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The evolution of two- and three-dimensional small-amplitude disturbances in the
laminar part of a laminar separation bubble is investigated in detail. We apply
a combination of local linear stability theory, results from different experimental
measurement campaigns and direct numerical simulations to identify two different
discrete eigenmodes in the laminar part of the bubble. A stable eigenmode, the outer
mode, governs unsteady oscillations in the upstream part of the bubble. However,
this perturbation is quickly overtaken by an unstable eigenmode, the inner mode,
which eventually leads to transition of the detached shear layer. Such a behaviour is
observed due to an acceleration region with a favourable pressure gradient preceding
the adverse-pressure-gradient region. The flow is stable in the acceleration region,
in which the outer mode is only moderately damped, while the inner mode is
strongly damped. At the onset of instability for the unstable eigenmode upstream
of separation, both viscous Tollmien–Schlichting and inviscid Kelvin–Helmholtz
instability mechanisms contribute to amplification, while deeper inside the bubble
only the inviscid mechanism is active. If the explicit forcing is moved to a region
downstream of the favourable pressure gradient, only the unstable eigenmode appears.
The same behaviour is found for two-dimensional and weakly oblique waves.

Key words: boundary layer separation, boundary layer stability, transition to turbulence

1. Introduction
A laminar separation bubble (LSB) can originate if an initially laminar boundary

layer is subject to a sufficiently strong adverse pressure gradient (APG) and detaches
from the wall. In such a pressure-induced LSB, for example on an aerodynamic body
such as a laminar aerofoil, laminar–turbulent transition occurs in the detached shear
layer. If the body hosting the separated flow extents sufficiently far downstream, the
turbulent flow reattaches eventually, and a closed bubble is formed. A comprehensive
introduction to laminar separation bubbles, including a list of their characteristic
features, is given in Marxen & Henningson (2011).
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2 O. Marxen, M. Lang and U. Rist
Pressure-induced LSBs may occur on the surface of slender bodies, such as

aerofoils, at low Reynolds numbers (Jones, Sandberg & Sandham 2008; Hain, Kähler
& Radespiel 2009; Yarusevych, Sullivan & Kawall 2009). They often strongly affect
aerofoil performance, mainly lift and drag. Gaster (1967) investigated pressure-induced
LSBs on a flat plate in order to be able to vary Reynolds number and pressure
distribution. This allowed him to produce a pressure distribution similar to ‘the suction
peak around the nose of a thin aerofoil at incidence’ (p. 820). Here, we follow Gaster
(1967)’s approach and investigate LSBs on a flat plate.

1.1. Linear instability of unsteady waves in a separating boundary layer
Several investigations of small-amplitude travelling waves in a separating boundary
layer have lead to the now widely accepted view that these waves are amplified due
to a viscous Tollmien–Schlichting (TS) mechanism (Tollmien 1929; Schlichting 1933)
first, i.e. in the attached boundary layer upstream of the bubble and in the early
laminar part of the LSB, followed by an inviscid Kelvin–Helmholtz (KH) instability
mechanism. LSBs are very sensitive to triggering the KH instability via an explicit
forcing of small-amplitude, convectively amplified perturbation waves (Kotapati et al.
2010; Marxen & Rist 2010; Marxen & Henningson 2011). These waves precede vortex
formation.

Gruber, Bestek & Fasel (1987) were among the first to investigate the evolution
of a Tollmien–Schlichting wave that enters a very small laminar separation bubble.
The importance of Tollmien–Schlichting waves entering an LSB was later confirmed
for larger, but still short, LSBs in several numerical, theoretical, and experimental
investigations. In the numerical investigations of Maucher, Rist & Wagner (2000),
instability waves were weakly amplified far ahead of the laminar separation bubble
(cf. their figure 5) due to a viscous TS mechanism, before the flow separates and
much stronger amplification of these instability waves occurs. In their experimental
investigation, Häggmark, Bakchinov & Alfredsson (2000) found that ‘close to the
disturbance source the instability wave resembles a Tollmien–Schlichting wave’,
but that ‘the amplitude distribution of the instability wave changes shape’ upon
entering the separated region. Similarly, Marxen et al. (2003) reported that ‘the
first section of the LSB is dominated by a primary convective instability of the
two-dimensional TS-wave’, while further downstream the instability wave assumes
a shape ‘characteristic for an inviscid free shear-layer type instability (so-called
Kelvin–Helmholtz instability)’. For their LSB, Roberts & Yaras (2006) found that ‘the
T-S waves, at the very least, appear to provide the initial disturbances for transition
to occur through the K–H mechanism’. Finally, Diwan & Ramesh (2009) came to
the same conclusion in that ‘the inviscid inflectional instability associated with the
separated shear layer should be logically seen as an extension of the instability of the
upstream attached adverse-pressure-gradient boundary layer’, and hence could again
fully confirm this traditional view.

The switchover between two different instability mechanisms, i.e. the TS and the
KH, is a gradual process. Nevertheless, researchers have often associated these two
mechanisms with different ‘modes’. Rist & Maucher (2002) stated ‘that an inviscid
free shear layer type instability can be distinguished from a viscous wall-mode
instability’. They used the ‘the position and the relative strength of the eigenfunction
maxima’ to separate the two types of instabilities. Diwan & Ramesh (2009) also
distinguished between two different modes: a ‘wall mode of instability (i.e. TS
mechanism)’ and an ‘inflectional (inviscid) mode’. The expression ‘mode’, however,
may be confusing, as it is not always clear whether it refers to a certain type
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Discrete eigenmodes in a separating laminar boundary layer 3

of instability or to a mathematical eigenmode. The statement of Diwan & Ramesh
(2009) that ‘the Orr–Sommerfeld equation yields both inflectional (inviscid) and wall
(viscous) modes’ may imply that these are two separate mathematical eigenmodes, but
no evidence in favour or against such a conjecture was presented in their paper.

The situation hence resembles that of supersonic flows, where two different
instability mechanisms are active at a sufficiently high Mach number: a viscous (TS)
instability and an acoustic (Mack) instability (Mack 1975). These may or may not
correspond to two mathematical eigenmodes as discussed in Fedorov & Tumin (2011).
Yet another similar situation can be observed for wall jets (Tumin & Aizatulin 1997;
Levin et al. 2005), where an inner (wall) and an outer (shear layer) mathematical
eigenmode can be found. In this paper, we will therefore investigate whether more
than one mathematical eigenmode plays a role in an LSB. We will also determine the
relation of eigenmode(s) to the two different instability mechanisms.

The traditional view that a Tollmien–Schlichting instability is followed by a
Kelvin–Helmholtz instability as described above has been mostly observed for setups
in which the boundary layer was not, or only mildly, accelerated before being
decelerated in the APG region. However, in a flow in which the APG is preceded by a
strong favourable pressure gradient, disturbances often decay even downstream of the
separation point. Examples can be found in figure 9 of Watmuff (1999), in figure 13
of Lang, Rist & Wagner (2004), in figure 6 of Roberts & Yaras (2006), as well as
in figure 16 of Postl, Balzer & Fasel (2011). In all these cases disturbances decay,
or growth is much lower than predicted by linear stability theory (LST). Nevertheless,
a Kelvin–Helmholtz-type instability is eventually observed. However, the decay of
disturbances inside the separation region seemingly contradicts the traditional view
described above. An explanation for this peculiarity has not yet been provided in the
peer-reviewed literature. In this paper we will suggest one possible explanation for the
decay of perturbations in the laminar part of an LSB.

The last point that will be addressed here is the occurrence of a linear instability for
weakly oblique waves. These play a role in LSBs and have been investigated for the
so-called oblique breakdown (Marxen & Rist 2010; Marxen & Henningson 2011), but
an explicit comparison between LST, measurements and direct numerical simulations
(DNS) has rarely been reported for LSBs. We will therefore analyse whether linear,
amplified oblique waves can be observed experimentally in an LSB.

A number of considerations motivates our investigation of the linear disturbance
stage in a separation bubble. Identifying the relevant disturbances and understanding
their role in the vortex-formation and vortex-breakup process occurring further
downstream is necessary to determine the number and kind of parameters influencing
this process. This may aid in the interpretation of measurements and in implementing
flow-control schemes such as the one used in Rist & Augustin (2006). Moreover,
correctly capturing this stage of transition is believed to be a necessary condition
for a simulation of (very) late stages with their complex interactions among different
disturbances. Finally, we expect that simple models of the flow with an LSB, such
as the one used by Sandham (2008), can be improved with better knowledge of the
physical processes involved.

1.2. Related work and outline
The investigations of Marxen et al. (2003), Lang et al. (2004), Marxen, Rist &
Wagner (2004) and Marxen et al. (2009) are based on the same flow field used
here. Lang et al. (2004) report a comparison of results from different measurement
techniques, including particle image velocimetry (PIV), with LST and DNS.
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4 O. Marxen, M. Lang and U. Rist

Marxen et al. (2003) give a short overview of the several features of transition in
this flow field. Marxen et al. (2004) studied the effect of steady three-dimensional
linear disturbances on the overall transition process, whereas Marxen et al. (2009)
investigated growth mechanisms for this type of perturbation in the laminar part
of the LSB. Here we specifically focus on unsteady perturbations preceding vortex
formation.

After a description of the physical model and its mathematical formulation as well
as the experimental setup in § 2, the mean flow will be described in § 3, including
a linear stability analysis based on the Orr–Sommerfeld equation. An investigation of
the growth of unsteady disturbances in the LSB (§ 4) considers the linear evolution of
unsteady two- and three-dimensional disturbances. The paper closes with a summary
and gives the main conclusions in § 5.

2. Physical model, experimental setup and mathematical formulation
A comparison of results from DNS and experimental methods serves to identify

linear eigenmodes in a laminar separation bubble. These modes precede the
laminar–turbulent transition. In addition, LST complements the set of tools used here.
The key benefit of such a combined approach, reaching beyond a mere validation
of the numerical or experimental method, comes from allowing us to determine
the modal character of perturbations found in the boundary layer. For example, in
DNS the location and size of the disturbance strip could easily be varied, which
allowed us to specifically trigger different eigenmodes. Then, theoretical results aid
in the interpretation of physical processes. LST assumes parallel flow, while the
separating boundary-layer flow investigated here is not exactly parallel to the wall.
However, the separation bubble is still fairly shallow, and previous investigations (see
for example Marxen & Rist 2010; Marxen & Henningson 2011) have observed that
LST works well for LSBs. Experimental data show which of the different possible
disturbance states are realizable in the laboratory and may therefore be particularly
relevant.

2.1. Experimental setup and measurement techniques
2.1.1. Description of the setup and measurement campaigns

The experimental setup is depicted in figure 1. Variants of such a setup have been
used by other researchers before, for instance by Gaster (1967) and Watmuff (1999).
Only a brief description of our specific setup will be given here; additional details
can be found in Lang et al. (2004). A Cartesian reference system (x̆, y̆, z̆), as shown
in figure 1, constitutes the basic reference system throughout this work (dimensional
quantities are marked by ˘). A velocity vector is denoted as v= [u, v,w]T.

A flat plate is mounted in the free stream (free-stream velocity Ŭ∞ = 0.125 m s−1)
of the test section of a laminar water tunnel (kinematic viscosity νwater ≈ 10−6 m2 s−1).
The turbulence intensity in the test section of the tunnel was Tu 6 0.05 % for
0.1–10 Hz. A streamwise pressure gradient is imposed locally on the flat-plate
boundary layer by a triangular-shaped displacement body with a length L̆Exp

DB = 0.69 m.
The resulting pressure distribution changes downstream from a strongly favourable
pressure gradient (FPG) to a strongly adverse pressure gradient. This is a typical
situation for boundary layers that occur on aerofoils at an angle of attack, as can be
seen for instance in figure 12 of Jones et al. (2008). In the region of APG (starting at
x̆ ≈ 0 m), an LSB develops. The reference length is chosen to be L̆Exp

ref = 2/3 m ≈ L̆Exp
DB .

The reference velocity (for its derivation see Marxen 2005) is selected to be ŬExp
ref =

0.151 m s−1 ≈ 1.2Ŭ∞, resulting in a Reynolds number Reglobal = ŬExp
ref L̆Exp

ref /ν̆ = 105.
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Discrete eigenmodes in a separating laminar boundary layer 5

Displacement body

z x

Laminar separation bubble2922 mm 230 mm
Oscillating wire

Oscillating wire

y

x

y

z
Spacer

(b)

(a) Actuator with
TTL trigger

FIGURE 1. Sketch of the test section of the laminar water tunnel. The integration domain
used for DNS case DLDE is indicated by a box (not to scale). (a) Side view and (b) front view.

The minimum distance between the flat plate and the displacement body is
y= 0.15.

The setup has been used for several measurement campaigns carried out at the
Institut für Aerodynamik und Gasdynamik (IAG), Universität Stuttgart. Velocity data
have been collected by means of laser-Doppler anemometry (LDA) and PIV. LDA
measurements have been repeated and the resulting two different data sets are referred
to by the respective year in which the data were collected, i.e. LDA (2000) and LDA
(2001).

2.1.2. Disturbance forcing in the experiment
To ensure reproducible results that are independent of this particular water tunnel

and its background noise in the relevant frequency range, it is desirable to have
explicit control over the disturbances present in the flow. Following a classic approach
in transition research (Klebanoff, Tidstrom & Sargent 1962; Kachanov & Levchenko
1984), this is achieved by forcing disturbances explicitly.

A two-dimensional time-harmonic disturbance is introduced upstream of the
displacement body at x̆ = −0.23 m (x = −0.345) by an oscillating wire of frequency
f̆0 = 1.1 Hz. Additionally, three-dimensional disturbances are imposed by placing thin
(height 10−3 m) rectangular metal plates (denoted below as ‘spacer’ or ‘spacers’)
regularly underneath the wire (figure 1). The spanwise distance between the spacers
sets the fundamental spanwise wavelength λ̆z = 0.058 m (λz = 0.087). The spanwise
wavelength was selected experimentally through flow visualizations (Lang et al. 2004).
Marxen, Rist & Henningson (2006) describe that ‘in the experiment, the wave length
. . . was varied until the most regular vortical structures appeared’. LDA data were
phase-averaged using a trigger signal generated by the actuator driving the wire (Lang
et al. 2004). The only difference between the setup in cases LDA (2000) and LDA
(2001) lies in the wall-normal position of the oscillating wire, which is y= 4.2 mm in
case LDA (2000) and y= 3.4 mm in LDA (2001), resulting in minor differences in the
amplitudes of forced disturbances.
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6 O. Marxen, M. Lang and U. Rist

Reglobal γ0 xifl xofl ymax xo,usable

105 72 −0.6 0.6175 0.1207 0.41

TABLE 1. Computational parameters for the numerical test case DLDE .

2.2. Mathematical model and numerical method for DNS
The mathematical model used here is aimed at a comprehensive representation of
all relevant physical effects without any simplifying assumptions. Corresponding
calculations are therefore denoted as direct numerical simulations.

The test case considered here, case DLDE , applies a disturbance-flow formulation.
In this formulation, a laminar flow is assumed to fulfil the steady Navier–Stokes
equations and is used as a base flow. A solution is then sought only for the disturbance
quantities v′, ω′. Computational parameters are specified in table 1. As a base flow vB,
ωB, we take the mean flow obtained from case DNLDE , which is described in Marxen
(2005).

The advantage of using a disturbance formulation is a drastically reduced
computational cost. First, for the disturbance formulation it is required to consider
only the laminar part of the LSB (box in figure 1) in order to suppress the effect of
mean flow deformation (see Marxen & Rist 2010; Marxen & Henningson 2011, for a
description of this effect). This results in a shorter integration domain compared to the
simulation performed to obtain the base flow. Second, to ensure laminar flow inside
the integration domain, disturbances must have small amplitude only. In turn, this
allows the simulations to be run with arbitrarily low spanwise resolution due to the
linearity of perturbations. Finally, we found that runs in the disturbance formulation
have shorter convergence times towards a periodic or steady state (see also Marxen
et al. 2004).

2.2.1. Boundary conditions
The boundary conditions used in the DNS have been carefully adapted by hand in

order to achieve a good matching with the experiment. This adaption included the
controlled disturbance input, e.g. location and size of the disturbance strip, as well as
frequency and amplitude of each forced perturbation.

In case DLDE , vanishing perturbations have been prescribed at the inflow boundary
xifl . Upstream of the outflow boundary at xofl , a buffer zone is placed which removes
vorticity perturbations, so that velocity perturbations can leave the domain without
being reflected. The domain with physically meaningful data extends to xo,usable.

The wall-normal height of the integration domain ymax is chosen to be 0.1207. The
flow is irrotational at this distance from the wall, and hence all vorticity components
are set to zero at the upper boundary. Exponential decay of all velocity disturbances at
the upper boundary is specified in case DLDE . The flow field is assumed periodic in the
spanwise direction. It is also assumed symmetric with respect to the plane z= 0.

At y = 0 a no-slip wall is placed. Time-harmonic perturbations are triggered via
blowing and suction at the wall through zero-net-mass-flux disturbance strips. Table 2
specifies the streamwise location of the strips as well as amplitudes for each excited
disturbance Fourier mode separately. The nomenclature for specifying the Fourier
modes is explained in § 2.3. The wall-normal velocity vanishes everywhere at all times,
except within the small strip [xst, xen] for positive times t. The velocity distribution in
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Discrete eigenmodes in a separating laminar boundary layer 7

(1, 0) (1,±1)

Av 0.06 0.0272
Disturbance strip: x ∈ [−0.3833,−0.2093] [−0.4702,−0.3833]

TABLE 2. Forcing v-amplitudes Av and location of the disturbance strip, case DLDE .

MMAX NMAX KMAX+1 IMAX LPER

241 1738 6 1 900

TABLE 3. Resolution for test case DLDE .

this strip resembles a sine-function, but with vanishing first and second x-derivatives
at both the upstream and downstream ends. The forcing amplitude for the two-
dimensional wave was chosen to match experimental results (see figure 10a below).
It is initially quite large, but it quickly drops to below 1 % downstream. For the pairs
of oblique waves (1,±1), the forcing is prescribed for each wave of the pair separately
within the strip. The forced fundamental circular frequency is β0 = 2π/T0 = 30.7 and
the fundamental spanwise wavenumber is γ0 = 2π/λz = 72. The circular frequency
β0 = 30.7 is among the integrally most amplified frequencies according to LST, as
verified a posteriori (see figure 6 in § 3.2).

The disturbance forcing in the DNS differs from that in the experiment. In particular,
a pair of unsteady oblique waves was forced instead of a stationary spanwise-
modulated disturbance. This was necessary for the best possible matching with the
experiment, see Marxen et al. (2004, 2009) for details.

2.2.2. Numerical method
The method for solving the Navier–Stokes equations in vorticity–velocity

formulation is based on a discretization suggested and carefully analysed by Kloker
(1998), and thereafter slightly refined, extended, and optimized by many others.
Further details of the numerical method and implementation can be found in Meyer,
Rist & Kloker (2003).

The method uses upwind/downwind splitting (Kloker 1998) together with a compact
sixth-order finite-difference scheme (Lele 1992) for downstream (NMAX) and wall-
normal (MMAX) discretization. In the spanwise direction, a spectral Fourier ansatz is
applied (KMAX+1 modes) for real (IMAX=1) modes. A vorticity-transport equation is
advanced in time by an explicit fourth-order Runge–Kutta scheme with LPER time
steps per fundamental period T0. The grid resolution is specified in table 3.

2.3. Post-processing
Simulation and experimental results are Fourier analysed in time using available
discrete time steps (for DNS equally spaced with spacing 1L = LPER/25). In the
experiment, the flow field was phase averaged in order to increase the signal-to-noise
ratio and thus reduce the effect of non-periodicities on the Fourier transformed results.
The double Fourier transform in time and the spanwise direction yields disturbance
amplitudes A and phases Φ. Transformed variables are marked by .̂ A subscript
specifies the velocity component, such as u, v, or w, for instance Au = |û′(h,k)|.
The notation (h, k) is used to specify modes, with h and k denoting wavenumber
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8 O. Marxen, M. Lang and U. Rist

S

Domain boundary

0

0.15

0.10

0.05

0.075–0.075 0 0.150 0.225 0.300 0.375–0.150 0.450

0 20 40 60 80 100 120

FIGURE 2. (Colour online) Contours of the time- and spanwise-averaged spanwise vorticity
ωz from DNS together with mean dividing streamline: ψ̄ = 0 (–·–).

coefficients in time and span, respectively. In order to track downstream amplification,
the maximum in y is computed.

The computations were advanced until a periodic state had been reached. Data
collected during four periods of the fundamental frequency were used in the analysis
of DNS data, while 20 periods have been used for measured data. The forcing
frequency β0 is the respective fundamental frequency for such an analysis.

The skin friction, cf , in the experiment has been determined using velocity profiles.
Here, we have computed the experimental skin-friction coefficient without making use
of the assumption that the streamwise velocity vanishes at the wall, unlike Marxen
et al. (2009). This leads to an improved accuracy for cf in the region upstream of the
LSB.

3. Mean flow: boundary-layer and stability properties
In this section, the time- and spanwise-averaged flow field obtained from case DNLDE

are described. Case DNLDE is treated in more detail in Marxen (2005). This mean flow
field is not only important for the theoretical analysis of small disturbances in the flow
(given in § 3.2), it has also been used as the base flow for case DLDE .

3.1. Mean-flow profiles
Contours of the spanwise vorticity ωz are shown in figure 2, together with the mean
dividing streamline ψ̄ = 0. A fairly large, yet shallow separation region is visible. Its
start is marked by the point of separation S. In the experiment the point of separation
was found by means of flow visualizations to lie at xExpS ≈ 0.225. Here and throughout
this work, a nominal separation location of xnominal

S = 0.225 is assumed and marked
in some figures. This is not exactly the separation location which was found in
the DNS (see figure 3a), but differences are small and not important as underlined
by the good agreement of mean-flow profiles between measurements and DNS
(figures 4 and 5).

Figure 3 shows the streamwise development of several boundary-layer parameters.
We note that the measured boundary-layer thicknesses have been obtained based
on actual velocities and not the pseudo-velocity (for a definition see Marxen 2005;
Marxen et al. 2003), which could not be computed due to the sparsity of experimental
data.

Figures 4 and 5 compare time- and spanwise-averaged streamwise and wall-normal
velocity profiles in the laminar part of the LSB. Good matching of DNS results and
measurements even for the small wall-normal velocity component (note the different
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Discrete eigenmodes in a separating laminar boundary layer 9

S

(b)(a)

0

0.003

–0.30 0.30–0.15 0.150

–0.9

–0.6

–0.3

0

–0.003

0.006

–0.30 0.30–0.15 0.150
0

600

1200

1800

FIGURE 3. (a) Coefficients for skin friction cf (—), surface pressure cp (– –); (b) Reynolds
numbers Reδ∗ (—) and Reθ (– –). Lines show DNS results and symbols show cf derived
from measurements LDA (2000) (◦), LDA (2001) (•). The experimental cf -values have
been computed from wall-normal derivatives of measured profiles of the streamwise mean
velocity.

scaling for u and v in the figures) suggests that the laminar boundary layer has been
accurately captured by the DNS. The insets showing the reverse-flow region of the
LSB confirm that a comparable amount of reverse flow exists in the DNS and in
the experiment. The last x-position shown is still inside the linear disturbance region.
For x > 0.3 differences between DNS and measurements increase for the wall-normal
velocity component v in the free stream. This is due to a slightly shorter separation
bubble obtained in DNS case DNLDE compared to the experiment.

3.2. Linear stability characteristics for wave-like disturbances
Linear stability theory based on the Orr–Sommerfeld equation (see Schmid &
Henningson 2001) has been applied to the laminar part of the mean flow. We use
a shooting method so that at every streamwise location, a single complex eigenvalue
is obtained for a prescribed real frequency and initial condition. Depending on this
initial condition, the method converges to a different eigenvalue of the spectrum. The
imaginary part of the eigenvalue corresponds to the streamwise amplification rate
while the real part represents the wavenumber. If an eigenvalue possesses a negative
imaginary part, the disturbance is amplified in x. Such an eigenvalue will be called an
unstable eigenvalue.

The complete range of unsteady frequencies for the single unstable eigenvalue has
been reported in Marxen et al. (2004), their figure 5. A non-dimensionalized version
of this figure is given here as figure 6. From that figure it can be seen that the most
amplified frequency, as computed by the Orr–Sommerfeld equation, is fairly constant
along x. This is consistent with figure 23 in Diwan & Ramesh (2009). Marxen et al.
(2004) have already pointed out that ‘amplification starts prior to separation’ (p. 140).
The dent in the neutral curve, marked by a large white arrow in figure 6, is indicative
of a connection between a region of viscous and inviscid instability. Such a dent, albeit
much more pronounced, can be seen in figure 4 of Rist & Augustin (2006). Here,
the dent is small since the region in which viscous Tollmien–Schlichting instability
contributes is very small, and most of the amplification occurs due to an inviscid
Kelvin–Helmholtz instability.

Inside the LSB, two-dimensional disturbances are most amplified as can be
seen in figure 6(b). Within the streamwise interval considered here, the maximum
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0.045(b) (c)(a)

(d) (e) ( f )

FIGURE 4. Profiles of time- and spanwise-averaged streamwise and wall-normal velocity
components. Comparison of DNS (u: —, v: – –), LDA (2001) (u: �, v: •), and LDA (2000)
(u: �, v: ◦). Streamwise positions depicted are (a) x = −0.6, (b) x = −0.15; (c) x = −0.075;
(d) x= 0; (e) x= 0.075; (f ) x= 0.15.

reverse-flow velocity of the base flow is always below 10 % of the free-stream velocity
and therefore no absolute instability can be expected according to Rist & Maucher
(2002).

For transition in low-disturbance-level environments, only the least damped, or most
amplified, eigenmode is usually considered (compare figure 16 in Postl et al. 2011).
However, the linear stability properties can be characterized by an entire spectrum
of eigenvalues. Apart from continuous branches of this spectrum, which will not be
considered here, also a finite number of discrete eigenmodes exists (Drazin & Reid
2004). In the following we will consider also a second of these discrete eigenmodes.
For a given frequency, these two discrete eigenmodes differ in their amplification rate,
streamwise wavelength, and wall-normal eigenfunction.
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FIGURE 5. Same as figure 4 but for streamwise positions (a) x = 0.225; (b) x = 0.3,
(c) x = 0.33, (d) x = 0.345, (e) x = 0.36, (f ) x = 0.375. Insets show u in the reverse-flow
region on a 4-times enlarged scale.

Figure 7 shows the amplification rates and wavenumbers for two-dimensional
disturbances for the two different eigenmodes with the same frequency. Amplification
(Im(α) < 0) sets in for the first eigenmode well before separation, approximately from
x = 0.1 onwards. The second eigenmode possesses roughly half the wavenumber of
the first one. Marxen & Henningson (2011) showed that for a separating boundary
layer the amplification rate increases continuously and it is approximately proportional
to the shape factor. Deeper inside the bubble (for x > 0.3), the amplification rate
becomes almost constant (figure 7b), although the shear layer continues to move
away from the wall. This suggests that the influence of the wall is small deeper
inside the bubble. Such an effect has been observed for a generic velocity profile by
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(1, 0)

(1, 1)

(1, 2)
30

10

–10

–30

FIGURE 6. Stability diagram for the spatial case calculated from the Orr–Sommerfeld
equation for: (a) spanwise wavenumber γ = 0; and (b) angular frequency β = 30.7
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–0.6 –0.3 0.30

0

50

–50

100

S–0.6 –0.3 0.30

0

50

–50

100
(b)

FIGURE 7. Eigenvalues from linear stability theory based on the Orr–Sommerfeld equation
for two-dimensional disturbances (γ = 0) and fundamental frequency Re(ω) = β0 = 30.7;
first (—) and second (– –) eigenmode. (a) Streamwise wavenumber Re(α) and (b)
amplification rate −Im(α).

Rist, Maucher & Wagner (1996). Upstream of the LSB, the second eigenmode exhibits
a smaller |Im(α)| compared to the first one. In this region, the first eigenmode is
highly damped (figure 7b).

Figure 8 confirms that two-dimensional disturbances are more strongly amplified
than three-dimensional disturbances at separation and inside the bubble, while the
streamwise wavenumber does not differ much in this region.

In summary, our stability analysis reveals that only a single two-dimensional
mode, which will be labelled the first eigenmode, becomes amplified in the region
of APG. However, this mode is not the least-damped mode in the FPG region.
Instead another mode, labelled the second eigenmode, is the least-damped mode in this
region. Although the second eigenmode never becomes amplified, it is only moderately
damped in the entire streamwise domain considered.
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FIGURE 8. Eigenvalues from linear stability theory: (a) streamwise wavenumber Re(α)
and (b) amplification rate −Im(α) for disturbances (first eigenmode only) with spanwise
wavenumbers: —, γ = 0; �, γ = 72; ♦, γ = 144, and fundamental frequency Re(ω) = β0 =
30.7.
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FIGURE 9. (Colour online) Measured amplification curves for the maximum (in y)
streamwise velocity fluctuation |û′(h,k)max | for selected wavenumber coefficients h, k with h> 0.

4. Numerical and experimental observations of unsteady linear disturbance
evolution

Marxen et al. (2009) reported that for the present setup, the steady mode (0, 2)
is the largest disturbance in the first part of the LSB (x . 0.42). However, the two-
dimensional disturbance of fundamental frequency, mode (1, 0), grows very strongly
and eventually becomes the largest perturbation in the flow until saturation and
transition sets in (figure 9). Perturbations with non-zero spanwise wavenumber and
with frequencies β > β0 are generally lower in amplitude.

Growing perturbations may undergo two consecutive linear stages downstream,
namely first transient and then modal growth or decay. Transient growth, associated
with eigenmodes of the continuous spectrum, is particularly important for stationary
disturbances. This type of disturbance has been treated in detail in Marxen et al.
(2009) for the same setup as the present one and will not be considered here. For
unsteady perturbations, we found that discrete eigenmodes possess a sufficiently strong
attraction so that only the second, modal stage is relevant for unsteady perturbations.
Evidence for this conjecture is presented below.
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125(b)(a)

FIGURE 10. (a) Amplification curves for the maximum (in y) two-dimensional streamwise
velocity fluctuation |û′(1,0)max |. DNS, case DLDE (—); LST (first eigenmode: –·–; second
eigenmode: · · ·); measurements LDA (2001) (�), LDA (2000) (�). The disturbance strip
used in the DNS is marked by a black bar. (b) Streamwise wavenumber for two-dimensional
disturbances of fundamental frequency Re(ω)= β0 = 30.7. LST: Re(α) (first eigenmode: –·–;
second eigenmode: · · ·); DNS: ∂Φ(1,0)/∂x at heights y= 0.0063 (- - -), y= 0.0651 (—).

4.1. Experimental observations of decaying perturbations inside the separation bubble

Figure 9 displays the remarkable feature mentioned in the introduction: the
perturbation continues to decay downstream of the separation location. Further
downstream, the curve representing the streamwise disturbance evolution exhibits a
kink.

The harmonically oscillating wire in the experiment generates perturbations of
appreciable amplitude only for the forcing frequency. All disturbances with higher
frequencies are a result of nonlinear generation in the flow. Hence, linear disturbance
evolution will only be considered for disturbances with the fundamental frequency
β0 = 30.7. First, we will deal with the two-dimensional disturbance (1, 0) and then
extend consideration to the oblique modes (1, k) with γ0 = 72.0. It is justified to
consider more than one spanwise wavenumber here, since the spacers used in the
experiment do not possess a sinusoidal shape but sharp edges. Hence, they may excite
disturbances for a range of spanwise wavenumbers simultaneously.

4.2. Evolution of a two-dimensional disturbance

For the present streamwise position of the oscillating wire in the experiment
(x=−0.345) as well as the disturbance strip in the DNS (centred at x=−0.2963), we
can indeed observe the least-damped eigenmode shortly after the forcing (figure 10a).
In the FPG region, the least-damped eigenmode is the second eigenmode. Results from
DNS, measurements, and LST results for the second eigenmode agree very well from
x=−0.225 onwards, both with respect to the damping rate (figure 10a) as well as the
streamwise wavenumber (figure 10b).

The disturbance forcing also excited the first eigenmode. However, this mode is
strongly damped in the FPG region, and it only becomes amplified once the pressure
gradient has changed to adverse. It is not until it is inside the separation bubble that
this amplified first eigenmode can outgrow the second eigenmode in the case of DNS
and experiment.

With the location of the disturbance strip in the DNS chosen at a similar streamwise
position as in the experiment, the experimentally determined perturbation evolution can
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The axis for experi-
mental phases is

shifted by  (and
not by multiples of
2pi) in this figure

(compared to above)

0.030

0.015

0 0.5 1.0 0 0.5 1.0 12.579.42

024

0.030

0.015

0 0.5 1.0 0 0.5 1.0 6.283.14

246

0.030

0.015

0 0.5 1.0 0 0.5 1.0 0–3.14

246
(a) (c)(b)

(e) ( f )(d)

(g) (h) (i )

FIGURE 11. Velocity amplitudes of mode (1, 0), normalized by their respective |û′max | for the
streamwise velocity Au = |û′| (a, d, g), the wall-normal velocity Av = |v̂′| (b, e, h), and phases
for the streamwise velocity Φu (c, f, i) for (a–c) x = 0; (d–f ) x = 0.15; (g–i) x = 0.3. DNS,
case DLDE (—); LDA (2001) (u: �, v: •), and LDA (2000) (u: �, v: ◦). On the Phi plots the
top axes refer to LDA results and the bottom axes to DNS. In (i) the axis for the experimental
phases is shifted by +2 (and not by multiples of 2π as in the other plots).

be reproduced almost perfectly in the simulation – including the position of the kink in
the amplification curve.

Concerning the streamwise wavenumber (figure 10b), it can be seen that the take-
over of the second (low wavenumber) by the first eigenmode (high wavenumber)
initially takes place near the wall. This is further supported by looking at wall-
normal amplitude distributions (figures 11 and 12). The second eigenmode possesses
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FIGURE 12. Same as figure 11, but results from DNS, case DLDE (—); LST (first eigenmode:
–·–; second eigenmode: · · ·). (a–c) x= 0; (d–f ) x= 0.15; (g–i) x= 0.3.

a maximum far away from the wall, while the first one shows a strong near-wall
maximum. Therefore, the stable second eigenmode can be denoted as the outer
mode and the unstable first eigenmode as the inner mode. From figure 12 we
can observe that the amplitude functions for the streamwise velocity peak closer
to the wall in DNS compared to the second linear eigenmode from LST. We do
not have an explanation for this shift, but it may well be possible that more than
one eigenmode is present, and a multimode decomposition (Tumin 2003) could
provide clarification. Alternatively, non-parallel effects may be responsible for the
shift.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.263


Discrete eigenmodes in a separating laminar boundary layer 17
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0.5 1.0 0 0.5 1.0 15.7112.57
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FIGURE 13. Same as figure 11, but for (a–c) x = 0.33; (d–f ) x = 0.36, (g–i) x = 0.39. DNS,
case DLDE (—); LDA (2001) (u: �, v: •), and LDA (2000) (u: �, v: ◦); LST (first eigenmode:
–·–; second eigenmode: · · ·).

Particularly remarkable are the distributions at x = 0.3 (figure 12g–i) and x = 0.33
(figure 13a–c), where the superposition of both eigenmodes is visible. However,
one should keep in mind that such a superposition depends on the different phase
distributions also and is not only given by adding the two amplitude functions.
At x = 0.3, the second eigenmode dominates the amplitude distribution away from
the wall, while the first eigenmode dominates the near-wall region. In the figures,
the scaling of the first-eigenmode LST eigenfunction at the two positions x = 0.3
(figure 12g) and x = 0.33 (figure 13g) was adapted, i.e. normalized by a properly
chosen C|û′max | (C > 0) instead of just |û′max |.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.263


18 O. Marxen, M. Lang and U. Rist

S

10–4

10–3

10–2

10–1

–0.30 –0.15 0.15–0.45 0.450.300

FIGURE 14. (Colour online) Amplification curves for the maximum (in y) streamwise
velocity fluctuation |û′(h,k)max |, DNS results for cases DLDE (thin lines) and DNLDE (thick lines).
mode (1, 0) —, LDA (2001) (�), LDA (2000) (�), and LST (–·–), thick line: first eigenmode
and thin line: second eigenmode.

It has long been known that eigenvalues from LST agree with measurements for an
LSB, see for instance figure 20 in Gaster (1967). However, eigenfunctions also agree
very well between LST on the one hand and DNS or experiment on the other, as can
be seen in figure 13(d–i). Such a good agreement has been previously observed for a
backward-facing step, see figure 10 in Boiko et al. (2011).

The phase from the DNS given in figures 12 and 13 increases from one x-location
to the next with respect to a reference phase: this reference phase, where Φ = 0,
is located at maximum Au for x = 0. A fixed reference phase has also been chosen
for the measured data. However, this reference phase is different for x = 0, 0.15 so
that experimental phase distributions appear as shifted by 1Φ = −2 at x = 0, 0.15
compared to the other x-locations. The reason for our adjustment of the reference
phase is that the phase difference between the two different eigenmodes present in the
data is slightly different in the experiment and in the DNS.

Deeper inside the LSB, the unstable eigenmode becomes dominating in the DNS
case DLDE . We conjecture that in the DNS, it may be sufficient to excite this first
eigenmode only, e.g. with a disturbance strip placed at the location of pressure
minimum (x = 0) or even closer to the LSB to obtain the same transition process.
Marxen et al. (2004, 2003) introduced their perturbations at these locations. The
validity of this hypothesis will be verified now by comparing the evolution of mode
(1, 0) between the case DLDE (here) and case DNLDE (Marxen 2005).

Figure 14 shows that the evolution of mode (1, 0) deeper inside the LSB for
x> 0.36 for the two different cases is indistinguishable, proving the conjecture. Hence,
one need excite only the amplified first eigenmode by relocating the disturbance strip
to the region around the pressure minimum (x = 0) as in DNLDE without altering the
transition dynamics deeper inside the bubble.

Even for cases where no laminar base flow is obtainable if the entire LSB is
contained in the computational domain, a disturbance formulation is applicable for
the part of the flow containing only small amplitude, i.e. linear perturbations, as has
been shown by a comparison of both formulations. The application of a disturbance
formulation results in considerable savings of computational time compared to a run in
total-flow formulation due to a faster convergence towards a (quasi-) periodic state and
lower resolution. Such an approach allows the separation of the flapping motion of the
entire bubble from the shear-layer instability. However, application of the disturbance
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FIGURE 15. (Colour online) Eigenfunctions for the streamwise velocity from LST for the
unstable first eigenmode (- - -) at (a) x = 0.1125 and (b) x = 0.39, together with the
corresponding Reynolds stress term R(1,0)ST (—, right-hand axis). The location of the inflection
point yIP of the mean-flow profile is marked by �.

formulation inevitably requires the knowledge of the transition mechanism so that
the correct type and number of perturbations can be forced that guarantee the same
transition location.

4.3. Disturbance growth mechanisms for the first eigenmode
As mentioned in the introduction, two different types of instability may lead
to disturbance amplification: a viscous Tollmien–Schlichting mechanism and an
inviscid Kelvin–Helmholtz mechanism. The type of instability will now be
determined. According to a definition introduced in Rist & Maucher (2002), a
Tollmien–Schlichting wave should possess an amplitude maximum near the wall,
while a Kelvin–Helmholtz instability wave exhibits a maximum in the shear layer.
In classifying their disturbance, Marxen et al. (2003) followed this definition based on
the relative strength of the first and second wall-normal maximum of the streamwise
disturbance velocity. According to this classification, we would have a TS wave up to
x≈ 0.3 (figure 12g) and a KH wave further downstream (figure 13).

Here, we take a different viewpoint and consider the actual disturbance energy
production mechanism in order to determine the type of instability active at different
locations in the separating boundary layer. Hence, we look at the Reynolds stress
term RST = AuAv cos(Φu − Φv)∂uB/∂y, which is depicted in figure 15. The location of
maximum RST will be denoted by ymax,EP.

An unstable eigenmode is first seen at x ≈ 0.1125 (figure 6). At this location,
the eigenfunction is very similar to that observed in a Falkner–Skan boundary layer.
The location of the inflection point of the base-flow profile will be labelled yIP.
Following Diwan & Ramesh (2009), we consider the ratio yIP/ymax,EP in order to
determine whether we have a TS or a KH instability. If only a TS instability is active,
this ratio should be zero, while for a pure KH instability it should assume a value
of one.

At the onset of instability x = 0.1125, the ratio yIP/ymax,EP ≈ 0.82 (figure 15a),
suggesting that a TS mechanism contributes to the instability. However, this ratio is
not very small and a KH mechanism is already contributing to the instability. This
is consistent with the discussion of the stability diagram in § 3.2, in which we saw a
small dent only at the onset of instability. Inside the bubble at x = 0.39 (figure 15b),
the ratio increases to yIP/ymax,EP ≈ 0.98, indicating a pure KH instability.
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FIGURE 16. Amplification curves for the maximum (in y) streamwise velocity fluctuation
|û′(1,k)max |. DNS DLDE (—); LST (–·–); measurements LDA (2001) (k < 0: N, k > 0: H), LDA
(2000) (k < 0: 4, k > 0: O). Spanwise modes with: (a) k =±1; and (b) k =±2.

4.4. Evolution of oblique disturbances
According to the linear stability analysis of § 3.2 only the perturbation with the
fundamental spanwise wavelength, i.e. mode (1,±1), possesses sufficiently large
growth rates to result in a significant region of linear amplification. Existence of such
a region is confirmed by the present results (figure 16a, x > 0.3). The perturbation
(1,±1) undergoes the same type of evolution as the previously discussed mode (1, 0):
a second-eigenmode decay in the FPG region as well as in the first part of the APG
region is followed by a first-eigenmode amplification inside the LSB.

Again, agreement between experimental amplitude functions and DNS results is
good in the region of linear instability (figure 17), even though the scatter in
the measurements is slightly larger now. The position of the wall-normal maximum
agrees well (figure 17), and a close agreement of DNS and LST results for the first
eigenmode can be seen in the region close to the wall for x > 0.36. It is remarkable
that asymmetries are already visible in the experiment at these early stages, i.e. a
difference between the k = +1 and k = −1 mode, in particular for x & 0.37 in both
figures 16 and 17. A similar observation was made for the steady disturbance mode
(0, 2) in Marxen et al. (2009).

Evolution of mode (1,±2) does not favourably compare with the first eigenmode
from LST (figure 16b). Whereas LST predicts only weak growth for the first
eigenmode this disturbance shows the same kink in the amplification curve followed
by a strong growth. Such a behaviour is a result of nonlinear generation, caused by
a large-amplitude mode (0, 2) together with the linearly amplified mode (1, 0), as
shown in Marxen et al. (2004). It is not surprising to see that, unlike mode (1,±1),
this mode does not match eigenfunctions from LST (figure 18, x = 0.3). Further
downstream (x > 0.39), it looks remarkably similar to amplitude functions for mode
(1,±1), despite the different growth mechanisms.

4.5. Disturbance excitation
As explained in § 2.2.1, the disturbance input in the numerical simulations is given
by the excitation of Fourier modes (1, 0) and (1,±1) via blowing and suction at
the wall. The excitation of only these two types of disturbances can be viewed as a
simple model of the experimental disturbance excitation by means of spacers and the
oscillating wire. The linear nature of the disturbances justifies applying a disturbance
formulation in the simulation for case DLDE .
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FIGURE 17. Velocity amplitudes of mode (1,±1), normalized by their respective |û′max | for
the streamwise velocity Au = |û′| (a, d, g), the wall-normal velocity Av = |v̂′| (b, e, h), and the
spanwise velocity Aw = |ŵ′| (c, f, i) for (a–c) x = 0.3, (d–f ) x = 0.345; (g–i) x = 0.39. DNS
DLDE (—); LDA (2001) (+ mode: u,�; v, •; − mode: u,�; v, ◦); LST (first eigenmode: –·–).

It is not possible to excite a single eigenmode. Rather, all eigenmodes of the
spectrum with the respective frequency (and spanwise wavenumber) may be excited
(Ashpis & Reshotko 1990), though with different initial amplitudes, respectively. The
details of this forcing are responsible for the initial amplitudes of the respective
eigenmodes. The process of conversion of external forcing (in the case of our
experiment the oscillating wire and in case of our DNS the wall blowing/suction) into
boundary-layer disturbances is called the receptivity process (Saric, Reed & Kerschen
2002). Relevant details for this process include the length and streamwise position of
the disturbance strip in the numerical simulation, or the wall distance, thickness, and
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FIGURE 18. Velocity amplitudes of mode (1,±2), normalized by their respective |û′max | for
the streamwise velocity Au = |û′| (a, d, g), the wall-normal velocity Av = |v̂′| (b, e, h), and the
spanwise velocity Aw = |ŵ′| (c, f, i) for (a–c) x = 0.3; (d–f ) x = 0.345; (g–i) x = 0.39. DNS
DLDE (—); LDA (2001) (+ mode: u,�; v, •; − mode: u,�; v, ◦); LST (first eigenmode: –·–).

streamwise position of the wire in the experiment. If one of the excited eigenmodes
is significantly less damped (or more amplified) than all others, we will eventually
observe only this eigenmode in the flow (‘far-field response’). If we consider only
the immediate vicinity of the forcing location (‘near-field response’) we may see
a superposition resulting from a mixture of many eigenmodes. Transient growth is
commonly attributed to the evolution of a mixture, or sum of, non-normal eigenmodes,
which may be damped individually (Schmid & Henningson 2001).

The disturbance strip in the numerical computation has to be adjusted separately
for each spanwise wavenumber of the perturbation. By means of a proper choice
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of its respective length and position with respect to the base flow and to other
perturbations, close agreement with experimental results even for different two-
dimensional eigenmodes with the same frequency could be achieved. It is therefore
possible to adjust the length of the disturbance strip in a way that the same relation of
both eigenmodes is obtained in the DNS as in the experiment. The way disturbances
were forced in the DNS can hence serve as a fairly good model for the oscillating wire
in the experiment in conjunction with the spacers – no true modelling of the shape of
the experimental disturbance devices is required.

5. Conclusions

We have performed a detailed investigation of small-amplitude disturbances in a
separating laminar boundary layer. A linear stability analysis has focused on two local
eigenmodes. Only one of these eigenmodes eventually becomes unstable deeper inside
the bubble, while the other one is always stable. The amplitude function for the
streamwise velocity of the stable eigenmode peaks at the edge of the boundary or at
the outer edge of the shear layer and can therefore be called the outer mode. The
unstable mode possesses maxima at the wall or at the location of the shear layer and
we call it the inner mode. The value of the streamwise wavenumber for the unstable
inner mode was approximately two times that of the stable outer mode.

Comparing results from direct numerical simulation and measurements with the
theoretically determined properties of these two eigenmodes revealed that both
eigenmodes are present in the early laminar part of a laminar separation bubble.
The outer mode appears due to a strong acceleration region upstream of the bubble,
which strongly damps the inner mode while only a moderate damping is observed for
the outer mode. The inner mode becomes unstable in the APG region and eventually
overtakes the outer mode in amplitude only inside the bubble, leading to breakdown
to turbulence. This observation provides one possible explanation for the decay of
perturbations often seen in the laminar part of an LSB if the boundary layer was
subject to a strong acceleration upstream.

Hence, observations of decaying disturbances in the laminar part of an LSB do not
constitute sufficient evidence that the flow is initially stable and becomes unstable only
when the shear layer has strongly detached. Instead, the possible occurrence of two
different eigenmodes in the first part of the LSB underlines the need for knowledge
of disturbance details, i.e. spanwise and streamwise wavenumbers as well as the
frequency, for a correct interpretation of processes in the flow. Such an interpretation
may be essential for flow-control applications such as the one applied in Rist &
Augustin (2006). If this information is not available, linear stability theory may aid in
determining the most relevant modes a posteriori via a comparison with the observed
disturbance amplification. The technique of multimode decomposition (Tumin 2003)
would provide an even more general approach to determine the number and role of the
eigenmodes involved.

At the onset of instability, both a viscous Tollmien–Schlichting and an inviscid
Kelvin–Helmholtz instability seem to contribute to disturbance energy production for
the inner mode, while inside the bubble we observe a pure inviscid instability. This
observation suggests that the viscous mechanism is important only when the bubble is
very small, when only a moderately strong acceleration precedes the APG, or when
the boundary-layer Reynolds number upstream of the bubble is already sufficiently
high (but not too high). In all these mentioned cases we can expect a viscosity-driven
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– or at least viscosity-enhanced – boundary-layer instability upstream of the bubble
already.

We found that pairs of oblique waves with moderately large spanwise wavenumbers
behave in the same way as two-dimensional waves. This suggests that cases of oblique
breakdown, which have been investigated only in numerical simulations, may also
occur in practice. Subharmonic disturbances have been found to play a role for
boundary layers subject to an APG (Corke & Gruber 1996), but they do not appear
in DNS case DLDE . In DNS case DNLDE , which was run to obtain the base flow, they
appear during nonlinear breakdown for x > 0.45, but their amplitude remains well
below 10−3 in the part of the LSB considered here.

Finally, we have demonstrated that it is meaningful to use a disturbance formulation
for the analysis of flow in a laminar separation bubble for unsteady waves also, similar
to what has been shown earlier by Marxen et al. (2009) for steady perturbations. This
advantage of the disturbance formulation can be exploited for parametrical variations
of the disturbance input, necessary to eventually reproduce the disturbance evolution
in the experiment as closely as possible. Our findings regarding convectively amplified
disturbances for a separation bubble complement those in which such disturbances
could not be found, see for instance Spalart & Strelets (2000) and Jones et al. (2008).
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the Höchstleistungsrechenzentrum Stuttgart (HLRS) within project LAMTUR.

R E F E R E N C E S

ASHPIS, D. E. & RESHOTKO, E. 1990 The vibrating ribbon problem revisited. J. Fluid Mech. 213,
531–547.

BOIKO, A., DOVGAL, A., HEIN, S. & HENNING, A. 2011 Particle image velocimetry of a
low-Reynolds-number separation bubble. Exp. Fluids 50, 13–21.

CORKE, T. C. & GRUBER, S. 1996 Resonant growth of three-dimensional modes in Falkner–Skan
boundary layers with adverse pressure gradients. J. Fluid Mech. 320, 211–233.

DIWAN, S. S. & RAMESH, O. N. 2009 On the origin of the inflectional instability of a laminar
separation bubble. J. Fluid Mech. 629, 263–298.

DRAZIN, P. G. & REID, W. H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.
FEDOROV, A. & TUMIN, A. 2011 High-speed boundary-layer instability: old terminology and a new

framework. AIAA J. 49 (8), 1647–1657.
GASTER, M. 1967 The Structure and Behaviour of Separation Bubbles, Aeronautical Research

Council, Reports and Memoranda No. 3595, London.
GRUBER, K., BESTEK, H. & FASEL, H. 1987 Interaction between a Tollmien–Schlichting wave and

a laminar separation bubble. AIAA Paper 1987–1256.
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