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Parametrization of irreversible diapycnal
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We employ direct numerical simulations of salt fingering engendered turbulent mixing
to derive a parameterization scheme for the representation of this physical process in
low-resolution ocean models and compare the results with those previously suggested on
empirical grounds. In this analysis we differentiate between the reversible and irreversible
contributions to diapycnal diffusivity associated with the turbulence generated by this
mechanism. The necessity of such a distinction has been clearly recognized in connection
with shear-driven density stratified turbulence processes: only irreversible processes can
contribute to the effective turbulent diapycnal diffusivity. We expand the formalism herein
to the more complicated salt-fingering case as a first step towards analysis of the general
case. The irreversible fluxes are determined in the case of salt fingering related turbulence
by examining high-resolution direct numerical simulation (DNS)-derived turbulence data
sets based upon two different models: namely the ‘unbounded gradient model’ and
the ‘interface model’ with depth-dependent gradients of temperature and salinity. By
fitting the irreversible diapycnal fluxes in the unbounded gradient model (for equilibrium
states) as a function of density ratio (the governing non-dimensional parameter), we
derive a functional form that can be used as a basis for a next generation salt-fingering
parametrization scheme. By applying this scheme to the interface model, we demonstrate
that the local fluxes predicted agree well with those obtained from the numerical
simulations based upon this more complex model. We compare this new DNS-derived
turbulence parameterization with those that have been derived empirically.

Key words: double diffusive convection, transition to turbulence, turbulent mixing

1. Introduction

Salt-fingering derived convective turbulence often develops in the equatorial ocean
environment where warmer salty water lies above relatively cold and fresh water. The
micro-scale fingering structures can significantly enhance the local vertical mixing rate,
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whose influence must be parametrized on the coarse grid of a typical global-scale ocean
model. In the ocean component of most global climate models (see Smith et al. (2010),
Griffies et al. (2015) for example), the currently implemented parametrization scheme for
salt fingering induced vertical mixing is based on empirical fitting to the measurements
made in the context of the North Atlantic tracer release experiment (NATRE)
(St. Laurent & Schmitt 1999). In the interpretation of ocean measurements of this kind
(see a recent review of Nakano & Yoshida (2019)), the (perhaps strong) influence of
shear-driven turbulence to the inferred net vertical mixing has to be removed in order
to obtain an accurate estimate of the contribution of salt fingering engendered turbulence
to turbulent diffusivity (see St. Laurent & Schmitt (1999), Inoue et al. (2007) for example),
which inevitably leads to large error bars in parametrized values. At the same time,
diffusivities can only be accurately parametrized for regions of the parameter space that
are actually sampled by the observations, and the majority of the available data sets appear
to be confined to the relatively narrow range 1.3 < Rρ < 2 (in which the density ratio Rρ

is defined as αΘz/βSz where Θ, S are potential temperature and salinity, and α,β are the
thermal expansion rate and haline contraction rate, respectively).

These difficulties may be effectively eliminated by recourse to reliance upon the results
of the direct numerical simulation (DNS) of the mixing process, if it is possible to
generate the turbulence data sets required in the regions of parameter space in which
the parameterization is to be applied. If this condition can be satisfied, which will often
involve significant computational investment, the fluxes engendered by the turbulence may
be employed directly in the definition of an appropriate parameterization scheme. The
micro-scale nature of salt-fingering instability makes the computational load for such
simulations quite demanding. In fact, the required three-dimensional simulations have
become available only in the last decade due to the increase of computation power required
to produce the needed analyses. In the existing published record of work in this area, two
different models have been primarily employed in simulations of the salt-fingering process.
The first model configuration to be employed in such analyses is the so-called ‘unbounded
gradient model’ (named and reviewed in chapter 3 of the book of Radko (2013)), in which
‘homogeneous’ salt fingering is simulated in uniform vertical background gradients of
temperature and salinity. High-resolution three dimensional simulations using this model
(for example Traxler et al. 2011; Radko & Smith 2012) demonstrate that the turbulence
so engendered evolves into a statistically stable equilibrium state. The equilibrium vertical
fluxes of heat and salt delivered by such simulations have been fit as a function of Rρ by
Radko & Smith (2012), thereby leading to an initial purely DNS-based parametrization of
salt-fingering turbulence in the range 1 < Rρ < 3. The second model to be employed in
the simulation of salt-fingering turbulence is the so-called ‘interface model’ (or ‘two-layer’
model, as also reviewed in Radko (2013)) in which two well-mixed layers are separated
by a smooth but localized interface. In this model salt fingers are observed to grow
from the midpoint of the interface and extend into the margins of the transition layer.
Kimura, Smyth & Kunze (2011) employed this model to study salt-fingering fluxes under
the combined action of shear and salt-fingering instability. They employed the average of
fluxes over the interface region in a quasi-equilibrium state of the system to parametrize
the fluxes as a function of both the density ratio Rρ and gradient Richardson number
Ri (a primary control variable in shear generated stratified flow turbulence). Since both
models can be employed as a basis for the inference of fluxes of heat and salt, it is
natural to enquire as to which model might be expected to provide the most useful data
for the understanding of salt-fingering fluxes in the actual oceanographic environment, in
which the ratio of the diffusivity for salt to that for heat, τ say, has the very low value
of 0.01. In the present paper our intention is to re-examine the relationship between these
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two models by performing direct numerical simulations for both across a wide range of
the parameter space (1 < Rρ < 10) using both the unbounded gradient model and large
domain simulations with the interface model.

A further important aspect in the analyses to be discussed in what follows is that we
will differentiate between the reversible and irreversible contributions to the diapycnal
fluxes of heat and salt in salt-fingering convection. Although the necessity of such a
distinction has been clearly recognized in shear-driven stratified turbulence processes
(e.g. Caulfield & Peltier 2000; Peltier & Caulfield 2003), little attention has been paid
to the possibility of its importance in double-diffusive mixing. In shear-driven stratified
turbulence the total potential energy must be divided into available potential energy
and background potential energy as only a portion of the total potential energy of the
system is actually available for conversion into kinetic energy. In this case, mixing
efficiency is usually of the order of 20 % (estimated in Osborn (1980) but Mashayek
& Peltier (2013) and Mashayek, Caulfield & Peltier (2017) demonstrate that this value
of mixing efficiency may often be significantly exceeded), as irreversible dissipative
processes appear solely as a continuous increase of the background potential energy. The
large-scale stirring of the fluid on the scale of individual ‘billows’ is entirely reversible
(Winters et al. 1995). In the problem of shear-driven stratified turbulence, furthermore,
the background potential energy of the system is associated with the potential energy of an
adiabatic rearrangement of fluid parcels such that the density is monotonically decreasing
with height. This definition guarantees that the background potential energy can only
increase (in a closed system) by diffusion on the molecular scale which irreversibly
modifies the densities of neighbouring fluid parcels, and, thus, constitutes an irreversible
flux.

Such distinctions have not yet been applied to the double-diffusive system either in the
presence or absence of shear. In the present paper we will focus on the case without shear
as a necessary first step towards analysis of the general case. Although we will find the
necessity of this distinction to be modest in the absence of shear, we will demonstrate that
it plays an important role in out of equilibrium circumstances. In numerical simulations
doubly diffusive fluxes continue to be estimated using the traditional definition of heat
flux w′Θ ′ (or w′S′ for salt flux, where the overbar represents a horizontal average and the
prime indicates the difference between a field value and its horizontal average) in which
the fluxes so defined include both reversible and irreversible components (see Traxler
et al. (2011), Kimura et al. (2011) for example). However, the analyses of the distinction
between reversible and irreversible fluxes in the shear-driven stratified turbulence case
cannot be directly applied to the double-diffusive system. As we will show, the critical
idea needed to separate reversible from irreversible processes in the double diffusion
case involves separation of the background potential energy into a background potential
energy associated with temperature and a background potential energy associated with
salinity. These distinct background potential energies will be shown to be related to
irreversible heat and salt fluxes, respectively. It is worth noting that the background
potential energies defined in the current work differ from the definitions employed in
the recent work of Middleton & Taylor (2020). In this work the original formulae for
background potential energy in Winters et al. (1995) are retained in the double-diffusion
case, which therefore continues to rely on sorting the density field itself. After introducing
the revised methodology that is required for analysis of doubly diffusive mixing, we will
provide a detailed comparison of these two theoretical frameworks to demonstrate that
accurate identification of the irreversible heat and salt fluxes require application of the
new formalism we have developed.

911 A9-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1018


Y. Ma and W.R. Peltier

In the present paper we will investigate, using the results of our DNS turbulence
simulations, the distinction between reversible and irreversible fluxes in direct numerical
simulations of turbulence in both the unbounded gradient model and the interface model.
Our analyses of salt fingering engendered turbulence will show that, while the irreversible
heat flux remains very close to that predicted using the traditional definition w′Θ ′, the
irreversible salt flux is strongly influenced by the disruption of individual salt fingers (by
the secondary zig-zag instability of Holyer (1984)) rather than salt-finger growth. This
causes a clear phase lag between the temporal evolution of w′S′ and the irreversible salt
flux in the evolution of salt-fingering fields. Once the system has entered the statistical
equilibrium state, however, the irreversible fluxes will be shown to be closely consistent
with traditional fluxes. As a result, the existing theories based on the flux-gradient laws
based upon the traditional definitions (e.g. Radko 2003; Stellmach et al. 2011) remain
essentially unaltered by insisting that they be determined solely on the basis of the
irreversible fluxes.

The outline of this paper will proceed as follows. In § 2 we will briefly review the
characteristics of both the unbounded gradient model and the interface model. The energy
budget analyses for both models are also discussed in § 2 in which we will describe the
detailed manner in which the distinction must be made between irreversible and reversible
processes in a doubly diffusive system in the absence of shear. After a brief discussion
of the numerical methodologies employed as a basis for our direct numerical simulations
in § 3, the results obtained from these simulations are presented in § 4, in which we will
illustrate the relationships between the unbounded gradient model and the interface model.
Section 4 also includes detailed verification of the formal budget analyses described in § 2
as well as a detailed comparison between the traditionally defined fluxes for both model
problems and those defined in terms of the irreversible fluxes alone. In § 5 we will discuss
how these irreversible fluxes may be employed in salt-fingering turbulence parametrization
schemes. A summary and conclusions are offered in § 6.

2. Irreversible fluxes in salt-fingering systems

In this section we describe the formalism required to extend the notion of irreversible
mixing to the salt-fingering system. As these fluxes must be calculated differently for the
two different models we intend to discuss, we will firstly provide a brief review concerning
the physical settings of the two models.

2.1. The unbounded gradient model and the interface model
Depending on the different initial and boundary conditions in simulations of the
salt-fingering system, the evolution of the fingering field can vary considerably. In fact,
three different representations (the unbounded gradient model, the interface model and the
bounded gradient model) have been employed by different researchers to discuss different
aspects of salt-fingering instabilities and these have been summarized in Radko (2013).
The unbounded gradient model and interface model, which we will employ herein to
calibrate and test the turbulent flux laws, will be briefly reviewed in this subsection in
order to fix ideas.

The nonlinear hydrodynamic field equations for the heat-salt doubly diffusive system
are

Du
Dt

= − 1
ρ0

∂p′

∂x
+ ν∇2u, (2.1a)
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Dv

Dt
= − 1

ρ0

∂p′

∂y
+ ν∇2v, (2.1b)

Dw
Dt

= − 1
ρ0

∂p′

∂z
− g

ρ − ρ0

ρ0
+ ν∇2w, (2.1c)

∇ · u = 0, (2.1d)

DΘ

Dt
= κθ∇2Θ, (2.1e)

DS
Dt

= κs∇2S, (2.1f )

ρ = ρ0(1 − α(Θ − Θ0) + β(S − S0)). (2.1g)

In these field equations the velocity vector field is u(x, y, z, t) = {u, v, w}, the potential
temperature field is Θ(x, y, z, t) and the salinity field is S(x, y, z, t). In the linear equation
of state (2.1g), the thermal expansion rate α and salinity contraction coefficient β are
both assumed to be constant. In this system, p′(x, y, z, t) is the deviation of the pressure
from a background state of hydrostatic balance, and ν,κθ and κs are kinematic viscosity
and molecular diffusivity for heat and for salt, respectively, in the advection–diffusion
equations ((2.1e) and (2.1f )).

Equation (2.1) are the governing equations for both the unbounded gradient model and
the interface model. The major distinction between these models concerns the different
initial and boundary conditions to be applied. The unbounded gradient model is depicting
salt-fingering fields in a homogeneous environment with constant background temperature
gradient Θz0 and salinity gradient Sz0, and so the initial conditions are

Θ(x, y, z) = Θz0z, (2.2a)

S(x, y, z) = Sz0z, (2.2b)

in which Θz0 = ΔΘ/L and Sz0 = ΔS/L, as illustrated in figure 1(a). The boundary
conditions for velocity as well as for the perturbation fields Θ ′ and S′ (defined as deviations
from the horizontally uniform-gradient profiles) are periodic in all three coordinate
directions. Specifically, the vertical boundary conditions for Θ and S are

Θ(x, y, z = L, t) = Θ(x, y, z = 0, t) + ΔΘ, (2.3a)

S(x, y, z = L, t) = S(x, y, z = 0, t) + ΔS. (2.3b)

By applying these vertical boundary conditions, we may treat the system as effectively
consisting of an infinitely large domain comprised of an infinite number of such
sub-systems with the average temperature (salinity) gradient fixed to the values of ΔΘ/L
(ΔS/L). Since the mean scalar gradient is everywhere the same, the unbounded gradient
model is a suitable basis for analysis of equilibrium properties of salt-fingering fields.
However, the special boundary condition (2.3) is somewhat artificial since it prevents the
average background gradient from being influenced by the fluxes. This effect, on the other
hand, can be clearly captured in the interface model that we proceed to discuss in what
follows.

Although there are a variety of different possible definitions for the interface model, for
present purposes, we choose to assume hyperbolic tangent forms for the initial conditions
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Periodic(a) (b)

Periodic

L L

�S�S
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No flux

Free slip

No flux

Free slip

Temperature (Salinity)

z

Figure 1. Illustration of the settings for the unbounded gradient model (a) and the interface model (b). In
both parts of the figure, we use a solid line to represent the initial profile for temperature and the dashed
line to represent the initial profile for salinity. Here ΔΘ , ΔS and L are the characteristic scales for potential
temperature and salinity and length for each model that are used to non-dimensionalize each system.

for both temperature and salinity fields as in figure 1(b), namely:

Θ(x, y, z) = ΔΘ tanh
( z

L

)
, (2.4a)

S(x, y, z) = ΔS tanh
( z

L

)
. (2.4b)

In the formulation of this model we also assume periodic boundary conditions in the
horizontal coordinates for both of the scalar fields (Θ , S) and velocity vector field u. In
the vertical coordinate direction we will assume free-slip, no-flux boundary conditions for
both top and bottom boundaries of the domain.

In figure 1 we have also shown the length scale L, temperature scale ΔΘ and salinity
scale ΔS that we will use to non-dimensionalize the field equations describing this system:
in the unbounded gradient model, ΔΘ and ΔS are the corresponding scalar variations
across the domain and L is the vertical height of the domain; whereas in the interface
model, ΔΘ and ΔS are half the variations of the temperature and salinity fields across
the interface and L is the measure of interface depth so that ΔΘ/L(ΔS/L) represent the
temperature/salinity gradients at the midpoint of the interface.

The original Boussinesq equations (2.1) with the incompressibility condition (2.1d) can
then be non-dimensionalized assuming length scale L, time scale L2/κθ and scalar scales
ΔΘ , ΔS to obtain

Du∗
Dt∗

= −∂p∗
∂x∗

+ Pr∇2
∗u∗, (2.5a)

Dv∗
Dt∗

= −∂p∗
∂y∗

+ Pr∇2
∗v∗, (2.5b)

Dw∗
Dt∗

= −∂p∗
∂z∗

+ RaPrΘ∗ − RaPrS∗/Rρ + Pr∇2
∗w∗, (2.5c)

∇∗ · u∗ = 0, (2.5d)
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Non-dimensional transformation Non-dimensional number

u∗ = (L/κθ )u Pr = ν/κθ : Prandtl number
∂/∂x∗ = L∂/∂x Ra = gαΔΘL3/νκθ : Thermal Rayleigh number
∂/∂t∗ = (L2/κθ )∂/∂t τ = κs/κθ : Diffusivity ratio
∇∗ = L∇ Rρ = αΔΘ/βΔS: (Bulk) Density ratio
p∗ = p′L2/(κ2

θ ρ0)

Θ∗ = (Θ − Θ0)/ΔΘ

S∗ = (S − S0)/ΔS
FΘ∗ = FΘL/(κθΔΘ)

FS∗ = FSL/(κθΔS)

HΘ∗ = HΘL/(κθΔΘρ0αg)

HS∗ = HSL/(κθΔSρ0βg)

Table 1. Non-dimensional transformation and definition of non-dimensional numbers.

DΘ∗
Dt∗

= ∇2
∗Θ∗, (2.5e)

DS∗
Dt∗

= τ∇2
∗S∗, (2.5f )

in which we have employed asterisks to denote non-dimensional variables. The
non-dimensional transformation for each variable as well as the definition of
non-dimensional parameters that appear in this non-dimensional system are listed in
table 1. The Prandtl number and the diffusivity ratio are fixed to typical oceanographic
values (Pr = 7 and τ = 0.01) in this paper. The thermal Rayleigh number is essentially
controlling the size of the system relative to the scale of the finger width, so that the
volume-averaged physical quantities of the system are insensitive to variation of Ra
as long as Ra is high enough (no less than order 107 to guarantee that the system
contains sufficient fingers so that horizontal averages are meaningful). The dominant
non-dimensional number of the system is then the bulk density ratio Rρ , which measures
the degree of compensation between temperature and salinity gradients in terms of their
effects on density stratification. The system will be susceptible to salt-fingering instability
when Rρ satisfies 1 < Rρ < 1/τ (for both models), as revealed by linear stability analysis
(e.g. Walin 1964; Baines & Gill 1969). The values of Ra and Rρ employed in our numerical
simulations for both the unbounded gradient model and the interface model will be
discussed in detail in § 3 of this paper.

2.2. Energy budget equations and irreversible fluxes
In a salt-fingering-favourable system the unstably stratified salinity field releases its
associated potential energy to create the kinetic energy required for mixing. This leads
to an ‘up-gradient’ density flux that might be seen as somewhat counterintuitive.
In this subsection we will discuss the energy budgets in the salt-fingering system
from a somewhat novel perspective that separates the potential energy into a linear
combination of those associated with temperature and salinity separately (this can also
be applied to the diffusive convection counterpart to the salt-fingering system that we will
discuss elsewhere). Application of this methodology will enable us to discuss the ‘true’
irreversible mixing in each of these two fields.
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We begin by defining the average potential energy PE of the system in a certain volume
V as

PE = 〈ρgz〉 = 1
V

∫
ρgz dV, (2.6)

where 〈·〉 represents volume averages over the system of interest.
Due to our assumption of a linear equation of state (2.1g), we may further decompose

the potential energy PE into a temperature component PEΘ and a salinity component PES
as

PE = 〈ρgz〉, (2.7a)

= 〈ρ0gz〉 − 〈ρ0α(Θ − Θ0)gz〉 + 〈ρ0β(S − S0)gz〉, (2.7b)

= 〈(1 + αΘ0 − βS0)ρ0gz〉 − ρ0αg〈Θz〉 + ρ0βg〈Sz〉, (2.7c)

≡ PE0 + PEΘ + PES, (2.7d)

where PEΘ and PES denote the potential energy contributed by the temperature and
salinity stratification of the fluid, separately. Equation (2.7) shows that the total potential
energy can be viewed as a simple linear combination of PEΘ and PES, a result that depends
only upon the assumption of a linear equation of state. Here PE0 is just a constant that may
be ignored as it can play no role in the understanding of mixing processes.

The evolution of PE, PEΘ , as well as PES in a closed system subject to the Boussinesq
approximation satisfy the simple evolution equations

dPE
dt

= Dp + H, (2.8a)

dPEΘ

dt
= DpΘ + HΘ, (2.8b)

dPES

dt
= DpS + HS, (2.8c)

in which

HΘ = −ρ0gα〈Θ ′(x, y, z, t)w′(x, y, z, t)〉, (2.9a)

HS = ρ0gβ〈S′(x, y, z, t)w′(x, y, z, t)〉, (2.9b)

H = HΘ + HS (2.9c)

= g〈ρ′(x, y, z, t)w′(x, y, z, t)〉, (2.9d)

DpΘ = ρ0gακΘ

〈
∂Θ̄(z)

∂z

〉
, (2.9e)

DpS = −ρ0gβκS

〈
∂ S̄(z)
∂z

〉
, (2.9f )

Dp = DpΘ + DpS. (2.9g)

In the above equations the overbar f̄ (z) represents the horizontal average of field f and f ′

represents the deviation from it, i.e. f ′(x, y, z, t) = f (x, y, z, t) − f̄ (z). Here H represents
the total buoyancy flux which is comprised of contributions from heat HΘ and salt HS;
Dp represents the irreversible energy transfer associated with molecular diffusivity of both
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diffusing species (DpΘ and DpS) in the motionless background that cannot be influenced
by the turbulent motions.

In a system that supports salt-fingering instability, there is warm salty water lying
above cold fresh water, leading upon the development of instability involving both
heat flux FΘ ≡ 〈w′Θ ′〉 and salt flux FS ≡ 〈w′S′〉 directed downwards, and, thus, HΘ >

0,HS < 0 from ((2.9b), (2.9c)). Meanwhile, positive vertical gradients for both Θ

and S will lead to DpΘ > 0 and DpS < 0. This suggests a continuously increasing
temperature potential energy dPEΘ/dt > 0 as well as a continuously decreasing salinity
potential energy dPES/dt < 0 (from (2.8b) and (2.8c)), which implies that the salinity
field is releasing potential energy whereas the temperature field is gaining potential
energy in the salt-fingering field. The ratio of these buoyancy fluxes (γ = |HΘ |/|HS| =
α〈w′Θ ′〉/β〈w′S′〉) is always smaller than 1 due to more effective salt exchange than heat
exchange in the fingering system (Radko 2013). This fact ensures that H = HΘ + HS < 0
and, thus, the system is continuously releasing potential energy. These fluxes, following
the initial onset of instability, eventually impact the average kinetic energy of the system
which is defined as KE ≡ 〈1/2ρ0u2〉, whose evolution in a closed system can be shown to
be

dKE
dt

= −H − ε, (2.10)

in which the viscous dissipation ε is 2ρoν〈eijeij〉. These two terms, which are of opposite
sign, balance each other in an equilibrium (statistical equilibrium) state of the system.

The above definitions for heat and salt derived buoyancy flux (HΘ , HS) and flux ratio γ

are the quantities that have been employed in the discussion of double diffusion processes
(see, e.g. Shen 1995; Traxler et al. 2011; Radko & Smith 2012). However, these definitions
clearly fail to distinguish the differences between reversible stirring and irreversible
mixing, both of which will be contributing to the transfer of energy between PE and
KE. As in the shear-driven stratified turbulence case (see Winters et al. 1995; Caulfield
& Peltier 2000; Peltier & Caulfield 2003), stirring refers to the temporary exchange
between PE and KE caused by large-scale fluid motion which is reversible in principle
and cannot contribute to irreversible mixing which occurs at the molecular scale. The
critical step in the recognition of whether irreversible mixing occurs is to monitor whether
the background potential energy is evolving as the turbulence continues. As illustrated
in figure 2 of Caulfield & Peltier (2000) and figure 2 of Peltier & Caulfield (2003), the
background potential energy (also known as the minimum potential energy) is the potential
energy that would be associated with the adiabatic redistribution of fluid parcels in such
a way that the density ρ(x, y, z, t) is monotonically decreasing with height and, therefore,
statically stable. The definition of the background potential energy guarantees that it will
not be influenced by the macroscopic fluid motions (the stirring processes), rather, the
sorted fluid elements will only lead to an increase of background potential energy in
time when molecular diffusion is irreversibly changing the densities of neighbouring fluid
parcels.

In our analysis of the salt-fingering system we will employ similar ideas to distinguish
between irreversible mixing and reversible stirring. However, as density is influenced by
both temperature and salinity in salt-fingering convection, we will need to sort both scalar
fields separately rather than sorting the density field. Otherwise, the temperature and
salinity information would be lost in the sorting process and it would then be impossible
to determine distinct heat and salinity fluxes. How this sorting procedure should be
performed will depend strongly upon the particular flavour of doubly diffusive turbulence
being analysed: in the salt-fingering problem, since the salinity field is unstably stratified
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Figure 2. Exchange of energy fluxes between different energy reservoirs, graphics for (2.10), (2.12) and
(2.13).

which supplies energy to both the potential energy associated with the temperature field
and the kinetic energy reservoir, we need to adiabatically rearrange the salinity profile into
a state such that the salinity is monotonically increasing with height (corresponding to
a top heavy structure). In this way, irreversible mixing in the salinity field will lead to a
monotonic decrease of the background salinity related potential energy, which is consistent
with the basic energy flows in the salt-fingering field. For the temperature field, this must
also be adiabatically rearranged to a state in which temperature is monotonically increasing
with height. (The sorting directions will be just opposite for both the temperature and the
salinity field in a diffusive convection system, which we will address elsewhere.) Since
temperature is negatively correlated with density, we essentially sort the temperature to a
bottom heavy structure just as in the shear-driven turbulence case. Irreversible mixing of
the temperature field will lead to an increase in the corresponding background temperature
potential energy, which is then also consistent with the direction of the energy flow in the
salt-fingering problem.

Explicitly, we firstly rearrange all the fluid elements adiabatically to a configuration
in which warmer elements are always on top of the colder elements. In this way the
temperature of the sorted configuration will only depend on the vertical coordinate, which
can be denoted as Θ(z, t). Then we do the sorting of the salinity field to ensure that the
saltier elements are always above the fresher elements, which will give us a sorted salinity
configuration S(z, t).

The background potential energy for temperature BPEΘ and the background potential
energy for salinity BPES can then be defined based on these two profiles as

BPEΘ = −ρ0αg〈Θ(z)z〉, (2.11a)

BPES = ρ0βg〈S(z)z〉, (2.11b)

BPE = BPEΘ + BPES. (2.11c)

In all the possible rearrangements of the fluid elements, Θ(z) is the configuration which
has the minimum PEΘ of all the configurations (thus, BPEΘ ≤ PEΘ ), and S(z) is the
configuration which has the maximum PES of all the configurations (thus, BPES ≥ PES).
As the temperature diffusion term κθ∇2Θ in (2.1e) mixes the warmer water columns with
the colder water columns, the total mass of the sorted profile Θ(z) stays the same (in
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a closed system) but the centre of gravity is lifted, leading to the increase of BPEΘ .
Meanwhile, macroscopic fluid motion (stirring) only changes the relative positions of fluid
parcels, which will not influence the configurations after sorting and, thus, will not lead to
changes of BPEΘ . Thus, the rate of change of BPEΘ will reflect the strength of irreversible
mixing in the temperature field. The same analysis applies for the salinity field.

The above analysis can be justified simply by investigation of the evolution equations of
BPEΘ and BPES. Winters et al. (1995) derived the evolution equation for the background
potential energy in the shear-driven case, which can be directly applied to the evolution for
BPEΘ and BPES in the double diffusion case of interest to us here since both temperature
and salinity are governed by the same advection–diffusion equations as that which governs
density in the shear-driven stratified turbulence case discussed in Winters et al. (1995). In
a closed system, these evolution equations can be shown to be

d
dt

BPEΘ = MΘ + DpΘ, (2.12a)

d
dt

BPES = MS + DpS, (2.12b)

MΘ + DpΘ = κθρ0αg
〈

dzθ

dΘ
|∇Θ|2

〉
, (2.12c)

MS + DpS = −κsρ0βg
〈

dzs

dS
|∇S|2

〉
. (2.12d)

Since both temperature and salinity profiles are sorted to increase upwards, it is clear
that MΘ + DpΘ > 0 and MS + DpS < 0 from ((2.12c) and (2.12d)). Thus, we have
confirmed our analysis above that BPEΘ will always be a monotonically increasing
function with time while BPES will be a monotonically decreasing function with time.
The distinctions between MΘ (MS) and DpΘ (DpS) were introduced in Caulfield & Peltier
(2000) and Peltier & Caulfield (2003), in which DpΘ (DpS) characterizes energy transfer
in the motionless background, and MΘ (MS) represents the part of the irreversible fluxes
induced by motion which produces a much larger iso-scalar surface area for mixing to
occur.

Distinct available potential energies may then be defined as the difference between the
potential energies and background potential energies, namely:

APEΘ = PEΘ − BPEΘ, (2.13a)

APES = PES − BPES, (2.13b)

d
dt

APEΘ = HΘ − MΘ, (2.13c)

d
dt

APES = HS − MS. (2.13d)

Analysing the energy flows in the available potential energy reservoirs will lead to
a qualitatively useful depiction of energy flows between the different energy reservoirs
that are active in salt-fingering turbulence, as illustrated in figure 2. Concerning the
temperature field, energy is being transferred from the KE reservoir into the PEΘ reservoir
at a rate represented by HΘ . A portion of the energy flux is effected through irreversible
processes (mixing) MΘ and this is eventually transferred into the background potential
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energy BPEΘ , while the remaining portion of this energy flux HΘ − MΘ enters into
the APEΘ reservoir. The energies stored in APEΘ is ‘available’, meaning that it may be
released back to the KE reservoir through a negative flux HΘ . On the other hand, for
the salinity field, energy is transferred from the PES reservoir into the KE reservoir. The
irreversible flux MS transports energy from background potential energy BPES to the
APES irreversibly, which leads to the monotonic decrease of BPES. This loss of the energy
in APES to KE, on the other hand, is reversible and can potentially be returned back to
APES through a positive HS.

2.3. Evaluating irreversible salt-fingering fluxes in two different models
We will first discuss the application of the above formalism to the interface model. As the
interface model is strongly inhomogeneous in the vertical direction, it is expected to be
useful to investigate the variation of the irreversible fluxes of heat and salt in the vertical
direction across the finite depth of the interface. The depth-dependent irreversible heat and
salt fluxes are defined as

Firr
Θ (zθ) = −κθ

dzθ

dΘ
|∇Θ ′(x, y, z)|2zθ

, (2.14a)

Firr
S (zs) = −κs

dzs

dS
|∇S′(x, y, z)|2zs , (2.14b)

in which the irreversible fluxes have depth-dependence on the sorted coordinate
zθ (zs) and the representation | f (x, y, z)|zθ(zs) refers to the average of the field
f (x, y, z) with the same zθ(zs). Such depth-dependent definitions are consistent with
the bulk-averaged definitions (2.12) (as discussed in Salehipour & Peltier (2015)).
Although the above definitions of irreversible heat flux (salt flux) are closely related
to the previously mentioned heat (salt)-induced buoyancy flux through MΘ(zθ) =
−gαFirr

Θ (zθ) (MS(zs) = gβFirr
S (zs)), we prefer to use these more straightforward

quantities of Firr
Θ (zθ) and Firr

S (zθ) to be compared with FΘ(z) and Fs(z) in what follows.
The calculation of irreversible fluxes in the unbounded gradient model, on the other

hand, is not nearly so straightforward. As we have discussed in § 2.1, the unbounded
gradient model essentially describes an infinitely large, homogeneous system that is
defined by applying the periodic boundary conditions in all three coordinate directions. It
is for this reason that we have to consider fluid elements that are not ‘directly’ contained in
the simulation domain when the time-dependent adiabatic rearrangements of fluid parcels
are constructed. Consider the typical iso-temperature contour (non-dimensionalized) in
the sketch shown in figure 3(a), the periodic vertical boundary condition applied allows
for the occurrence of the intersections of the iso-temperature contour with the top and
bottom boundaries. If we sort the fluid elements only in the simulation domain, we would
obtain the result shown in figure 3(b), i.e. the sorted profiles will have a larger vertical
gradient near the vertical boundaries, which is pathological since the artifacts near the
vertical boundaries have been artificially introduced. Thus, we sort the fluid elements in
the new domain shown in figure 3(c) which contains essentially the same fluid elements
as the original domain and retains the same boundary conditions (repeatable vertically) as
before. Sorting in this newly defined domain precisely avoids the inhomogeneous-gradient
problem illustrated in figure 3(b) and is applied to correctly sort the fluid parcels involved
in the salt-fingering turbulent flows to be discussed in what follows.
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Figure 3. Illustration of the incorrect method of sorting fluid elements (a,b) and the correct method of
fluid-element sorting (c,d) to calculate irreversible fluxes in the unbounded gradient model. Panels (a) and (c)
illustrate a typical iso-temperature contour (or surface in three dimensions) in the unbounded gradient model,
(b) shows the sorted temperature when the sort region is depicted by the thick line in (a), while (d) shows the
sorted temperature when the sort region is depicted by the thick line in (c).

2.4. An alternative definition of background potential energies in double-diffusive
systems

In this subsection we will discuss an alternative possibility for extending the idea of
background potential energy from a single-component system to a doubly diffusive system.
This approach has been discussed in detail in the recent work of Middleton & Taylor (2020)
and we will present and discuss their main results using our notation in this subsection.
These results will then be compared with our results presented in the previous subsection
in (2.12)–(2.14), on the basis of which we will argue that the definitions of background
potential energies proposed in the current paper are distinctly preferable for application to
the study of irreversible mixing in doubly diffusive systems.

As we have discussed above, the background potential energy in a single-component
system is associated with the stable rearrangement of the fluid parcels based on their
densities. Middleton & Taylor (2020) directly extends this definition of background
potential energy to the double-diffusive system, as

BPEMT = g〈ρzρ〉, (2.15)

where zρ(x, y, z, t) represents the vertical position in the sorted profile of the fluid parcel
at (x, y, z, t) and ρ(x, y, z, t) is determined by the temperature and salinity through the
linear equation of state (2.1g). In a closed system the evolution of BPEMT can be derived
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following the same strategy as in Winters et al. (1995) to be

d
dt

BPEMT = −κθg
〈

dzρ

dρ
|∇ρθ |2

〉
− κsg

〈
dzρ

dρ
|∇ρs|2

〉

− (κθ + κs)g
〈

dzρ

dρ
(∇ρs · ∇ρθ )

〉
, (2.16)

where ρθ ≡ −ρ0α(Θ − Θ0) and ρs ≡ ρ0β(S − S0) are the components of density that
are determined by the temperature field and salinity field separately. Equation (2.16)
is essentially equivalent to equation (2.19) of Middleton & Taylor (2020) in a closed
system. In order to make a clearer comparison, we rewrite the evolution equation for the
background potential energies (2.12c) using ρθ and ρS as

d
dt

BPE = d
dt

BPEΘ + d
dt

BPES

= −κθg
〈

dzθ

dρθ

|∇ρθ |2
〉
− κsg

〈
dzs

dρs
|∇ρs|2

〉
. (2.17)

The first two terms on the right-hand side of (2.16) have very similar forms to those
describing our irreversible buoyancy fluxes defined in (2.17). In fact, there are only
two differences between these two forms: firstly, the derivatives of the sorted vertical
coordinate are computed with respect to different scalars in (2.16) and (2.17); secondly,
the two terms in (2.16) are both positive, while in (2.17) the temperature term is positive
whereas the salinity term is negative (in a salt-fingering-favourable configuration). Both
of these distinctions are suggesting that the terms in (2.16) cannot be regarded as
representations of irreversible mixing processes. Firstly, the appearance of total density
ρ in the first two terms of (2.16) renders them not independent: different salinity
configurations will change the value of the temperature term and vice versa. However,
the salinity dissipation process is clearly independent of the heat dissipation process,
making the correlations in (2.16) difficult to interpret. Secondly, salinity mixing in a
salt-fingering-favourable environment mixes the upper layer salty water with lower layer
fresh water, which would lead to a decrease rather than increase in potential energy. This
further fact makes it difficult to interpret the second term in (2.16) as representing salinity
mixing.

The third term in (2.16) is negative in a salt-fingering-favourable environment, since
thermal and saline density components compensate each other to make ∇ρθ · ∇ρs < 0.
The magnitude of this negative term can be larger than the first two positive terms in
double-diffusive fields (as discussed in Middleton & Taylor (2020)), allowing BPEMT to be
released even in a closed system. This property contradicts the original physical meaning
of the background potential energy that was defined in a single-component system,
which can only increase in a closed system due to irreversible mixing processes. Our
methodology described in §§ 2.2 and 2.3, on the other hand, perfectly retains the original
physical meaning of background potential energies and provides intuitively reasonable
forms for the irreversible fluxes in double-diffusive fields. It therefore seems clear that
the formalism we have developed for the separation of irreversible and reversible fluxes
in doubly diffusive convection is to be preferred. The price to be paid for its use is
that at each timestep in the evolution of the DNS, two full sorts of the individual fluid
parcels must be performed. Since the algorithm we employ to perform the required sorts
is highly parallelizable (as will be discussed in the next section), however, this fact is not
an impediment to the use of this more accurate methodology.
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3. Design of the direct numerical simulations and the numerical
methodology employed

High-resolution DNS of salt-fingering turbulence simulations are performed for both
the unbounded gradient model and the interface model, by solving the non-dimensional
governing equations with the appropriate boundary and initial conditions for each model.
We will choose the ratio of diffusivities to be τ = 0.01 and the Prandtl number Pr = 7 in
these simulations so as to mimic realistic oceanographic conditions.

For the purpose of the simulations to be performed using the unbounded gradient
model, we will compile results for a range of, mostly equally spaced, values of Rρ

between 1 and 10 in order to explore a more extensive parameter space than in Radko
& Smith (2012). The critical information for these 10 simulations using the unbounded
gradient model is listed in table 2 with simulation numbers from 1 to 10. Linear stability
analyses have been performed as a basis on which to determine the horizontal width of
the fastest growing mode of salt fingering at each of these different values of Rρ , and
these widths are always at the typical length scale of the salt-fingering problem for which
d = (κθν/(gαΘz))

1/4 (see Radko 2013) and are summarized in table 2. The Rayleigh
number of the simulation can then be determined for each simulation by recognizing
the relationship Ra = (L/d)4. For the unbounded gradient model, the simulation domain
will be taken to include 5 FGW (FGW is the horizontal width of the fastest growing
mode predicted by linear stability analysis which has the scale of d) in both horizontal
directions and 10 FGW in the vertical direction. The choices of size and aspect ratio
for the simulation domain have been previously established for analyses of turbulence
in the unbounded gradient model (see a detailed discussion in the appendix of Traxler
et al. (2011)). A resolution of 385 × 385 × 770 grid points is employed for simulations
with 1 < Rρ < 8 and a slightly coarser resolution of 266 × 266 × 532 grid points is
employed with Rρ = 8, 9 and 10. Although the resolved scale may be more than an
order of magnitude larger than the Batchelor scale (Batchelor 1959) at which salinity
fluctuations are dissipated, it can be shown to be sufficient to study the equilibrium fluxes
in the unbounded gradient model (as discussed in appendix A). A small amplitude seed of
the form of λ(Θ,S,w) cos(km∗x) cos(km∗y) (here km∗ = 2πL/FGW is the non-dimensional
fastest growing wavenumber predicted by the linear stability analysis, (λΘ, λS, λw) are
proportional to the eigenfunction of the fastest growing mode in linear stability analysis
and the amplitude of the salinity mode λS is set to 0.001ΔS) is super-imposed on the
initial background profile, together with random noise whose amplitude is 1000 times
smaller than either ΔΘ or ΔS to provide the perturbation needed for the development of
secondary zig-zag instability as discussed in what follows.

The additional simulations to be discussed concern the study of the interface model also
at τ = 0.01 and Pr = 7 for three different values of Rρ . The corresponding information
is listed under simulation numbers 11, 12 and 13 in table 2 as in the unbounded gradient
model case. For the analysis of results for this model, we have been working in a much
larger domain (30 FGW × 5 FGW × 100 FGW) in order to study the detailed local
behaviour of the system. A corresponding much higher resolution is thus needed for
simulations in the interface model. Because the most intense mixing usually occurs within
the central region of the domain, we can generally reduce the box resolution near the
boundaries. In order to investigate the utility of this numerical design we performed test
runs to determine the Batchelor scale as a function of depth, on the basis of which we have
designed the most efficient depth-dependent resolution of the box needed to resolve the
salinity Batchelor scale at each depth. The details of how the resolution is determined can
be found in the appendix A.
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Numbering Models Rρ FGW Ra Resolution

1 Unbounded 1.1 10.2d 1.10 × 108 385 × 385 × 770
2 Unbounded 2 7.54d 3.23 × 107 385 × 385 × 770
3 Unbounded 3 7.11d 2.56 × 107 385 × 385 × 770
4 Unbounded 4 6.98d 2.38 × 107 385 × 385 × 770
5 Unbounded 5 6.93d 2.31 × 107 385 × 385 × 770
6 Unbounded 6 6.93d 2.30 × 107 385 × 385 × 770
7 Unbounded 7 6.94d 2.32 × 107 385 × 385 × 770
8 Unbounded 8 6.96d 2.34 × 107 266 × 266 × 532
9 Unbounded 9 6.98d 2.38 × 107 266 × 266 × 532
10 Unbounded 10 7.01d 2.42 × 107 266 × 266 × 532
11 Interface 2 7.86d 3.82 × 107 1582 × 266 × 4424
12 Interface 5 7.27d 2.80 × 107 1085 × 182 × 3143
13 Interface 8 7.31d 2.85 × 107 952 × 161 × 2716

Table 2. Summary of the numerical settings for 13 simulations performed in both the unbounded gradient
system and the interface system.

All of our simulations are performed using the open-source computational fluid
dynamics software package Nek5000, developed by Argonne National Laboratory
(Fischer et al. 2008). The software package Nek5000 is based on the spectral element
method (Fischer, Kruse & Loth 2002), discretized using Nth order Lagrange polynomial
interpolants following the PN − PN−2 formulation of Maday, Patera & Rønquist (1990).
This methodology was initially designed to deal with transitional and turbulent flows in
complex geometries (Fischer et al. 2002) and was later found to be a powerful tool for
the simulation of high-Reynolds-number shear-induced stratified turbulence flows (see
Salehipour & Peltier 2015; Salehipour, Caulfield & Peltier 2016). In the post-processing
stage a parallel sorting algorithm (rather than serial sorting algorithm) must be applied for
the analysis in such high-resolution simulations for both time and memory considerations.
Such an algorithm has already been designed and illustrated in detail in Salehipour &
Peltier (2015), which will be applied in sorting both the temperature and salinity fields
required in the current context.

4. DNS results

In this section we will first compare the strength of irreversible fluxes to traditionally
defined fluxes in the unbounded gradient model in §§ 4.1.1 and 4.1.2. These comparisons
will be presented as a function of stage in the evolution of the salt-fingering field in
order to develop an understanding of the mechanisms involved in the determination of
irreversible mixing. We will then describe a functional fit to the equilibrium fluxes of
the unbounded gradient model in § 4.1.3. In § 4.2 the simulation results obtained for the
interface model will be briefly described followed by a comparison of irreversible fluxes
with traditionally defined fluxes as a function of depth. Finally, in § 4.2.3 we will compare
the functional fit of § 4.1.3 with fluxes from the interface model. These comparisons will
reveal a profoundly interesting relationship between the unbounded gradient model and the
interface model. It must be recognized that the DNS results in this section will be presented
in non-dimensional units, the definition of which has been listed in table 1 above.
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Figure 4. Evolution of non-dimensional heat diffusivities (a) and salt diffusivities (b) as well as flux ratio (c)
in a DNS with Rρ = 2, both traditional fluxes (or flux ratio) and irreversible fluxes (or flux ratio) are shown
in dashed and solid lines, separately. Salinity fields are shown in (d)–( f ) at non-dimensional times 0.00507,
0.00512, 0.00766 separately to illustrate the twisting of salt fingers under the action of the secondary zig-zag
instabilities.

4.1. Direct numerical simulation results for the unbounded gradient model

4.1.1. Stages of time-dependent evolution
The evolution of salt fingers in the unbounded gradient model has been thoroughly studied
and is well understood (e.g. Shen 1995; Traxler et al. 2011). There are generally three
stages in this evolutionary process, which can be separated on the basis of the evolution
of volume averaged traditionally defined fluxes FΘ ≡ 〈w′Θ ′〉, FS ≡ 〈w′S′〉, an example of
which is shown in the dashed curves in figure 4(a,b). In the first stage, the fastest growing
mode of linear salt-fingering instability experiences exponential growth, which leads to the
exponential growth of both vertical heat and salt fluxes as shown in figure 4(a,b). In the
second stage, these very large vertical fluxes are eventually suppressed by the development
of secondary zig-zag instabilities (as originally discussed by Holyer (1984)). This zig-zag
instability introduces vertical shear of horizontal velocity which acts so as to introduce
local tilt along the axis of the original long and slender salt fingers (the first slightly tilted
fingers can be seen in figure 4d) and acts so as to break the individual fingers into patches
(figure 4e). Following this zig-zag instability induced breakup of the initial fingers, the
system then evolves into the third stage of activity in which the turbulent fields of both
temperature and salinity have been statistically homogenized as depicted in figure 4( f ).

4.1.2. Results for the irreversible fluxes
As discussed in § 2.2, only the irreversible component of the vertical fluxes may contribute
to true mixing in the salt-fingering system and, therefore, to the eddy diffusivity which
would be employed in a large-scale model that was unable to resolve the turbulence
directly. These fluxes can be calculated in our DNS in the unbounded gradient model
following the procedures discussed in § 2.3. The typical evolution of both the irreversible
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heat flux Firr
Θ and the irreversible salt flux Firr

S are shown in the solid lines in figures 4(a)
and 4(b) separately. Here Firr

Θ follows almost the same trajectory as that for its traditionally
defined counterpart FΘ : Firr

Θ experiences exponential growth in the initial phase of salt
finger development, but decreases in strength once the zig-zag instability begins to twist
the fingers and eventually equilibrates to very nearly the same value as the equilibrium
FΘ . However, the evolution of Firr

S differs distinctly from that of FS. In the initial phase of
finger growth, Firr

S grows at nearly the same growth rate as FS but at any particular time
remains smaller by more than an order of magnitude. This initial stage is followed by an
even faster rate of growth that begins when FS begins to decline. Here Firr

S ascends to its
peak value and then evolves towards the statistical equilibrium strength characteristic of
stage 3 in which it has nearly the same value as FS.

The above evolutionary trajectory of the fluxes can be understood by recognizing
the physical meaning of irreversible fluxes – they represent the flux contributed by
diffusion acting on sufficiently small scales so as to modify the temperature/salinity of
the turbulently displaced fluid parcels and their neighbours. The traditionally defined
fluxes FS and FΘ , however, only capture the extent to which fluid displaced from
the high temperature/salinity environment is inserted into the low temperature/salinity
environment. The difference between the strengths of these differently defined fluxes are
closely related to rates of molecular diffusion. In the limiting case in which it may be
assumed that the tracer diffuses infinitely quickly (horizontally), any displacement of a
fluid parcel from a region in which the background tracer field has a low value into a
region in which the background tracer field has a higher value will inevitably lead to
irreversible mixing at the small scales with the same strength. In this case there will
therefore be no distinctions between different definitions of the fluxes. Relaxing this
constraint of infinite diffusivity slightly will lead to the case of the temperature field
illustrated above: although the absolute value of molecular temperature diffusivity is small
(around 1.7 × 10−7 m2 s−1), it is not a small value in the micro-scale system we are
studying considering that we have non-dimensionalized the system in such a way that
κθ∗ = 1 (shown in table 1). In this circumstance, any displaced fluid parcel that has a
different temperature from that of its surroundings will take some time to mix temperatures
locally. It is for this reason that a small phase delay can be observed in figure 4(a):
Firr

Θ follows almost the same trend as FΘ , it simply evolves somewhat more slowly. In
other words, the displaced fluid parcels are eventually mixed in temperature with their
surroundings quite efficiently.

The molecular diffusivity for salinity, on the other hand, is much smaller than
temperature diffusivity (κs = 0.01κθ under oceanographic conditions and for the current
simulations which are tuned to that environment), which leads to a more complicated
picture than that for temperature discussed above. Quantitative analysis can be performed
by considering the previously discussed different stages of salt finger development
(stage 1) illustrated in figure 4(d), the fluid parcels can travel a very great distance
vertically through the surroundings with much higher/lower salinity while leaving its
original salinity essentially unchanged due to the extremely small value of the salinity
diffusivity. In this process, only vanishingly small irreversible mixing for the salinity
field Firr

S occurs even though FS is large (both Firr
S and FS are exponentially growing).

In stage 2, however, the zig-zag instability begins to twist the fingering structures and
to advect fluid parcels with extreme salinities into closer contact with their neighbours.
This forces these fluid parcels to exchange salinity with neighbouring parcels (as can be
seen in figure 4e), therefore, the more fingering structures are twisted and destroyed, the
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stronger the irreversible mixing will be. This explains why Firr
S dramatically increases

right at the time when the zig-zag instability begins to suppress fingering growth as
shown in figure 4(b). This is one of the most fundamental conclusions of this paper:
while the traditionally defined salt flux provides a useful diagnostic of the salt-fingering
generation mechanism, the irreversible salt flux is capturing the extent to which fingers
are being destroyed. The final statistical equilibrium stage of salt-fingering turbulence can
best be understood as a state in which there exists a balance between finger generation
and disruption (the nature of this balance is captured in the theoretical model of Radko &
Smith (2012)) which suggests that the equilibrium state is obtained when the growth rate of
first-order fingering instability is balanced with the growth rate of the zig-zag instability).
As the growth rate of fingers being generated at a given time will determine the number
of fingers that are available for disruption at a later time, there is an expected phase delay
between Firr

S and FS demonstrated in the high-resolution inset of figure 4(b).
After comparing the evolution of irreversible heat and salt fluxes in the unbounded

gradient model above, it is also informative to discuss their ratios: the ratio of irreversible
fluxes is defined as

γ irr ≡ |MΘ |
|MS | = |αFirr

Θ |
|βFirr

S | . (4.1)

The evolution of γ irr is compared with the traditional definition γ in figure 4(c). The
traditional γ in the salt finger growth stage (around 0.584) is a slight overestimation of
the value of γ in the equilibrium stage (around 0.546), a trend that has been discussed in
detail in earlier work of Traxler et al. (2011). However, the ratio of irreversible fluxes γ irr is
extremely high in the early stage of evolution of the turbulent flow simply due to the much
higher temperature diffusivity than salinity diffusivity. Following the transition stage 2,
γ irr equilibrates at a level that is nearly the same at equilibrium as that for γ . However,
the variations about the equilibrium are significantly stronger than those characteristic of
the traditional ratio γ , which suggests a larger error bar is necessary for characterization
of the numerically determined irreversible flux ratio. This effect is not due to larger
variations in Firr

Θ (Firr
S ) than FΘ (FS) (since they are characterized by fluctuations of similar

magnitude as shown in figure 4a,b), but is simply due to the phase delays mentioned
above: while irreversible temperature flux remains in phase with the finger generation
process at a given time, the irreversible salinity flux is more nearly in phase with the finger
disruption mechanism at a given time. Thus, the value of the irreversible flux ratio at a
given time actually involves the state of the system that existed at a significantly earlier
time, and this inevitably leads to stronger variations with time of γ irr about its equilibrium
value.

4.1.3. Equilibrium fluxes and a revised scheme for the parameterization of salt-fingering
turbulence in global ocean models

As discussed above, the salt-fingering turbulence in the unbounded gradient model
eventually evolves into an equilibrium state which is statistically stable. This makes it
possible for us to obtain useful estimates of the diapycnal diffusivities based on the
measured fluxes. Specifically, the diapycnal diffusivities can be calculated by substituting
the equilibrium fluxes and the constant background gradients into the definitions, for both
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Rρ Kirr
Θ /κθ Kirr

S /κθ γ irr Averaged intervals of t∗

1.1 240 ± 35 394 ± 49 0.671 ± 0.110 0.0024–0.0034
2 39.18 ± 6.1 143.6 ± 16.7 0.546 ± 0.090 0.013–0.024
3 23.32 ± 5.2 131.1 ± 22.8 0.534 ± 0.090 0.015–0.043
4 12.59 ± 1.6 103.6 ± 16.3 0.488 ± 0.080 0.038–0.048
5 10.10 ± 1.0 104.7 ± 13.5 0.483 ± 0.077 0.037–0.054
6 6.78 ± 0.72 87.6 ± 8.57 0.471 ± 0.066 0.06–0.085
7 5.31 ± 0.46 82.0 ± 10.9 0.453 ± 0.055 0.050–0.094
8 4.47 ± 0.61 77.4 ± 13.8 0.464 ± 0.064 0.09–0.19
9 3.85 ± 0.62 75.5 ± 11.8 0.472 ± 0.074 0.07–0.24
10 3.45 ± 0.75 71.7 ± 15.0 0.482 ± 0.070 0.10–0.25

Table 3. Equilibrium Kirr
Θ , Kirr

S , as well as γ irr averaged over the statistical equilibrium state of simulation
numbers 1–10.

traditionally defined fluxes and the irreversible fluxes, as

KΘ = − FΘ

Θz0
, (4.2a)

KS = − FS

Sz0
, (4.2b)

Kirr
Θ = −Firr

Θ

Θz0
, (4.2c)

Kirr
S = −Firr

S
Sz0

. (4.2d)

The equilibrium irreversible diapycnal diffusivity (averaged over a finite-time period in
the equilibrium stage) is strongly dependent upon Rρ , which is the only non-dimensional
parameter that varies significantly in oceanographic environments. In table 3 we show
explicitly the equilibrium irreversible diapycnal diffusivities for heat and salt (Kirr

Θ , Kirr
S )

as well as the irreversible flux ratio γ irr for each of 10 different values of Rρ . These
irreversible diapycnal diffusivities are consistent with the traditionally defined diapycnal
diffusivities obtained in previous three-dimensional simulations with similar resolutions
(Traxler et al. 2011; Radko & Smith 2012). The functional dependence of Kirr

Θ and γ irr on
Rρ can be well fit using the specific forms:

Kirr
Θ = a

(Rρ − 1)bRc
ρ

, (a = 78.09, b = 0.52, c = 0.87), (4.3a)

γ irr = aR3
ρ + bR2

ρ + cRρ + d, (a = −0.00068, b = 0.0163, c = −0.125, d = 0.77),

(4.3b)

Kirr
S = Kirr

Θ

γ irr Rρ. (4.3c)

Both the data and our fitting results are displayed in figure 5. The expression for Kirr
Θ

we employ is based upon the assumption that Kirr
Θ goes to infinity as Rρ approaches 1 and

Kirr
Θ goes to 0 as Rρ goes to infinity (when salt fingers are extremely weak). We use a
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Figure 5. Averaged Kirr
Θ (a), Kirr

S (b) and γ irr (c) over the statistical equilibrium state as a function of Rρ from
unbounded model simulations (simulation numbers 1–10). Numerical fitting of (4.3) is shown in each figure to
be compared with the data.

third-order polynomial form for γ irr in order to capture the transition from a decreasing
γ irr to increasing γ irr, as shown in figure 5(c). It is worth noting that these expressions
differ from the expressions suggested by Radko & Smith (2012), in which simulations
have been performed over a much more restricted range of Rρ (1 < Rρ < 3) to which the
similarity theories described in Radko (2008) could be applied.

4.2. Direct numerical simulation results for the interface model

4.2.1. Time evolution of simulations for the interface model
As in the case of the unbounded gradient model, we will begin our discussion of the
interface model by first providing an overall description of the evolution of the system.

Figures 6(a) and 6(b) display the evolution of temperature induced buoyancy flux HΘ

and minus salinity induced buoyancy flux −HS at each depth on a logarithmic scale from
our simulation with initial density ratio Rρ0 = 2. The fluxes firstly develop around the
midpoint of the interface where the background gradients are steepest and then extend to
the physical boundaries of the computational domain, a process that is accompanied by
the growth and expansion of the fingering-affected region as visualized in figure 6(c,d).
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Figure 6. (a,b) Contour plot of HΘ and HS in the simulation case 11. (c,d) Snapshots of salinity fields taken
at two time slices of the simulation, note that the axis scales in (c) and (d) have been adjusted for better
visualization purposes.

The fingers appear to be more abundant and narrower than those depicted in figure 4 due
to the much larger domain in which we have elected to simulate salt-fingering turbulence
in the interface model.

It is clear that at the time the simulation is arrested the fluxes are still extending vertically
in space and have begun to be confined by the upper and lower boundaries of the domain.
Continuing the evolution of the system beyond this time would inevitably introduce effects
due to boundary reflections which would render the results unphysical. Although the
system as a whole is not in statistical equilibrium at this time, a quasi-equilibrium state has
already been established across the region of strong background gradients that define the
interface (say the region between −2 < z∗ < 2). In this region, salt-fingering turbulence
(illustrated in figure 6b) will be recognized as having the same characteristics as the
equilibrium fingering field in the unbounded gradient model (see figure 4f ).

4.2.2. Reversible and irreversible buoyancy fluxes in the interface model
Since the interface model is describing a closed system with well-defined potential
energies, we are in a position to make detailed tests of the accuracy of satisfaction of the
energy budget equations discussed in § 2.2 which we proceed to perform in this section.

We first illustrate the evolution of temperature/salinity potential energies (solid lines)
and temperature/salinity background potential energies (dashed lines) in figure 7(a,b).
In accord with the discussion in § 2.2, PEΘ is always larger than BPEΘ (the minimum
potential energy state for temperature), the difference between which corresponds to
the available potential energy APEΘ which is able to be released back to the kinetic
energy reservoir. In figure 7(b) the salinity potential energies are decreasing, with
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Figure 7. Time evolution of temperature potential energy (a) and salinity potential energy (b) of simulation
case 11. Test of the potential energy budget equations for PEΘ , BPEΘ (c), as well as PES and BPES (d).

BPES (the maximum potential energy for salinity) being always larger than PES. The
differences between PES and BPES correspond to the quantity of potential energy that
may be ‘returned’ from the kinetic energy reservoir. The evolution of PES(PEΘ) and
BPES(BPEΘ), as discussed in § 2.2, should follow (2.8) and (2.12) if the system is a
closed system. This is tested in figure 7(c,d), where the time derivative of potential
energies are plotted as solid lines to compare with their predicted contributions H + Dp
and M + Dp calculated from their definitions in (2.9) and (2.12). Solid and dashed lines
agree well which each other in figure 7(c,d), indicating that the above equations have
been obeyed quite well in our numerical simulations. Such agreement also reveals that the
current resolution implemented in our DNS is high enough to precisely capture the critical
influence of small-scale diffusion.

Although it may seem that the irreversible fluxes are always weaker than the traditionally
defined fluxes within the simulation time (shown in figure 7c,d), it is not the case if
we compare the irreversible fluxes and traditional fluxes within a finite region near the
centreline shown in figure 8 (we choose to focus upon the range −2 < z∗ < 2 in this
case). The evolution of fluxes in this region strongly resembles the evolution process in
the unbounded gradient model: there are also evident phase delays in the irreversible
fluxes (more evident phase delays in the salinity fluxes than temperature) in the early
evolution of the flow, after which both definitions tend to agree with each other once
the system enters a statistically steady state. This demonstrates that the system has already
reached a quasi-equilibrium state across the width of the transition layer (−2 < z∗ < 2)
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Figure 8. Comparison of the evolution of FΘ and Firr
Θ (a) as well as FS and Firr

S (b) averaged over the
centreline region −2 < z∗ < 2.

(such agreement only occurs in the statistical equilibrium state as shown in our analysis of
results from the unbounded gradient model). The irreversible fluxes are generally smaller
than the traditional fluxes while salt fingers continue to grow in the outer regions of our
domain, averaging over the entire domain will still lead to smaller irreversible fluxes as
seen in figure 7(c,d).

The above discussions rely upon an important assumption that lies at the core of
the present paper, namely that the evolution of salt-fingering turbulence in a local
region in the interface model can be understood on the basis of our simulations of
salt-fingering turbulence in the unbounded gradient model. Different regions (with
different vertical positions) may have different growth rates or different fingering widths,
but, we hypothesize, they always follow the same path of turbulence evolution that we
have shown to obtain in the unbounded gradient model at the same density ratio. If this
hypothesis is correct it both suggests that the local irreversible fluxes will be smaller
than traditional fluxes in the finger growth stage (with a phase delay), and that the
local equilibrium stage can be characterized by coincidence between the reversible and
irreversible fluxes. This hypothesis will be directly tested and established as correct in the
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next subsection where we will apply the parameterization of diapycnal diffusivity obtained
through analysis of data from the unbounded gradient model to the interface model.

4.2.3. Effective diapycnal diffusivity for the interface model
The manner in which we calculate this important quantity for the interface model is
necessarily distinctly different than the simple method employed to compute diapycnal
diffusivity for the unbounded gradient model. First, the interface model is inhomogeneous
vertically and there is always stronger flux near the centre of the interface compared with
boundary regions, as clearly shown in figure 6(a). Secondly, no equilibrium state exists in
this run-down experiment, and, thus, both the fluxes and the related diapycnal diffusivity
are essentially time-dependent. Previous researchers (e.g. Kimura et al. 2011) computed
averages of the fluxes over the interface region as well as a time average over periods during
which the buoyancy Reynolds number did not vary significantly to obtain a value for a flux
which depends primarily on the non-dimensional parameters of the initial profiles. They
further employed the functional dependence so determined to obtain a representation of
diapycnal diffusivity dependent upon both Rρ and Ri in circumstances in which the system
is also influenced by shear. In the current work, however, we argue that averaging over a
finite region near the centre of the interface will inevitably introduce large errors in the
inference of diapycnal diffusivity by implying that there are large variances in both the
local density ratios and local fluxes in the averaging region. Explicitly, the density ratio
and diapycnal diffusivity as a function of depth defined by the horizontal average of the
temperature and salinity fields are as follows:

Rρ(z) = αΘ̄z

βS̄z
, (4.4a)

KΘ(z) = −FΘ(z)
Θ̄z

, (4.4b)

KS(z) = −FS(z)
S̄z

. (4.4c)

It will be observed that the above formulae are based on the traditionally defined diapycnal
diffusivity. As discussed in § 4.2.2, the irreversible fluxes equilibrate to the same value as
the traditionally defined fluxes in the statistical equilibrium state. Since our focus will
be on the equilibrium properties in this subsection, such distinctions will be irrelevant
in the following discussion. In figure 9(a) we show the vertical variations of Rρ(z) at
the centreline region for our simulation number 11. Although Rρ(z) is initialized to be
Rρ0 = 2 for all depths, the system evolves into a state in which Rρ is depth dependent.
The difference between local Rρ(z) and the initially specified global value is especially
significant near the centre of the interface model, with Rρ(z∗ = 0) being much larger than
2 and Rρ(z∗ = −2), Rρ(z∗ = 2) much smaller than 2. This pattern does not rely on the time
chosen as demonstrated in figure 9(b) in which we have plotted the evolution of Rρ(z) at
each of these three positions as a function of time. As the system approaches the statistical
equilibrium state appropriate to a specific depth, the Rρ(z) also attains a quasi-equilibrium
value. In figure 9(b) the equilibrium value of Rρ is shown to be larger than Rρ0 near
the centre of the interface model but smaller than Rρ0 at z∗ = 2, −2 whose heights are
displaced from the centreline. This pattern arises as the first-order response to the spatial
distribution of fluxes shown in figure 6. As strong heat and salt fluxes in the central
region of the interface support a strong flux of both heat and salt downwards across the
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Figure 9. (a) Local Rρ near the centreline region at t∗ = 0.098 for simulation number 11. (b) The
time-dependence of local Rρ at z∗ = 2, z∗ = 0 and z∗ = −2.

centreline, both temperature gradient Θz and salinity gradient Sz decrease in the vicinity
of z∗ = 0. Since this effect is stronger for salinity than for temperature (salt fluxes are
stronger in a salt-fingering process), Rρ = αΘ̄z/βS̄z at the centreline will increase because
of the more prominent decrease in the denominator than the numerator. For the z∗ = 2
region (the same argument applies for z∗ = −2), however, these regions will experience
an increase in both Sz and Θz, as both salinity and temperature below z∗ = 2 are delivered
downwards across the centreline, while salinity and temperature above z∗ = 2 remain
relatively unchanged (fluxes are much smaller away from the centreline). This effect is
also stronger in the salinity field than in the temperature field, leading to a decrease in Rρ

at z∗ = 2 (the denominator is increasing more strongly). The same mechanism leads to a
density inversion zone (with Rρ < 1) in regions further removed from the centre of the
transition region (not shown). Such regions have been previously reported and discussed
in the two-dimensional numerical simulations of Shen (1989), Shen & Veronis (1997) and
Singh & Srinivasan (2014), but further discussion of these regions is beyond the scope of
the present paper.

These large variations with Rρ as a function of depth indicate that, instead of averaging
over a particular depth range (as in Kimura et al. (2011)) in which Rρ varies so intensely
(the diapycnal diffusivities and flux ratio evaluated using this method are discussed in
appendix B), it would appear to be a better strategy to treat each depth separately,
especially insofar as diapycnal diffusivity is concerned. These diapycnal diffusivities
do vary significantly as a function of depth, as shown by the solid lines in figure 10.
Specifically, we plot in figure 10(a–c) the evolution of Kθ ,Ks (both non-dimensionalized
by dividing by the molecular diffusivity κθ ) and the flux ratio γ at several different depths.
It is apparent that the diffusivities at different local depths tend to fluctuate about different
values. It is then a well-motivated assumption to make that the diapycnal diffusivities
at depth z are controlled by the local density ratio Rρ(z). To test this hypothesis, we
apply the parametrization schemes developed on the basis of results from the unbounded
gradient model (4.3) to the Rρ(t) data at different depths and also plot these data on
figure 10(a–c) separately as the dashed curves. These dashed curves should be understood
as representing the equilibrium diapycnal diffusivities of the turbulence at a particular
value of Rρ at the corresponding time. It will be observed that there is a generally good
match between the dashed curve and the solid curve. Specifically, the dashed curve gives a
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more accurate prediction at z∗ = 0, where Rρ is in a relatively stationary environment
which better resembles the settings of the unbounded gradient model. At z∗ = 2 and
z∗ = −2, both the solid and dashed curves have large variations due to strong local flux
fluctuations, however, the two curves are varying around similar equilibrium levels, which
reveals their connections. These results supports the validity of our hypothesis that we
can accurately treat the local (depth dependent) environment of the interface model as a
particular realization of the unbounded gradient model from which local fluxes for the
interface model can be determined from the local value of Rρ .

5. Salt-fingering parametrization schemes for application in the ocean
component of global climate models

In the previous sections of this paper we have described the results obtained on the basis
of direct numerical simulations of a salt-fingering system in the unbounded gradient
model at τ = 0.01 and Pr = 7. On the basis of these results we have been able to
determine the diapycnal diffusivities for temperature and salt as a function of Rρ . We have
furthermore shown that in a statistical equilibrium state of the salt-fingering system with
inhomogeneous temperature and salinity gradients as a function of depth, the local fluxes
(either irreversible flux or the more commonly defined flux) can be very closely predicted
by applying this functional relationship based upon the local density ratio Rρ . It is then a
natural question as to how such a DNS-based flux law would behave if it is employed to
parameterize the influence of salt-fingering turbulence in a global ocean model to represent
the diapycnal diffusivities for heat and salt in terms of the large-scale fields defined on the
low-resolution model grid. We address this question in what follows.

There have been different proposals previously suggested as to how the influence
of salt-fingering turbulence should be represented in large-scale models of the general
circulation of the oceans.

One of the first of these was a component of the Kappa profile parameterization of
Large, McWilliams & Doney (1994). Specifically, the diffusivities for heat and salt in this
parameterization were based on applying the laboratory 4/3 power law (e.g. Turner 1967;
Schmitt 1979; McDougall & Taylor 1984) to C-SALT observations of Schmitt (1988),
based upon the mathematical representations:

KS(Rρ) =
[

1 −
(

Rρ − 1
0.9

)2
]3

× 10−3 m2 s−1 (1 < Rρ < 1.9), (5.1a)

KΘ(Rρ) = 0.7
Rρ

KS (1 < Rρ < 1.9). (5.1b)

Zhang, Schmitt & Huang (1998) later applied a somewhat modified mathematical
representation of the Rρ dependence of the fluxes in the salt-fingering system in sensitivity
tests of the form previously suggested by Schmitt (1981) as

KS(Rρ) = 1

1 +
(

Rρ

1.6

)6 × 10−4 m2 s−1 + Kb, (5.2a)

KΘ(Rρ) = 0.7
Rρ

(KS − Kb) + Kb, (5.2b)

in which Kb = 3 × 10−5 m2 s−1.
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Figure 10. Time evolution of diapycnal diffusivities for temperature Kθ (a) and salinity KS (b), as well as
flux ratio γ (c) at z∗ = 2, z∗ = 0 and z∗ = −2. In each figure, the solid line represents data from the interface
model and the dashed line represents the prediction of Kθ , Ks, as well as γ calculated by applying our new
parametrization method to the time evolution of local Rρ shown in figure 9(b).
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The more widely used parametrization at present is based upon empirical fits of
the mathematical form (5.1a) to the most recent ocean observations from the NATRE
experiment described in St. Laurent & Schmitt (1999), which has delivered the explicit
forms:

KS(Rρ) =
[

1 − Rρ − 1
1.55

]3

× 10−4 m2 s−1 (1 < Rρ < 2.25), (5.3a)

KΘ(Rρ) = 0.7
[

1 − Rρ − 1
1.55

]3

× 10−4 m2 s−1 (1 < Rρ < 2.25). (5.3b)

Such parameterizations have since been routinely applied in the parallel ocean program
(POP) and parallel ocean program 2 (POP2) of Smith et al. (2010) as the salt-fingering
parametrization. The more recent community ocean vertical mixing project (CVMix
project Griffies et al. (2015)), which has been designed to be implemented in a variety
of ocean models such as the model for prediction across scales-ocean (MPAS-ocean)
and the modular ocean model (MOM), also represents vertical mixing associated with
the salt-fingering turbulence process using the same mathematical representations. It is
clearly of interest to compare the parameterization scheme we have developed based
upon DNS-based simulations of salt-fingering turbulence to these empirically based
representations. To this end, comparisons are presented in figure 11 of these empirically
derived parameterizations with our DNS results. In figure 11(a) the DNS-based
parametrization scheme is represented by the dash–dotted line and the NATRE data-based
parametrization scheme by the solid line. Figure 11(b) further displays the original NATRE
data (for which Rρ is restricted to the range 1.3 to 1.8) which is used to obtain (5.3a). These
two parametrization schemes do not deviate significantly within the range of 1.3 to 1.8, but
do differ significantly for both small Rρ and large Rρ . The fact that the DNS-derived data
are close to the experimental data within the range 1.3 to 1.8 means that the discrepancies
between the two parametrization schemes may be largely due to the specific mathematical
forms to which the experimental observations are fit, a procedure that is liable to lead to
large errors in regions of parameter space not actually sampled by the observations. One
strength of the data-based parametrization derived from direct numerical simulations of
salt-fingering turbulence is that the parameterization is subject only to error based upon
the adequacy of the resolution of the turbulence.

It is informative for the purpose of further comparing the data-based parameterization
scheme with the empirical scheme to consider the interface model to represent the
depth-dependent oceanographic conditions to be parameterized.in terms of the diapycnal
diffusivities to be inferred. For this purpose, we will focus upon the interface region
itself in which statistical equilibrium conditions have been obtained in our simulations.
In non-dimensional vertical coordinate terms this is the region −2.5 < z∗ < 2.5 (see
figure 6). Such comparisons made for simulation number 11 at t∗ = 0.098 are shown in
figure 12. It can be seen from this figure that the DNS-based parametrization scheme is
characterized by an improved fit to the true diapycnal diffusivities calculated from the
simulation data within the region −2 < z∗ < 2. The mismatch of both parametrization
schemes beyond this region is possibly a consequence of the fact that the system had
yet to reach a quasi-equilibrium state there (see our discussions in § 4.2.2). The most
inaccurate region of the NATRE-based parametrization scheme is the prediction of
diapycnal diffusivities near the centre of the transition layer: both KΘ and KS are set to
0 in this region based on (5.3a) since the local Rρ is above 2.55, while the actual diapycnal
diffusivities are 0.03 cm2 s−1 for temperature and 0.1 cm2 s−1 for salinity.
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Figure 11. Comparison of parametrization of diapycnal diffusivity for salt Ks implemented in POP1 ocean
model based on the NATRE experiment (St. Laurent & Schmitt 1999) and DNS-based turbulent flux laws
obtained from our DNS. Note that (b) is the zoom in of (a) with logarithm scale on diffusivities in order to
show explicitly the original data from the NATRE experiment.

Although the above analysis demonstrates significant advantages of the DNS-based
parametrization scheme over the NATRE-based parametrization scheme, caution is
necessary when applying this parametrization scheme in a climate model. First it must be
recognized that this scheme is intended only to represent the diapycnal mixing caused by
homogeneous salt-fingering turbulence unaffected by the action of secondary instability
processes. One of the best known of such secondary effects involves the formation
of thermohaline staircases (possibly developed through the secondary γ -instability of
Radko (2003); Stellmach et al. (2011)). When such staircases form, the result may be
a significant increase of the local fluxes of heat and salt through the formation of
high-gradient interfaces. Such structures always form when the local density ratio Rρ is
small, but their formation does not depend solely upon the single parameter Rρ : rather
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Figure 12. A comparison of the performance of DNS-based parametrization scheme (dashed curve) and the
NATRE-based parametrization scheme (dotted curve) for both heat diapycnal diffusivities (a) and salt diapycnal
diffusivites (b).

there is observational evidence of both staircases (Schmitt et al. 2005) and staircase-free
salt-fingering fields (St. Laurent & Schmitt 1999) in which the density ratio Rρ is in the
same range. Our DNS-based parametrization scheme is applicable in the latter case since
no secondary structures have formed in the simulations we have described.

Secondly, we have not included the interaction between the salt-fingering fields with any
background internal wave strain that might be expected to exist ubiquitously in the natural
marine environment. Early work of Schmitt & Evans (1978) suggested that salt-fingering
field turbulence would not have time to establish if the system is intermittently perturbed
by internal wave strain whose frequency is significantly higher than the salt-fingering
growth rate. Their calculation suggested that in order for the salt-fingering growth rate
to exceed the local buoyancy frequency N, the density ratio Rρ would have to be smaller
than 2. This idea has been supported by the water-tank experiments of Wells & Griffiths
(2003) which suggest that the effective vertical diffusivities of heat and salt would be

911 A9-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1018


Y. Ma and W.R. Peltier

strongly suppressed by the intermittency of the turbulence involved. It is for this reason
that the NATRE empirically based salt-fingering parametrization scheme abruptly sets
diapycnal diffusivities to 0 when Rρ is larger than the critical value R0

ρ = 2.55. However,
the direct numerical simulations of Kimura et al. (2011) reveal a different aspect of
the interaction between salt fingerings and internal wave strain. For a system that is
susceptible to both Kelvin–Helmholtz instability (that is induced by internal wave shear)
and salt fingering simultaneously, it is suggested that the diapycnal diffusivities and flux
ratios are more strongly influenced by salt-fingering instabilities in the mixed system.
This suggests that salt fingering engendered turbulence may be more robust to disruption
by internal wave strain than it has been observed to be in laboratory experiments. We
expect that such subtleties will be resolvable in future direct numerical simulations in a
much larger domain which captures the complete life cycle of internal wave strains in a
salt-fingering-favourable environment. These might be expected to add dependence upon
an additional non-dimensional parameter to the parameterization, namely the buoyancy
Reynolds number Reb.

6. Summary and conclusions

In the oceanographic double-diffusion system where density is simultaneously influenced
by both temperature and salinity, understanding the behaviour of turbulent fluxes has
always constituted the core of studies of such processes, whether these involve the
salt-fingering process or the diffusive convection counterpart in which cold fresh water
lies above warm salty water. However, the previously employed definition of heat flux and
salt flux is one that has included the influence of both reversible ‘stirring’ and irreversible
mixing, while only an irreversible process may contribute to the turbulent diapycnal
diffusivities which are employed to represent the impact of such small-scale turbulence in
large-scale models. In this paper we have developed a theoretical framework which enables
us to separate the background potential energy into two different reservoirs, namely
a temperature related potential energy reservoir and a salinity related potential energy
reservoir. In each of these two reservoirs, we further separate the energies into background
potential energy and available potential energy in the same way as in Caulfield & Peltier
(2000) and Peltier & Caulfield (2003): background potential energies are defined as the
minimum (maximum) potential energies for all possible configurations of the temperature
(salinity) field that can only increase (decrease) due to irreversible mixing in these fields.
The irreversible temperature (salinity) fluxes are therefore defined as the rates of change
of the temperature (salinity) related background potential energies, whose values must
be calculated by sorting the temperature (salinity) fields adiabatically into the minimum
(maximum) potential energy states. We have also proposed algorithms that have enabled
us to properly calculate such irreversible fluxes in the unbounded gradient system with its
periodic boundary conditions in the vertical direction.

Inspection of these newly defined irreversible fluxes in our direct numerical simulations
have enabled us to more clearly display the nature of the irreversible fluxes in the
salt-fingering fields. There is little irreversible salt flux when the salt fingers are
exponentially growing in height, instead, irreversible salt flux rapidly rises when salt
fingers are ‘broken’ by the secondary zig-zag instability. This is a completely different
signature compared with the traditionally defined fluxes which grow when fingers grow
and decay when fingers are broken. In fact, the formation of salt fingers is for the most
part an intrinsically reversible process in salt-fingering fields since there can exist an
ideal adiabatic process which returns fluid parcels at the fingertips back to their original
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positions so as to almost reset the salt field to its original state (although this will not
happen in a natural salt-fingering system), but no adiabatic process can return the salt
field to its initial state when the high-salinity fluid in the fingers exchanges salt with its
much fresher neighbours at the time when fingers are twisted and broken by the zig-zag
instability. In the equilibrium state where the salt-fingering growth process is balanced
by the salt-fingering disruption process (see Radko & Smith 2012), the irreversible
fluxes will equilibrate to the same value as the equilibrium value for the traditionally
defined fluxes, except that there is an apparent time delay in the fluctuations of the
irreversible fluxes compared with the traditionally defined fluxes. It is for this reason
that the distinction between the irreversible fluxes and reversible fluxes are not vital in
our discussions regarding statistical equilibrium values of the fluxes. However, we expect
that the necessity of the distinction between reversible and irreversible mixing will be
of profound importance to a detailed understanding of salt-fingering instability in the
presence of background shear, a problem to which we will turn our attention in future
work.

Our direct numerical simulations have also enabled very important insights into
the physical processes involved in the evolution of salt-fingering turbulence in an
inhomogeneous system. In our simulations of salt-fingering turbulence in the interface
model initiated with hyperbolic-tangent profiles, we have shown that fluxes (either
traditionally defined fluxes or irreversible fluxes) at different depths in the transition
region follow the evolutionary trajectory as do fluxes in the homogeneous system. Such
a path has been shown to consist of three stages based upon our simulations in the
unbounded gradient model (as previously discussed in Shen (1995) and Traxler et al.
(2011) for example), namely the stage of finger growth, the stage of finger disruption by the
zig-zag instability and the equilibrium stage. Regions near the centre of the interface layer
experience faster fingering growth and reach equilibrium much earlier than the regions
closer to the boundaries of the interface layer since temperature and salinity gradients are
much sharper near the layer centre. These fluxes will in turn modify the local temperature
and salinity gradients, leading to the establishment of different equilibrium density ratios
Rρ at different depths (larger than Rρ0 at the centre and smaller than Rρ0 away from the
centre). The equilibrium fluxes at these different depths were further shown to be well
predicted by the flux laws acquired from the unbounded gradient model which are solely
dependent on local density ratio Rρ . In this way, these distinctly different models that have
been used to represent salt-fingering turbulence in different physical situations (see Radko
2013) are shown to be intimately connected.

An important application of the analyses we have performed is that the results
have enabled us to develop an original data-based parameterization of salt-fingering
turbulence for use in the ocean component of large-scale climate models. A recent
paper in the physical oceanography and climate literature in which the influence of
the parameterization of doubly diffusive turbulence on the large-scale oceanographic
circulation is that of Peltier, Ma & Chandan (2020). Compared with existing
parametrization schemes based on empirical fits to data derived from ocean observations,
the DNS-based parametrization is based upon a much clearer physical understanding
and is characterized by much smaller error bars on the fluxes being parameterized.
This is simply a consequence of the fact that the diapycnal diffusivities associated with
homogeneous salt-fingering turbulence can be thoroughly understood, precisely calibrated
and well tested. The additional steps that will lead to further improvements to the
parametrization scheme will require identification and quantitative characterization of the
influence of different secondary instabilities. We expect that DNS will continue to provide
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an invaluable tool for the development of the needed parameterization schemes for use in
lower resolution models.
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Appendix A. Numerical resolution requirements for the direct numerical
simulations

The smallest scale that could require resolution for the salt-fingering system is the
Batchelor scale (Batchelor 1959) for salinity dissipation which is defined as

Bs = (νκ2
s /ε)1/4, (A1)

in which ν is kinematic viscosity, κs is the molecular diffusivity for salinity and ε =
2ν〈eijeij〉 is the average rate of kinetic energy dissipation per unit mass of fluid. As this
scale is extremely small under oceanographic conditions (Pr = 7, τ = 0.01) and is barely
accessible in DNS, simulations in this paper have employed a resolution which is slightly
coarser but of the same order as the Batchelor scale for both the unbounded gradient model
and the interface model.

For simulations using the unbounded gradient model, we have employed the resolution
of 385 × 385 × 770 grid points for simulation numbers 1–7 and a slightly lower resolution
of 266 × 266 × 532 grid points for simulation numbers 8–10. The corresponding grid
intervals (equal for all three coordinate directions) are displayed by circled points in
figure 13 to be compared with the Batchelor scale Bs calculated at each value of Rρ .
Although Bs for the equilibrium salt-fingering field is only 2 to 5 times smaller than
the grid interval currently employed, an order of magnitude more grid points would be
required in order to fully resolve Bs in each of three spatial dimensions, which is not
possible due to our limited numerical capability. Fortunately, both the irreversible and the
traditionally defined fluxes are not sensitive to resolution at this level, which is illustrated
in figure 14. In the figure we compared the flux evolution trajectory from our simulation
number 2 (385 × 385 × 770 grid points) with a test simulation with the same conditions
except for a much lower resolution (175 × 175 × 350 grid points with grid interval as
0.00286). Figure 14 shows that the flux trajectory is still following almost the same
trajectory with the simulation discussed in the main text even at such a low resolution,
demonstrating that the flux trajectory discussed in the main text is robust. Therefore, the
resolution employed for the unbounded gradient model simulations is already sufficiently
high within the scope of our discussions in the current paper.

For simulations using the interface model, the large simulation domain (30 FGW ×
5 FGW × 100 FGW) requires a large number of grid points to be employed. In order
to improve the accuracy of these demanding simulations, we have performed three test
runs for each simulation number 11, 12 and 13 at a coarse resolution of 420 × 35 × 1400
grid points (other settings are kept the same) to decide the most suitable design for the
simulation grids. In these test runs the horizontally averaged kinetic energy dissipation
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Figure 13. A comparison of Bs at the equilibrium stage and the resolution that is actually employed in
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resolutions: 385 × 385 × 770 (solid curve) and 175 × 175 × 350 (dashed curve). Simulations under these two
resolutions display a similar evolution trajectory and equilibrium value for both FΘ and Firr

Θ .

rate ε̄ at different depths has been calculated for the entire life cycle to determine the
largest ε̄ of the life cycle as a function of depth. The Batchelor scale needed at each depth
can then be calculated from (A1), as shown in the dotted curve in figure 15 (where the
example is given only for simulation number 11, the procedure discussed hereafter has
also been applied for simulation numbers 12 and 13). Based on this, an ideal grid (the
dot–dashed curve) was first designed to fully resolve the Batchelor scale at the relatively
small cost of grid points being employed. Then we coarsen this resolution by a factor of
3.3 to reach a more realistic set of grids that can be computed within a reasonable amount
of time with our current computational resources. Explicitly, while the grids are uniformly
spaced in the x and y directions to 1582 and 266 intervals, the region within the height
range −1.5 < z∗ < 1.5 are taken to be more finely resolved by 1568 grid points in the
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Figure 15. A comparison of the depth-dependent Bs obtained from the test simulation and the actual grid
interval employed in simulation number 11. The grid intervals in simulation number 11 are designed in such a
way that a 0.3 grid interval would just be sufficiently smaller than the Batchelor scale at each vertical depth.

vertical direction. In the region above and below this innermost region the vertical spacing
between adjacent elements has been gradually stretched between successive levels, leading
to a total number of 1428 grid points in a vertical direction for both the upper and lower
region of the domain. The effectiveness of the above resolution has been discussed in the
main text: the fact that the energy budget for the salinity associated potential energy can be
precisely calibrated in the numerical simulations under the interface model is suggesting
that the salinity dissipation has already been accurately captured in the simulation.

Appendix B. Bulk-averaged effective diapycnal diffusivities for the
interface model

As we have discussed in the main text, the depth variations of Rρ in the interface model
are so significant that we chose to treat each depth separately in the analysis of diapycnal
diffusivity. In this appendix we will briefly discuss the evolution of diapycnal diffusivities
calculated by taking the bulk average of the turbulence. Specifically, the bulk-averaged
diapycnal diffusivities and the bulk-averaged flux ratio are defined by

Kbulk
Θ = −〈w′Θ ′〉D

〈Θz〉D
, (B1a)

Kbulk
S = −〈w′S′〉D

〈Sz〉D
, (B1b)

γ bulk = α〈w′Θ ′〉D

β〈w′S′〉D
, (B1c)

in which 〈·〉D represents the volume average over a specific domain D in which the
turbulence is primarily active. We choose D to be (−2 < z∗ < 2) based upon the flux
distribution shown in figure 6 (the same D has been chosen by Kimura et al. (2011)).

The evolution of Kbulk
Θ , Kbulk

S , as well as γ bulk for simulation number 11 (initiated with
Rρ0 = 2) are plotted in figure 16. All of these trajectories are evolving into a statistically
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Figure 16. Evolution of (a) bulk-averaged effective diapycnal diffusivities for heat and salt as well as (b)
bulk-averaged flux ratio in simulation number 11.

equilibrated state, allowing us to calculate the equilibrium values of Kbulk
Θ , Kbulk

S and γ bulk

by taking a time average in the equilibrated state. In the specific case of simulation number
11, the average values for (Kbulk

Θ , Kbulk
S , γ bulk) over the t∗ interval 0.80–0.98 is computed

to be (30.5,124.3,0.528). These values are all evidently smaller than the values evaluated
in the homogeneous salt-fingering turbulence (for the case of Rρ0 = 2) listed in table 3.
This comparison further strengthens our discussions in the main text: these bulk-averaged
diapycnal diffusivities have systematic errors caused by the depth variations of local Rρ

and, thus, should not be used to calibrate a parametrization scheme.
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