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Splash-form tektites are glassy rocks ranging in size from roughly 1 to 100 mm
that are believed to have formed from the splash of silicate liquid after a large
terrestrial impact from which they are strewn over thousands of kilometres. They are
found in an array of shapes including spheres, oblate ellipsoids, dumbbells, rods and
possibly fragments of tori. It has recently become appreciated that surface tension
and centrifugal forces associated with the rotation of fluid droplets are the main
factors determining the shapes of these tektites. In this contribution, we compare the
shape distribution of 1163 measured splash-form tektites with the results of the time
evolution of a 3D numerical model of a rotating fluid drop with surface tension. We
demonstrate that many aspects of the measured shape distribution can be explained
by the results of the dynamical model.
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1. Introduction
Splash-form tektites are rocks that solidified from the splash of silicate material

following a large Earth impact (Barnes & Barnes 1973; O’Keefe 1976; Koeberl 1994;
Dressler & Reimold 2001; McCall 2001). The intriguing geometrical shapes in which
they are found (Reinhart 1958) (see figure 1) have made them favourites of rock
collectors. Elkins-Tanton et al. (2003) were the first to investigate the shapes of
splash-form tektites in terms of the dynamics of rotating fluid drops, and they were
able to produce many of the shapes of splash-form tektites in the laboratory using
molten solder tumbling through air. They also showed, based on scaling arguments,
that centrifugal and surface-tension forces should be dominant in determining the
shapes of splash-form tektites. Only a few tektites show evidence of ground impact,
such as plastic distortion or cracking of the outer portion, so it is generally believed
that their shape quenches due to the increasing viscosity of the silicate melt as it cools
in flight (Nininger & Huss 1967).

The first investigation of the shapes of rotating fluid drops was by Plateau (1863),
who built an apparatus to rotate a fluid drop that was suspended with neutral
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Figure 1. Left: snapshots of the outer surface of the numerical simulation with La = 2.4,
On = 1 and δ = 0.01. The view is looking down on the rotation axis. Colours indicate the
square of the radial distance from the rotation axis (x2 + y2). Right: photographs of real
tektites with similar axial ratios. Letters indicate shapes at the same times indicated in figures 2
and 4.

buoyancy in another immiscible fluid. He observed a myriad of shapes including
ellipsoids, dumbbells and even a transient torus. Equilibrium shapes of rotating fluid
drops that are symmetric about their rotation axis have been derived theoretically
(Rayleigh 1914; Chandrasekhar 1965), and non-axisymmetric equilibrium shapes were
later determined numerically (Brown & Scriven 1980; Heine 2006). It was also shown
that if the dimensionless angular momentum of the drop is less than 1.2, where

angular momentum is non-dimensionalized by the scaling
√

8σρR7, where σ , ρ and
R are the surface tension coefficient, mass density and radius of a sphere of equivalent
volume, stable axisymmetric oblate forms are obtained (see A and B in figure 1). If
the scaled angular momentum is between 1.2 and 2.0, stable prolate or dumbbell
shapes are found (see E in figure 1). When the scaled angular momentum is greater
than 2.0, no stable shapes exist. Experimental microgravity space shuttle (Wang et. al.
1986, 1994) and magnetic levitation (Hill & Eaves 2008) studies have confirmed
many of the predictions of the equilibrium theory. The forms of rotating fluid drops
with surface tension have been a topic of significant theoretical and experimental
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Figure 2. Greyscale, natural log, histogram of the number of tektites as a function of their
axial ratios L/W and W/T . Coloured lines indicate the trajectory of 3D simulations with the
angular momentum values: light green, 1.2; orange, 1.6; purple, 2; red, 2.4 and blue, 4; On = 1
and δ =0.01. Letters indicate the axial ratios for which snapshots are shown in figure 1.

interest, and they have been used as models for atomic nuclei (Bohr & Wheeler 1939),
for self-gravitating astronomical objects, and even black holes (Cardoso & Gualtieri
2006).

In what follows, we first describe a database containing the dimensions of a large
number of splash-form tektites. We then describe a numerical model of a deforming,
rotating fluid drop with surface tension and, subsequently, we compare the distribution
of shapes from the database with the shapes obtained from the numerical model.

2. A tektite database
A database was compiled by one of us (M.R.S.) that included the mass and the

largest L, intermediate W and smallest T axis lengths of 1163 intact splash-form
tektites found in Vietnam and Thailand that make up part of the 7.8 × 105-year-old
Australasian tektite strewn field. The intermediate length was defined as the largest
thickness perpendicular to the largest thickness axis, and the smallest thickness was
defined as the greatest thickness perpendicular to both the longest and intermediate
axes. In figure 2 we display a greyscale, 2D histogram of the number of tektites as a
function of the ratios L/W and W/T . We refer to this type of diagram as a shape
diagram. Such diagrams are commonly used to classify shapes in structural geology
and are known as Flinn diagrams (Flinn 1962). For example, a sphere would be
plotted at the origin of this diagram; an increasing distance from the origin indicates
an increasing degree of deformation from spherical. Oblate ellipsoids plot near the
horizontal axis, whereas prolate forms plot near the vertical axis. As can be seen, most
of the tektites in the database are oblate, and the L/W and W/T ratios rarely exceed
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4. It can also be seen that there are few weakly deformed, highly prolate tektites,
which would correspond to short, stubby rods, and there appears to be a ‘pathway’
of increased tektite frequency connecting the oblate and prolate fields. Logarithmic
axes were used for the histogram because L/W and W/T pairs calculated from
randomly generated L, W and T triplets have a uniform angular distribution from
the horizontal to the vertical axis.

Because only ratios are plotted, no information concerning the absolute size of
tektites is conveyed in this figure. Additionally, because the largest thicknesses in
perpendicular directions are measured, there is no distinction between tektites that
show thinning near the rotation axis. For example, there is no distinction between
rods and dumbbells or between ellipsoids and biconcave oblate shapes. A detailed
analysis of the difference in shape distribution between large and small tektites and
those that show central thinning and those that do not was carried out. Some small
differences were noted and are discussed by Stauffer & Butler (2010).

The database of tektite lengths was compiled from measurements from tektite
suppliers in Thailand and Vietnam. In total, 150 tektites were purchased in order to
verify their measurements, and they were found to be reliable to within 1 mm. Tektite
suppliers mine tektites for the purpose of selling them, and any sample larger than
20 g is picked up and measured. All mined tektites that became available over a
one-year period were recorded ensuring a random sampling.

3. Numerical model
We solve the constant-viscosity, incompressible Navier–Stokes equations for fluid

flow in a rotating reference frame that include a force-balance equation and a mass
conservation equation:

ρ

(
∂u′

∂t ′ + u′ · ∇′u′
)

= −∇p′ + η∇′2u + ρω′2r ′ + 2ρω′u′ × k̂ + ρ
∂ω′

∂t ′ r ′ × k̂, (3.1)

and

∇′ · u′ = 0. (3.2)

Here a prime indicates a dimensional variable. The dependent variables are u′, which
represents the fluid velocity, and p′, which represents pressure. The term r ′ represents
a radial vector from the rotation axis and t ′ represents time. The rotation axis is
assumed to be fixed to the z-axis, and k̂ represents a unit vector in the z-direction
and η represents the dynamic viscosity of the fluid. In (3.1), the terms on the right-
hand side represent the pressure gradient, viscous, centrifugal, Coriolis, and Euler or
Poincaré forces, respectively.

These equations are scaled for length, time and pressure by R,
√

ρR38−1σ −1 and
8σR−1 to give the following dimensionless equations, where variables without primes
are the dimensionless counterpart of those with primes:

∂u
∂t

+ u · ∇u = −∇p +
On

2
∇2u + ω2r + 2ωu × k̂ +

∂ω

∂t
r × k̂ (3.3)

and

∇ · u = 0. (3.4)

The control parameters include the dimensionless angular momentum La , the
Ohnesorge number On = η(2ρσR)−0.5 and the initial length perturbation δ. The
dimensionless time scale chosen here represents the deformation time for a fluid
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drop deforming due to centrifugal forces with resisting surface tension, while On

represents the ratio of time scales for deformation of a fluid with force balances
between surface tension and viscosity, and surface tension and inertia.

As a drop deforms due to the centrifugal force, mass becomes distributed farther
from the rotation axis, and the moment of inertia increases. The rotation rate ω

was adjusted throughout each simulation so that the total angular momentum was
constant.

The boundary conditions for the problem include a condition that the outer
surface moves with the normal component of the velocity of the fluid. The tangential
components of the stress on the outer boundary are required to be zero. Surface
tension imparts a non-zero normal stress on the surface that is proportional to the
curvature of the boundary and can be expressed as ∇s · n̂, where n̂ is the unit normal to
the droplet surface and ∇s · =(I − n̂n̂T)∇ · is the surface divergence. Here I represents
the unit matrix in three dimensions and the superscript T represents the transpose
operator.

When the force-balance equation is expressed in the weak form used with the finite
element method, the curvature term times a velocity test function ũ is integrated by
parts to give ∇s · ũ/8, which is set equal to the normal component of the stress times
the velocity test function on the boundary (Walkley et al. 2005). The factor of 1/8
arises because of the non-dimensionalization of the equations.

The deforming boundary was modelled using the arbitrary Lagrangian–Eulerian
technique that is built into the commercial finite-element modelling package Comsol.
The model used 80 tetrahedral elements, and Winslow smoothing was used in order
to specify the location of the internal mesh elements. When drops became highly
deformed prolate shapes, it became necessary to remesh the solution at intervals
during the calculation in order to maintain an adequate mesh quality.

The initial condition for the model was an ellipsoid, where one axis perpendicular
to the rotation axis was of length 1 + δ, and the other was of length (1 + δ)−1, so that
the volume was always 4π/3, regardless of the size of the initial length perturbation.

As a check on the numerical model, we compare rotation rate versus angular
momentum for steady states calculated from our numerical model (asterisks) plotted
on top of the equilibrium theory results (Brown & Scriven 1980) (figure 3). Solid lines
indicate stable equilibrium shapes, whereas dotted lines indicate unstable equilibrium
shapes. Numerical model runs were carried out with On = 1, δ = 0.01, and constant
angular momentum. As angular momentum increases from zero, equilibrium theory
predicts that the rotation rate initially increases linearly. At angular momenta where
the drops deform significantly, the rate of increase of rotation rate with angular
momentum decreases. At La = 1.206, there is a bifurcation point in the equilibrium
curve where the descending branch represents the rotation rate for stable prolate
shapes while the ascending branch represents unstable equilibrium oblate shapes.
As can be seen, there is excellent agreement between the results of our transient
simulations that were run to steady states and the equilibrium theory. The squares
are data points taken from metastable oblate shapes that later became prolate during
their transient evolution, and it can be seen that these are in excellent agreement with
the rotation rates and angular momenta predicted for unstable equilibrium shapes.
Note that the angular momentum given by Brown & Scriven (1980) is less by a factor
of 4 from what we and Heine (2006) report. This discrepancy arises from the fact
that Brown & Scriven (1980) did not properly account for the fact that they solved
only a portion of the total drop and assumed equatorial and meridional symmetry
(Heine 2003).
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Figure 3. Angular momentum, La , versus rotation rate, ω, for equilibrium shapes. The lines
indicate the results of equilibrium theory (solid line indicates stable equilibrium shapes, dotted
line indicates unstable equilibrium shapes) while the asterisks are the results of our transient
numerical model that was run to a steady state. The squares are results of our numerical
model from transient unstable oblate shapes before they became prolate.
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Figure 4. The time evolution of the largest, L, intermediate, W , and smallest, T , dimensions
of a simulated fluid drop with La = 2.4 and δ = 0.01, On = 1 (black) and On = 100 (blue). The
time has been scaled by 1/100 for the On =100 results. Letters indicate the times for which
snapshots are shown in figure 1.

4. Results
The time evolution of L/2, W/2 and T/2 is displayed in figure 4 for a simulation

with La = 2.4, On = 1 and δ = 0.01 (black lines). It can be seen that for dimensionless
time from 3 to 8, L/2 and W/2 have similar dimensionless values near 1.3, while
T/2 drops to roughly 0.5. During this time, the drop assumes an oblate shape. After
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this time, the non-axisymmetric instability becomes significant; this is manifested by
the increase in L/2 to 2.3, while W/2 decreases and T /2 increases to roughly 0.7 in
time interval 8–20. Because La > 2, this drop will continue to deform and eventually
pinch-off into two drops. This causes the slow variation of L/2, W/2 and T/2 at the
end of the simulation. Our numerical scheme fails before pinch-off occurs. Similar
blue lines are shown for a simulation with On = 100, the time scale for this case has
been scaled by 1/100. As can be seen, the time evolution is similar.

Using characteristic parameters for tektite materials of ρ = 2500 kg m−3, σ =
0.5 N m−1, and R = 0.02 m, one dimensionless time unit corresponds to roughly 0.07 s,
meaning that the dimensional time in which the modelled tektites with La = 2.4 and
On = 1 and On = 100 (figure 4) remained in the metastable oblate state were roughly
0.5 and 21 s, respectively, and the times to transition to a prolate form were roughly
0.5 and 70 s, respectively. The evolution time was seen to scale linearly with On for
On � 1. The Ohnesorge number depends on the fluid viscosity, which is expected to
change over many orders of magnitude as the fluid cools. Elkins-Tanton et al. (2003)
estimated a range of On between 0.01 and 1000 for splash-form tektites.

Tektites cool on their surfaces by radiation and conduction to the air flowing
over them, whereas their interiors cool by a combination of conduction, radiation
and advection that results from the rotation-induced deformation. Assuming only
conduction in the interior, an estimate of the characteristic cooling time, R2/κ , gives
a value of 400 s, where κ = 10−6 m2 s−1 (Eriksson, Hayashi & Seetharaman 2003)
and R = 0.02 m. This is similar to the cooling time estimated by Klein, Yinnon &
Uhlmann (1980), who also allowed for radiative heat transfer within the tektites.
Clearly, the time needed for low-viscosity drops to deform is much shorter than
the time needed to cool significantly. This indicates that low-viscosity tektites with
La > 2 can be expected to have sufficient time to deform to pinch-off. The resulting
new drops will also be rotating and may undergo another deformation evolution.
The existence of transient, non-equilibrium shapes among tektites such as triaxial
forms (e.g. D in figure 1) indicates that the time scales for deformation and cooling
were similar for these tektites. The evolution and cooling times become similar when
On ∼ 100. Using the characteristic values as above, this implies a fluid viscosity of the
order of 1000 Pa s, which is similar to the viscosity reported by Klein et al. (1980)
for a tektite-derived liquid at 1300◦C. The viscosity of molten tektites also depends
on their silica concentration, which varies from one impact crater to another.

In figure 1, snapshots of the deforming exterior surface from the numerical
simulation with La = 2.4, On =1 and δ =0.01 are shown. The view is looking down
from straight above the rotation axis, and the colour indicates the distance from the
rotation axis. Also shown are photographs of splash-form tektites with similar axial
ratios. Letters in figures 2 and 4 indicate the times at which the snapshots for figure
1 were taken. The evolution from a sphere to a flattened ellipsoid to a triaxial shape
and then a dumbbell can be clearly seen. It can also be seen that the simulated fluid
drop shapes bear a striking similarity to the shapes of real splash-form tektites. The
transient shapes at A, B and E were compared with equilibrium shapes with similar
axial ratios and were found to have very similar overall shapes. We were able to
run models with On > 0.1 and La < 5. During the transient oblate phase, drops of all
angular momenta and On with the same maximum radii had highly similar shapes.

A parametric curve of the simulated liquid fluid drop evolution with La =2.4 is
overlaid on the shape diagram in figure 2 (red line). The early evolution from a
sphere to an oblate ellipsoid can be seen as the near-horizontal part along the x-axis.
The curve bends sharply when the non-axisymmetric instability begins to significantly
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affect the shape of the drop. It can also be seen that the parametric curve for
La =2.4, On =1 and δ = 0.01 follows the region of an increased tektite frequency
reasonably well. A simulation with La = 1.2, On = 1 and δ = 0.01 is also shown (green
line). This simulated drop had an angular momentum that was just sufficient for
the non-axisymmetric instability to occur. In this case, the drop evolved to a less-
flattened ellipsoid than the drop with more angular momentum before undergoing
the non-axisymmetric instability. Drops with angular momentum less than 1.2 did not
undergo the non-axisymmetric instability and achieved a stable, equilibrium oblate
shape with W/T less than 1.49. The orange, purple and blue lines show the results of
simulations with On = 1, δ = 0.01 and La = 1.6, 2 and 4, respectively.

In general, as the angular momentum increases, the drop evolves to an increasingly
flattened oblate ellipsoidal shape before undergoing the non-axisymmetric instability.
The resulting prolate drops are also increasingly flattened in the direction parallel
to the rotation axis as angular momentum increases. As a result, because La = 1.2
is the lowest angular momentum for which the non-axisymmetric instability occurs,
the model predicts that there should not be any drops in the roughly triangular area
bounded by a horizontal line out to W/T = 1.49 and bounded to the right roughly
by the orange curve. This can explain why there are few weakly deformed, prolate
tektites. The fact that there are few intact tektites with W/T or L/W greater than 4
can be explained by the fact that stable equilibrium shapes do not exist for La > 2.
If all tektites represented stable equilibrium shapes, then there would be no tektites
on the right of the prolate branch of the purple curve. The tektites plotted on the
right of this curve must represent shapes that solidified before pinch-off could occur.
On the basis of scaling arguments, Elkins-Tanton et al. (2003) suggested that many
tektites are likely to be unstable forms that quenched while in flight. Oblate tektites
that are concave near the rotation axis and represent unstable equilibrium forms;
their existence provides further support for this hypothesis. In figure 4, it can be seen
that when La =2.4, the drop attains a prolate shape that is close to stable and only
slowly proceeds to pinch off. When La was increased significantly beyond 2, however,
the drops seen were significantly flattened parallel to the rotation axis and did not
attain an approximate equilibrium shape and continued to elongate. As a result, it
becomes increasingly unlikely that solidification would occur before pinch-off as the
angular momentum increases beyond 2, and the number of tektites with W/T or
L/W greater than 4 may be expected to be few.

The fact that there is a large number of oblate tektites that are deformed with W/T

greater than 1.49 indicates that these tektites quenched before the non-axisymmetric
instability significantly affected their shape. The small number of triaxial tektites
represent shapes that quenched during the transition from oblate to prolate.

Additional numerical simulations were carried out with other values of On and δ.
In figure 5, we show the shape evolution for simulations with La = 2.4 with various
values of On and δ. The red, purple and green lines indicate simulations with δ = 0.01
and On = 1, 10 and 100. It can be seen that increasing On has the effect of rounding
off the elbow in the curve but otherwise, the evolution of these simulations is quite
similar. The yellow and orange lines represent simulations with δ = 0.05 and On =1
and 100. Increasing δ increases the ‘prolateness’ of the initial drop while increasing On

rounds off the elbow in the curve. The simulations represented by the cyan and black
lines had δ =0.1 and On = 1 and 100. A value for δ of at least 0.2 was necessary in
order for the evolution curve through the shape diagram to pass through the region
with decreased numbers of tektites in the highly prolate but weakly deformed field.
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Figure 5. Greyscale, natural log, histogram of the number of tektites as a function of their
axial ratios L/W and W/T for simulations with La = 2.4. Red, yellow and cyan lines show
the shape trajectory for fluid drops with On =1 and δ = 0.01, 0.05 and 0.1. Purple, brown and
black lines are from simulations with On = 100 and δ = 0.01, 0.05 and 0.1, while the green line
is from a simulation with On = 10 and δ = 0.01.

5. Discussion and conclusions
We have shown that the shape distribution of intact splash-form tektites can be

well explained by the time evolution of rotating fluid drops. The paucity of weakly
deformed, prolate tektites can be explained by the fact that fluid drops first deform to
oblate shapes before undergoing the non-axisymmetric instability to become prolate.
The paucity of tektites with axial ratios greater than 4 can be explained by the fact
that angular momenta greatly exceeding 2 are required to deform droplets to this
degree, and hence such drops are expected to pinch-off before their shape can be
quenched by cooling.

The deformation and cooling times of fluid drops are similar when On ∼ 100.
Transient, non-equilibrium shapes such as triaxial ellipsoids quenched while
deforming, indicating that the characteristic deformation and cooling times must
have been similar for these tektites, suggesting that On ∼ 100 during their evolution.
This value of On implies a viscosity on the order of 1000 Pa s, a value that is within
the experimentally determined range of tektite material viscosities (Klein et al. 1980).

When On was less than 1, drops were observed to oscillate about equilibrium
shapes when the angular momentum was sufficiently low that equilibrium shapes
were seen. This raises the interesting possibility that some tektite shapes may have
quenched while in mid-oscillation. The oscillations in our simulations, caused by the
rotation-induced shape change, were all of fairly small amplitude. When the splash of
silicate liquid following an Earth impact first breaks up into droplets, it is likely that
there would be large perturbations that could induce large-amplitude oscillations.
As a drop cools, its viscosity increases and we have shown that, at least in the
late stages of evolution, the Ohnesorge number becomes much greater than 1. As a
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result, oscillations are likely to be damped out and oscillations are not expected to
significantly affect the distribution of tektite shapes.

The analyses of Brown & Scriven (1980) and Heine (2006) have shown that
when 2 < La < 2.8, there exist triangular unstable equilibrium shapes. In our transient
simulations with this range of angular momenta, drops first became oblate and then
became prolate and continued to stretch along their long axis until the numerical
method fails. Triangular drops were not seen. It is possible that if we had initiated
our simulations with a triangular perturbation, this shape might have evolved, but it
appears that triangular shapes are sufficiently unstable that they are unlikely to occur
during the transient evolution of liquid drops. Some very rare triangular tektites have
been seen; however, their shapes may have been significantly modified by weathering
processes on the ground.

One shortcoming of this analysis is that the viscosity of the modelled fluid drop is
assumed to be constant. In real tektites, the viscosity increases as they cool, and it is
this effect that quenches the final shape. If the tektite cools at roughly the same rate
throughout its volume, then the effect is the same as increasing the Ohnesorge number
with time; this was not found to significantly change the shape of the evolution curve
on the shape diagram. It is likely, however, that the outside would cool faster than the
inside, leading to higher viscosity on the outside than on the inside. This differential
viscosity may affect the final shape of tektites. Also, the numerical calculation assumes
no tangential stress on the outer boundary of the fluid drop, so that the effects of
air friction are not taken into account. Furthermore, if lateral temperature variations
exist on the outer surfaces of tektites, the surface tension coefficient would not be
constant, and tangential stresses may result. Nonetheless, the similarity between the
modelled fluid drops and real tektites is striking, and the fact that the main features
of the tektite shape diagram can be explained by the results of our numerical model
is highly suggestive.
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