By the mean-value theorem, there exists a function, ū(t, x), between φ(x+ ct) and
N(t, x) = φ(x+ ct) + u(t, x), such that

|G| = |f(u+ φ)− f(φ)| = |f(N)− f(φ)| = |f ′(ū)(N − φ)| = |f ′(ū)u|. (2.4)

Since φ � 0 (by proposition 1.1) and N � 0 (by theorem 2.1), we have ū � 0. Thus

|f ′(ū)| = |(1− aū)e−aū| � 1 for all ū ∈ (0,∞).
Combining this with (2.4) leads to

|G(s, x)| � |u(s, x)|. (2.5)

We can use (2.5) and the Cauchy–Schwarz inequality, ab � εa2+(1/4ε)b2 for ε > 0,
to estimate the last term of (2.3) as follows:

2p
∫ t

0

∫ ∞

−∞
G(s− r, x)u(s, x) dxds � 2p

∫ t

0

∫ ∞

−∞
|u(s− r, x)u(s, x)|dxds

� 2p
∫ t

0

∫ ∞

−∞

[
εu(s, x)2 +

1
4ε
u(s− r, x)2

]
dxds

= 2pε
∫ t

0
‖u(s)‖2

L2 ds+
p

2ε

∫ t

0
‖u(s− r)‖2

L2 ds.

(2.6)

The last term of (2.6) can be estimated as follows:

p

2ε

∫ t

0
‖u(s− r)‖2

L2 ds =
p

2ε

∫ t−r

−r

‖u(s)‖2
L2 ds

� p

2ε

∫ 0

−r

‖u0(s)‖2
L2 ds+

p

2ε

∫ t

0
‖u(s)‖2

L2 ds. (2.7)

Substituting (2.7) into (2.6) and letting ε = d/p yield

2p
∫ t

0

∫ ∞

−∞
G(s− r, x)u(s, x) dxds

� 2d
∫ t

0
‖u(s)‖2

L2 ds+
p2

2d

∫ 0

−r

‖u0(s)‖2
L2 ds+

p2

2d

∫ t

0
‖u(s)‖2

L2 ds. (2.8)

Substituting (2.8) into (2.3), we obtain

‖u(t)‖2
L2 + 2

∫ t

0
‖ux(s)‖2

L2 ds

� ‖u0(0)‖2
L2 +

p2

2d

∫ 0

−r

‖u0(s)‖2
L2 ds+

p2

2d

∫ t

0
‖u(s)‖2

L2 ds, t ∈ [0, T ). (2.9)

Applying Gronwall’s inequality to (2.9), we have

‖u(t)‖2
L2 �

(
‖u0(0)‖2

L2 +
p2

2d

∫ 0

−r

‖u0(s)‖2
L2 ds

)
e(p

2/2d)t, t ∈ [0, T ). (2.10)
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Similarly, we can prove that

‖ux(t)‖2
L2 � C1

(
‖u0(0)‖2

H1 +
∫ 0

−r

‖u0(s)‖2
H1 ds

)
e(p

2/2d)t, t ∈ [0, T ), (2.11)

for some positive constant C1 > 0. Relations (2.10) and (2.11) lead to (2.2).

Theorem 2.2 now follows from propositions 2.3 and 2.2.

3. Stability of travelling waves

In this section, we prove theorem 1.3 by using a weighted energy method. The proof
of theorem 1.4 is similar to that of theorem 1.3, we shall omit the details, and only
give the key lemma 3.6. Let N(t, x) be the solution of the Cauchy problem (1.1)
and (1.3), and let φ(x+ ct) be a travelling wave solution to (1.1). Set

v(t, ξ) = N(t, x)− φ(ξ), ξ = x+ ct.

The original problem (1.1) and (1.3) can be reformulated as

vt(t, ξ) + cvξ(t, ξ)− vξξ(t, ξ) + dv(t, ξ)
− pf ′(φ(ξ − cr))v(t− r, ξ − cr) = pQ(t− r, ξ − cr),

(t, ξ) ∈ R+ × R,

v(s, ξ) = N0(s, ξ)− φ(ξ − cs) =: v0(s, ξ), (s, ξ) ∈ [−r, 0]× R.




(3.1)

The nonlinear term Q(t− r, ξ − cr) is

Q(t− r, ξ − cr) = f(φ+ v)− f(φ)− f ′(φ)v, (3.2)

where φ = φ(ξ − cr) and v = v(t − r, ξ − cr). Theorem 1.3 is equivalent to the
following result.

Theorem 3.1. For a given travelling wave φ(ξ) (ξ = x + ct) with speed c sat-
isfying (1.7), if v0(s, ξ) ∈ C0([−r, 0];H1

w(R)), where w(ξ) is the weight function
defined in (1.4), then there exist positive constants δ0 = δ0(d, p, φ(x∗ + cr)) and
µ = µ(d, p, φ(x∗ + cr)) such that, when sups∈[−r,0] ‖v0(s)‖H1

w
� δ0, the solution

v(t, ξ) of the Cauchy problem (3.1) satisfies

v(t, ξ) ∈ C0([0,∞);H1
w(R)) ∩ L2([0,∞);H2

w(R))

and
sup
ξ∈R

|v(t, ξ)| � Ce−µt, 0 � t � ∞. (3.3)

For τ � 0 and T > 0, define

X(τ−r, T+τ) = {v | v(t, ξ) ∈ C0([τ−r, T+τ ];H1
w(R))∩L2([τ−r, T+τ ];H2

w(R))}
and

Mτ (T ) := sup
t∈[τ−r,T+τ ]

‖v(t)‖H1
w
.

When τ = 0, we write M(T ) =M0(T ). The following local estimate can be derived
by an elementary energy method. We omit the proof.
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Proposition 3.2 (local estimate). Consider the Cauchy problem with the initial
time τ � 0,

vt(t, ξ) + cvξ(t, ξ)− vξξ(t, ξ) + dv(t, ξ)
− pf ′(φ(ξ − cr))v(t− r, ξ − cr) = pQ(t− r, ξ − cr),

(t, ξ) ∈ [τ,∞)× R,

v(s, ξ) = N0(s, ξ)− φ(ξ − cs) =: vτ (s, ξ), (s, ξ) ∈ [τ − r, τ ]× R.




(3.4)

If vτ (s, ξ) ∈ H1
w and Mτ (0) � δ1 for δ1 > 0, then there exists t0 = t0(δ1) > 0 such

that v(t, ξ) ∈ X(τ − r, τ + t0) and Mτ (t0) �
√
2(1 + r)Mτ (0).

Next, we state a result on a priori estimate.

Proposition 3.3 (a priori estimate). Let v(t, ξ) ∈ X(−r, T ) be a local solution
of (3.1) for a given constant T > 0. Then there exist positive constants δ2, µ and
C2 > 1, independent of T , such that M(T ) � δ2 implies

‖v(t)‖2
H1

w
+ 2(1− η0)

∫ t

0
‖v(s)‖2

H2
w
ds+ 2µ

∫ t

0
‖v(s)‖2

H1
w
ds

� C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v(s)‖2
H1

w
ds

)
for 0 � t � T (3.5)

and

‖v(t)‖2
H1

w
� C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)
e−2µt, 0 � t � T, (3.6)

where 0 < η0 < 1 is given in (1.5).

The proof of proposition 3.3 will be given in the last part of this section. Based on
propositions 3.2 and 3.3, we can prove theorem 3.1 using a continuation argument
(cf. [7, 10–13]).

Proof of theorem 3.1. Let δ2, µ and C2 be constants in proposition 3.3, independent
of T . Set

δ1 = δ2, δ0 =
δ2√

2(1 + r)
(3.7)

and
M(0) � δ0. (3.8)

By proposition 3.2, there exists t0 = t0(δ1) > 0 such that v(t, x) ∈ X(−r, t0) and
M(t0) �

√
2(1 + r)M(0) �

√
2(1 + r)δ0 � δ2.

On the interval [0, t0], applying proposition 3.3, we obtain (3.6) for t ∈ [0, t0], and

sup
t∈[0,t0]

‖v(t)‖H1
w

� sup
t∈[0,t0]

{
C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)}1/2

e−µt

�
√
C2(1 + r)M(0) �

√
C2(1 + r)δ0 � δ2√

2(1 + r)
. (3.9)

https://doi.org/10.1017/S0308210500003358 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003358


Stability of travelling waves for Nicholson’s equation 587

Now consider the Cauchy problem (3.4) at the initial time τ = t0. Using (3.8), (3.9)
and (3.7), we obtain

Mt0(0) = sup
s∈[t0−r,t0]

‖v(s)‖H1
w

� max
{
sup

s∈[−r,0]
‖v(s)‖H1

w
, sup
s∈[0,t0]

‖v(s)‖H1
w

}

� max
{
M(0),

δ2√
2(1 + r)

}

� δ1. (3.10)

Applying proposition 3.2 once more, we can show that v(t, x) ∈ X(−r, 2t0) and
Mt0(t0) �

√
2(1 + r)Mt0(0). On the other hand,

Mt0(0) = sup
t∈[t0−r,t0]

‖v(s)‖H1
w

� max
{
sup

s∈[−r,0]
‖v(s)‖H1

w
, sup
s∈[0,t0]

‖v(s)‖H1
w

}

� max
{
δ0,

δ2√
2(1 + r)

}

� δ2√
2(1 + r)

, (3.11)

we have
Mt0(t0) �

√
2(1 + r)Mt0(0) � δ2.

Therefore,

M(2t0) = sup
s∈[−r,2t0]

‖v(s)‖H1
w

� max
{
sup

s∈[−r,0]
‖v(s)‖H1

w
, sup
s∈[0,t0−r]

‖v(s)‖H1
w
, sup
s∈[t0−r,2t0]

‖v(s)‖H1
w

}

� max
{
δ0,

δ2√
2(1 + r)

, δ2

}

� δ2. (3.12)

We can apply proposition 3.3 to obtain (3.6) for 0 � t � 2t0 and

sup
t∈[0,2t0]

‖v(t)‖H1
w

� sup
t∈[0,2t0]

{
C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)}1/2

e−µt

�
√
C2(1 + r)M(0) �

√
C2(1 + r)δ0 � δ2√

2(1 + r)
. (3.13)

Repeating the preceding procedure, we can prove v(t, x) ∈ X(−r,∞) and the rela-
tion (3.6) for all 0 � t < ∞. Also (3.3) follows immediately from (3.6). This
completes the proof of theorem 3.1.

To prove proposition 3.3, we first give two lemmas.
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Lemma 3.4. For the travelling wave solution φ(x+ct) with speed c > 2
√
p− d, there

exists a unique number x∗ ∈ (−∞,∞) such that (1.6) holds, namely,

d

p
= f ′(φ(x∗)). (3.14)

Furthermore,

µ0 := min{ 1
4 (c

2 − 4(p− d)), d− pf ′(φ(x∗ + cr))} > 0. (3.15)

Proof. Since f ′(z) = (1− az)e−az � 0 is strictly decreasing on [0, 1/a] and

0 = N− < N+ =
1
a
ln
p

d
<
1
a

due to 1 < p/d < e (see the assumptions in proposition 1.1), we know that f ′(z) > 0
is strictly decreasing on [N−, N+]. On the other hand, f ′(N−) = 1 > d/p and

0 < f ′(N+) =
(
1− ln p

d

)
d

p
<
d

p
.

Therefore, d/p ∈ (f ′(N+), f ′(N−)) and there exists a unique φ∗ ∈ (N−, N+)
such that f ′(φ∗) = d/p. By the strict monotonicity of φ(ξ), there exists a unique
x∗ ∈ (−∞,∞) such that φ(x∗) = φ∗ and f ′(φ(x∗)) = d/p.
To prove equation (3.15), we note that the assumption c > 2

√
p− d implies

1
4 (c

2 − 4(p− d)) > 0. Relation (3.14), together with the fact that f ′(φ(ξ)) is strictly
decreasing, implies that d− pf ′(φ(x∗ + cr)) > d− pf ′(φ(x∗)) = 0.

Now we are going to prove the following lemma, which plays a key role in the
proof of the a priori estimates.

Lemma 3.5. Let w(ξ) be the weight function as defined in (1.4)–(1.6) and let

Bη0(ξ) := −cw
′(ξ)
w(ξ)

− 1
2η0

(
w′(ξ)
w(ξ)

)2

+ 2d− pf ′(φ(ξ − cr))− p
w(ξ + cr)
w(ξ)

f ′(φ(ξ)).

(3.16)
Then

Bη0(ξ) � µ0 for all ξ ∈ R, (3.17)

where µ0 is given in (3.15).

Proof. We consider the following cases.

Case 1 (ξ � x∗). In this case,

w(ξ) = e−α(ξ−x∗−cr) and w(ξ + cr) = e−α(ξ−x∗).

Note that f ′(φ(ξ)) is strictly decreasing for ξ ∈ (−∞,∞), so that

0 <
p

d

(
1− ln p

d

)
= f ′(N+) < f ′(φ(ξ)) < f ′(φ(ξ − cr)) < f ′(N−) = 1.
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From (1.5), (1.6) and (3.15) for the definitions of α, η0 and µ0, we obtain

Bη0(ξ) = cα− 1
2η0

α2 + 2d− pf ′(φ(ξ − cr))− pe−αcrf ′(φ(ξ))

> cα− 1
2η0

α2 + 2d− p− pe−αcr > cα− 1
2η0

α2 + 2(d− p)

= 1
4 (c

2 − 4(p− d)) � µ0. (3.18)

Case 2 (x∗ < ξ � x∗ + cr). In this case, w(ξ) = e−α(ξ−x∗−cr) and w(ξ + cr) = 1.
Thus

Bη0(ξ) = cα− 1
2η0

α2 + 2d− pf ′(φ(ξ − cr))− peα(ξ−x∗−cr)f ′(φ(ξ))

> cα− 1
2η0

α2 + 2d− p− peα(ξ−x∗−cr)

� cα− 1
2η0

α2 + 2(d− p) � µ0. (3.19)

Case 3 (ξ > x∗ + cr). In this case, w(ξ) = w(ξ + cr) = 1. Since 0 < f ′(φ(ξ)) <
f ′(φ(x∗ + cr)) and 0 < f ′(φ(ξ − cr)) < f ′(φ(x∗)) = d/p, we have

Bη0(ξ) = 2d− pf ′(φ(ξ − cr))− pf ′(φ(ξ))
> 2d− pf ′(φ(x∗))− pf ′(φ(x∗ + cr))
= d− pf ′(φ(x∗ + cr)) � µ0. (3.20)

Relation (3.17) follows from (3.18)–(3.20), and the proof is complete.

The next key lemma is for the proof of theorem 1.4.

Lemma 3.6. Let (1.9) hold and w2(ξ) be the weight function as defined in (1.10),
and let

Bη2(ξ) := −cw2
′(ξ)

w2(ξ)
− 1
2η0

(
w2

′(ξ)
w2(ξ)

)2

+ 2d− pf ′(φ(ξ − cr))− p
w2(ξ + cr)
w2(ξ)

f ′(φ(ξ)),

(3.21)
where η2 is a constant satisfying

0 <
c2

4c2 − 16(p− d) + 8p(1− e−c2r/2)
< η2 < 1. (3.22)

Then
Bη2(ξ) � µ3 for all ξ ∈ R, (3.23)

where

µ3 := min
{

1
2c

2− 1
8η2

c2−2(p−d)+p(1−e−c2r/2), d−pf ′(φ(x∗+cr))
}
> 0. (3.24)

The proof of this lemma is omitted, because it can be obtained in the similar
way of lemma 3.5.
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Proof of proposition 3.3. Let w(ξ) be a weight function to be specified later. Mul-
tiplying (3.1) by w(ξ)v(t, ξ), we have

{ 1
2wv

2}t + { 1
2cwv

2 − wvvξ}ξ + wv2
ξ + w′vξv

+
{

− 1
2c
w′

w
+ d

}
wv2 − pwvf ′(φ(ξ − cr))v(t− r, ξ − cr)

= pwvQ(t− r, ξ − cr), (3.25)

where w = w(ξ), v = v(t, ξ). Using the Cauchy–Schwarz inequality, we obtain

|w′(ξ)vξ(t, ξ)v(t, ξ)| � ηwv2
ξ +

1
4η

(
w′

w

)2

wv2

for any η > 0. Substituting it into (3.25) and integrating the resulting inequality
over [0, t]× R, we obtain

‖v(t)‖2
L2

w
+ 2(1− η)

∫ t

0
‖vξ(s)‖2

L2
w
ds

+
∫ t

0

∫
R

{
−cw

′(ξ)
w(ξ)

+ 2d− 1
2η

(
w′(ξ)
w(ξ)

)2}
w(ξ)v(s, ξ)2 dξds

− 2p
∫ t

0

∫ ∞

−∞
f ′(φ(ξ − cr))w(ξ)v(s, ξ)v(s− r, ξ − cr) dξds

� ‖v0(0)‖2
L2

w
+ 2p

∫ t

0

∫ ∞

−∞
w(ξ)v(s, ξ)Q(s− r, ξ − cr) dξds.

(3.26)

Using the Cauchy–Schwarz inequality and the fact f ′(φ(ξ − cr)) > 0 for all ξ ∈ R
(see the proof of lemma 3.5), and making the change of variables ξ − cr → ξ,
s− r → s, we can bound the delay term on the left-hand side of (3.26) by

2p
∣∣∣∣
∫ t

0

∫ ∞

−∞
w(ξ)f ′(φ(ξ − cr))v(s− r, ξ − cr)v(s, ξ) dξds

∣∣∣∣
� p

∫ t

0

∫ ∞

−∞
w(ξ)f ′(φ(ξ − cr))[v2(s, ξ) + v2(s− r, ξ − cr)] dξds

= p

∫ t

0

∫ ∞

−∞
w(ξ)f ′(φ(ξ − cr))v2(s, ξ) dξds

+ p

∫ t−r

−r

∫ ∞

−∞
w(ξ + cr)f ′(φ(ξ))v2(s, ξ) dξds

� p

∫ t

0

∫ ∞

−∞
w(ξ)f ′(φ(ξ − cr))v2(s, ξ) dξds

+ p

∫ t

0

∫ ∞

−∞
w(ξ + cr)f ′(φ(ξ))v2(s, ξ) dξds

+ p

∫ 0

−r

∫ ∞

−∞
w(ξ + cr)f ′(φ(ξ))v2

0(s, ξ) dξds. (3.27)
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Substituting (3.27) into (3.26) yields

‖v(t)‖2
L2

w
+ 2(1− η)

∫ t

0
‖vξ(s)‖2

L2
w
ds+

∫ t

0

∫ ∞

−∞
Bη(ξ)w(ξ)v2(s, ξ) dξds

� ‖v0(0)‖2
L2

w
+ p

∫ 0

−r

∫ ∞

−∞
w(ξ + cr)f ′(φ(ξ))v2

0(s, ξ) dξds

+ 2
∫ t

0

∫ ∞

−∞
w(ξ)v(s, ξ)Q(s− r, ξ − cr) dξds, (3.28)

where

Bη(ξ) := −cw
′(ξ)
w(ξ)

− 1
2η

(
w′(ξ)
w(ξ)

)2

+2d−pf ′(φ(ξ−cr))−p
w(ξ + cr)
w(ξ)

f ′(φ(ξ)). (3.29)

We select a suitable weight function w(ξ) for a given 0 < η < 1 so that Bη(ξ) > 0
for all ξ ∈ R. Set

η = η0 =
c2 + 4(p− d)

2c2

and

w(ξ) =

{
e−α(ξ−x∗−cr), x � x∗ + cr,

1, x > x∗ + cr.

Then, according to lemma 3.5,

Bη0(ξ) � µ0 > 0 (3.30)

for the positive constant µ0 defined in (3.15).
Next, we estimate the nonlinear term on the right-hand side of (3.28). By using

the standard Sobolev embedding inequality H1(R) ↪→ C0(R), and the modified
inequality H1

w(R) ↪→ H1(R) for w(ξ) given in (1.4) (the proof can be similarly
given as in [12]), we first have

|v(t, ξ)| � sup
ξ∈R

|v(t, ξ)| � C‖v(t, ·)‖H1

� C‖v(t, ·)‖H1
w

� CM(t). (3.31)

Then, applying Taylor’s formula to (3.2) to get

|Q(t− r, ξ − cr)| ∼ C|v(t− r, ξ − cr)|2,
and noting w(ξ+cr)/w(ξ) � C for all ξ ∈ R, as in the above estimate for the linear
delay term, we finally have∫ t

0

∫ ∞

−∞
w(ξ)v(s, ξ)Q(s− r, ξ − cr) dξds

� CM(t)
∫ t

0

∫ ∞

−∞
w(ξ)|v(s− r, ξ − cr)|2 dξds

= CM(t)
∫ t−r

−r

∫ ∞

−∞
w(ξ + cr)|v(s, ξ)|2 dξds
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� CM(t)
{∫ t

0

∫ ∞

−∞

w(ξ + cr)
w(ξ)

w(ξ)|v(s, ξ)|2 dξds

+
∫ 0

−r

∫ ∞

−∞

w(ξ + cr)
w(ξ)

w(ξ)|v0(s, ξ)|2 dξds
}

� CM(t)
{∫ t

0
‖v(s)‖2

L2
w
ds+

∫ 0

−r

‖v0(s)‖2
L2

w
ds

}
. (3.32)

Substituting (3.30) and (3.32) into (3.28), we have

‖v(t)‖2
L2

w
+ 2(1− η0)

∫ t

0
‖vξ(s)‖2

L2
w
ds+ [µ0 − C3M(t)]

∫ t

0
‖v(s)‖2

L2
w
ds

� ‖v0(0)‖2
L2

w
+ C4[1 +M(t)]

∫ 0

−r

‖v0(s)‖2
L2

w
ds (3.33)

for some constants C3 > 0 and C4 > 0.
Let δ2 be such that

µ0 − C3δ2 > 0, i.e. δ2 < µ0/C3. (3.34)

Clearly, δ2 can be chosen so that it depends only on c, p, d and φ(x∗ + cr), since

µ0 = µ0(c, d, p, φ(x∗ + cr))

(see (3.15)). Define

µ := 1
2 (µ0 − C3δ2). (3.35)

When M(T ) � δ2, we have

µ0 − C3M(T ) � µ0 − C3δ2 = 2µ

and

‖v(t)‖2
L2

w
+ 2(1− η0)

∫ t

0
‖vξ(s)‖2

L2
w
ds+ 2µ

∫ t

0
‖v(s)‖2

L2
w
ds

� ‖v0(0)‖2
L2

w
+ C

∫ 0

−r

‖v0(s)‖2
L2

w
ds. (3.36)

Similarly, by differentiating equation (3.1) with respect to ξ, multiplying the result
by w(ξ)vξ(t, ξ) and then integrating over [0, t]× R for t � T , we obtain (using the
basic energy estimate (3.36))

‖vξ(t)‖2
L2

w
+ 2(1− η0)

∫ t

0
‖vξξ(s)‖2

L2
w
ds+ 2µ

∫ t

0
‖vξ(s)‖2

L2
w
ds

� C

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)
, (3.37)
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provided M(T ) � δ2. The details are omitted. Combining (3.36) and (3.37), we
have

‖v(t)‖2
H1

w
+ 2(1− η0)

∫ t

0
‖vξξ(s)‖2

L2
w
ds+ 2µ

∫ t

0
‖v(s)‖2

H1
w
ds

� C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)
, 0 � t � T,

(3.38)

for some absolute constant C2 > 0, independent of T and v(t, x). By Gronwall’s
inequality, we have

‖v(t)‖2
H1

w
� C2

(
‖v0(0)‖2

H1
w
+

∫ 0

−r

‖v0(s)‖2
H1

w
ds

)
e−2µt, 0 � t � T.

The proof is complete.
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