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1. Introduction

Consider the Cauchy problem

ut = ∆HN u + eαt|u|p−1u,

u(x, 0) = u0(x) = λφ(x),

(x, t) ∈ HN × (0, Tλ),

x ∈ HN ,

}
(1.1)

where ∆HN is the Laplace–Beltrami operator on the N -dimensional hyperbolic
space, α > 0, p > 1, λ is a positive parameter, φ is a non-negative bounded
and continuous function in HN that is not identically equal to zero, and Tλ is the
lifespan of the solution u.

Bandle et al . [3] recently established the global existence and blow-up profile for
problem (1.1) with λ = 1 via the Fujita exponent

p∗
H = 1 +

α

λ0
with λ0 =

(N − 1)2

4
, (1.2)

which is quite different to the case in Euclidean space RN . Indeed, they showed
that if 1 < p < p∗

H , then every non-trivial positive solution blows up in finite time,
while if p > p∗

H , then the problem (1.1) possesses global solutions for small initial
data. As for the critical exponent p = p∗

H , they proved that there exist non-trivial
global positive solutions if α > 2

3λ0. To our knowledge, this is the first work on the
∗Corresponding author.
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blow-up problem of heat equations on a manifold with negative sectional curvature.
In a recent paper [16] we proved that there exist non-trivial global positive solutions
for p = p∗

H and 0 < α � 2
3λ0. It is worth mentioning that, from the conclusions

in [3, 16], the problem on the hyperbolic space and the corresponding problem on
bounded domains of RN (see [13]) have a similar Fujita exponent, whereas the
critical exponent in HN is not a blow-up exponent but in RN it is a blow-up one.
Similar results on blow-up and global existence of solutions for parabolic equations
or inequalities on more general Riemannian manifolds are established; see [12,15,18]
and references therein.

Our interest lies in the asymptotic behaviour of the lifespan Tλ, i.e. the blow-up
time of the solutions as λ → ∞ and as λ → 0, which is also different from the case
in Euclidean space, namely,

ut = ∆u + eαt|u|p−1u,

u(x, 0) = λφ(x),

(x, t) ∈ RN × (0, T ),

x ∈ RN .

}
(1.3)

In fact, for (1.3), as a direct consequence of the general discussion in [9] for α = 0,
the growth order of Tλ as λ → 0 can be estimated as

C1
1

λp−1 � Tλ � C2
1

λp−1 ,

where C1, C2 are positive constants, whereas Gui and Wang [6] showed that if
lim|x|→∞ φ(x) = A > 0, then limλ→0 λp−1Tλ = A1−p/(p − 1). For λ → ∞, Gui and
Wang also proved that

lim
λ→∞

λp−1Tλ =
1

p − 1
‖φ‖1−p

L∞(RN ),

provided that φ�0. Concerning equation (1.1) for α > 0, we prefer to mention the
corresponding problem in bounded domain for Euclidean space RN ,

ut = ∆u + eαt|u|p−1u,

u(x, t) = 0,

u(x, 0) = λφ(x),

(x, t) ∈ Ω × (0, T ),
(x, t) ∈ ∂Ω × (0, T ),

x ∈ Ω,

⎫⎪⎬
⎪⎭ (1.4)

due to the similarity of the Fujita exponents in HN and a bounded domain of RN .
Payne and Phlippin [14, theorem 1] showed that

Tλ � Cλ1−p

for some constant C > 0.
The purpose of this paper is to study the asymptotic behaviour of the lifespan of

solutions of (1.1) in the hyperbolic space as λ → 0 and λ → ∞ (for the definition of
solutions see definition 2.1). We first consider the asymptotic behaviour as λ → 0.
Due to the presence of the Fujita exponent p∗

H , we should certainly distinguish the
case in which 1 < p < p∗

H from the case in which p � p∗
H . However, we prefer first to

give a general discussion that is valid for all p. We denote by d(x, 0) the hyperbolic
distance between x and 0 (see § 2.1). Let B(∞, ε) be the ε neighbourhood of ∞,
namely, B(∞, ε) = {x ∈ HN | d(x, 0) > 1/ε}.
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Theorem 1.1. Let p > 1, let α > 0 and let φ ∈ C(HN ) ∩ L∞(HN ) with φ(x) � 0.
Suppose that there exists an ε > 0 such that

inf
x∈B(∞,ε)

φ(x) > 0.

Then
lim
λ→0

Tλ

ln(1/λ)
=

p − 1
α

.

Here we have found an essential difference, namely, that the growth order is
ln(1/λ), rather that λ1−p in the case for the Euclidean space. Remember that for p
in (1, p∗

H) non-trivial solutions must blow up unconditionally, and so the following
result is quite natural.

Theorem 1.2. Let p > 1, let α > 0 and let φ ∈ C(HN ) ∩ L∞(HN ) with φ(x) � 0.
If 1 < p < p∗

H , then there exist C1, C2 > 0 such that

C1 ln
1
λ

� Tλ � C2 ln
1
λ

as λ → 0.

Just as is known for the critical and supercritical cases, p � p∗
H say, the solution

will only blow up for large initial datum in a certain sense. However, the positive
assumption of u0 in B(∞, ε) can be weakened to a decay one. Indeed, we have the
following delicate result.

Theorem 1.3. Let p > 1, let α > 0 and let φ ∈ C(HN ) ∩ L∞(HN ) with φ(x) � 0.
Let p � p∗

H and let

k∗ =
N − 1

2

(
1 −

√
p − p∗

H

p − 1

)
.

If for some ε > 0 and 0 < k < k∗,

inf
x∈B(∞,ε)

φ(x)ekd(x,0) > 0,

then the solution u(x, t; λ) blows up in finite time, and the lifespan of u(x, t; λ)
satisfies

C1 ln
1
λ

� Tλ � C2 ln
1
λ

as λ → 0

for some constants C1, C2 > 0.

It is worth mentioning that the decay rate k is optimal, since we may show
that for p > p∗

H and k > k∗ there exists a positive global solution of (1.1) with
initial datum decaying more slowly than δe−kd(x,0) in B(∞, ε) for some δ > 0 (see
appendix A).

Finally, we consider the asymptotic behaviour of the lifespan as λ → ∞. We have
a similar result to Gui and Wang’s estimate of (1.3).

Theorem 1.4. Let α > 0 and let p > 1. Let φ ∈ C(HN ) ∩ L∞(HN ) with φ(x) � 0.
Then there exists Λ = Λ(p, φ, α, N) � 0 such that Tλ < ∞ for λ > Λ, and

lim
λ→∞

λp−1Tλ =
1

p − 1
‖φ‖−(p−1)

L∞(HN ). (1.5)
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The paper is organized as follows. In § 2 we present basic properties of the hyper-
bolic space. Afterwards we introduce the heat kernel in HN and give an a priori
estimate for the lifespan, which will be used for the upper bound estimate on the
lifespan as λ → 0. In § 3 we consider asymptotic behaviour of the lifespan as λ → 0,
and show the proofs of theorems 1.1–1.3. In § 4 we present the proof of theorem 1.4.
Finally, we give a remark on the sharpness of the blow-up criterion in theorem 1.3
in the appendix.

2. Preliminaries

In this section we summarize the mathematical background of our problem and
give some basic estimates to be used in our proofs.

2.1. Basic properties of the hyperbolic space

There are several models for the hyperbolic space: the Klein model, the hyper-
boloid model, the Poincaré model, etc. (see [4]). We shall use the Poincaré model
here, namely, the N -dimensional hyperbolic space HN that is the unit ball in RN ,

I = {x ∈ RN | |x| < 1},

equipped with the Riemannian metric

ds2
I =

4((dx1)2 + · · · + (dxN )2)
(1 − |x|2)2 ,

where | · | is the standard Euclidean norm. We denote the hyperbolic distance
between the points x and y by d(x, y), and denote the ball in HN with centre x and
radius ε by

BHN (x, ε) := {y ∈ HN | d(x, y) < ε}.

We call a bijective map T : HN → HN an isometry if d(T (x), T (y)) = d(x, y) for
x, y ∈ HN . Let 0 denote (0, 0, . . . , 0) ∈ I. From [1] we know that there exists an
isometric translation

Ty(x) =
(1 − |y|2)(x − y) − |x − y|2y

[x, y]2
(2.1)

that maps y ∈ HN to 0. Here [x, y]2 = 1 + |x|2|y|2 − 2
∑N

i=1 xiyi.
In the geodesic coordinates (r, θ) the Laplace–Beltrami operator ∆HN can be

written as

∆HN u =
1

sinhN−1 r

∂

∂r

(
sinhN−1 r

∂u

∂r

)
+

1
sinh2 r

∆θu.

Hence, for a radial function u(r),

∆HN u(r) = u′′(r) + (N − 1)
cosh r

sinh r
u′(r). (2.2)

The volume element of HN can be written as

dµ = (sinh r)N−1 dr dθ. (2.3)
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2.2. The heat kernel in the hyperbolic space

The solution of the linear heat equation

ut = ∆HN u, (x, t) ∈ HN × (0, ∞),

u(x, 0) = φ(x), x ∈ HN ,

can be written as

u(x, t) =
∫

HN

gN (x, y, t)φ(y) dµy.

Here gN is the heat kernel in HN , which is a function of the distance of x, y ∈ HN

and the time t, that is,
gN (x, y, t) = kN (d(x, y), t). (2.4)

In this paper we deal with the so-called mild solutions.

Definition 2.1. A function u ∈ C(HN ×[0, τ ])∩L∞(HN ×(0, τ)) for any τ ∈ [0, T )
is called a mild solution of problem (1.1) if

u(x, t; λ) = λ

∫
HN

gN (x, y, t)φ(y) dµy

+
∫ t

0

( ∫
HN

gN (x, y, t − s)eαs|u|p−1u(y, s; λ) dµy

)
ds (2.5)

with (x, t) ∈ HN × [0, T ).

For the local well-posedness and regularity for mild solutions to problem (1.1)
with initial datum u0 ∈ C(HN ) ∩ L∞(HN ) we refer the reader to [3].

We summarize some elementary properties of the heat kernel in the following
lemma.

Lemma 2.2 (Davies [5, ch. 5]). Let x, y, z ∈ HN and let s, t > 0. Then

(i) gN (x, y, t) = gN (y, x, t);

(ii) gN (Tx, Ty, t) = gN (x, y, t), where T is an isometry in HN ;

(iii) the semigroup property∫
HN

gN (x, y, t)gN (y, z, s) dµy = gN (x, z, s + t) (2.6)

is satisfied;

(iv) we have conservation of probability, namely,∫
HN

gN (x, y, t) dµy = 1 for x ∈ HN and t > 0. (2.7)

Finally, we recall the following heat kernel estimate.
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Lemma 2.3 (Davies [5, theorem 5.7.2]). Let N � 2 and let λ0 = (N − 1)2/4. Then
there exists cN > 0 such that

c−1
N hN (d(x, y), t) � gN (x, y, t) � cNhN (d(x, y), t) (2.8)

for t > 0 and x, y ∈ HN , where

hN (d, t) = (4πt)−N/2(1 + d)(1 + d + t)(N−3)/2 exp
{

−λ0t − N − 1
2

d − d2

4t

}
. (2.9)

Remark 2.4. Let h̄N (d, t) = (4πt)−N/2e−d2/4t denote the heat kernel in RN . By
(2.8) and (2.9) we see that if d(x, y) and t are small, then hN and h̄N are similar;
if d or t are large, then hN decays more quickly than h̄N .

2.3. An a priori estimate on the lifespan

In this section we shall prove an a priori linear estimate that will be used for
proving the upper bound estimates on the lifespan as λ → 0 in § 3.

First we show the following version of Jensen’s inequality in the hyperbolic space.

Lemma 2.5. Let p > 1 and let f ∈ C(HN ) ∩ L∞(HN ) with f � 0. Then∫
HN

gN (x, y, t)fp(y) dµy �
( ∫

HN

gN (x, y, t)f(y) dµy

)p

(2.10)

for x ∈ HN and t > 0.

Proof. Fix x ∈ HN and t > 0, and define the measure

dµ̄y = gN (x, y, t) dµy

on HN . Since the conservation of probability (2.7) implies that∫
HN

dµ̄y =
∫

HN

gN (x, y, t) dµy ≡ 1,

by Jensen’s inequality [10, theorem 2.2] we obtain (2.10).

We now prove the a priori estimate on the lifespan of the solution of (1.1). The
proof is similar to that of the blow up of the non-trivial positive solutions (1.1) in
1 < p < p∗

H (see [3]). This kind of estimate was introduced by Weissler [17] for
proving the blow up of the non-trivial positive solutions of (1.3) with α = 0 in the
critical case; see also [7, ch. 5]. For the convenience of the reader, we present it here.

Lemma 2.6. Suppose that u is a solution of the problem (1.1) with non-negative
initial datum u0(x) ∈ L∞(HN ) ∩ C(HN ) in [0, T ). Then( ∫

HN

gN (0, y, t)u0(y) dµy

)1−p

� p − 1
α

(eαt − 1) for 0 < t < T. (2.11)

In particular,
T ∗ � sup{T > 0 | (2.11) holds},

where T ∗ is denoted by the lifespan of the solution u.
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Proof. Fix 0 < t < T . Taking t̄ ∈ [0, t], we have

u(x, t̄ ) =
∫

HN

gN (x, y, t̄ )u0(y) dµy

+
∫ t̄

0

∫
HN

gN (x, y, t̄ − s)eαs|u|p−1u(y, s) dµy ds. (2.12)

Multiplying (2.12) by gN (x, 0, t − t̄ ) and integrating with respect to x over HN , we
obtain∫

HN

gN (x, 0, t − t̄ )u(x, t̄ ) dµx

=
∫

HN

gN (x, 0, t − t̄ )
∫

HN

gN (x, y, t̄ )u0(y) dµy dµx

+
∫

HN

gN (x, 0, t − t̄ )
∫ t̄

0

∫
HN

gN (x, y, t̄ − s)eαs|u|p−1u(y, s) dµy ds dµx.

By (2.6), lemma 2.5 and Fubini’s theorem,∫
HN

gN (x, 0, t − t̄ )u(x, t̄ ) dµx

=
∫

HN

gN (y, 0, t)u0(y) dµy +
∫ t̄

0

∫
HN

gN (0, y, t − s)eαs|u|p−1u(y, s) dµy ds

�
∫

HN

gN (y, 0, t)u0(y) dµy +
∫ t̄

0
eαs

( ∫
HN

gN (0, y, t − s)u(y, s) dµy

)p

ds.

(2.13)

Denoting the right-hand side of (2.13) by

G(t̄ ) =
∫

HN

gN (y, 0, t)u0(y) dµy +
∫ t̄

0
eαs

( ∫
HN

gN (0, y, t − s)u(y, s) dµy

)p

ds,

we have
G(0) =

∫
HN

gN (y, 0, t)u0(y) dµy. (2.14)

Differentiating G(t̄ ) with respect to t̄, by (2.13) we obtain

G′(t̄ ) = eαt̄

( ∫
HN

gN (y, 0, t − t̄ )u(y, t̄ ) dµy

)p

� eαt̄Gp(t̄ ),

that is,
G−p(t̄ )G′(t̄ ) � eαt̄.

Integrating with respect t̄ over [0, t], we obtain

1
1 − p

(G1−p(t) − G1−p(0)) � 1
α

(eαt − 1).

Thus,

G1−p(0) � p − 1
α

(eαt − 1) (2.15)

since p > 1. The lemma follows from (2.14) and (2.15) immediately.
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2.4. Notation

We conclude this section by introducing some notation. Let F and G be two non-
negative functions defined on X. If there exists C > 0 such that F (x) � CG(x) for
x ∈ X, we write F (x) � G(x) or G(x) � F (x). If F (x) � G(x) and G(x) � F (x),
we write F (x) ∼ G(x). If C depends on some variables or functions a1, a2, . . . , ak

and F < CG, we write F �a1,a2,...,ak
G. We define the notation �a1,a2,...,ak

and
∼a1,a2,...,ak

similarly.

3. Lifespan estimates as λ → 0

In this section we consider the lifespan as λ → 0. The initial data will be small
as λ → 0, and the long time behaviour of the heat kernel and the time-weighted
term will effect the blow-up time, so the results in this section will be significantly
different from the results in the Euclidean space.

It is easy to get the following lower bound estimate on the lifespan as λ → 0,
which shows that Tλ → ∞ as λ → 0 or that u(·; λ) becomes a global solution.

Proposition 3.1. If p > 1, then

lim inf
λ→0

Tλ

ln(1/λ)
� p − 1

α
. (3.1)

Proof. Consider the following ordinary differential equation (ODE) for v(t; λ), where
λ > 0 is a parameter:

dv

dt
= eαtvp,

v(0; λ) = λ‖φ‖L∞(HN ).

By a direct calculation we obtain

v(t; λ) =
[
1 − p

α

(
eαt − 1 +

α

1 − p
(λ‖φ‖L∞(HN ))

1−p

)]1/(1−p)

.

Thus, v(t; λ) blows up at

T̄λ :=
1
α

ln
[
1 +

α

p − 1
(λ‖φ‖L∞(HN ))

1−p

]
.

Noticing that v is an upper solution of u(x, t; λ), by the comparison principle in [3]
we obtain u(x, t; λ) � v(t; λ). Thus,

Tλ � T̄λ =
1
α

ln
[
1 +

α

p − 1
(λ‖φ‖L∞)1−p

]
, (3.2)

which implies (3.1) by L’Hospital’s rule.

To obtain the upper bound estimates on the lifespan as λ → 0, we use the
following general strategy.

Step 1. Prove linear estimates on the initial data.

Step 2. Use the results in step 1 and lemma 2.6 to derive the upper bound esti-
mates.
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3.1. A sharp lifespan estimate for the non-decaying initial datum

To prove theorem 1.1, by proposition 3.1, it is sufficient to show that

lim sup
λ→0

Tλ

ln(1/λ)
� p − 1

α
. (3.3)

We shall prove (3.3) by the strategy stated at the beginning of this section.
We claim the following lemma, which will be proved later.

Lemma 3.2. Fix τ > 0. Suppose that φ satisfies the assumptions in theorem 1.1.
Then

inf
x∈HN

∫
HN

gN (x, y, τ)φ(y) dµy > 0.

To prove (3.3), we need only supplement lemma 3.2 with the following lemma.

Lemma 3.3. Fix τ > 0. Suppose that φ satisfies the assumptions in theorem 1.1.
Then there exists ε > 0 such that∫

HN

gN (x, y, t)φ(y) dµy � ε for t > τ. (3.4)

Proof. We fix τ in lemma 3.2 and

ε = inf
x∈HN

∫
HN

gN (x, y, τ)φ(y) dµy > 0.

Then, by (i), (iii) and (iv) in lemma 2.2, we have∫
HN

gN (x, y, t)φ(y) dµy =
∫

HN

( ∫
HN

gN (x, z, t − τ)gN (y, z, τ) dµz

)
φ(y) dµy

=
∫

HN

gN (x, z, t − τ)
( ∫

HN

gN (z, y, τ)φ(y) dµy

)
dµz

� ε

∫
HN

gN (x, z, t − τ) dµz

= ε for t > τ.

The proof is complete.

We now give the proof of theorem 1.1.

Proof of theorem 1.1. Fix τ and ε in lemma 3.3. By proposition 3.1 there exists
Λ > 0 such that Tλ > τ for λ < Λ. Then, by lemma 2.6 and (3.4),

(λε)1−p �
( ∫

HN

gN (x, y, t)λφ(y) dµy

)1−p

� p − 1
α

(eαt − 1)

for λ < Λ and t ∈ [τ, Tλ). Thus,

(λε)1−p � p − 1
α

(eαTλ − 1) for λ < Λ. (3.5)
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Since λ → 0 implies that Tλ → ∞, by (3.5) and L’Hospital’s rule we obtain

lim sup
λ→0

Tλ

ln(1/λ)
� p − 1

α
,

that is, (3.3) holds. The theorem follows from (3.1) and (3.3).

To prove lemma 3.2 we first give some lemmas.

Lemma 3.4. Denote by d = d(x, y) the distance between x and y in HN . Then∫
HN

(1 + d)(1 + d + t)(N−3)/2 exp
{

−N − 1
2

d − d2

4t

}
dµy ∼ tN/2eλ0t

for x ∈ HN and t > 0.

Proof. It is equivalent to prove that for x ∈ HN and t > 0,∫
HN

t−N/2(1 + d)(1 + d + t)(N−3)/2 exp
{

−λ0t − N − 1
2

d − d2

4t

}
dµy ∼ 1. (3.6)

By the kernel estimate in lemma 2.3, (3.6) is equivalent to∫
HN

gN (x, y, t) dµy ∼ 1,

which follows from the conservation of probability (2.7). This completes the proof.

Lemma 3.5.
(i) If there exist m, M > 0 such that

0 < m < α, β < M,

then
1 + d ∼m,M α + βd for d > 0.

(ii) If there exist m, M > 0 such that

0 < m < α, β, γ < M,

then
1 + d + t ∼m,M α + βd + γt for d > 0, t > 0.

(iii) Let t > 0 and let x, y ∈ HN . If there exist m, M > 0 such that

0 < m < α, β, α̃, β̃,
γ̃

γ
< M,

then∫
HN

(α+βd)(α̃+ β̃d+ γ̃t)(N−3)/2 exp
{

−N − 1
2

d− d2

γt

}
dµy ∼m,M (γt)N/2eλ0(γt/4),

where we write d = d(x, y).
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Proof. By

α + βd � M(1 + d) and 1 + d � 1
m

(α + βd),

we obtain (i).
Since the proof of (ii) is similar to that of (i), we omit it.
By (i) and (ii), it follows that∫

HN

(α + βd)(α̃ + β̃d + γ̃t)(N−3)/2e−(N−1)d/2−d2/γt dµy

∼m,M

∫
HN

(1 + d)(1 + d + 1
4γt)(N−3)/2e−(N−1)d/2e−d2/4(γt/4) dµy,

which together with lemma 3.4 implies (iii).

Lemma 3.6. If d(y, 0) � 1, then for every x ∈ HN and t > 0,

1 + d(x, y) ∼ 1 + d(x, 0),
1 + d(x, y) + t ∼ 1 + d(x, 0) + t.

Proof. The proof follows immediately from the triangle inequalities.

Lemma 3.7. Fix τ > 0. Let N � 2 and let φ ∈ C(HN ) ∩ L∞(HN ) with φ(x) � 0.
If there exist ε > 0 and δ > 0 such that φ(x) > δ > 0 for every x ∈ BHN (0, ε), then∫

HN

gN (x, y, t)φ(y) dµy �δ,ε,τ e−tλ0/2gN (x, 0, t/2) for t � τ.

Remark 3.8. A similar estimate was obtained in [3, lemma 5.1]. The advantage of
our form is that it is related to the lower bound and the hyperbolic heat kernel,
which will be convenient when handling some integral estimates in our proofs.

Proof. By lemma 2.3 we have∫
HN

gN (x, y, t)φ(y) dµy

� δ

∫
B

HN (0,ε)
gN (x, y, t) dµy

�δ e−λ0tt−N/2
∫

B
HN (0,ε)

(1 + d(x, y))(1 + d(x, y) + t)(N−3)/2

× exp
{

−N − 1
2

d(x, y) − d(x, y)2

4t

}
dµy. (3.7)

We need to estimate the integral

I :=
∫

B
HN (0,ε)

(1 + d(x, y))(1 + d(x, y) + t)(N−3)/2

× exp
{

−N − 1
2

d(x, y) − d(x, y)2

4t

}
dµy.
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Without loss of generality we assume that ε < 1, otherwise we could perform the
proof for ε = min{ε, 1}. By lemma 3.6 and the inequalities

−d(x, y) � −d(x, 0) − d(y, 0),

−d(x, y)2 � −2d(x, 0)2 − 2d(y, 0)2,

we have

I � (1 + d(x, 0))(1 + d(x, 0) + t)(N−3)/2 exp
{

−N − 1
2

d(x, 0) − 2d(x, 0)2

4t

}

×
∫

B
HN (0,ε)

exp
{

−N − 1
2

d(y, 0) − 2d(y, 0)2

4t

}
dµy. (3.8)

Since t � τ , the last integral in (3.8) can be estimated by∫
B

HN (0,ε)
exp

{
−N − 1

2
d(y, 0) − 2d(y, 0)2

4t

}
dµy

�
∫

B
HN (0,ε)

exp
{

−N − 1
2

d(y, 0) − 2d(y, 0)2

4τ

}
dµy

�ε,τ 1.

Thus,

I �ε,τ (1+d(x, 0))(1+d(x, 0)+ t)(N−3)/2 exp
{

−N − 1
2

d(x, 0)− 2d(x, 0)2

4t

}
. (3.9)

By (3.7) and (3.9), we obtain∫
HN

gN (x, y, t)φ(y) dµy �δ,ε,τ e−λ0tt−N/2(1 + d(x, 0))(1 + d(x, 0) + t)(N−3)/2

× exp
{

−N − 1
2

d(x, 0) − 2d(x, 0)2

4t

}
. (3.10)

From lemma 3.5 and lemma 2.3 we get

e−λ0tt−N/2(1 + d(x, 0))(1 + d(x, 0) + t)(N−3)/2 exp
{

−N − 1
2

d(x, 0) − 2d(x, 0)2

4t

}

� e−λ0t/2e−λ0t/2t−N/2(1 + d(x, 0))(1 + d(x, 0) + t/2)(N−3)/2

× exp
{

−N − 1
2

d(x, 0) − d(x, 0)2

4(t/2)

}

� e−λ0t/2gN (x, 0, t/2). (3.11)

Lemma 3.7 follows from (3.10) and (3.11).

We have the following corollary, which is the key ingredient for proving lemma 3.2.
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Corollary 3.9. Fix τ > 0. Let N � 2 and let φ ∈ C(HN )∩L∞(HN ) with φ(x) �
0. If there exist ε > 0 and δ > 0 such that φ(x) > δ > 0 for every x ∈ BHN (x0, ε),
then ∫

HN

gN (x, y, t)φ(y) dµy �δ,ε,τ e−λ0t/2gN (x, x0, t/2) for t � τ. (3.12)

Proof. Let Tx0 : HN → HN be the isometry that maps x0 to 0 (see (2.1)). Denote
the inverse of Tx0 by T−1

x0
. Let

φ̄(x) = φ(T−1
x0

x) for x ∈ HN .

Then φ̄ satisfies lemma 3.7. Hence,∫
HN

gN (Tx0x, y, t)φ(T−1
x0

y) dµy =
∫

HN

gN (Tx0x, y, t)φ̄(y) dµy

�δ,ε,τ e−λ0t/2gN (Tx0x, 0, t/2) for t � τ. (3.13)

From the change of variables T−1
x0

y = z in (3.13) we obtain∫
HN

gN (Tx0x, Tx0z, t)φ(z) dµz �δ,ε,τ e−λ0t/2gN (Tx0x, 0, t/2)

= e−λ0t/2gN (Tx0x, Tx0(T
−1
x0

0), t/2) for t � τ,

which together with lemma 2.2(ii) implies that∫
HN

gN (x, z, t)φ(z) dµz �δ,ε,τ e−λ0t/2gN (x, T−1
x0

0, t/2)

= e−λ0t/2gN (x, x0, t/2) for t � τ.

The proof is complete.

We now turn to the proof of lemma 3.2.

Proof of lemma 3.2. Without loss of generality we assume that

φ(x) =

{
0, d(x, 0) < R,

1, d(x, 0) > R + 1,

where R is a large positive number. Since φ ∈ L∞(HN ) and φ(x) � 0, the function

Φ(x) :=
∫

HN

gN (x, y, τ)φ(y) dµy

is positive and continuous on HN . Thus,

inf
x∈B

HN (0,R+2)
Φ(x) > 0. (3.14)

For x ∈ HN \ BHN (0, R + 2), taking t = τ in corollary 3.9 and by (2.4), we have∫
HN

gN (x, y, τ)φ(y) dµy � e−(τ/2)λ0gN (x, x, τ/2) = e−(τ/2)λ0gN (0, 0, τ/2) � 1.

(3.15)
The lemma follows from (3.14) and (3.15) immediately.

https://doi.org/10.1017/S0308210515000785 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000785


1104 Z. Wang and J. Yin

3.2. The lifespan estimates without non-decaying assumption

In this section we present lifespan estimates for general initial data as λ → 0.
To prove theorem 1.2 and theorem 1.3, by proposition 3.1 we need only show

that
lim sup

λ→0

Tλ

ln(1/λ)
� ∞. (3.16)

3.2.1. The lifespan estimates in the subcritical case

In the subcritical case we have 1 < p < p∗
H = 1 + α/λ0, that is,

λ0 +
α

1 − p
< 0. (3.17)

By lemma 2.6 we can give the proof of theorem 1.2.

Proof of theorem 1.2. By proposition 3.1, we note that there exists Λ > 0 such that
Tλ > 1 for λ < Λ. Since φ(x) � 0, there exist x0 ∈ HN , ε > 0 and δ > 0 such that

φ(x) > δ for x ∈ BHN (x0, ε).

Taking x = 0 and τ = 1 in corollary 3.9, we have∫
HN

gN (0, y, t)φ(y) dµy �δ,ε e−λ0t/2gN (0, x0, t/2) for t � 1. (3.18)

By (3.18) and lemma 2.6, it follows that

(λe−λ0t/2gN (0, x0, t/2))1−p �ε,δ
p − 1

α
(eαt − 1) �ε,δ,p,α eαt (3.19)

for 1 < t < Tλ and λ < Λ. Since Tλ > 1, the kernel estimate (2.8) implies that

λe−(Tλ/2)λ0gN

(
0, x0,

Tλ

2

)
� λe−(Tλ/2)λ0

(
Tλ

2

)−N/2

(1 + d)
(

1 + d +
Tλ

2

)(N−3)/2

× exp
{

−λ0
Tλ

2
− N − 1

2
d − d2

4(Tλ/2)

}

�d λe−(Tλ/2)λ0

(
Tλ

2

)−N/2(
Tλ

2

)(N−3)/2

e−(Tλ/2)λ0

�d λe−Tλλ0T
−3/2
λ , (3.20)

where we write d = d(0, x0). Equations (3.19) and (3.20) imply that

(λe−Tλλ0(Tλ)−3/2)1−p �d,ε,δ,p,α eαTλ ,

that is,

T
3/2
λ exp

(
λ0 +

α

1 − p

)
Tλ �d,ε,δ,p,α λ for λ < Λ. (3.21)

Since 1 < p < p∗
H implies that λ0 + α/(1 − p) < 0, by (3.21) we obtain

exp
{

1
2

(
λ0 +

α

1 − p

)
Tλ

}
�d,ε,δ,p,α λ for λ > Λ. (3.22)

Equation (3.16) follows from (3.17) and (3.22).
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3.2.2. The lifespan problem in the supercritical and critical cases

First we recall an elementary lemma that will be used to derive the linear estimate
on the initial datum.

Lemma 3.10. If r > 0 and t > 0, then

(r + t)(N−3)/2 � min{r(N−3)/2, t(N−3)/2}, N � 2.

Proof. For N � 3 we have (N − 3)/2 � 0, which implies that

2(r + t)(N−3)/2 � t(N−3)/2 + r(N−3)/2. (3.23)

For N = 2 we have (N − 3)/2 < 0. Without loss of generality we assume that
0 < r � t. Then

min{r(N−3)/2, t(N−3)/2} = t(N−3)/2 �
(

r + t

2

)(N−3)/2

. (3.24)

The lemma follows from (3.23) and (3.24).

The key ingredient of our argument is the following linear estimate.

Lemma 3.11. Suppose that p, k, α and φ satisfy the assumptions of theorem 1.3.
Then ∫

HN

gN (y, 0, t)φ(y) dµy � e−λ0t+γ2t for t >
R

2γ
, (3.25)

where γ =
√

λ0 − k.

Proof. Let r = d(y, 0). By the heat kernel estimate and (2.3), the volume element
in hyperbolic space, we have∫

HN

gN (y, 0, t)φ(y) dµy �
∫ ∞

R

t−N/2(1 + r)(1 + r + t)(N−3)/2

× exp
{

−λ0t − N − 1
2

r − r2

4t

}
e−kr(sinh r)N−1 dr.

Since (r + 1) ∼ r and sinh r ∼ er for r > R, we have
∫

HN

gN (y, 0, t)φ(y) dµy

� t−N/2e−λ0t

∫ ∞

R

r(r + t)(N−3)/2 exp
{

−r2

4t
+

(
N − 1

2
− k

)
r

}
dr. (3.26)

Let

I =
∫ ∞

R

rr(N−3)/2 exp
{

−r2

4t
+

(
N − 1

2
− k

)
r

}
dr,

II =
∫ ∞

R

rt(N−3)/2 exp
{

−r2

4t
+

(
N − 1

2
− k

)
r

}
dr.
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By lemma 3.10 and (3.26) we obtain∫
HN

gN (y, 0, t)φ(y) dµy � t−N/2e−λ0t min{I, II}. (3.27)

Next we shall estimate I and II. By the assumptions of this lemma we have

γ > 0.

From the change of variables r/2
√

t − γ
√

t = s we have

I =
∫ ∞

R/2
√

t−γ
√

t

[(s + γ
√

t)2
√

t](N−1)/2e−s2+γ2t(2
√

t) ds

� eγ2tt(N+1)/4
∫ ∞

R/2
√

t−γ
√

t

e−s2
(s + γ

√
t)(N−1)/2 ds.

By γ > 0, we obtain
R

2
√

t
− γ

√
t � 0 for t >

R

2γ
.

Thus,∫ ∞

R/2
√

t−γ
√

t

e−s2
(s + γ

√
t)(N−1)/2 ds >

∫ ∞

0
e−s2

(s + γ
√

t)(N−1)/2 ds for t >
R

2γ
.

Hence,

I � eγ2tt(N+1)/4
∫ ∞

0
e−s2

(s + γ
√

t)(N−1)/2 ds for t >
R

2γ
. (3.28)

Now we estimate
∫ ∞
0 e−s2

(s + γ
√

t)(N−1)/2 ds. Noting that N − 1 > 0, we have∫ ∞

0
e−s2

(s + γ
√

t)(N−1)/2 ds �
∫ ∞

0
e−s2

(s)(N−1)/2 ds +
∫ ∞

0
e−s2

(γ
√

t)(N−1)/2 ds.

(3.29)
Since∫ ∞

0
e−s2

(s)(N−1)/2 ds � 1 and
∫ ∞

0
e−s2

(γ
√

t)(N−1)/2 ds � t(N−1)/4,

by (3.28) and (3.29) we get

I � tN/2eγ2t for t >
R

2γ
. (3.30)

In a similar way we have

II � tN/2eγ2t for t >
R

2γ
. (3.31)

The lemma follows from (3.27), (3.30) and (3.31).

We now give the proof of theorem 1.3.
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Proof of theorem 1.3. Let γ =
√

λ0 − l. First we prove the blow-up criterion. Since
p > 1, by lemma 2.6 and lemma 3.11 we obtain

(e−λ0t+γ2t)1−p � p − 1
α

(eαt − 1) for
R

2γ
< t < Tλ. (3.32)

If u is a global solution, then (3.32) implies that

(1 − p)(−λ0 + γ2) � α.

Thus,

γ <

√
λ0 − α

p − 1
,

which together with γ =
√

λ0 − k implies that

k >
√

λ0 −
√

λ0 − α

p − 1
= k∗,

which contradicts the assumption that k < k∗. Thus, the solution u(x, t) must blow
up in finite time.

Now we estimate the upper bound of the lifespan. By lemma 2.6 and the decay
estimate (3.25), we obtain

(λe−λ0t+γ2t)1−p � p − 1
α

(eαt − 1) for
R

2γ
< t < Tλ, (3.33)

where γ =
√

λ0 − k. For λ → 0, by the lower estimate on the lifespan (see proposi-
tion 3.1), we have

Tλ → ∞.

Thus, taking t = Tλ in (3.33), by γ >
√

λ0 − α/(p − 1) we get

Tλ � ln
1
λ

as λ → 0.

Now (3.16) follows, and this completes the proof.

4. The lifespan estimates as λ → ∞

The purpose of this section is devoted to the lifespan estimate as λ → ∞. We shall
use Kaplan’s eigenfunction method (see [8]) to prove theorem 1.4, which was used
by Gui and Wang [6] to study the lifespan problem of (1.3).

First we prove a comparison lemma for ODEs, which will be used for the upper
bound estimate on the lifespan.

Lemma 4.1. Let v1, v2 ∈ C(R). Assume that v1(ξ) > v2(ξ) � 0 for every ξ ∈
[ξ0, ∞). If x, y ∈ C1([a, b]) satisfy

x′(t) � v1(x(t)), a � t � b,

y′(t) = v2(y(t)), a � t � b,

x(a) = y(a) � ξ0,
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then
x(t) > y(t) for a < t < b.

Proof. The proof is similar to that of a comparison lemma in [2, § 2.7]. We define

t̄ = sup{t ∈ (a, b) | x(s) > y(s), a < s < t}.

We claim that t̄ = b. Indeed, by the definition of a derivative and

x(a) = y(a), x′(a) � v1(x(a)) > v2(x(a)) = v2(y(a)) = y′(a),

it follows that there exists τ > 0 such that

x(t) > y(t) for a < t < a + τ.

Hence, the set {t > a | x(s) > y(s), a < s < t} is not empty. Then t̄ > a. By the
assumptions v2(ξ) � 0 for ξ � ξ0 and y(a) � ξ0, we see that y(t) is non-decreasing
in [a, t̄ ]. Thus, by the definition of t̄,

x(t) > y(t) � y(0) � ξ0 for a < t < t̄. (4.1)

If t̄ < b, then by the continuity of x and y, and by (4.1), we obtain

x(t̄ ) = y(t̄ ) � ξ0 (4.2)

and
x′(t̄ ) � v1(x(t̄ )) > v2(x(t̄ )) = v2(y(t̄ )) = y′(t̄ ). (4.3)

Therefore, by the definition of a derivative, (4.2) and (4.3), there exists σ > 0 such
that

x(t) < y(t) for t̄ − σ < t < t̄,

which contradicts the definition of t̄. Thus, t̄ = b and the lemma is proved.

Now we are in a position to prove theorem 1.4.

Proof of theorem 1.4. We shall estimate the lower bound and the upper bound of
the lifespan.

First, we prove that

lim inf
λ→∞

Tλ

(λ‖φ‖L∞(HN ))1−p/(p − 1)
� 1. (4.4)

Recalling (3.2) in the proof of proposition 3.1, we see that

Tλ � 1
α

ln
[
1 +

α

p − 1
(λ‖φ‖L∞)1−p

]
.

Then (4.4) follows by L’Hospital’s rule.
Next, we show that

lim sup
λ→∞

Tλ

(λ‖φ‖L∞(HN ))1−p/(p − 1)
� 1 (4.5)
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by Kaplan’s eigenfunction method, introduced in [8]. Take x0 ∈ HN such that
φ(x0) � 0. Denote kε as the first eigenvalue of −∆HN in the ball BHN (x0, ε) and
let ρε � 0 be the corresponding eigenfunction, normalized so that∫

B
HN (x0,ε)

ρε(y) dµy = 1.

Let Tλ be the lifespan of the solution u(x, t; λ) and define

wε,λ(t) =
∫

B
HN (x0,ε)

u(y, t; λ)ρε(y) dµy for t ∈ (0, Tλ).

By (1.1) and the proof of lemma 2.5,

dwε,λ

dt
� −kεwε,λ + eαtwp

ε,λ > −kεwε,λ + wp
ε,λ,

since α � 0. Take δ ∈ (0, 1) as a parameter. Consider the system of wε,λ(t) and
v(t; δ):

dwε,λ

dt
� −kεwε,λ + wp

ε,λ,

dv

dt
= (1 − δ)vp,

v(0; δ) = wε,λ(0) = λ

∫
B

HN (x0,ε)
φ(y)ρε(y) dµy.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)

By a direct calculation, we see that if

λ � Λ :=
(

kε

δ

)1/(p−1)/ ∫
B

HN (x0,ε)
φ(y)ρε(y) dµy,

then (4.6) satisfies the assumptions of lemma 4.1. Thus,

wε,λ(t) � v(t; δ) for 0 < t < Tλ.

Since the blow-up time of v(t; δ) is

Tδ :=
1

(p − 1)(1 − δ)
(wε,λ(0))1−p

=
1

(p − 1)(1 − δ)

(
λ

∫
B

HN (x0,ε)
φ(y)ρε(y) dµy

)1−p

,

we obtain that the solution of (1.1) blows up in finite time and

Tλ � Tδ =
1

(p − 1)(1 − δ)

(
λ

∫
B

HN (x0,ε)
φ(y)ρε(y) dµy

)1−p

for λ > Λ.

Thus,

lim sup
λ→∞

Tλ

λ1−p
� 1

(p − 1)(1 − δ)

( ∫
B

HN (x0,ε)
φ(y)ρε(y) dµy

)1−p

.
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Since 0 < δ < 1 is arbitrary, it follows that

lim sup
λ→∞

Tλ

λ1−p
� 1

p − 1

( ∫
B

HN (x0,ε)
φ(y)ρε(y) dµy

)1−p

. (4.7)

By the continuity of φ, ρε � 0 and
∫

B
HN (x0,ε) ρε = 1, we have∫

B
HN (x0,ε)

φ(y)ρε(y) dµy = φ(xε)
∫

B
HN (x0,ε)

ρε(y) dµy = φ(xε)

for some xε ∈ BHN (x0, ε). Letting ε → 0, we obtain

lim
ε→0

∫
B

HN (x0,ε)
φ(y)ρε(y) dµy = φ(x0),

since φ(x) is continuous. Thus, by (4.7) and p > 1,

lim sup
λ→∞

Tλ

λ1−p
� 1

p − 1
(φ(x0))1−p.

Hence,

lim sup
λ→∞

Tλ

λ1−p
� inf

x∈H
N ,

φ(x) �=0

1
p − 1

(φ(x))1−p =
1

p − 1
(‖φ‖L∞(HN ))

1−p,

and (4.5) follows.
The proof is complete by (4.4) and (4.5).

Appendix A. Remark on the blow-up criterion in the supercritical case

The following proposition reveals that there exist global solutions with initial datum
with a slower decay rate than that satisfying the blow-up conditions in theorem 1.3.

Proposition A.1. If p > p∗
H and

k > k∗ :=
N − 1

2

(
1 −

√
p − p∗

H

p − 1

)
,

then there exists u0 ∈ C(HN ) ∩ L∞(HN ) with u0 > 0 and

lim inf
d(x,0)→∞

u0(x)ekd(x,0) > 0

such that the solution u(x, t) of (1.1) with the initial datum u0 is global.

Remark A.2. In the p > p∗ case we do not know whether there exists a global
solution with initial datum having the decay rate e−k∗d(x,0). In the critical case
the existence of the global solution with the decay rate e−k∗d(x,0) follows from [11,
theorem 1.4 and lemma 3.4] for 1 < p < 2n/(n − 2) − 1 if n � 3 and p > 1 if n = 2.

We will use the comparison principle to prove proposition A.1. A similar argument
was used in [3] to prove the existence of global solutions in the supercritical case,
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while the decay rate of the upper solutions in their proof is e−λ0d(x,0), which does
not satisfy the condition in proposition A.1.

The key ingredient of our proof is a transformation, which translates prob-
lem (1.1) to a parabolic equation that does not explicitly contain the time t. To be
more precise, suppose that u(x, t) is a solution of (1.1). Let

v(x, t) = eβtu(x, t),

where β = α/(p − 1). Then v(x, t) satisfies

vt = ∆HN v + βv + |v|p−1v,

v(x, 0) = v0(x) = u0(x),

(x, t) ∈ HN × (0, T ),

x ∈ HN .

}
(A 1)

By (2.2) it is easily seen that ū(x, t) = e−βtv̄(x) is an upper solution of problem (1.1)
if and only if v̄(x) satisfies

∆HN v̄ + βv̄ + |v̄|p−1v̄ � 0 for x ∈ HN .

We use the linear ground state, which was introduced in [3], to construct upper
solutions.

Definition A.3. We say that w is a ground state if w is a positive classical solution
of

∆HN w + κw = 0 in HN (κ ∈ R).

It is easily seen that a radial ground state satisfies

w′′ + (N − 1) coth ρw′ + κw = 0, ρ ∈ [0, ∞),
w(0) > 0, w′(0) = 0.

The next lemma gives the condition on the existence and asymptotic behaviour
of the ground state.

Lemma A.4 (Bandle et al . [3, proposition A.1 and lemma A.1]).

(i) There exists a ground state if and only if

κ � λ0.

(ii) For any κ � λ0 and c > 0 there exists a unique radial ground state w such
that w(0) = c. There holds

lim
ρ→∞

w(ρ)e−νρ = k

for some k > 0, where
ν :=

√
λ0 − κ −

√
λ0.

In particular, if κ > 0, then

lim
ρ→∞

w(ρ) = 0.
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Remark A.5. We remark that for κ > 0 the ground state w(ρ) is strictly decreasing
for ρ > 0. In fact, it is easily seen that, by (2.2),

(sinhN−1 ρw′(ρ))′ = −κw(ρ) < 0.

Thus, sinhN−1 ρw′(ρ) < sinhN−1(0)w′(0) = 0, which implies that w′(ρ) < 0 for
ρ > 0.

We are now in a position to give the proof of proposition A.1.

Proof of proposition A.1. Since p > p∗
H and

k∗ =
N − 1

2

(
1 −

√
p − p∗

H

p − 1

)
,

by the comparison principle of (1.1) it is sufficient to show that the proposition
holds for k∗ < k < (N − 1)/2 =

√
λ0. We use two steps to construct an upper

solution of (A 1).

Step 1. There exists a radial ground state with decay rate e−kd(x,0). Let w satisfy

w′′ + (N − 1) coth ρw′ + κw = 0, ρ ∈ [0, ∞),

where
κ = λ0 − (

√
λ0 − k)2 � λ0,

which together with lemma A.4 implies that there exists a ground state with the
decay rate e−kd(x,0).

Step 2. We can construct an upper solution with decay rate e−kd(x,0) by scaling
w. Since

k > k∗ =
√

λ0 −
√

λ0 − α

p − 1
,

we have
κ = λ0 − (

√
λ0 − k)2 >

α

p − 1
.

We shall use the linear term to control the increase of the nonlinear term. More
precisely, letting

η =
(

w(0)p−1

κ − α/(p − 1)

)1/(p−1)

,

by remark A.5 we have

1
η

(
κ − α

p − 1

)
w(ρ) �

(
w(ρ)

η

)p

for ρ > 0. (A 2)

Then (A 2) holds. Let

v̄(ρ, t) =
1
η
w(ρ) for ρ � 0.
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By (A 2), we have

0 = v̄′′ + (N − 1) coth ρv̄′ + κv̄

= v̄′′ + (N − 1) coth ρv̄′ +
α

p − 1
v̄ +

(
κ − α

p − 1

)
v̄

� v̄′′ + (N − 1) coth ρv̄′ +
α

p − 1
v̄ + v̄p.

Thus, v̄ is an upper solution of (A 1) (take β = α/(p − 1) in (A 1)).
Let ū(ρ, t) = e−βtv̄(ρ, t). Then ū is a global upper solution of (1.1). This completes

the proof.
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