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In the present work, we study the transverse vortex-induced vibrations of an elastically
mounted rigid cylinder in a fluid flow. We employ a technique to accurately control
the structural damping, enabling the system to take on both negative and positive
damping. This permits a systematic study of the effects of system mass and damping
on the peak vibration response. Previous experiments over the last 30 years indicate
a large scatter in peak-amplitude data (A∗) versus the product of mass–damping (α),
in the so-called ‘Griffin plot’.

A principal result in the present work is the discovery that the data collapse
very well if one takes into account the effect of Reynolds number (Re), as an extra
parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping
(A∗

α=0), for a compilation of experiments over a wide range of Re = 500–33 000,
are very well represented by the functional form A∗

α=0 = f (Re) = log(0.41 Re0.36).
For a given Re, the amplitude A∗ appears to be proportional to a function of
mass–damping, A∗ ∝ g(α), which is a similar function over all Re. A good best-fit for
a wide range of mass–damping and Reynolds number is thus given by the following
simple expression, where A∗ = g(α) f (Re):

A∗ = (1 − 1.12 α + 0.30 α2) log(0.41 Re0.36).

In essence, by using a renormalized parameter, which we define as the ‘modified
amplitude’, A∗

M = A∗/A∗
α=0, the previously scattered data collapse very well onto a

single curve, g(α), on what we refer to as the ‘modified Griffin plot’. There has also
been much debate over the last three decades concerning the validity of using the
product of mass and damping (such as α) in these problems. Our results indicate that
the combined mass–damping parameter (α) does indeed collapse peak-amplitude
data well, at a given Re, independent of the precise mass and damping values, for
mass ratios down to m∗ = 1.

1. Introduction and preliminary work
The problem of vortex-induced vibration of structures is important in many fields

of engineering. For example, it is a cause for concern in the dynamics of riser tubes
bringing oil from the seabed to the surface, in flow around heat exchanger tubes, in
the dynamics of civil engineering structures such as bridges and chimneys, and also
in many other situations of practical importance. This has led to a large number of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

03
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000310


148 R. N. Govardhan and C. H. K. Williamson

fundamental studies that are summarized in the comprehensive reviews of Sarpkaya
(1979), Griffin & Ramberg (1982), Bearman (1984), Parkinson (1989), Williamson &
Govardhan (2004) and in the books by Blevins (1990), Naudascher & Rockwell (1994),
Sumer & Fredsoe (1997); and in Anagnostopoulos (2002). In spite of this large number
of studies, several fundamental questions remain unanswered even in the simple case
of the elastically mounted cylinder, as discussed in the recent review of Williamson &
Govardhan (2004). One of the most important of these unanswered questions is the
relationship between the maximum cylinder response amplitude and the system mass
and damping.

Generally in the literature, the peak response amplitude has been plotted versus
the ‘Skop–Griffin’ parameter, which is proportional to the product of mass and
damping, following the first comprehensive compilation of existing data by Griffin
and coworkers in the 1970s (e.g. Griffin, Skop & Ramberg 1975), and labelled for
convenience the ‘Griffin plot’ by Khalak & Williamson (1999). Surprisingly, even the
very basic fact of whether a combined mass–damping parameter could reasonably
collapse peak-amplitude data has been debated for almost three decades (see Sarpkaya
1978, 1979, 1995, for example). In fact, owing to the scatter and trend of data in the
‘Griffin plot’, Williamson & Govardhan (2004), in their review paper, stated: ‘One
can conclude that, despite the enormous effort over the last 25 years to critique and
define accurately this useful plot, it is not yet fully defined’. It is the new definition of
this plot, for an elastically mounted rigid cylinder, that is at the heart of the present
contribution.

Typically in previous studies, given the lack of direct control on structural damping,
the maximum amplitude information has been compiled from a number of quite
different experimental arrangements, leading to substantial uncertainties. In the
present study, we circumvent this problem by employing an external active damper,
which is capable of implementing controlled negative and positive damping on the
oscillating system. Recall that the first classical experiments where positive damping
was controlled (at high values of mass–damping) were conducted by Feng (1968),
using the eddy–current approach. Other recent experimental studies, where damping
has been directly controlled, are the force-feedback system of Hover, Miller &
Triantafyllou (1997), and the recent experiments of Klamo, Leonard & Roshko
(2004, 2005). The lowest mass–damping parameter (see table 1) achieved in Klamo
et al. (2005) was around 0.007. In the case of Hover et al. (1997), although in principle
one can specify zero damping in the virtual cable testing apparatus, in practice an
effective minimum mass–damping value of about 0.013 is achievable, as discussed in
Hover, Techet & Triantafyllou (1998).

In the present case, the design of our damper system allows us to vary the
damping from negative values, inducing large-amplitude response, to high damping,
where vibration becomes negligible. Using damping control, we seek in this study to
understand the following fundamental unanswered questions regarding the ‘Griffin
plot’, recently outlined in the review of Williamson & Govardhan (2004):

(i) Under what conditions does the classically employed mass–damping parameter
collapse peak-amplitude data?

(ii) What is the maximum possible amplitude attainable for a cylinder undergoing
vortex-induced vibration (VIV), for conditions of extremely small mass and damping?

(iii) What is the functional shape for a plot of peak amplitude versus mass–
damping? In fact, one might ask: Is there indeed a unique functional shape? We shall
show in the present work that there is no unique function relating peak amplitude
to mass–damping, because of the effect of Reynolds number on response amplitude.
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Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + mA)

Mass–damping parameter α (m∗ + CA)ζ

Velocity ratio U ∗ U

fND

Amplitude ratio A∗ A

D

Frequency ratio f ∗ f

fN

Transverse force coefficient CY

F
1
2
ρU 2DL

Reynolds number Re
ρUD

µ

Table 1. Non-dimensional groups for the elastically mounted cylinder. The frequency ratio f ∗

is defined as (f/fN ), where f is the oscillation frequency, and fN is the natural frequency in
water. The ideal added mass, mA, is given by mA =CAmd , where md is the displaced fluid mass
and CA is the potential added mass coefficient. (CA = 1.0 for a circular cylinder). D = cylinder
diameter, L = cylinder length, ρ = fluid density, U = free-stream velocity, µ= viscosity.

However, despite this dependence of response amplitude on the Reynolds number, we
shall show that it is possible to introduce a ‘modified amplitude’ that is independent
of Reynolds number, and obtain a unique functional relationship for this ‘modified
amplitude’ with mass–damping.

Before addressing the above questions, we shall briefly introduce an equation of
motion generally used to represent the vortex-induced vibrations of a cylinder in the
transverse y-direction (perpendicular to the free stream), as follows:

mÿ + cẏ + ky = F, (1.1)

where m =total oscillating structural mass (i.e. not including added mass); c =
structural damping; k =spring constant; F = fluid force in the transverse direction.
When the body oscillation frequency is synchronized with the periodic vortex wake
mode, reasonable approximations to the force, F (t), and the response displacement
y(t), are often given as

F (t) = Fo sin(ωt + φ), (1.2)

y(t) = A sin(ωt), (1.3)

where ω = 2πf ; f = oscillation frequency. The phase angle φ, between the fluid force
and the body displacement, is crucial in determining the energy transfer from the fluid
motion to the body motion, and hence in influencing the amplitude of oscillation, as
pointed out clearly in several review papers (e.g. Bearman 1984). We select a set of
relevant non-dimensional parameters in this problem, which are presented in table 1.

The response amplitude and frequency may be derived in a straightforward manner
from equations (1.1)–(1.3), and are formulated here, along the lines of Khalak &
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Williamson (1999), as follows:

A∗ =
1

4π3

CY sinφ

(m∗ + CA)ζ

(
U ∗

f ∗

)2

f ∗, (1.4)

f ∗ =

√
(m∗ + CA)

(m∗ + CEA)
, (1.5)

where CA is the potential flow added mass coefficient (CA = 1.0 for a circular cylinder),
and CEA is an ‘effective’ added mass coefficient that includes an apparent effect due
to the total transverse fluid force in phase with the body acceleration (CY cosφ):

CEA =
1

2π3A∗

(
U ∗

f ∗

)2

CY cos φ, (1.6)

where these non-dimensional groups {A∗, U ∗, f ∗, CY , m∗} are defined in table 1.
A significant question that has been debated for many years is whether a combined

mass–damping parameter [m∗ζ or (m∗ + CA)ζ ] could reasonably collapse peak-
amplitude data A∗

max in the Griffin plot. (By the terminology ‘peak amplitude’, we
mean the maximum amplitude found over a complete response plot, as flow velocity
is varied. See for example the bull’s eye symbols in figure 3.) The use of a mass–
damping parameter stems from several studies (see for example, Vickery & Watkins
1964; Scruton 1965). Skop & Griffin (1973) compiled data from several different
investigators as a means to usefully predict response amplitudes. Their combined
response parameter was subsequently termed SG in Skop (1974), and was termed the
Skop–Griffin parameter in Khalak & Williamson (1999) (which is, in fact, the origin
of the initials S and G):

Skop–Griffin parameter = SG = 2π3 S2 (m∗ζ ), (1.7)

where S is the Strouhal number of the static cylinder. The logic in choosing a
combined mass–damping parameter comes from equation (1.4) for A∗. For example,
Bearman (1984) demonstrated that for large mass ratios (m∗ � 1), the actual cylinder
oscillation frequency (f ) at resonance will be close to the vortex shedding frequency
for the static cylinder (fV ), and also close to the system natural frequency (fN ), i.e.
f ≈ fV ≈ fN , and thus f ∗ ≈ 1.0 (see equation (1.5) for large m∗). Thus, at resonance,
the parameter (U ∗/f ∗) = (U/f D) ≈ (U/fV D) = 1/S, where S is the Strouhal number
of the static cylinder, suggesting a resonance at the normalized velocity, U ∗ ≈ 5 − 6.
Therefore, the assumption is often made that both (U ∗/f ∗) and f ∗ are constants,
under resonance conditions, giving (from equation (1.4))

A∗
max ∝ CY sinφ

(m∗ + CA)ζ
. (1.8)

If (U ∗/f ∗) is assumed constant, then the excitation (CY sinφ) is a function of A∗

only. Therefore, under these assumptions, A∗
max is a function only of the product of

mass and damping (m∗ + CA)ζ , henceforth referred to by the symbol α (see table 1).
However, it is not self-evident that f ∗ ∼ 1. Repeated concerns over the use of such
a combined mass–damping parameter at low mass ratios have been clearly discussed
by Sarpkaya (see for example Sarpkaya 1978, 1979, 1995 and several other papers)
and by Zdravkovich (1990). However, the experiments of Griffin & Ramberg (1982)
and the more recent results of Khalak & Williamson (1999), suggest that the use of
a single combined mass–damping parameter (α) does collapse peak-amplitude data
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Figure 1. The ‘Griffin’ plot. (a) The classical Griffin plot using peak-amplitude data (A∗) on
a logarithmic axis versus the Skop–Griffin parameter (SG), as collected and plotted by Skop &
Balasubramanian (1997). In (b), the large scatter in the data in (a) is revealed when one uses
a linear axis for the amplitude.

quite well, under limited conditions. We shall directly address this issue in the present
work, by obtaining peak response amplitudes for a set of mass ratios, while keeping
the mass–damping parameter fixed. These experiments are made possible by our
techniques to control damping.

Griffin et al. (1975) compiled the first extensive set of peak-amplitude data from
many different investigations, using the combined mass–damping parameter (SG). The
classical log-log form of the plot (Griffin 1980), of the type in figure 1(a), has become
the widely used presentation of peak response data. From this point forward in the
paper, we shall use A∗ to refer to peak amplitude (in place of A∗

max). If we plot an
extension of the Griffin plot that was compiled by Skop & Balasubramanian (1997)
for a variety of experiments, as in figure 1(a), and then modify the plot using a linear
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A*

10–3 10–2 10–1 100 101

(m* + CA)ζ

0

0.5

1.0

1.5

+

+
+

+
+

+
+

×
Upper branch

Lower branch

Figure 2. An updated Griffin plot using only data for elastically mounted cylinders, restricted
to motion transverse to the fluid flow, taken from Williamson & Govardhan (2004). By
removing data for quite different VIV systems from figure 1, one can see an approximate
trend in the data, but apparently it is not saturating as mass–damping becomes small. �,
Khalak & Williamson (1999); �, Govardhan & Williamson (2000); �, Hover et al. (1998);
�, Griffin (1980); �, Jauvtis & Williamson (2003); �, Moe & Overvik (1982); �, Angrilli
et al. (1972); �, Owen et al. (2001); �, Gharib et al. (1998); +, Feng (1968); ×, Vikestad (1998);
⊕, Anand & Torum (1985).

Y -axis in figure 1(b), we now see significant scatter, not evident by the classical log-log
format. The maximum attainable amplitude lies anywhere in the range A∗ = 0.8−1.6.
Given this scatter, it does not appear reasonable to collapse data for different VIV
systems like the free cylinder, cantilever and pivoted cylinders, in the same plot. In
figure 2, we present only those data corresponding to elastically mounted cylinders.
Following Khalak & Williamson (1999), we introduce two distinct curves into the
Griffin plot, representing the peak amplitudes for both the upper and the lower
response branches. (These branches are described below, with reference to figure 3.)
The resulting data from these diverse experimental arrangements appear to give an
approximate functional relationship between A∗

max and mass–damping (α) over a wide
range of parameters, applicable for the regime m∗ > 2, and for α > 0.006.

Finally one might observe in figure 2 that, even for the smallest mass–damping,
the peak amplitudes are not yet close to some limiting amplitude; the saturation
limit has not been reached. Therefore, the Griffin plot has not been fully defined,
and the plot in figure 2 is insufficient to deduce the maximum vibration amplitude as
mass–damping becomes zero.

Regarding the character of vibration response, the amplitude plot as a function of
flow speed for such an elastically mounted cylinder shows two distinctly different types
of behaviour, depending on whether one has a high or low combined mass–damping
parameter (α), as shown in Khalak & Williamson (1999). In the classical high-α
case like in Feng (1968), ‘Initial’ and ‘Lower’ amplitude branches are separated by a
discontinuous mode transition, as shown in figure 3(a). However, in the case of low-α,
a further higher amplitude ‘Upper’ branch of response appears, and there exist three
response branches. There are therefore two mode transitions in this case. The existence
of, not one, but two mode transitions at low-α, and their relationship with the forces
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2S - mode 2P - mode

Figure 3. Typical two-branch and three-branch response plots. (a) The high mass–damping
type of response showing only two branches, namely the Initial and Lower branches. At peak
response (shown by ©• ), we have the 2S vortex formation mode. (b) The low mass–damping
type of response showing three branches, namely the Initial, Upper and Lower branches. At
peak response we have the 2P vortex formation mode. In this plot, A∗ refers to normalized
amplitude. The mass–damping parameters are (a) α = 0.256, (b) α = 0.011, and the Reynolds
numbers for the vorticity fields shown are (a) Re ≈ 1250, (b) Re ≈ 3100. (Govardhan &
Williamson 2000).

and wake vortex dynamics, is studied in detail by simultaneous force, displacement
and vorticity measurements for a freely vibrating cylinder in Govardhan &
Williamson (2000). Of interest in the present work, is the mode of vortex shedding at
peak amplitude. As seen from the digital particle image velocimetry (DPIV) vorticity
fields shown in figures 3(a) and 3(b), the vortex formation mode is ‘2S’ for the high-α
case, and ‘2P’ in the low-α case; ‘2S’ indicating 2 Single vortices formed per cycle,
and ‘2P’ meaning 2 Pairs of counter-rotating vortices formed per cycle, as defined
by Williamson & Roshko (1988) based on their forced oscillation experiments. In
the case of low α, the second vortex of each vortex pair is weaker than the first, and
rapidly decays downstream as seen in figure 3(b). (A clearer view of the 2P mode is
found for the lower branch response, as shown in Govardhan & Williamson (2000).)

We began this study of the effect of damping on cylinder response in 1998 (we
refer to this unpublished study as GW98) after carefully designing an electromagnetic
damper capable of providing additional negative or positive damping. Brief details
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10–3 10–2 10–1 100

α

0

0.2

0.4

0.6

0.8

1.0

1.2

A*

m* = 15, D = 1.5 in.

m* = 8, D = 2 in.

m* = 210, D = 0.5 in.

Figure 4. Original controlled damping experiments using the electromagnetic damper
(GW98). In these early experiments, we interpreted the results as indicating a clear increase
in A∗ due to a decreasing mass ratio (m∗) even when mass–damping is kept constant (α =
constant). However, note that to achieve lower m∗ we increase diameter, and thereby also
Reynolds number. Therefore, the increase in A∗ could also be related to the increase in Re.
�, m∗ = 8, D = 2 in., Re = 4500; �, m∗ = 15, D = 1.5 in., Re = 2500; �, m∗ = 210,
D = 0.5 in., Re = 1000.

of this damper are given in the experimental methods section. After initial checks
using ‘pluck’ tests in air to verify that the system was indeed providing good damping
control, the test cylinders were installed and the system was used to obtain peak
amplitude data as the damping was varied, at fixed mass ratio. A few different mass
ratios were investigated using cylinders of different diameters. The resulting data are
shown in figure 4. At this point, the data seemed to suggest that there was an apparent
independent effect of mass ratio on the peak amplitudes, even if the combined
mass–damping parameter (α) was kept constant. This result seemed rather puzzling,
as it was contrary to observations from earlier work of Khalak & Williamson (1997).

After the new results in 1998 were obtained with the (as yet unproven) electro-
magnetic damper, we spent some time attempting to understand the apparent
contradictions with our earlier work, ultimately diverting our energies to other aspects
of VIV. Upon later comparison with the amplitude response data of Hover et al.
(1998), measured from an ingenious virtual cable testing apparatus, it occurred to
us that a basic factor influencing our new results for peak amplitude could possibly
be the Reynolds number. In hindsight, the electro-magnetic damper had in fact
performed remarkably well. It was leading us to the important deduction that it
was not the mass ratio that was influencing our earlier results, but instead it was
the fact that, as mass ratio is reduced (by increasing body diameter), the Reynolds
number is increased. An increase in peak-amplitude response, as Reynolds number is
increased, was subsequently deduced to be a consistent trend with all of our results
with the electro-magnetic damper, fitting in very well with all the results of Khalak &
Williamson (1999) and Govardhan & Williamson (2000), and much other unpublished
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data from our studies. In fact, this trend explains why the data in the Griffin plot of
figure 2 apparently were not saturating to a particular amplitude as mass–damping
became very small. These deductions naturally led us in 2000–2001 to return to
the problem, and to design a rather simpler, and quite different, negative–positive
mechanical damper, and it afforded us the possibility also of direct comparison with
the original 1998 electro-magnetic damping system. The design of the damper, the
comparison to our previous controlled-damping response results, and the ensuing
contribution to understanding the Griffin plot, forms the basis of the present paper.

Some preliminary aspects of our present work have been presented in Govardhan &
Williamson (2005), where the effect of Reynolds number on vibration and peak
amplitude response have been briefly discussed. Our deduction that Reynolds number
is a key parameter of peak-amplitude response is consistent with the recent work of the
group at MIT under Michael Triantafyllou and Franz Hover. From their controlled
vibration experiments, they have found that the regime of positive excitation reaches
higher amplitudes if the Reynolds number is increased, as evident from the work
at MIT of Smogeli (2002) and subsequently Triantafyllou, Hover & Techet (2004),
which would suggest that higher amplitudes would be reached in a VIV system at
higher Reynolds numbers. It is important to acknowledge here the recent results
of Klamo et al. (2005) at Caltech, who have independently set up an eddy-current
damping arrangement, with a vertical cylinder on air bearings similar to our own
setup at Cornell (Khalak & Williamson 1996). They have found a clear increase in
peak amplitude as Reynolds number is increased from Re =525 to 2600. Employing
also the compiled data from the review of Williamson & Govardhan (2004), they
indicate the general trend of peak amplitudes increasing with Reynolds number, and
were the first to make a presentation on this point (Klamo et al. 2004). They state
in their subsequent paper (Klamo et al. 2005) that ‘the Reynolds number, which has
generally been ignored in discussions of maximum-amplitude data, is an important
parameter.’ This statement is in direct accordance with our results here.

Following a description of the experimental details in the next section (§ 2), we
shall study the effect of mass ratio on the peak amplitude, keeping fixed values of
mass–damping and Reynolds number, in § 3. In § 4, we show the effect of positive and
negative damping on the character of the amplitude response plot. We then highlight
the importance of Reynolds number in determining the peak amplitude, which we
study in detail in § 5. We obtain best-fit equations for the functional shape of the
Griffin plot in § 6. Finally, in § 7, we show that the large scatter in the conventional
Griffin plot is principally due to the effect of Re. Using a ‘modified amplitude’, to
take into account this Re effect, the scattered data collapse very well onto a single
curve in the new ‘modified’ Griffin plot. This is followed by the conclusions in § 8.

2. Experimental details
The present experiments were conducted using a hydroelastic facility, which is

described in detail in Khalak & Williamson (1996, 1999), in conjunction with
the Cornell–ONR Water Channel. The hydroelastic facility comprises air bearings
mounted above the channel test section, which allow a vertical cylinder in the fluid
to move transverse to the free stream. The turbulence level in the test section of
the water channel was less than 0.9%, in the 15 in. × 20 in. (0.381 m × 0.508 m) cross-
section, over a range of free-stream velocities, U = 0.04 − 0.32 m s−1. Cylinders of
diameters, D = 0.0191–0.0508 m, were used in this study with length–diameter ratios,
L/D =6–22. In all the experiments, end plates were fixed to the test section and
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Motor
controller

Control
box

k

y

kd

Position
transducer

Lead screw
table

yd = G ẏ

Damper

Test cylinder

Figure 5. Schematic of the active negative–positive damper arrangement. The damper
operates by applying a force on the system proportional to the cylinder velocity (ẏ), by
displacing (yd ), the base of an independent spring (kd ), in phase with ẏ, such that yd = Gẏ.
The gain G can also be made negative by changing the connections to the motor, thus simply
enabling both negative and positive additional damping.

placed 2 mm below the bottom of the cylinder (but not in contact with the cylinder),
to encourage two-dimensional shedding, as discussed in Khalak & Williamson (1996).

A mechanical damper capable of applying negative and positive damping to the
oscillating system was implemented. This damping was in addition to the very low
mechanical damping of the air bearings supporting the cylinder. The damper operated
essentially by applying a force on the system proportional to the cylinder velocity (ẏ),
which directly changed the effective structural damping of the oscillating system. This
system can be seen in the schematic diagram of figure 5. The required additional
damping force was applied by moving the base of an independent spring (kd) in
phase with the cylinder velocity (ẏ). The velocity was obtained from the cylinder
displacement (y) that was measured using a non-contact (magnetostrictive) position
transducer. A control box differentiated the measured cylinder displacement (y) in
real-time, using an op-amp circuit with an adjustable gain (G) and sent the output
to the controller, which commanded the motor moving the base of the spring, with
displacement yd(t). The entire loop was analogue, with typical phase lags of less than
2◦ introduced from the filtering. The equation of motion for the mechanical system
in figure 5 is modified from equation (1.1) to become

mÿ + cẏ + ky + kd(y − yd) = F. (2.1)

With the control box turned on, the displacement (yd) of the spring support base
was completely governed by the cylinder oscillations (ẏ), so that yd = G ẏ, and the
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equation of motion of the overall system may be written as

mÿ + (c − Gkd)ẏ + (k + kd)y = F. (2.2)

From the above equation of motion, it is clear that the effective damping (ce) of the
new system is given by

ce = c − G kd (2.3)

where the gain G can be accurately set using a potentiometer. Since the damping due
to air bearings (c) is very small, reasonably large negative values of effective damping
(ce) were possible. The value of G can be made negative by changing the connections
to the motor controlling the spring support base, so that it moves in the opposite sense.
The overall level of damping can be further set by choosing an appropriate value of
the damping spring (kd), although one needs to remember that the effective stiffness of
the system (ke = k +kd) is also affected by the damping spring. Although the feedback
loop of this damper is reminiscent of the force-feedback loop of Hover et al. (1998), it
should be noted that there is no feedback of measured fluid forces in our case. Only
structural parameters like damping are affected by the present arrangement.

The controlled mechanical damping arrangement was first tested using simple
‘pluck’ tests to obtain damping characteristics. In these experiments, the water is
emptied from the water channel, and the vibrations of the system are in air. An
example time trace of cylinder displacement for such a test is shown in figure 6(a).
The oscillations initially decay due to the intrinsic mechanical damping of the air
bearings. At time t = tA, the damping control is switched on with an effective negative
damping that leads to an exponential growth in oscillations. Subsequently, at time
t = tB , the control is adjusted to achieve net zero damping, whereupon the amplitude
remains constant in time. Finally at t = tC , we impose a net positive damping to
rapidly diminish amplitude as a function of time. As shown in figure 6(b), in all cases
the logarithm of the oscillation amplitude varies almost linearly with time, indicating
that the damping applied is close to a purely viscous (c ẏ) linear type. In summary, the
controlled damper system appears to provide very good viscous (c ẏ) type damping.
We now have the ability to vary the damping over a wide regime of negative or
positive values. This enables the careful determination of the entire Griffin plot in a
single experimental arrangement in this paper.

The electromagnetic damper results from GW98 shown in the introduction were
obtained with a damper that operated in principle in a manner similar to the present
mechanical damper, with the main difference being that the force application was
effected by electromagnetic means. The additional damping force (Fd) was generated
by pushing a current (I ) in phase with cylinder velocity (ẏ), through a stationary
long copper coil, with a moving magnetic arm (attached to the carriage system) that
had magnetic lines of strength (B) cutting some length L of the stationary coil. From
simple electromagnetics, the additional force exerted on the moving system is given by
Fd =B I L. Since the current I is proportional to ẏ, the additional force Fd on the mov-
ing system is proportional to the cylinder velocity (ẏ). As discussed previously, this ad-
ditional force, proportional to ẏ, directly changes the effective damping of the system.

Important concerns regarding experiments on oscillating cylinders are the possible
effects of length-to-diameter ratio (L/D) of the test cylinder, and the tunnel blockage
percentage. Before starting experiments on the effects of damping, tests on these
aspects were performed, where we kept all other parameters like Reynolds number,
mass–damping parameter and mass ratio at constant values. Table 2(a) indicates
results from tests for variations in L/D, showing no significant effect of L/D on the
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Damping control

Figure 6. Demonstration of effective negative and positive damping control. The damping
control is adjusted at times t = tA, t = tB and t = tC , to change the effective damping of the
freely vibrating system to negative, zero or large positive damping, respectively. In all cases, the
logarithm of the oscillation amplitude shown in (b) varies almost linearly with time, indicating
that the applied damping is close to a purely (linear) viscous type (c ẏ). The system vibrates in
air only, without the presence of water.

(a) L/D 7.2 8.0 12.8 22.67
A∗ 0.91 0.89 0.90 0.88

(b) D/B 0.05 0.083 0.083 0.133
A∗ 0.88 0.91 0.90 0.89

Table 2. Effect on peak A∗ of varying length-to-diameter (L/D) ratio and tunnel blockage
(D/B) ratio, under conditions of zero damping. (a) Length-to-diameter (L/D) ratio. (b) Tunnel
blockage (D/B) ratio. In all cases, experiments were conducted at Re ≈ 4000, α = 0 and m∗ = 10.

peak amplitude, for L/D in the range of 7 to 22. These experiments were conducted for
Reynolds number, Re ≈ 4000 and mass ratios, m∗ =10. For each case, we produced a
complete response amplitude plot (A∗), versus normalized velocity (U ∗), and the peak
value of A∗ over the regime of vibrations represents a single data point in table 2(a).

Similarly, we find no significant effect of blockage ratio (D/B = diameter/channel
width) on peak amplitudes, for blockage less than about 14 %, as may be seen from
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table 2(b). All subsequent tests for damping presented in this paper were performed
with L/D between 7 and 22, and blockage less than 14 %, where peak amplitudes
are seen to be nearly unaffected.

The origin of the coordinate system is fixed at the lowest position of the cylinder,
at zero flow speed. The x-axis is downstream, the y-axis is perpendicular to the flow
direction and to the cylinder axis (defined as transverse), and the z-axis lies along the
axis of the cylinder (defined as spanwise). Throughout this paper, we have defined
the amplitude to be the average of the top 10 % of the individual amplitude peaks,
evaluated over a complete displacement time trace of transverse motion (y/D), in the
manner described by Hover et al. (1998).

The ‘peak amplitude’ is the maximum of the amplitudes (defined immediately
above) evaluated over a complete amplitude response plot, as normalized velocity
is varied (see, for example the bull’s eyes in the response plots of figure 3), for a
particular mass and damping, and Reynolds number. We shall henceforth refer to
this ‘peak amplitude’ (which is normalized by D) simply as A∗. Throughout this paper,
the Reynolds number corresponds to the value Re at peak amplitude conditions in a
response plot.

It should be noted that since the oscillations at peak amplitude are not always
precisely sinusoidal, measures of amplitude other than the top 10 % measure (A∗

10%)
used in this paper will yield different numerical values. Analysis of time traces from
our data suggests that the maximum amplitude measure (over the complete time
trace) typically yields values that are about 7.5 % larger than A∗

10%, while the values
of the average amplitude measure (A∗

avg) and the measure involving the root-mean-
square (yrms), where A∗ =

√
2 (yrms/D), are found to be close to each other and typically

about 13 % lower than A∗
10%. However, for all the measures the trend with Re and

mass–damping is expected, and was found, to be very similar.

3. Mass ratio variation at fixed mass–damping parameter
As described in the Introduction, an important question that has been debated for

about 25 years is whether a combined mass–damping parameter (α) could reasonably
collapse peak-amplitude data in the Griffin plot. The independent damping control
in the present system provides an ideal platform to test this hypothesis directly. We
set out to do this by varying mass ratio, keeping the mass–damping parameter and
the Reynolds number fixed. The resulting peak amplitudes are plotted in figure 7 as a
function of the mass ratio, at two fixed values of mass–damping, namely α = 0.1 and
0.5. As may be seen there is no significant effect of mass ratio on the peak amplitudes,
for our variation of parameters. Therefore the combined mass–damping parameter
should, irrespective of the value of mass ratio, collapse peak-amplitude data on the
Griffin plot, as long as other parameters are fixed. This statement is valid at least for
mass ratios down to the low value of m∗ = 1, and is a significant statement, given the
long history of this debate.

Earlier, we mentioned that experiments with the electromagnetic damper (GW98)
suggested that the amplitude increases as mass ratio decreases. The precise
experiments here show that the peak amplitude is independent of mass ratio (for
constant α and constant Re). Therefore, we propose that the variations in peak
amplitude in figure 4 are related to changes in Reynolds number rather than mass ratio.
We shall demonstrate this in § 5, after a brief study of the effect of mass–damping on
the amplitude response plot in the next section.
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m*

0

0.5

1.0

A*

α = 0.1

α = 0.5

5

Figure 7. Peak response amplitudes (A∗) at a fixed Re = 4000 and constant mass–damping
(either α = 0.1 or 0.5), indicating no significant effect of mass ratio (m∗) over the range
of m∗ = 1–20. This result suggests that a combined mass–damping parameter will collapse
peak-amplitude data on the Griffin plot, irrespective of the precise independent values of the
mass or damping.

4. Effect of controlled positive and negative damping on amplitude
response plots

4.1. Effect of positive damping on the amplitude response plot:
three-branch response versus two-branch response

A set of amplitude responses, as a function of flow speed, were obtained by sys-
tematically increasing the mass–damping parameter from zero, keeping the Reynolds
number (corresponding to peak amplitude) fixed at close to Re = 4000, and are shown
in figure 8. At low mass–damping, the peak amplitude is large and there are three
distinct response branches. We see the initial, upper and lower branches in figure 8(a).
At large mass–damping values as in figure 8(b), the upper branch does not occur, and
the responses exhibit only two branches. In particular, it appears that the upper branch
diminishes as mass–damping is increased, and ceases to exist for amplitudes (A∗) less
than about 0.60. This suggests that we may use the condition A∗ = 0.6 approximately
to divide the regimes of three-branch and two-branch response, as it approximately
applies over a wide range of Re in this study, and in our previous publications.

The character of the response plot at Re ≈ 4000 and at other Reynolds numbers
is represented in the plane of {Re, α} in figure 9. It appears that for each Reynolds
number the condition A∗ ≈ 0.60 approximately demarcates the boundary between the
two types of response plots. The equation for A∗ ≈ 0.60 in figure 9 was obtained
from equation (6.2) below. Interestingly, the trend of the boundary suggests that at
low Reynolds numbers, Re < 500, only a two-branch response will occur. The data
suggest that, when Re < 500, even at zero mass–damping, the peak amplitude level
never rises sufficiently high (to the level A∗ = 0.6) to yield an upper branch. In essence,
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1.0
(a)

(b)

A*

Initial

Upper
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Figure 8. Amplitude response plots for increasing mass–damping values (α), at a constant
Reynolds number (Re ≈ 4000). (a) Three-branch amplitude responses; (b) two-branch
amplitude responses. �, α = 0.000; �, α = 0.059; �, α = 0.187; �, α = 0.252; �, α = 0.340;
�, α = 0.451; 	, α = 0.585.

at low Re < 500, the vibration exhibits only a two-branch response irrespective of the
value of mass–damping (α).

4.2. Effect of negative damping on the amplitude response plot

We are able to implement reasonably large negative mass–damping on our system,
which represents ‘structural excitation’, as opposed to the more common structural
damping. The present brief study appears to be the first one attaining zero damping
in an experiment, also enabling response measurements for negative damping.

An example response in figure 10 demonstrates the interesting result that there exists
a non-zero amplitude at zero flow speed, U ∗ =0. In this case, the actual oscillation
amplitude is now determined by a balance between the ‘mechanical excitation’ and the
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α

Re

0 0.25 0.50 0.75 1.00
102

103

104

105

Three-branch response

Two-branch response

A
*  =

 0
.6

Figure 9. Boundary separating the two types of amplitude response (three-branch versus
two-branch) in the plane of mass–damping parameter (α) and Re. The line dividing the two
regimes is defined by setting A∗ =0.6 in equation (6.2), and suggests approximately that below
Re ≈ 500 only the two-branch response will occur, irrespective of the mass–damping value. �,
three-branch response; �, two-branch response.

0 10
U*

0.5

1.0

A* Initial

Upper

Lower

5

Figure 10. A response amplitude plot for negative damping, showing the interesting result
that significant oscillation amplitude can occur even at zero flow speed, due to negative
mass–damping. Here we have ‘structural excitation’ and ‘fluid damping’, which is a complete
reversal of roles from the classical situation in vortex-induced vibration, i.e. a balance between
fluid excitation and structural damping. At peak A∗, we have α = −0.133, m∗ = 10, Re = 4000.
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A*

Negative
damping

Positive
damping

Figure 11. Amplitude response (A∗) at zero flow speed (U ∗ = 0) for negative mass–damping.
The measured data at negative mass–damping (solid symbols) are predicted well by oscillatory
flow (U-tube) force data of Obasaju et al. (1988), shown by the dashed line.

‘fluid damping’, which is a reversal of roles from the classical situation in vortex-
induced vibrations, i.e. fluid excitation being balanced by structural damping.

The oscillating cylinder at U ∗ = 0 is essentially similar to the case of a cylinder in
an oscillating flow, which has been extensively studied to understand wave loading
on offshore structures. The in-line force on a cylinder in oscillatory flow is typically
represented by Morison’s equation (Morison et al. 1950):

F = 1
2
ρDU |U |CD + 1

4
πρD2 dU

dt
CM, (4.1)

where F is the in-line force per unit length of the cylinder, U is the velocity of the
imposed relative motion, and CD , CM are drag and inertia coefficients, respectively,
that depend on Kc = 2πA/D and β = Re/Kc. By substituting the above fluid force
relation into equation (1.1), and noting that the relative motion is equal to the cylinder
velocity, i.e. U = −ẏ, we can obtain the equation of motion for a cylinder at U ∗ =0
as [

m + ρ
(

1
4
πD2

)
CM

]
ÿ + cẏ + ky = 1

2
ρDU |U |CD, (4.2)

where the fluid inertia term has been absorbed into the inertial term on the left. The
steady-state oscillation amplitude for the above system may be obtained by balancing
the energy dissipated per cycle by the fluid damping term on the right with the input
energy per cycle from the negative damping term (c ẏ), assuming the response is
sinusoidal, to yield

A∗ =
3π2

8

(−α)

CD

1

f ∗ (4.3)

where f ∗ =
√

(m∗ + 1)/(m∗ + CM ). We can predict the oscillation amplitude using
experimental data for CM and CD , for example using the data of Obasaju, Bearman &
Graham (1988). The peak-amplitude response for negative α shows reasonable
agreement with such a prediction in figure 11.
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Figure 12. Effect of Reynolds number (Re) on peak amplitudes A∗, in the Griffin plot.
(a) Curves in the Griffin plot for constant Re; it is immediately clear that an increase in Re
causes the complete Griffin plot to shift upwards. (b) Corresponding displacement time traces
are shown at zero mass–damping, clearly showing the increase in oscillation amplitudes with
Re. In all cases, we keep the mass constant, m∗ = 10.

5. Effect of Reynolds number on peak response amplitude
In order to investigate the effect of Reynolds number, we determined the peak

amplitudes as a function of mass–damping parameter for three different Reynolds
numbers, keeping the mass ratio fixed at m∗ = 10 in all cases. The results shown in
figure 12(a) are striking, and show marked variations of the peak amplitude with Re.
The effect of Reynolds number on the peak response amplitude is one of the central
results of this paper.

Time traces of cylinder oscillations at zero mass–damping, shown in figure 12(b),
clearly show the increase in oscillation amplitudes with Re. It should be noted that,
in each case, the time traces correspond to the flow speed at which peak oscillation
amplitude is found. In addition to the average amplitude increasing with Re, there
are also larger fluctuations in amplitude level at higher Re. Essentially, there is an
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Figure 13. Amplitudes (A∗) at very low mass–damping from a number of studies, showing
a nearly linear increase versus a logarithmic Reynolds number axis. The computational data
shown are at zero mass–damping, while all experimental data, except for ours, are at small
but finite mass–damping. In (b), the amplitude at zero mass–damping (A∗

α=0) is determined
by extrapolating the relevant data in (a) to zero mass–damping using equation (6.1). Symbols
correspond to data listed in table 3.

intermittent switching between the upper and lower branch responses, as explained
in Khalak & Williamson (1999). The jumps in amplitude are larger at the higher Re,
because the upper branch amplitude increases with Re.

One might question the repeatability or validity of our measurements of vibration
amplitude. Fortunately, we are in a position to compare precisely the two damping-
control techniques we have set up, and as we see in figure 13(a), the increase of A∗ with
Re is highly consistent between the two quite different approaches to control damping.
(In the figure, data points obtained with the mechanical damper are shown as �, and
data points obtained with the electro-magnetic damper (GW98) are indicated by �.)
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Mass–damping Re
Source Medium (α) (at peak A∗) Symbol

Present mechanical ‘spring’ damper Water 0.000 1250–12 000 �

Present electromagnetic damper (GW98) Water 0.000 1000–4500 �

Vikestad (1998) Water 0.019 33 000 ©•
Hover et al. (1998) Water 0.046 3800 �
Khalak & Williamson (1999) Water <0.01 5500–11 500 �

Govardhan & Williamson (2000) Water 0.0064 11,700 ©
Smogeli et al. (2003) Water 0.045 19,000 �·
Dahl et al. (2004) Water 0.03 30,000 �
Klamo et al. (2005) Water 0.007–0.041 525–2600 �
Lucor (2004) 3D-code 0.000 1000–3000 �
Blackburn & Karniadakis (1993) 2D-code 0.000 200 �
Newman & Karniadakis (1997) 2D-code 0.000 200 ×
Fujarra et al. (1998) 2D-code 0.000 200 	
Shiels et al. (2001) 2D-code 0.000 100 

Singh & Mittal (2005) 2D-code 0.000 85–200 �

Table 3. Sources for peak-amplitude data at small mass–damping.

This is an important result in that it allows confidence in both the precise effect
of Re on amplitude and the success of the two techniques in controlling damping.
Another point emerges naturally from this plot: the peak amplitude appears to
vary quite linearly with log10 Re. One might question whether the results from other
investigations, when assembled onto such a plot, may also follow such a linear trend.

A compilation of computational and experimental response data, tabulated in
table 3, is plotted as a function of Re in figure 13(a). We note that, unlike the present
results, all other experimental data have small but finite mass–damping (α), which
leads to slightly lower peak amplitudes than if the damping were zero. We correct
for this effect by extrapolating the amplitudes to α = 0, using the functional form
A∗ = g(α) found in equation (6.1) of the next section. The principal point to be made
here is that all the peak-amplitude data from all the assembled studies lie, remarkably,
along a single straight line when plotted against log10 Re in figure 13(b), and this
includes our own data obtained using both the mechanical and electromagnetic
damper.

It should be noted that equation (6.1), used to extrapolate amplitudes to the case
of α = 0, depends on the present data itself, and hence the procedure is iterative,
although the values converge rapidly and there is very little difference after two
iterations. We should also mention here that we have plotted, in figure 13, only data
from the literature, for which the mass–damping is very small, for which Re is readily
and precisely evaluated at the conditions of peak amplitude, and for which we are
able to precisely evaluate the top 10 % amplitude, A∗, as defined in § 2. The straight
line form in figure 13(b) persists down to Re of order 500. For Re < 200 the vortex
formation is laminar, yielding quite a different relationship, A∗ ∼ 0.5–0.6. (This is
only an approximate regime of Re, as the laminar vortex regime is influenced by the
vibration of the body, probably extending to slightly higher Re, Re > 200.)

These results immediately suggest a good functional form for the data to be
A∗ = log10(B ReC). A least-squares fit of all the (non-laminar) data in figure 13(b)
for the above functional form, yields best-fit coefficients B =0.41 and C = 0.36, thus
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Figure 14. The ‘modified Griffin plot’ obtained using modified peak amplitudes [A∗
M =

A∗/f (Re)] showing a very good collapse of the different Reynolds number data in figure
12(a). This plot, which is now independent of Re, represents the pure effects of mass–damping
(α). We recall, from figure 13, that f (Re) = A∗

α=0 = log (0.41 Re0.36).

giving the best-fit equation for peak amplitude at zero mass–damping (α =0) as

A∗
α=0 = f (Re) = log10(0.41 Re0.36). (5.1)

This equation represents the peak-amplitude data in figure 13(b) remarkably well,
over the entire Reynolds number range of 500 to 33 000, and possibly for higher
subcritical Re (Re < 200 000). However, for the fit to be extended beyond about
Re =40 000, it is clear that further measurements are essential. Such experiments
are difficult to conduct, because the vibrating structure can become large, and one
must be extremely careful to minimize damping (without Coulomb damping), and to
properly take account of end conditions with the use of end plates.

We have studied a number of best-fit expressions to represent f (Re), including series
expressions in terms of 1/Re, and also 1/

√
Re, amongst other functions. Equation (6.1)

has an error of fit that is comparable to the best three-parameter functions, and it is
certainly the best of all the two-parameter functions we investigated.

We now return to the variation of A∗ with mass–damping for a given Re, as
presented in figure 12, using our controlled damping technique. Although the data
are significantly displaced for the three different Re, there is a noticeable similarity
in their functional behaviour as the mass–damping is increased. This suggests that
a normalization using the saturation amplitude at zero mass–damping (A∗

α=0) from
equation (5.1) could collapse the data for the different Re onto a single curve.
Figure 14 shows such a ‘modified amplitude’ A∗

M = (A∗/A∗
α=0) plotted as a function

of mass–damping, indicating a very good collapse of all the different Re data on
to a single curve. This ‘modified Griffin plot’ is now independent of Re, and thus
represents the pure effects of the mass–damping parameter (α) on the peak response
amplitude.
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Positive
damping

Negative
damping

Re = 1250
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12000

–0.5 0 0.5 1.0
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1.2
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Figure 15. Modified Griffin plot using a linear mass–damping (α)-axis, exhibiting results for
negative as well as positive damping. Since the present active damping control permits negative
damping values, it suggests the use of a linear α-axis. As the mass–damping goes through zero
to negative values, the modified amplitude increases smoothly, indicating that small variations
in mass–damping around α = 0 will lead to almost no change in amplitude, as seen by the
existence of the saturation amplitude in figure 14.

The modified Griffin plot in figure 14 shows clearly that a saturation amplitude is
reached at small mass–damping. The concept of a saturation of the peak amplitudes
is not surprising, and has been discussed previously in many papers. In the present
work, we can reduce the net damping to exactly zero or even take it to negative
values of α, suggesting that the data may be better represented on a linear mass–
damping axis, as shown in figure 15. In this case, we find that as the mass–damping
is reduced continuously through zero to negative values, the amplitude also increases
continuously (not surprisingly). It is clear from the nature of the data in figure 15 that
there should be very little difference between A∗ at small mass–damping of the order of
0.01 and A∗ for exactly zero mass–damping, which is also exhibited by the saturation
amplitude levels in figure 14. With the present technique, we can make the damping
strongly negative, implying that we are actually mechanically exciting the cylinder
to vibrate, as discussed in § 4.2.

The modified Griffin plots of figures 14 and 15 are important as they represent
single curves that completely define the effect of mass–damping, valid for our Re
regime compiled here, and possibly extending well beyond this regime. We shall now
propose functional fits to represent the effect of α, as well as the effect of Re, on A∗.

6. Defining a new functional relationship: A∗ = A∗ {Re, α}
Equations to fit compiled data in the classical Griffin plot, for example figure 1(a),

have been put forward by several investigators, whose empirical functions are listed
in Blevins (1990, table 3-2). Given the large scatter in the data due in large part to the
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Figure 16. Linear and quadratic relationships to represent variation of modified amplitude
(A∗

M ). A simple linear function, A∗
M = 1 − 0.96 α, fits the modified amplitude data remarkably

well, for α < 0.75. The fit is compared with the quadratic A∗
M = (1 − 1.12 α + 0.30 α2).

effects of Reynolds number, it is difficult to select one functional relationship rather
than another. However, the present data in the modified Griffin plot of figures 14 and
15, may be used to indicate an overall functional relationship between {A∗, Re, α}.

We present in Appendix B, table 4, a number of different functional forms including
those that have been employed in the literature. Interestingly, we find that a simple
quadratic function of the form A∗

M = 1+Bα +Cα2, with only two coefficients, has the
least error of fit (based on the data in figure 14), for mass–damping values ranging
from zero to unity (0 < α < 1):

A∗
M = A∗/A∗

α=0 = g(α) = 1 − 1.12 α +0.30 α2. (6.1)

This relationship g(α) fits the collapsed data in figure 16 very well, over the regime
(0 < α < 1). We can now put forward an equation for the peak response amplitude, as
a function of mass–damping g(α), and Reynolds number f (Re), as follows:

A∗ = g(α) f (Re),

A∗ = [1 − 1.12 α +0.30 α2] log10(0.41 Re0.36). (6.2)

One should note that such a quadratic relationship for g(α) cannot represent the
response well for very low amplitudes of order A∗ ∼ 0.1, found at much larger mass–
damping, because the function g(α) ultimately rises (when α exceeds 1.87). However,
in this work we are concerned with the regime where A∗ > 0.1, which is above the
threshold where one expects lock-in between vortex dynamics and body motion, and
which is represented by the mass–damping regime α < 1.2, shown in figure 16.

It is also possible, without much loss in accuracy, to represent the data for α < 0.75
by a linear function g(α), yielding the following expression:

A∗ = [1 − 0.96 α] log10(0.41 Re0.36), (6.3)
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which is shown as the dashed line in figure 16. The errors associated with the linear
and quadratic functions g(α) are included in Appendix B, table 5. In cases where
the body is in water, the mass–damping is typically small, so that a good estimate is
given by the linear representation in (6.3).

As a final point, the close representation of the data by a linear fit may be
of significance to wind engineering applications. Several semi-empirical models of
the interaction between body motion and fluid forcing have been put forward (see
Parkinson 1989). For example, Vickery (1990) characterized the velocity-correlated
forces as a negative self-limiting aerodynamic damping. Our results would suggest
a linear relationship between such damping and these high motion amplitudes, and
corresponds with similar experimental support for a linear relationship at lower
amplitudes from Blackburn & Melbourne (1993). By using Vickery’s equation (5) one
finds a good representation of our amplitude data. Further work in this direction
might be useful, but is outside the scope of this study.

Finally, it may be noted that there is no significant effect of Reynolds number
on the amplitudes measured for the lower branch, over a wide regime of Re, or
for vortex-induced vibrations in the laminar regime (Re < 200), both of which are
presented in Griffin plots in Appendix A.

7. The collapse of data in the ‘modified Griffin plot’ and the introduction of
design curves

We now return to the fundamental question of why there is a large degree of scatter
in the conventional Griffin plot, as shown typically in figure 1. Given the collapse
of our own data using the modified amplitude, A∗

M , taking into account the effect of
Re, it is clear that one should investigate whether such a collapse will ensue with the
collected peak-amplitude data from these and other studies.

We begin with a plot of our compiled amplitude data (A∗) in figure 17, showing a
large scatter. (We plot here only those data for which we have an accurate measure
of Re at the maximum amplitude condition, a precise measure of top 10% amplitude,
and for which the experiments have employed endplates.) It is not surprising that
one cannot validate one best-fit functional curve through these data, in preference to
any other curve. If one now replots the data, using instead the modified amplitude
A∗

M = A∗/f (Re), then we find the data collapses beautifully onto a single curve. A
good representation of this curve is given by our equation (6.1):

A∗
M = g(α) = 1 − 1.12 α + 0.30 α2.

Rather than conventionally consider only one curve through a large scatter of
data, we may now construct ‘design curves’, each one corresponding to a chosen
Reynolds number, as presented in figure 18. These design curves enable one to very
simply determine, using a graphical approach, expected peak response for given
{α, Re}. These design curves and equations (6.1) and (6.2) have been based on data
in the Reynolds number range from about 500 to 33 000. Although one could expect
this trend to continue to higher subcritical Re, it is clear that it cannot continue
indefinitely. Whether the trend persists to the upper limit of the subcritical regime,
or tails off in advance of this Reynolds number (Re ∼ 200 000), is not known. Our
results certainly point to the importance of assembling peak-amplitude data at much
higher Re. However, such experiments will be challenging, because it is essential to
properly arrange the cylinder end conditions, in a ‘clean’ incident flow, and especially
to precisely design for minimum (or zero) linear damping, without Coulomb friction.
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A*
M = 1 – 1.12α + 0.30α2

10–3 10–2 10–1 100

α

A*
M

A*

10–3 10–2 10–1 100

1.5
(a)

(b)

1.0

0.5

0

1.5

1.0

0.5

0

Figure 17. Collapse of previously scattered data from the Griffin plot, by taking into account
Reynolds number. If we replot all of the data in the ‘modified Griffin plot’ in (b), employing our
‘modified amplitude’ [A∗

M = A∗/f (Re)], all of the data collapses beautifully onto a single curve.
�, Mechanical ‘spring’ damper; �, Electromagnetic damper; ©• ,Vikestad (1998); �, Hover
et al. (1998); �, Khalak & Williamson (1999); �, Govardhan & Williamson (2000); �,
Blackburn et al. (2001); �· , Smogeli et al. (2003); —, present curve fit: A∗

M = (1 − 1.12 α +
0.30 α2).

Finally, by way of illustration, we choose case studies of response data in figure 19
(over a range Re = 1260–32 700). These data have been extracted from facilities
in different institutions, comprising both water channel and towing tank data. In
each case, the peak-amplitude data are predicted well by the design curve at the
appropriate Re. One can immediately appreciate the fact that, without account of
Reynolds number, the selected data in figure 19 would be widely scattered, whereas in
fact these data lie close to their Griffin plot curves corresponding to their respective
Reynolds numbers.
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Figure 18. ‘Design curves’ of peak amplitude on the Griffin plot. Each curve for constant
Re, is drawn using equation (6.2), and shows again the marked effect of Re on the Griffin
plot. These design curves permit rapid estimation of the peak amplitude for given Re and
mass–damping. In (a), the mass–damping axis is logarithmic and in (b), the axis is linear. The
latter plot of the data is perhaps the most useful format. The plot should be used in the regime
α < 1.2.

8. Concluding remarks
We have implemented methods to control both negative and positive mechanical

damping in a system comprising the transverse vortex-induced vibrations of an
elastically mounted rigid cylinder in a fluid flow. This has enabled us to systematically
study the variation of peak amplitude response (A∗) as a function of mass–damping
(α), in the so-called ‘Griffin plot’.

Our early investigations in 1998, using an electromagnetic damper, apparently
showed that the peak response level was pushed higher as mass ratio (m∗) was
decreased, even when α was kept constant. By using a second method to control
damping, we now show this unexpected result to be a coincidence. The present
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Figure 19. Case studies demonstrating the use of the Griffin curves. Previously scattered data
can now be assigned to their specific Reynolds number curves, in these cases over the regime
Re = 1 000–33 000. The data chosen here are selected from those plotted in figure 17, and
correspond to water channel and towing tank facilities. They represent three quite diverse
approaches to VIV: elastically mounted vertical cylinders in a water channel (Cornell);
elastically mounted horizontal cylinder translated along a towing tank (Marintek, Norway); a
‘controlled’ horizontal cylinder in a towing tank, using the Virtual Cable Testing Apparatus
(MIT). �, Govardhan & Williamson (2000); �, Hover et al. (1998); �, Khalak & Williamson
(1999); ©• , Vikestad (1998).

technique of control employs a spring whose base is displaced precisely in phase,
or out of phase, with the body’s velocity. Generally, to achieve low mass–damping
in experiments, one typically decreases the mass ratio, and this may be done by
increasing the cylinder diameter. However, this simultaneously increases the Reynolds
number. We show clearly in this paper that it is the variation of this parameter, Re,
rather than changes in the mass ratio itself, that causes the peak amplitude to rise.

The fact that an increase in Reynolds number corresponds with an increase in
peak-amplitude response in a VIV system is a result that may be expected, based
on the force measurements at MIT under Michael Triantafyllou and Franz Hover.
For bodies in controlled transverse vibration, they showed that a regime of positive
excitation could be found up to higher amplitudes, when Re is increased (up to
Re ∼ 19 000) in Smogeli (2002), and these results were presented by Triantafyllou
et al. (2004). In a study, independent of our own, the group at Caltech have shown
the general trend of an increase of peak amplitudes for vortex-induced vibration as
Re increases, presented in Klamo et al. (2004). In their subsequent paper (Klamo
et al. 2005), they state that ‘the Reynolds number, which has generally been ignored
in discussions of maximum amplitude data, is an important parameter’. Clearly, this
statement is in direct accordance with our results in this paper.

By examining our results and those from many previous experiments for lightly
damped systems, over a range of Reynolds numbers, Re = 500–33 000, we find that the
peak-amplitude data increase nearly linearly versus a logarithmic Reynolds number
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axis. Peak-amplitudes corresponding to zero damping (A∗
α=0) are very well represented

by the functional form

A∗
α=0 = f (Re) = log(0.41 Re0.36).

Despite the significant effect of Re on peak amplitudes, the variation of A∗ with
mass–damping is proportional to a function g(α), which is found to be remarkably
independent of Re. We are thus in a position to separate the variables, and to propose
that the amplitude is given by A∗ = g(α) f (Re) presented in equation (6.2):

A∗ = (1 − 1.12 α + 0.30 α2) log(0.41 Re0.36).

Over a regime of mass–damping, α < 0.75, which corresponds with amplitudes A∗
M

greater than 0.3, a very good representation of the peak amplitudes is actually given
by a linear variation of g(α) in equation (6.3):

A∗ = (1 − 0.96 α) log(0.41 Re0.36).

The significant effect of Reynolds number on peak vibration amplitudes, that we
observe in this study, should be linked to changes in the near-wake vortex dynamics
that are responsible for the body motion. In the case of the stationary cylinder
in a flow, a compilation of lift coefficient (CL) data by Norberg (2003) shows a
substantial increase in CL values over the Re range from 1000 to 200 000. This Re
range falls in the ‘shear layer transition’ regime as discussed in Roshko (1993) and in
Williamson (1996), where the size of the wake formation region decreases and there is
a general increase in the two-dimensional Reynolds stress levels. The above variations
are consistent with more coherent vortices forming closer to the cylinder, which would
yield a larger lift force, and possibly greater amplitude in the case of the vibrating
body. However, there is clearly a difference between the upper branch response, which
yields the peak amplitude (which is influenced by Re), and the lower branch response,
whose amplitude is reasonably Re independent. One might conclude that the physical
cause of the Reynolds number effects, presented in this paper, remain an open and
interesting question.

In this paper, we have assembled a complete plot of previous amplitude data
(A∗), measured over the last 30 years, versus mass–damping (α), which shows a
large scatter. One should therefore not be surprised that investigators have had
difficulty validating a unique functional relationship for such data. (In fact, opinions
as to whether a combined mass–damping parameter works well, or does not work,
cannot be supported by the data one way or the other in the light of this large
scatter.) However, if one now replots the data instead using the ‘modified amplitude’,
A∗

M = A∗/f (Re), then all the previous data collapse beautifully onto a single curve
g(α) in this ‘modified Griffin plot’, given by

A∗
M = (1 − 1.12 α +0.30 α2).

One may also construct a family of ‘design curves’, each one corresponding
to a chosen Reynolds number, in the Griffin plot. Although these results have
been developed for the Re range 500–33 000, there remains a need to investigate
whether further increases in amplitude will occur at higher subcritical Re, if
similar experimental arrangements are employed. At higher Reynolds numbers,
corresponding to the drag crisis, and in the supercritical regime (Re > 200 000),
one must expect substantial variations of the parameters, with a greater sensitivity
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to surface roughness and free-stream turbulence, for example. Further experiments at
high Re are possible in large facilities, such as at MIT, and at the Institute for Marine
Dynamics in Newfoundland, amongst other facilities.

There has also been much debate over the last three decades concerning the
validity of using the product of mass and damping in these problems, although
precise experiments to investigate this point have not been readily available. Our
results here, made possible by the controlled damping, indicate that the combined
mass–damping parameter (α) does indeed collapse peak-amplitude data well, at a
given Re, independent of the precise mass and damping values, for a wide regime of
mass ratios even extending down to m∗ = 1.

Finally, employing our technique to control the damping, we also obtain amplitude
responses for negative mass–damping values, which exhibit significant vibration even
at zero normalized flow speed, U ∗ = 0. These response amplitudes are predicted well
by experiments for a cylinder in oscillatory flow of the type used in offshore wave–
structure studies.
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Appendix A. Griffin plot for the lower branch and the laminar regime
A.1. Griffin plot for the lower branch

In the case of the lower branch, the displacement time traces of figure 20, for zero
α suggest that the amplitude level is independent of Re, over at least a regime,
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Figure 20. Displacement time traces in the Lower branch, showing no significant effect of Re,
in contrast to the character of the Upper branch (see figure 12b). In all cases, the mass–damping
parameter is zero (α = 0), and the mass ratio, m∗ = 10.
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Figure 21. Griffin plots for the lower branch and for the laminar regime. (a) Peak-amplitudes
(A∗) in the lower branch at three different Re showing that the lower branch is nearly
independent of Re. (b) Peak-amplitudes in the laminar regime (data is for Re � 200) from
several investigators show good agreement, exhibiting also a saturation amplitude A∗ ∼ 0.6
for very small or zero α. In both cases, the collapsed data are represented well by a quadratic
function of α.
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Re =1250–12 000. This is further demonstrated by the Griffin plot representation in
figure 21(a), where the data for different Re collapse onto the same curve (unlike
the data for the upper branch in figure 12), and are represented well by the best-fit
curve

A∗ = 0.59
[
1 − 1.26α +0.50α2

]
. (A 1)

A.2. Griffin plot for the laminar regime

In the laminar Reynolds number regime, peak response amplitudes for zero damping
are nearly independent of Re, over the Re range from about 85 to 200, as shown by
the data of Singh & Mittal (2005) in figure 13. In fact, it appears that peak-amplitude
data in the Griffin plot are represented well by a single curve in figure 21(b), using
data from a number of computational and experimental studies. We obtain the best-fit
equation for peak response amplitude in this laminar regime as

A∗ = 0.63 [ 1 − 1.29 α + 0.59α2 ]. (A 2)

Appendix B. Tables showing various functional representations for A∗
M as a

function of α.

Investigation Function Best-fit coefficients Error of fit

(1) Present A∗
M = 1 + B α + C α2 B= −1.1241 0.000623

C=0.2960

(2) Blevins (1977) A∗
M =

B

C + α

√(
D +

E

C + α

)
B=3.5219 0.000690

C=1.8203
D= −0.4371
E=1.2814

(3) Present A∗
M = eB α B= −1.3763 0.001308

(4) Present A∗
M = 1 + B α B= −0.9156 0.001480

(5) Griffin & Ramberg (1982) A∗
M = B/(1 + C α)D B=1.0130 0.001493

C=0.1609
D=9.1045

(6) Sarpkaya (1978) A∗
M = B/(

√
C + α2) B= 0.2788 0.001671

C=0.0828

Table 4. Comparison of fits employed by various investigators for peak amplitude versus
mass–damping (based on all data in figure 16).

Investigation Function Best-fit coefficients Error of fit

(1) Present A∗
M = 1 + B α B= −0.9636 0.000878

(2) Present A∗
M = 1 + B α + C α2 B= −1.1031 0.000658

C = 0.2513

Table 5. Comparison of linear and quadratic fits to represent peak-amplitude data, for the
regime α < 0.75 (based on data in figure 16).
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