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that the subject is ready for a new standard introductory text. The present book shares all
the features that helped its predecessor become such a standard thirty years ago, and at the
same time, it is modern, and it is relevant to today’s state of the field. The subject will be
well-served by it.
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Picture yourself a country with trails, grasslands, etc., inhabited by beautiful unicorns,

in quite a number. In fact, most of the trails avoid those unicorns, but a few of them have
the astonishing particularity of hosting herds of unicorns. Similarly, the unicorns are quite
scarce on many grasslands, while on others they do appear but only along the trails, and
on still other grasslands they appear in surprisingly large numbers throughout. For a long
time, geographers could not really understand what was so special about the geography of
those trails and grasslands, that were fully inhabited by unicorns, despite an attractive and
convincing suggestion by unicorn ecologists. Remarkably, this inspired nereid ecologists to
wonder whether a similar suggestion could explain the population of nereids in some rare
rivers and ponds of a neighboring country.
This small book aims at unveiling a similar mathematical mystery.
Our mathematical countries, no less fantastic but absolutely real, are the Abelian varieties

and the Shimura varieties, named after the mathematicians Niels Abel (1802–1829) and
Goro Shimura (1930–). There is less poetry, however, in the name given to our magical
beasts, respectively torsion points or special points.
By varieties, wemean here algebraic varieties, that is, loci defined by polynomial equations,

say, with complex coefficients. Our trails are curves, our grasslands, surfaces, etc.
The most elementary examples of Abelian varieties are given by elliptic curves, each of

them being the set of solutions in the projective plane of some cubic equation with nonzero
discriminant. By Weierstrass’s theory of bi-periodic functions, elliptic curves can also be
described as the quotient of the complex plane C by a lattice Z + Z
, where 
, a complex
number of positive imaginary part, is an element of Poincaré’s upper half plane h.
More generally, Abelian varieties are those irreducible varieties which are endowed with a

group law, defined by polynomials as well, and are, moreover, “compact” or, more precisely,
projective; they can also be understood from the point of view of complex function theory,
where they appear as (particular) complex tori, quotients of a complex affine space Cg by
a lattice Λ. Torsion points are then defined as in group theory. A basic property is that
an Abelian variety of dimension g contains n2g points a such that n · a = 0, for every
integer n ≥ 1; these are the images modulo Λ of the points of n−1Λ.
Around 1960, Yuri Manin and David Mumford had conjectured that irreducible subva-

rieties of an Abelian variety which contain a dense set of torsion points must be Abelian
subvarieties, or the image of such a subvariety under that translation by a torsion point.
By “dense”, we mean that those points are not contained in a subvariety of a smaller
dimension—on remarkable grasslands, unicorns are not soleley populated along a few trails.
This conjecture has been proved by Michel Raynaud in 1983 and many new beautiful proofs
have been given since.
The simplest example of a Shimura variety is the modular curve, which parameterizes

elliptic curves. Namely, it is just the quotient of the upper half plane by identifying two
elements 
 and 
′ for which the lattices Z + Z
 and Z + Z
′ give rise to the same elliptic
curve. It comes out that this corresponds to quotienting the upper half-plane h by the group
SL(2,Z) acting by homographies. In this case, the Jacobi j-function identifies this quotient
with the complex planeC.More generally, Shimura varieties are relatively easily defined from
the point of view of complex function theory, where they appear as quotients of “symmetric
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hermitian domains” (very symmetric open subsets of some complex space Cm) by the action
of discrete subgroups of holomorphic automorphisms. However, the possibility of viewing
them as algebraic varieties is a subtle theorem due to Walter Baily and Armand Borel.
One may roughly think of Shimura varieties as parameter spaces for Abelian varieties (or

related objects), and this is one of the motivations for their study. In the important case of
the full moduli space of Abelian varieties, special points correspond to Abelian varieties with
complex multiplication, those Abelian varieties whose algebra of endomorphisms is as large
as it can be. In the case of elliptic curves, it means that the complex number 
 belongs to an
imaginary quadratic field or, equivalently, by Theodor Schneider’s theorem, that both 
 and
j(
) be algebraic numbers.
In analogy with the conjecture of Manin–Mumford, Yves André and Frans Oort conjec-

tured around 1990 that an irreducible subvariety of a Shimura variety which contains a dense
set of special points must be a Shimura subvariety, or a connected component of the image
of such a Shimura subvariety by the action of a Hecke correspondence.
André proved this conjecture in the special case of C2: the product of the modular curve

by itself. This says that if an irreducible algebraic curve V in C2 contains infinitely many
pairs of the form (j(
1), j(
2)) where 
1 and 
2 are imaginary quadratic complex numbers,
then either it is parallel to the coordinate axes, or there exists an integer n ≥ 1 such that
(j(
), j(n
)) belongs to V for every 
 ∈ h.
Bas Edixhoven, partly in joint work with Andrei Yafaev, developed remarkable results in

the direction of the general conjecture, but their approach required the Generalized Riemann
Hypothesis.
Jonathan Pila and Umberto Zannier proposed a new strategy for proving the André–Oort

conjecture and made it work in the framework of the Manin–Mumford conjecture. Soon,
Pila was able to prove the André–Oort conjecture for arbitrary subvarieties of a product of
modular curves, without any recourse to the Riemann Hypothesis. And in the next years,
Jonathan Pila and Jacob Tsimerman on one side, and Bruno Klingler, Emmanuel Ullmo,
and Andrei Yafaev on the other side, gave an almost definitive solution to the André–Ort
conjecture. Only “almost”, because the general case still requires the Riemann hypothesis;
however, it is not needed in the case of subvarieties of the moduli space of Abelian varieties
of dimensions ≤ 6, for example, and one may hope for further progress.
These remarkable advances have beenmade possible by the use of ingredients from “math-

ematical logic”, namely o-minimality. O-minimal geometries were isolated around 1980 by
Anand Pillay and Charles Steinhorn, and Lou van den Dries as an example of tame geome-
tries. An o-minimal geometry is defined by families of subsets of Rn, for all n ∈ N, which
are stable under union, complement, and projection, while the only allowed subsets of R are
finite unions of intervals. Semi-algebraic sets, subanalytic sets, give rise to o-minimal geome-
tries; a fundamental result of AlexWilkie asserts that subsets of Rn defined using subanalytic
functions and the exponential function also give rise to an o-minimal geometry.
This book, which stems out of a 2013 Instructional conference in Manchester, consists of

9 independent chapters, which, together, survey these developments as well as present some
further results.

Before we detail their content, let us describe the strategy of Pila and Zannier. Let us thus
consider a subvariety V of an ambient (Abelian or Shimura) variety A which contains a
dense set Σ of “special” points; the goal is to prove that V is “special”. One then introduces
the complex uniformization p : U → A, as described above—where the space U is an open
subset of an affine spaceM . Defined by complex function theory, the map p is indeed highly
transcendental, so that p−1(V ) is an analytic subspace of U .
A first step consists in noting that special subvarieties are essentially those for which

the irreducible components Ṽ of p−1(V ) can be defined in U by polynomial equations.
If p were given by the exponential function, (z1, . . . , zn) 
→ (exp(z1), . . . , exp(zn)), this
would follow from a theorem of James Ax according to which if f1, . . . , fn are algebraic
functions on a domain, linearly independent modulo constants, then exp(f1), . . . , exp(fn)
are algebraically independent. This kind of result is viewed as a functional analogue of
the Lindemann–Weierstrass theorem in transcendental number theory which states that
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exponentials of Q-linearly independent algebraic numbers are algebraically independent
overQ—in particular, the relation e2i� = 1 shows that � is a transcendental number.
How then can one detect from the set Σ the algebraic nature of p−1(V )?
The second step incorporates number theory into this geometric picture. Namely, one

observes that the points ofp−1(Σ)have veryparticular coordinates in agoodbasis ofM , either
rational, or belonging to number fields of small degree. Moreover, their size (the precise term
is height) is controlled. Sincep is a coveringmap, eachpoint of Σ gives rise tomany points, and
the arithmetic of Abelian varieties or the theory of complex multiplication can be exploited
to produce further points on p−1(V ). Then a theorem by Pila & Wilkie is invoked, that says
that within a subset of Rn defined in an o-minimal geometry, the existence of “many points
of bounded height” implies the existence of semi-algebraic subsets of positive dimension.

This last theorem is the main goal of chapter 2, written by Alex Wilkie. After a rapid
introduction to o-minimal geometries, the proof of the Pila–Wilkie theorem is sketched.
That proof follows a century-old pattern in transcendental number theory. In particular, it
requires analytic estimates, the core of which follow from a reparametrization theorem due to
Gromov andYomdin. Chapter 8, byGarethO. Jones, improves the bounds of the Pila–Wilkie
theorem (from T ε to log(T )c) in some cases.
Chapter 6, again written byWilkie, provides a proof, due to Denef and van den Dries, that

subanalytic subsets of Rn form an o-minimal geometry.
Chapters 1 and 4, respectively written by Philipp Habegger and Martin Orr, provide

introductions to the theory of Abelian varieties with emphasis towards the proof of the
Manin–Mumford conjecture. In particular, Habegger establishes the height bounds, due
to David Masser, required by the strategy described above, while Orr proves the required
theorem of Ax-Lindemann type.
In chapter 3, Jonathan Pila explains his proof of the functional theorem of Ax–Lindemann

type which is required by his proof of the André–Oort conjecture for the product of modular
curves. Actually, Pila also explains Ax’s case of the exponential function. He also introduces
Schanuel’s conjecture, Ax’s functional analogue, and Zilber’s conjecture on intersection with
tori. JacobTsimermangives in chapter 9 a proof of theAx–Schanuel theorembyo-minimality.
(Ax’s proof used differential algebra.)
The proof of theAndré–Oort conjecture following the strategy of Pila–Zannier is presented

in chapter 5, written by Christopher Daw. By necessity, the theorems are often given without
proofs.
Thomas Pink had proposed a dramatic expansion of the conjectures of Manin–Mumford

and André–Oort, that encompasses Zilber’s conjecture alluded to above, as well as the
Mordell–Lang conjecture (a theorem of Faltings). Chapter 8, by David Masser, presents a
particular case of this Zilber–Pink conjecture: the “relative Manin–Mumford conjecture” for
Abelian varieties.

This collection of papers will furnish the readerwith both an introduction to the statements
ofManin–Mumford/André–Oort type, and a preview of the techniques used in their solution
following the strategy of Pila–Zannier. As this strategy combines results from number theory,
algebraic geometry, and mathematical logic, the reading of this book will certainly be of great
help to any reader who wishes to study the research papers.
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