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Abstract

The Multiphase Buoyancy-Drag model recently formulated in Balakrishnan & Menon, Laser and Particle Beams, 2011 is
applied to investigate the (1) rise of dusty gas Rayleigh-Taylor bubbles into a pure gas and (2) fall of pure gas Rayleigh-
Taylor spikes into a region of particles. It is demonstrated that for these two scenarios, the bubble or spike amplitude
oscillates about the dusty gas/pure gas interface. The ratio of the bubble or spike amplitudes on the pure gas side to
the dusty gas side, asymptotes to a constant that depends only on the initial Atwood number, A, the multiphase
Atwood number, Am, and the initial wavelength of the perturbation, λo. For the same Am, the ratio decreases with A for
oscillating bubbles, and vice versa for oscillating spikes.

1. INTRODUCTION

A Rayleigh-Taylor (RT) instability occurs when a perturbed
interface between two fluids with different densities is accel-
erated in a direction normal to the interface from the heavy to
the lighter fluid (Lord Rayleigh, 1883; Taylor, 1950). RT in-
stabilities grow as bubbles of lighter fluid rising into the hea-
vier fluid, and spikes of heavier fluid falling into the lighter.
RT instabilities can be single or multimode, depending on
the nature of the perturbation. Multimode RT is, in particular,
interesting to study since it involves the growth of hydrodyn-
amic structures that span multiple length scales. With the
course of time, these structures grow to larger scales, leading
to a “bubble competition” where neighboring hydrodynamic
structures coalesce and merge into still larger structures.
Soon, a scale invariant regime can be reached where the sub-
sequent growth is self-similar and independent of the initial
conditions. A close counterpart of RT is the Richtmyer-
Meshkov instability (Richtmyer, 1960), where the accelera-
tion is impulsive.
Typically, the Atwood number, defined as A= (ρ2− ρ1 )/

(ρ2+ ρ1), where ρ2 and ρ1 are the densities of the heavy and
light fluids, respectively, is widely used to characterize the
RT instability. Several studies have been carried out in the
past to understand the phenomenology of RT using analytical
models, numerical simulations, and experiments. One of the

earliest works on RT was the study of the rise of a single
bubble, carried out by Layzer (1955), but limited to A= 1.
A detailed review of early RT research works can be found
in Sharp (1984). Later, Alon et al. (1994, 1995) have pro-
posed an analytical model to study the growth of the RT
instability, including also the case of an impulsive initial
drive, i.e., the Richtmyer-Meshkov (RM) instability. They
investigated both 2D and 3D instability growth, extending
Layzer’s work for all Atwood numbers. Scaling laws were
obtained based on analytical reasoning by Oron et al.
(2001) for both these instabilities, including also a
Buoyancy-Drag model where the hydrodynamic structures
are modeled as to be accelerated due to buoyancy as well
as decelerated by a drag force. Later, the Buoyancy-Drag
model has been extended and applied to both RT and RM in-
stabilities by Srebro et al. (2003) and they obtained good
agreement with experimental data. Numerous computational
simulations of RT instability have been carried out by
Youngs (1984, 1989, 1991, 1994), establishing the classical
result that the multimode RT instability grows as h∼ t2,
where h is the amplitude of the instability and t is the time.
Experiments on RT instability have also been carried out
by Dalziel (1993) and Dimonte and Schneider (2000), corro-
borating this result. Despite these elaborate studies, RT in-
stability still eludes researchers. For example, when a fluid
interface is accelerated in a dusty gas (i.e., gas-solid particle
mixture), the growth of RT instability has not been character-
ized in the literature. Recently, Balakrishnan and Menon
(2011) derived and presented a multiphase buoyancy-drag
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model, extending the work of Srebro et al. (2003). A multi-
phase Atwood number, first introduced in Ukai et al. (2010),
is observed to play a significant role in characterizing the
dusty gas RT instability. This multiphase Atwood number,
Am, is defined as:

Am = ρ2 1+ f2/(1+ St2)[ ] − ρ1 1+ f1/(1+ St1)[ ]
ρ2 1+ f2/(1+ St2)[ ] + ρ1 1+ f1/(1+ St1)[ ] , (1)

where f1 and f2 denote, respectively, the particle mass loading
in the light and heavy gases, and are evaluated as fi=mNo /ρi,
i= 1,2, where m is the particle mass and No is the dust
concentration in number per unit volume. Thus, for the defi-
nition, we can represent ρi (1+ fi/(1+ Sti)) as ρi

m, i= 1, 2.
Furthermore, St1 and St2 denote, respectively, the particle
Stokes number in the respective fluids, which represent how
fast solid particles can respond to the background fluids. See
Balakrishnan and Menon (2011) and Ukai et al. (2010) for
more discussions.
It is of interest to investigate the dependence of RT in-

stability in dusty gases, for which Am plays a significant
role, just as A does so for the classical RT instability in
pure gases. In particular, Balakrishnan and Menon (2011)
showed that the problem of multiphase RT instability can
be classified into four groups: (1) bubbles in a pure gas
rising into a region of particles; (2) spikes in a pure gas fall-
ing into a region of particles; (3) bubbles in a region of par-
ticles rising into a pure gas; and (4) spikes in a region of
particles falling into a pure gas. Furthermore, it was also
shown that for classes (2) and (3), the spikes and bubbles,
respectively, oscillate in a gravity wave-like phenomenon
due to the buoyancy term changing sign alternatively as it
crosses the multiphase interface. The spike or bubble, as
the case may be, penetrates different amounts into the
dusty or pure gas for every subsequent penetration. However,
such oscillatory patterns have hitherto never been investi-
gated, thereby motivating the undertaking this study. Specifi-
cally, the dependence of these oscillations on a suite of
identified parameters is of interest in this study.
The investigation of such multiphase RT instabilities has

applications to multiphase explosions (Balakrishnan and
Menon, 2010; Balakrishnan, 2010), as it can be used to
characterize the fireball dynamical behavior in explosions
that involve solid particles, for example, aluminum particles.
Also, the growth of plasma in dusty gases—which is still a
field of research in its infancy—can be characterized by
such simple analytic methods. Even the growth of hydrodyn-
amic instabilities in laser-driven inertial confinement fusion
can be investigated using the present analysis, particularly
when other solid particles/impurities are present.
This study is organized as follows: in Section 2, we present

the method of study, i.e., the multiphase buoyancy-drag
model equations; in Section 3, we present the results and dis-
cussions of this study; finally, the conclusions from this study
are summarized in Section 4.

2. METHOD OF STUDY

We investigate the oscillatory characteristic of the multiphase
RT instability using the multiphase buoyancy-drag model
(MBD), recently introduced by Balakrishnan and Menon
(2011). Here, the rise of an RT bubble or the fall of an RT
spike, in a dusty gas environment, is modeled using an evol-
ution equation that accounts for buoyancy and drag forces.
We define the velocity of a bubble and a spike, respectively,
as uB and uS, the perturbation wavelength as λ, and the accel-
eration as g(t). Following Balakrishnan and Menon (2011),
the equations for bubble rise and spike fall in dusty gases
are given by:

[(CaE(t)+ 1)ρm1 + (Ca + E(t))ρm2 ]
duB
dt

= (1− E(t))(ρm2 − ρm1 )g(t)− Cdρ
m
2
u2B
λ
sign (uB), (2)

[(CaE(t)+ 1)ρm2 + (Ca + E(t))ρm1 ]
duS
dt

= (1− E(t))(ρm2 − ρm1 )g(t)− Cdρ
m
1

u2S
λ
sign (uS), (3)

where Ca is the added mass coefficient, with values 2 for 2D
and 1 for 3D, respectively, and Cd is the drag coefficient,
with values 6π for 2D and 2π for 3D, respectively (Srebro
et al., 2003). Furthermore, the factor E(t) accounts for the
amplitude dependence, and is given by E(t)= e−CekhB,
where Ce is a constant that takes the values 3 for 2D and 2
for 3D (Srebro et al., 2003), and k= 2π/λ is the wavenum-
ber. The sign () terms are used in the above expressions so
that the drag term (with the minus sign in place) always
acts opposite to the direction of velocity.
For multimode perturbations, a characteristic wavelength,

λ̂, is used in place of λ in the above equations as perturbations
can compete and merge, thereby altering the wavelength with
time. The evolution equation for λ̂ is given by:

d̂λ

dt
=

0, hB < λ̂ b(Am);
uB

b(Am)
, hB ≥ λ̂ b(Am).

⎧⎨
⎩ (4)

Here, hB is the bubble amplitude and b(Am) is a constant
given by (Balakrishnan and Menon, 2011):

b(Am) = 0.5
1+ Am

(2D); b(Am) = 1.6
1+ Am

(3D). (5)

Thus, in this formulation, when the bubble amplitude is com-
parable to the perturbation characteristic wavelength, the
latter grows due to bubble competition and merging. This in-
evitably affects the drag term on the bubbles and spikes, with
larger hydrodynamic scales resulting in faster acceleration.
Finally, the bubble and spike amplitudes, hB and hS,
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respectively, are evaluated by integrating the expressions:

uB = dhB
dt

; uS = dhS
dt

. (6)

These equations are solved using a first-order direct inte-
gration at every time step, from which the solution is sequen-
tially advanced. The time step, Δt, is chosen such that

Δt <<
����������
λo/2πAg

√
, where λo is the initial perturbation wave-

length; for this study, we use Δt = 0.001
����������
λo/2πAg

√
, which

after several numerical experiments was found to suffice.
See Ramshaw (1998) for more discussions on the choice of
the time step.

3. RESULTS AND DISCUSSION

We investigate the problem of bubbles in a multiphase multi-
mode RT instability rising into a region of pure gas, and spikes
in a pure gas multimode RT falling into a region of particles
(dusty gas). A schematic of these two test problems is pre-
sented in Figure 1. As shown by Balakrishnan and Menon
(2011), this problem is characterized by the bubble or spike
amplitudes, as the case may be, demonstrating an oscillatory
pattern due to the buoyancy term changing sign alternatively
(essentially, the term ρ2

m− ρ1
m) in Eqs. (2) and (3).

In the following discussions, all dimensional units be
presented in metric units.

3.1. Dusty Gas Bubbles Rising into A Pure Gas

We now investigare the rise of dusty gas RT bubbles into a
pure gas. First, we consider a representative case correspond-
ing to A= 0.25, with initial amplitude ao= 10−4 m and initial
wavelength λ =10−2 m. For the particles, we assume rp= 40
μm and ρp= 2500 kg/m3. The viscosity and the gravitational
acceleration are taken to be 1.5 × 10-5 Pa-s and 1 m/s2,
respectively. The initial pure/dusty gas interface is located
1.5 m from the initial interface (from which the instability
starts to grow initially), and the particle number density in
the dusty gas is taken as N= 0.75 × 1010 m−3. We use the
3D version of the model to demonstrate bubble oscillations.

The amplitude growth of the bubbles (hB) and spikes (hS)
are shown in Figure 2a Whereas the spike is unaffected, the
bubble amplitude oscillates around the dusty gas/pure gas
interface (located at 1.5 m) due to the alternate reversal of
the sign of the buoyancy term; we also note that the ampli-
tude of the oscillations decay with time (Fig. 2b). we
denote the respective bubble amplitude on either sides of
the interface as h+ and h− respectively, on the pure gas
side (>1.5 m) and the dusty gas side (<1.5 m), as shown
in Figure 2b; in particular, we are interested in the h+/h−

ratio, and its variation with time; two ways exist for defining
such a ratio: either forward (hk+1

+ /hk
−) or backward (hk

+/hk
−),

where subscript k identifies the k-th oscillation. Both these
ratios are shown in Figure 3 and they converge at late
times to a constant value≈0.2 (for this case). This means

Fig. 1. Schematic of (a) dusty gas bubbles rising into a region of pure gas; (b) pure gas spikes falling into a region of particles. The arrow
denotes the sign of the acceleration, g. The small circles represent particles and the regions without circles represents the pure gas. The
perturbed interface that separates the heavy and light fluids initially is shown by the distorted curve. The heavy and light fluids are appro-
priately identified.

Fig. 2. Dusty gas bubbles rising into a pure gas: (a) bubble and spike amplitude growths (b) zoomed version of the same figure showing
the oscillatory bubble amplitude.
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that after a certain number of early oscillations, the oscil-
lations attain a state such that every subsequent amplitude
is a constant factor (≈0.2 in this case) of the previous
amplitude.
Analysis also shows that this constant value for the ratio

happens to be independent of the exact location of the inter-
face, demonstrated in Figure 4a for both 2D and 3D versions
of the model; if the pure/dusty gas interface is closer to the
initial interface, this constant value is reached sooner; if the
pure gas is farther, this ratio is reached later. Thus, bubbles

rising from a dusty gas to a pure gas exhibit oscillatory pat-
terns that at later times are characterized by a constant ampli-
tude ratio for contiguous oscillations. Numerical experiments
reveal that this constant value for the ratio happens to be de-
pendent only on the choice of A, Am (to be demonstrated
soon) and the initial characteristic wavelength of the pertur-
bation, λo; in Figure 4b, we show the dependence of this am-
plitude ratio on λo for both 2D and 3D versions of the model.
Analysis also reveals that the amplitude ratio is independent
of the initial amplitude (not shown here for brevity).
Next, we identify the dependence of this ratio on A and Am.

To obtain different Am, both rp and N are varied over a phys-
ically meaningful range. Typically, rp is varied in the range
4–500 μm, which is of typical interest for engineering
applications (for instance, the author studied multiphase
explosions in Balakrishnan (2010), where solid particles
were considered in this range). N is varied on the order of
1010−1011 m−3, as this will result in the mass of solid par-
ticles per unit total volume to be comparable to the fluid den-
sity, for the chosen particle size range. For A= 0.7, we plot
the amplitude ratio as a function of Am for the 2D and 3D ver-
sions of the model, respectively, in Figures 5a and 5b. We
observe this ratio to vary over three orders magnitude or
more, over the chosen range of Am. These data points involve
different rp and N, and follow the same trend, indicating that
for a given A and λo, this ratio depends only on Am.
To facilitate future comparisons with experiments, we also

considered A= 0.2, 0.5, 0.9, in addition to A= 0.7, and the

Fig. 3. Ratio of h+ and h−.

Fig. 4. Dusty gas bubbles rising into a pure gas: effect of (a) interface location; (b) initial characteristic wavelength, λo.

Fig. 5. Variation of the ratio for A= 0.7: (a) 2D; (b) 3D.
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3D ratios for bubble oscillations are presented in Figure 6.
We observe that for oscillating bubbles, the ratio decreases
with A for the same Am.

3.2. Pure Gas Spikes Falling into a Region of Particles

We now investigate the fall of pure gas spikes into a region of
particles. Since the bubbles in this problem always remain in
the pure gas region, we employ b(A) for this analysis. First,
we consider a representative test case for A= 0.5 to demon-
strate the role of the interface location and λo on spike oscil-
lations. The initial amplitude is ao= 10−4 m and initial
wavelength λo= 5 × 10−2 m. For the particles, we assume
rp= 40 μm and ρp =2500 kg/m3, as before. In addition,
the same values as before are used for viscosity and the grav-
itational acceleration. The particle number density in the
dusty gas is taken as N= 2 × 1010 m−3. First, we demonstrate
that the spike oscillations, too, are insensitive to the initial
location of the interface (in Fig. 7a) for a fixed λo= 5 ×
10−2 m, but depend on λo (in Fig. 7b) when the initial
pure/dusty gas interface is loacted at 1.5 m from the initial
interface ( from where the instability starts to grow initially).
Numerical experiments reveal that the insensitivity to the
location of the interface is applicable for any generic λo;
also, the sensitivity to λo holds for any generic A and the
initial interface location. However, one interesting obser-
vation from Fig. 7b is that for oscillating spikes, the

amplitude ratio is higher for the 2D version of the model
vis-á-vis 3D, unlike oscillating bubbles.

We now also investigate A= 0.2, 0.5, 0.7, and 0.9 cases.
The amplitude ratio for A= 0.5 is shown in Figure 8 for
2D and 3D . As before, the ratio monotonically increas
with A m for the spikes too, although our observation is
that only negative Am cases resulted in oscillatory spike be-
havior. As already noted above, the ratio is higher for 2D
than 3D, unlike the earlier case for bubbles. These con-
clusions also hold for A= 0.2, 0.7, and 0.9, not shown
here for brevity.

Fig. 6. Oscillating bubbles: variation of the 3D ratio for different A.

Fig. 8. Spikes in a pure gas falling into a region of particles: variation of the
ratio for A= 0.5.

Fig. 9. Oscillating spikes: variation of the 3D ratio for different A.

Fig. 7. Pure gas spikes falling into a dusty gas: effect of (a) interface location; (b) initial characteristic wavelength, λo.
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In Figure 9, we present the ratios for different A for oscil-
lating spikes. As evident, the ratios increase with A for a
given Am for oscillating spikes, in contrast with oscillating
bubbles. Thus, oscillating bubbles and spikes have opposite
trends for the ratio.

3.3. Future Dections

The oscillatory characteristics of RT bubbles and spikes de-
monstrated in this paper is based purely on theoretical
grounds. Experimental data along these lines is presently
lacking, and therefore whether such oscillations can be ob-
served in nature remains an open question. Such multiphase
RT oscillations, if true, have applications to laser-driven iner-
tial confinement fusion, where dusty gases can also be inves-
tigated. Another application of the model is in the study of
particle jetting effects in explosions (Frost et al., 2011).
We hypothesize that the multiphase Atwood number defined
earlier can serve as a useful parameter to characterize
the growth of hydrodynamic instabilities in multiphase
explosions. The rapid acceleration of a pure gas-dusty gas in-
terface can result in the growth of small perturbations on the
surface, which can ensue into jet-like particle structures re-
ported by Frost et al. (2011)—this problem can be investi-
gated with the multiphase buoyancy-drag model. For such
spherical growth of instabilities, the multiphase buoyancy-
drag model needs to be extended to account for divergence
effects. Future work can address these issues.

4. CONCLUSIONS

The recently formulated Multiphase Buoyancy-Drag model is
applied to investigate the (1) rise of dusty gas Rayleigh-Taylor
instability bubbles into a region of pure gas and the (2) fall of
pure gas Rayleigh-Taylor instability spikes into a region of
particles. The bubbles and spikes oscillate, with the ratio
of the amplitudes on the pure and dusty sides of the interface
asymptoting to a constant which is dependent only on the
initial Atwood number (A), the multiphase Atwood number
(Am), and the initial wavelength of the perturbation (λo).
Both 3D and 2D bubble and spike oscillations are studied
and the dependence of the ratio on the Atwood number is op-
posite for oscillating bubbles and spikes.
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