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A variational principle is given for the motion of a rigid body dynamically coupled
to its interior fluid sloshing in three-dimensional rotating and translating coordinates.
The fluid is assumed to be inviscid and incompressible. The Euler–Poincaré reduction
framework of rigid body dynamics is adapted to derive the coupled partial differential
equations for the angular momentum and linear momentum of the rigid body and for
the motion of the interior fluid relative to the body coordinate system attached to the
moving rigid body. The variational principle is extended to the problem of interactions
between gravity-driven potential flow water waves and a freely floating rigid body
dynamically coupled to its interior fluid motion in three dimensions.
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1. Introduction
Studying the motion of a fluid in a stationary or forced vessel is a complicated

problem both theoretically and experimentally. The works by Moiseyev & Rumyantsev
(1968), Ibrahim (2005) and Faltinsen & Timokha (2009), and references therein,
highlight the problems in these areas. The problem of dynamic coupling between rigid
body motion and its interior fluid motion adds an additional layer of complexity to the
sloshing problem because it allows for the potential enhancement or destabilisation
of fluid dynamics due to the motion of the rigid body. Such problems involve
theoretical and numerical difficulties of both the fluid mechanics and rigid body
dynamics. Examples of where dynamic coupling is of interest are the sloshing of
fluid in ships and on board spacecraft, transport of liquids by robots, motion planning
for industrial control, motion of water waves in ocean wave energy converters and
sloshing in automobile fuel tanks. As reported by Ramodanov & Sidorenko (2017) the
pioneering contributions to the problem of dynamics of a rigid body with fluid-filled
cavities are due to Stokes (1880) and Zhukovskii (1885). The first studies on the
stability of steady rotations of a body containing an ellipsoidal cavity with an interior
uniform-vorticity flow are due to Greenhill (1880) and Hough (1895). A number of
further studies on the stability of the motion of a rigid body with cavities containing
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viscous fluid are done by Rumyantsev (1963), Moiseyev & Rumyantsev (1968) and
Kostyuchenko, Shkalikov & Yurkin (1998). Chernousko (1965) considered the general
problem of the motion of a viscous incompressible fluid in the cavity of a rigid body
and of the motion of the rigid body itself. Using asymptotic methods, first presented
by Zhukovskii (1948) for the motion of an ideal fluid, the hydrodynamic problem
was reduced to the solution of three stationary linear boundary value problems. After
solving the fluid problem, the reduced equations for the rigid body motion were solved
using asymptotic analysis. Ramodanov & Sidorenko (2017) revisited the approach
proposed by Chernousko (1972) based on the integral manifold theory (Strygin &
Sobolev 1988) to model the dynamics of a rigid body with ellipsoidal cavity entirely
filled with a highly viscous fluid. They studied the motion of a physical pendulum
with a fluid-filled cavity on a rotating platform using the Euler angles to parameterise
the rotation. Disser et al. (2016) studied inertial motions of the coupled system
constituted by a rigid body containing a cavity entirely filled with a viscous liquid.
In the cited works on the coupled fluid–body dynamics, the differential equations for
the motion of the rigid body containing fluid are derived based on balance of linear
momentum and angular momentum, or a reduced version of the Euler–Lagrange
equations are presented using a parameterisation of the rotation tensor. Instead of
using balance of linear momentum and angular momentum, or approximating the
governing equations for the coupled fluid–body system using a parameterisation
of the rotation tensor, one could apply a variational principle to derive the exact
equations of motion and obtain a Hamiltonian formulation for the coupled system,
which is particularly useful for numerical integration.

This paper concerns the variational principles and the derivation of the corresponding
equations of motion for the coupled fluid–body dynamics, in three-dimensional
rotating and translating coordinates, by using the Euler–Poincaré framework for the
following two cases: (i) A rigid body container with interior inviscid fluid sloshing.
(ii) The extension to a floating rigid body in potential-flow water waves with a
sloshing fluid within the body. These two problems, which are rarely presented in the
literature, are built on the existing variational formulations for interactions between
potential water waves and an empty floating rigid body container.

Variational principles and Hamiltonian formulations for the classical water-wave
and fluid sloshing problems are given by Luke (1967), Zakharov (1968), Broer
(1974), Lukovsky (1976) and Miles (1976, 1977). Bokhove & Oliver (2006) derived
the geometric link between the parcel Eulerian–Lagrangian formulation and the
variational and Hamiltonian formulations for generalised two-dimensional vorticity
streamfunction fluid dynamics, the rotating two-dimensional shallow-water equations
and the rotating three-dimensional compressible Euler equations. Timokha (2016)
used Clebsch potentials to generalise the Bateman–Luke variational formulation
(Bateman 1932; Luke 1967) for the sloshing of an ideal incompressible fluid with
rotational flows. Cotter & Bokhove (2010) derived a new water wave model from
a constrained variational formulation which combines a depth-averaged vertical
vorticity with depth-dependent potential flow. The irrotational water-wave model
and the depth-averaged shallow-water equations are limiting forms of the given
water-wave model. Miloh (1984) presented a variational principle for interactions
between water waves and several bodies on or below a free surface which oscillate
at a common frequency. Van Daalen, Van Groesen & Zandbergen (1993) derived a
Hamiltonian formulation for surface waves in hydrodynamic interaction with freely
floating bodies. Van Groesen & Andonowati (2017) presented a Boussinesq-type
Hamiltonian formulation for wave–ship interactions.
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Variational principles for the motion of a rigid body coupled to its interior fluid
motion are given by Moiseyev & Rumyantsev (1968) and Lukovsky (2015) (and
references therein). In chapter 3 of the work by Lukovsky (2015), the Bateman–Luke
variational principle is used to develop a mathematical theory for interactions between
a floating rigid body, containing tanks filled with liquids, and exterior ocean waves.
Rumiantsev (1966) derived the Lagrangian equations of motion from the principle
of least action in the Hamilton–Ostrogradskii form, for a rigid body with cavities,
partially or completely filled with an ideal fluid possessing surface tension. Alemi
Ardakani (2017) derived a coupled variational principle for the two-dimensional
interactions between gravity-driven water waves and a rigid body dynamically coupled
to its interior potential flow with uniform vorticity. Our main goal in the current paper
is to develop new variational principles for interactions between three-dimensional
potential water waves and a freely floating rigid body dynamically coupled to its
interior inviscid and incompressible fluid sloshing. For this purpose, we need to apply
calculus of variations in the proper rotation group of R3 using the Euler–Poincaré
framework.

Holm, Marsden & Ratiu (1998a) derived the Euler–Poincaré equations, the
Lagrangian analogue of the Lie–Poisson Hamiltonian equations, for the motion
of a free rigid body and a heavy top. In the study of rigid body mechanics, the Lie
group SO(3) is the configuration space and also the symmetry group of the Lagrangian
functional which allows us to introduce a specific procedure for obtaining the reduced
dynamics on the quotient space TSO(3)/SO(3) (Holm, Schmah & Stoica 2009). This
procedure is called Euler–Poincaré reduction (Holm et al. 2009). The Euler–Poincaré
reduction theorem, for rigid body dynamics and for dynamical systems with a broken
symmetry such as the motion of a heavy top, is discussed in detail in chapter 7
of the work by Holm et al. (2009). The Euler–Poincaré equations for the motion
of an ideal incompressible fluid, for a rotating stratified ideal incompressible fluid
and for rotating shallow-water dynamics are given by Holm et al. (1998a), Holm,
Marsden & Ratiu (1999). The Euler–Poincaré equations for the mean motion of ideal
incompressible fluids with nonlinear dispersion in three dimensions, including rotation
and stratification, are derived by Holm, Marsden & Ratiu (1998b). Gay-Balmaz,
Marsden & Ratiu (2012) applied the Euler–Poincaré reduction theorem for semidirect
products (Holm et al. 1998a) to develop the Lagrangian convective formulation
of free boundary compressible hydrodynamics. Both the constrained variational
principle and the equations of motion are presented. Lewis et al. (1986) determined
the Poisson bracket structure for an incompressible fluid with a free boundary and
showed that the equations for an ideal fluid having a free boundary with surface
tension are Hamiltonian relative to this structure. Using the symmetry of particle
relabelling, Mazer & Ratiu (1989) derived the non-canonical Poisson bracket in
Eulerian representation as a reduction from the canonical bracket in Lagrangian
representation. They extended the results of Lewis et al. (1986) to the case of
ideal adiabatic self-gravitating flow with surface tension and obtained a Hamiltonian
formulation of this problem.

Variational principles are useful in the formulation of the exact differential
equations governing the motion of a fluid (Salmon 1983, 1988; Morrison 1998), for
fluid–structure interactions (Alemi Ardakani 2017), in the derivation of approximate
equations in geophysical fluid dynamics using asymptotic expansions of Lagrangian
functionals (Oliver 2006, 2014), identifying conservation laws (Shepherd 1990),
constructing variational symplectic numerical schemes (Marsden & West 2001) and
developing approximate methods for multimodal expansion of solutions (Faltinsen
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& Timokha 2009; Lukovsky 2015). The variational principles are connected with
conservation of energy and the symplectic structure of the equations (Alemi Ardakani
2016).

The interests in this paper are threefold. Firstly, to derive a Lagrangian action
functional for the coupled dynamics between a rigid body and its interior inviscid and
incompressible fluid motion in three-dimensional rotating and translating coordinates.
Secondly, to apply the Euler–Poincaré reduction framework to Hamilton’s variational
principle for the coupled fluid–vessel dynamics in order to derive the exact differential
equations for the rotational and translational motion of the rigid body interacting with
its interior fluid, and also to derive the partial differential equations governing the
motion of the fluid. Thirdly, to extend the variational principle to the problem
of three-dimensional interactions between gravity-driven water waves and a freely
floating rigid body with interior fluid motion, and to derive the exact partial
differential equations governing the nonlinear wave–structure–slosh interactions.

Gerrits & Veldman (2003) and Veldman et al. (2007) studied the problem of
coupled liquid–solid dynamics for a liquid-filled spacecraft. They presented the
coupled differential equations for the motion of a spacecraft containing fluid,
describing the conservation of linear momentum and angular momentum, and for
the motion of a viscous incompressible fluid sloshing on board a spacecraft relative
to a moving (rotating and translating) reference frame attached to the spacecraft. The
governing equations for the motion of the spacecraft containing fluid, neglecting the
thruster-induced forces and torque on the spacecraft, are respectively

mq̇ + ω̇×mr+ω× (ω×mr)=−
∫

V

ρ

(
Du
Dt
+ 2ω× u−F

)
dV +msF, (1.1)

and

mr× q̇ + I tω̇+ω× I tω=−

∫
V

ρr×
(

Du
Dt
+ 2ω× u−F

)
dV +msrs ×F, (1.2)

where the integral is over the volume V of the fluid, u= (u, v, w) is the velocity of
the fluid relative to the moving coordinate system attached to the spacecraft, F is the
acceleration due to gravity, q̇ is the linear acceleration of the origin of the moving
reference frame relative to an inertial reference frame, ω is the angular velocity of
the moving frame, ω̇ is the angular acceleration of the moving frame, m is the total
mass (body + fluid) of the spacecraft, I t is the moment of inertia tensor of the coupled
system (body + fluid) relative to the origin of the moving reference frame, r is the
position of a liquid particle in the moving reference frame, r is the centre of mass of
the coupled system with respect to the moving reference frame, ms and rs denote the
mass and the centre of mass of the dry spacecraft relative to the moving reference
frame, respectively. Using the divergence theorem, in (1.1) and (1.2) the force and
torque that the fluid exerts on the boundary of the rigid body, via pressure and viscous
effects, are replaced by Du/Dt−F+ f and r× (Du/Dt−F+ f ), respectively, where
f is the acceleration due to a virtual body force induced by the motion of the tank.
It is shown in § 3 that equations (1.1) and (1.2) for the rigid body motion, neglecting
viscosity of the fluid, can be recovered from a variational principle.

The paper starts with the derivation of an action functional for the coupled
interactions between a rigid body, undergoing three-dimensional rotational and
translational motions, and its interior fluid in § 2. In § 3, the detailed derivations of
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the Euler–Poincaré equations for the angular momentum and linear momentum of the
rigid body are given. In § 4, the Euler–Poincaré equations of motion for the interior
fluid of the rigid body are derived relative to the body coordinate system attached
to the rotating–translating rigid body. In § 5, the proposed variational principle is
extended to interactions between potential water waves and a floating rigid body
containing inviscid fluid. The exact nonlinear hydrodynamic equations for the rigid
body motion are derived. The paper ends with concluding remarks in § 6.

2. A Lagrangian functional for the coupled fluid–body dynamics
Consider a three-dimensional (3-D) rigid body which contains an inviscid and

incompressible fluid, with free surface, undergoing three-dimensional rotational and
translational motions. Using the calculus of variations, the Euler–Poincaré equations
for the dynamic coupling between the rigid body motion and its interior fluid sloshing
can be derived from a Lagrangian action functional. The derivation of this action
functional is given below.

For the study of dynamic coupling between the rigid body motion and its interior
rotating and translating fluid, three frames of reference are used. One spatial frame
and two body frames. The spatial frame, which is fixed in space, has coordinates
denoted by X = (X, Y, Z). The first body frame, which is placed at the centre of
rotation of the moving body and used for the analysis of the rigid body motion, has
coordinates denoted by xb = (xb, yb, zb). The second body frame, which is attached
to the moving body and used for the analysis of the fluid motion inside the tank,
has coordinates denoted by x= (x, y, z). The distance between the origin of the body
frame x to the point of rotation, i.e. the origin of the body frame xb, is denoted by
d= (d1, d2, d3) which is a constant vector. So the position of a fluid particle relative
to the body frame xb is xb = x+ d. The fluid–tank system has a uniform translation
q(t)= (q1(t), q2(t), q3(t)) relative to the spatial frame X, which is the vector from the
origin of the spatial frame X to the origin of the body frame xb. The configuration of
the fluid in a rotating–translating vessel is schematically shown in figure 1.

The Lagrangian action for the coupled fluid–vessel dynamics takes the form

L =

∫ t2

t1

(
KEfluid

− PEfluid
+KEvessel

− PEvessel
)

dt, (2.1)

where KEfluid is the kinetic energy of the fluid, KEvessel is the kinetic energy of the
vessel, PEfluid is the potential energy of the fluid and PEvessel is the potential energy of
the vessel. The expressions are derived below. For the kinetic and potential energies,
the velocity vector and the displacement vector should be relative to the spatial frame
X, but the analysis of the fluid motion is carried out in the body frame x. The
relationship between the two velocities is developed using the kinetic theory of rigid
bodies (Murray, Lin & Sastry 1994; O’Reilly 2008).

Let Q(t) ∈ SO(3) be a proper rotation in R3,

QTQ= I and det(Q)= 1. (2.2)

Then the relation between the spatial displacement and the body displacement for a
fluid particle is

X=Q(x+ d)+ q. (2.3)

To clarify, we write x= (x(a, b, c, t), y(a, b, c, t), z(a, b, c, t)) as Cartesian coordinates
of a fluid particle marked by Lagrangian labels a= (a, b, c) at time t. This formulation
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FIGURE 1. (Colour online) Schematic showing a configuration of the fixed coordinate
system X = (X, Y, Z) relative to the moving coordinate systems xb = (xb, yb, zb) and
x= (x, y, z), attached to the vessel. The distance between the origin of the spatial frame
X and the point of rotation is denoted by q. The distance from the origin of the body
frame x to the point of rotation is denoted by d.

is consistent with the theory of rigid body motion, where an arbitrary motion can be
described by the pair (Q(t), q(t)).

The body angular velocity is a time-dependent vector

Ω(t)= (Ω1(t), Ω2(t), Ω3(t)), (2.4)

relative to the body coordinate system xb with entries determined from Q by

QTQ̇=

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 := Ω̂, (2.5)

where Ω̂ ∈ so(3) is the Lie algebra of the group of rotations of R3, i.e. Q(t). The
convention for the entries of the skew–symmetric matrix Ω̂ is such that

Hat map: Ω̂r=Ω × r, for any r ∈R3, Ω := (Ω1, Ω2, Ω3). (2.6)

The body angular velocity is to be contrasted with the spatial angular velocity, the
angular velocity viewed from the spatial frame, which is

Ω̂ spatial
:= Q̇QT. (2.7)

As vectors the spatial and body angular velocities are related by Ω spatial
=QΩ . Either

representation for the angular velocity can be used. But the body representation is the
sensible choice leading to great simplification of the differential equations.

The relation between the body velocity and space velocity is

Ẋ=Q(ẋ+Ω × (x+ d)+QTq̇). (2.8)

If u=u(x, t) denotes the Eulerian velocity of a fluid particle relative to the body frame
with x= x(a, t) the corresponding flow map, the fluid particle initially at position a is
at position x= x(a, t) at time t, then the Lagrangian velocity of the fluid particle is
ẋ(a, t)= u(x(a, t), t), and the Lagrangian acceleration of the fluid particle is ẍ(a, t)=
Du/Dt = ut + u · ∇u. For an incompressible fluid the Jacobian J of the label-to-
particle mapping (a, b, c)→ (x, y, z) is the motion invariant, i.e. ∂J/∂t = 0 which
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is the continuity equation ∇ · u= 0 in the Lagrangian particle-path formulation. The
Lagrangian labels (a, b, c) can be chosen such that

J =
∂(x, y, z)
∂(a, b, c)

= xa(ybzc − yczb)+ xb(ycza − yazc)+ xc(yazb − ybza)= 1. (2.9)

This means that at an initial time t0 the Lagrangian labels (a, b, c) are physically
possible coordinates, i.e. (a, b, c)= (x0, y0, z0). So in Eulerian coordinates (2.8) takes
the form

U=Q(u+Ω × (x+ d)+QTq̇), (2.10)

where U(X, t) is the Eulerian velocity of a fluid particle in the spatial frame X. Using
this expression the kinetic energy of the fluid is

KEfluid
=

∫
V

1
2
‖U‖2 ρ dV

=

∫
V

(
1
2
‖u‖2
+ u ·

(
Ω × (x+ d)+QTq̇

)
+QTq̇ · (Ω × (x+ d))

+
1
2
‖q̇‖2
+

1
2
‖Ω × (x+ d)‖2

)
ρ dx, (2.11)

where ρ is the density of the fluid which is considered to be inviscid and
incompressible, and the integral is over the volume (V) of the fluid inside the
container. This expression can be simplified using the definition of the fluid mass
moment of inertia, noting that∫

V

1
2
‖Ω × (x+ d)‖2 ρ dx =

∫
V

1
2
(Ω × (x+ d)) · (Ω × (x+ d))ρ dx

=

∫
V

1
2
((Ω ·Ω)((x+ d) · (x+ d))− (Ω · (x+ d))2)ρ dx

= Ω ·

((
1
2

∫
V

(
‖x+ d‖2 I − (x+ d)⊗ (x+ d)

)
ρ dx

)
Ω

)
=

1
2
Ω · I fΩ, (2.12)

with
I f =

∫
V
(‖x+ d‖2I − (x+ d)⊗ (x+ d))ρ dx, (2.13)

where ⊗ denotes the tensor product, I is the 3× 3 identity matrix and I f is the mass
moment of inertia of the fluid relative to the point of rotation, i.e. the origin of the
body frame xb. So the kinetic energy of the fluid can be written as

KEfluid
=

∫
V

(
1
2
‖u‖2
+ u ·

(
Ω × (x+ d)+QTq̇

)
+QTq̇ · (Ω × (x+ d))+

1
2
‖q̇‖2

)
ρ dx+

1
2
Ω · I fΩ. (2.14)

The potential energy of the fluid in (2.1) is

PEfluid
=

∫
V
ρg (Q(x+ d)+ q) · ẑ dx, (2.15)
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where ẑ is the unit vector in the Z direction, and g is the acceleration due to gravity.
To derive the kinetic energy of the dry vessel note that the relation between the

body velocity and the space velocity is

Ẋ= Q̇xb + q̇ or QTẊ= (Ω × xb)+QTq̇. (2.16a,b)

Then the kinetic energy of the vessel is

KEvessel
=

∫
V

1
2

∥∥Ẋ
∥∥2
ρv dV=

∫
V

1
2

∥∥QTẊ
∥∥2
ρv dV

=

∫
V

(
1
2
‖Ω × xb‖

2
+ (Ω × xb) ·Q

Tq̇+
1
2
‖q̇‖2

)
ρv dV, (2.17)

where ρv is the density of the vessel and the integral is over the volume V of the
vessel. Taking into account that

1
2

∫
V
‖Ω × xb‖

2 ρv dV=
1
2

∫
V

(
(Ω ·Ω) (xb · xb)− (Ω · xb)

2) ρv dV

=Ω ·

((
1
2

∫
V

(
‖xb‖

2I − xb ⊗ xb
)
ρv dV

)
Ω

)
=

1
2
Ω · IvΩ, (2.18)

with
Iv =

∫
V
(‖xb‖

2I − xb ⊗ xb)ρv dV, (2.19)

and that ∫
V
(Ω × xb) ·Q

Tq̇ρv dV = (Ω ×mvxv) ·QTq̇, (2.20)

then the kinetic energy of the vessel simplifies to

KEvessel
=

1
2 mv ‖q̇‖2

+ (Ω ×mvxv) ·QTq̇+ 1
2Ω · IvΩ, (2.21)

where Iv is the mass moment of inertia of the dry vessel relative to the point of
rotation, mv is the mass of the dry vessel and xv = (xv, yv, zv) is the centre of mass
of the dry vessel relative to the body frame xb. The potential energy of the dry vessel
in (2.1) is

PEvessel
=mvg(Qxv + q) · ẑ. (2.22)

Now substitution of (2.14), (2.15), (2.21) and (2.22) into the action integral (2.1)
gives an explicit form of the Lagrangian functional for the dynamics of a rigid body
coupled to its interior fluid motion

L (Ω,Q, q, q̇, u)=
∫ t2

t1

(∫
V

(
1
2
‖u‖2
+ u ·

(
Ω × (x+ d)+QTq̇

)
+ QTq̇ · (Ω × (x+ d))+

1
2
‖q̇‖2
− g (Q(x+ d)+ q) · ẑ

)
ρ dx+

1
2
Ω · I fΩ

+
1
2

mv ‖q̇‖2
+ (Ω ×mvxv) ·QTq̇+

1
2
Ω · IvΩ −mvg (Qxv + q) · ẑ

)
dt. (2.23)
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Transformation of the Lagrangian functional (2.23) from the Eulerian setting to the
Lagrangian particle-path setting gives

L (Ω,Q, q, q̇, x, ẋ)=
∫ t2

t1

(∫
V ′

(
1
2
‖ẋ‖2
+ ẋ ·

(
Ω × (x+ d)+QTq̇

)
+ QTq̇ · (Ω × (x+ d))+

1
2
‖q̇‖2
− g (Q(x+ d)+ q) · ẑ

)
ρ da+

1
2
Ω · I fΩ

+
1
2

mv ‖q̇‖2
+ (Ω ×mvxv) ·QTq̇+

1
2
Ω · IvΩ −mvg (Qxv + q) · ẑ

)
dt, (2.24)

where the integral is over the volume V ′ of the reference space, and

I f =

∫
V ′
(‖x+ d‖2I − (x+ d)⊗ (x+ d))ρ da. (2.25)

Taking the first variations of the Lagrangian functional (2.24) with respect to Ω , Q,
q and q̇ yields the Euler–Poincaré equations for the angular momentum and linear
momentum of the rigid body containing fluid. Moreover, taking the first variation of
the action integral (2.24) with respect to x and ẋ, after the addition of a constraint
term to this functional to enforce incompressibility of the fluid (see § 4), gives the
Euler–Poincaré equation for the motion of the interior fluid relative to the body frame
x. In the action integrals (2.23) and (2.24), q(t) is relative to the spatial frame X.

Using a similar approach, the Lagrangian functional (2.23) can be derived for the
case where q(t) is relative to the body frame xb, i.e. qb(t)=Q−1q. The action integral
for this case reads

L
(
Ω,Q, qb, q̇b, u

)
=

∫ t2

t1

(∫
V

(
1
2
‖u+ q̇b‖

2
+ (u+ q̇b) ·

(
Ω × (x+ d+ qb)

)
+ (Ω × (x+ d)) · (Ω × qb)+

1
2

∥∥Ω × qb

∥∥2
− gQ(x+ d+ qb) · ẑ

)
ρ dx

+
1
2
Ω · I fΩ +

1
2

mv‖q̇b‖
2
+ q̇b ·

(
Ω ×mv

(
xv + qb

))
+

1
2

mv‖Ω × qb‖
2

+ (Ω ×mvxv) ·
(
Ω × qb

)
+

1
2
Ω · IvΩ −mvgQ

(
xv + qb

)
· ẑ
)

dt, (2.26)

where Ω and qb are both relative to the body frame xb. Similarly, to obtain the
equations of motion for the interior fluid, a constraint term should be added to the
functional (2.26) to enforce incompressibility of the fluid (see § 4).

In the Lagrangian action (2.24) the rotation tensor Q(t) can be parameterised using
the 3–2–1 Euler angles in three dimensions (O’Reilly 2008). This gives an expression
for the body angular velocity Ω̂ =QTQ̇. After substituting for Ω and Q, in terms of
the Euler angles and their derivatives, into the Lagrangian action, the Euler–Lagrange
equations for the rotational and translational motion of the rigid body, containing fluid,
can be provided by Hamilton’s principle δL

(
Q, Q̇, q, q̇, x, ẋ

)
= 0. But the problem

in using the Euler angles is that the resulting Euler–Lagrange equations are unwieldy
to work with directly to determine the motion of the rigid body as the differential
equations become very lengthy. However, we can follow an alternative path, taking
variations of the action functional (2.24) with respect to Ω , Q, q, q̇, applying
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The Euler–Poincaré equations for wave–body–slosh interactions 639

similar calculus of variations used by Holm et al. (2009) for the Euler–Poincaré
reduction of the non-free rigid body motion. See chapter 13 of Marsden & Ratiu
(1999), and chapters 7 and 11 of Holm et al. (2009) for the background history and
mathematics on the Euler–Poincaré reduction framework in Lagrangian mechanics. So
our strategy is to adapt the Euler–Poincaré framework, first developed for rigid body
dynamics, in order to derive the exact differential equations for the dynamic coupling
between a rigid body and its interior fluid sloshing in three-dimensional rotating and
translating coordinates.

In the presented derivations in this paper, the calculus of variations for the
Lagrangian functional of the coupled (interior fluid + body) system (2.24) is done
in the Lagrangian particle-path setting using the Euler–Poincaré framework, and then
the equations of motion are transformed to Eulerian coordinates. Alternatively, we
could take the variations of the Lagrangian functional (2.23) in Eulerian coordinates,
after the addition of a constraint term to this functional to enforce incompressibility
of the fluid, by using the so-called Lin constraint (Bretherton 1970; Oliver 2006) for
the variations δu of the form

δu= ẇ+∇wu−∇uw, (2.27)

where w is a vector-valued free variation.

3. The Euler–Poincaré equations for the rigid body motion

The Euler–Poincaré reduction theorem for the motion of a free rigid body and a
heavy top is given by Holm et al. (1998a). Here, we apply this framework to dynamic
coupling between rigid body motion and its interior inviscid and incompressible fluid
motion in the Lagrangian particle-path formulation. In this section the detailed
derivations of the Euler–Poincaré equations for the body angular velocity Ω(t) and
translational motion q(t) of the rigid body are given. The aim is to recover equations
(1.1) and (1.2), which are in Eulerian coordinates, from a variational principle
with precise definitions of dependent variables with respect to the spatial and body
coordinate systems.

3.1. The Euler–Poincaré equation for Ω(t)

The equation of motion for the body angular velocity Ω(t) is provided by Hamilton’s
variational principle:

δL (Ω,Q, q, q̇, x, ẋ)= 0, (3.1)

where the Lagrangian action L (Ω,Q, q, q̇, x, ẋ) is defined in (2.24) and the
variations δQ are taken among paths Q(t) ∈ SO(3), t ∈ [t1, t2], with fixed endpoints,
so that δQ(t1)= δQ(t2)= 0. The variations δΩ are induced by the variations δQ via
(Holm et al. 2009)

δΩ̂ =
dΓ̂
dt
+ [Ω̂, Γ̂ ] =

dΓ̂
dt
+ Ω̂Γ̂ − Γ̂ Ω̂, (3.2)

where Γ̂ ∈ so(3) is defined by
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Γ̂ =Q−1δQ. (3.3)

Since [Ω̂, Γ̂ ] = Ω̂ × Γ , the equivalent vector representation of (3.2) is

δΩ = Γ̇ +Ω × Γ . (3.4)

Also it can be proved that (Marsden & Ratiu 1999; Holm et al. 2009)

δQ−1
=−Q−1δQQ−1 and

d
dt

(
Q−1

)
=−Q−1Q̇Q−1. (3.5a,b)

Now the Euler–Poincaré equation for Ω(t) can be obtained by taking the first variation
of the action integral L (Ω,Q, q, q̇, x, ẋ) in (2.24) with respect to Ω and Q. Due to
lengthy derivations, here we calculate the first variation of each term in (2.24) with
respect to Ω and Q separately. For the variations δΩ and δQ of the second term in
the Lagrangian action (2.24), assuming that q̇, x and ẋ are constants, we have

δ

∫ t2

t1

∫
V ′
〈ẋ,Ω × (x+ d)+QTq̇〉ρ da dt

=

∫ t2

t1

∫
V ′
〈ẋ, δΩ × (x+ d)+ δQ−1q̇〉ρ da dt

=

∫ t2

t1

∫
V ′

〈
ẋ,
(
Γ̇ +Ω × Γ

)︸ ︷︷ ︸
=δΩ

×(x+ d)−Q−1δQQ−1︸ ︷︷ ︸
=δQ−1

q̇

〉
ρ da dt

=

∫ t2

t1

∫
V ′

〈
ẋ,−(x+ d)× Γ̇ − (x+ d)× (Ω × Γ )−Γ̂Q−1q̇︸ ︷︷ ︸

using (3.3)

〉
ρ da dt

=

∫ t2

t1

∫
V ′

〈
ẋ,−(x+ d)× Γ̇ − (x+ d)× (Ω × Γ )+Q−1q̇× Γ︸ ︷︷ ︸

using the
hat map

〉
ρ da dt

=

∫ t2

t1

∫
V ′

(
〈Γ̇ ,−ẋ× (x+ d)〉 + 〈Ω × Γ ,−ẋ× (x+ d)〉

+ 〈Γ , ẋ×Q−1q̇〉
)
ρ da dt→

{
using the vector identity
a · (b× c)= c · (a× b)

=

∫
V ′

(
〈Γ ,−ẋ× (x+ d)〉|t2 − 〈Γ ,−ẋ× (x+ d)〉|t1

)
ρ da

+

∫ t2

t1

∫
V ′

(〈
Γ ,

d
dt
(ẋ× (x+ d))

〉
+ 〈Γ , ((x+ d)× ẋ)×Ω〉

+ 〈Γ , ẋ×Q−1q̇〉
)
ρ da dt → (integrating by parts)

=

∫ t2

t1

∫
V ′

〈
Γ ,

d
dt
(ẋ× (x+ d))+Ω × (ẋ× (x+ d))+ ẋ×Q−1q̇

〉
ρ da dt,

(3.6)

where the terms 〈Γ ,−ẋ× (x+ d)〉|t1,2 vanish if we apply the inverse of the hat map
to Γ̂ =Q−1δQ, noting that δQ vanishes at the endpoints t1 and t2.
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Now taking the variations δΩ and δQ of the third term in (2.24) using (3.3), (3.4)
and (3.5a), assuming that q̇ and x are constants, gives

δ

∫ t2

t1

∫
V ′
〈QTq̇,Ω × (x+ d)〉ρ da dt

=

∫ t2

t1

∫
V ′

〈
Γ ,

d
dt

(
Q−1q̇× (x+ d)

)
+ (x+ d)×

(
Q−1q̇×Ω

)〉
ρ da dt. (3.7)

See appendix A for the proof of (3.7). To take the variation of the potential energy
of the fluid in (2.24) with respect to Q, assuming that q and x are constants, set

Σ =Q−1ẑ, (3.8)

which gives

δΣ = δQ−1ẑ=−Q−1δQQ−1ẑ=−Γ̂ Σ =Σ × Γ , (3.9)

and hence

δ

∫ t2

t1

∫
V ′
−g 〈Q(x+ d)+ q, ẑ〉︸ ︷︷ ︸

×Q−1

ρ da dt

= δ

∫ t2

t1

∫
V ′
−g

〈
(x+ d)+Q−1q,Q−1ẑ︸︷︷︸

=Σ

〉
ρ da dt

=

∫ t2

t1

∫
V ′
−g
(
〈δQ−1q,Σ〉 + 〈(x+ d)+Q−1q, δΣ〉

)
ρ da dt

=

∫ t2

t1

∫
V ′
−g

〈
−Q−1δQQ−1︸ ︷︷ ︸

=δQ−1

q,Σ

〉
− g

〈
(x+ d)+Q−1q,Σ × Γ︸ ︷︷ ︸

=δΣ

〉
ρ da dt

=

∫ t2

t1

∫
V ′
−g

〈
−Γ̂Q−1q︸ ︷︷ ︸
using (3.3)

,Σ

〉
− g〈(x+ d)+Q−1q,Σ × Γ 〉ρ da dt

=

∫ t2

t1

∫
V ′
−g

〈
Q−1q× Γ︸ ︷︷ ︸

using the
hat map

,Σ

〉
− g〈(x+ d)+Q−1q,Σ × Γ 〉ρ da dt

=

∫ t2

t1

∫
V ′
−g(〈Γ ,Σ ×Q−1q〉 + 〈Γ , ((x+ d)+Q−1q)×Σ〉)︸ ︷︷ ︸

↪→
{using the vector identity

a·(b×c)=c·(a×b)

ρ da dt

=

∫ t2

t1

∫
V ′
〈Γ ,−g(x+ d)×Σ〉ρ da dt. (3.10)

Taking the variations δΩ of the mass moment of inertia of the fluid in (2.24),
assuming that x is constant, gives
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δ

∫ t2

t1

〈
1
2
Ω, I fΩ

〉
dt=

∫ t2

t1

〈δΩ, I fΩ〉 dt→ (noting that I f is symmetric)

=

∫ t2

t1

〈Γ̇ + (Ω × Γ ), I fΩ〉 dt=
∫ t2

t1

〈
Γ ,−

d
dt

(
I fΩ
)
+ I fΩ ×Ω

〉
dt, (3.11)

where, when integrating by parts, we used the condition that the variations vanish at
the endpoints in time.

Similar calculations show that taking the variations δΩ and δQ of the remaining
terms in (2.24) due to the kinetic and potential energies of the vessel, assuming that
q and q̇ are constants, gives

δ

∫ t2

t1

〈
Ω ×mvxv,QTq̇

〉
dt=

∫ t2

t1

〈
Γ ,−

d
dt

(
mvxv ×Q−1q̇

)〉
dt

+

∫ t2

t1

〈
Γ ,mvxv ×

(
Q−1q̇×Ω

)〉
dt,

δ

∫ t2

t1

〈
1
2
Ω, IvΩ

〉
dt=

∫ t2

t1

〈
Γ ,−IvΩ̇ + IvΩ ×Ω

〉
dt,

δ

∫ t2

t1

〈
−mvg (Qxv + q) , ẑ

〉
dt=

∫ t2

t1

〈Γ ,−mvgxv ×Σ〉 dt.


(3.12)

Now from (3.6), (3.7), (3.10), (3.11) and (3.12) it can be concluded that Hamilton’s
variational principle (3.1) for the variations δΩ and δQ reads∫ t2

t1

∫
V ′

〈
Γ ,

d
dt
(ẋ× (x+ d))+Ω × (ẋ× (x+ d))+ ẋ×Q−1q̇

〉
ρ da dt

+

∫ t2

t1

∫
V ′

〈
Γ ,

d
dt

(
Q−1q̇× (x+ d)

)
+ (x+ d)×

(
Q−1q̇×Ω

)〉
ρ da dt

+

∫ t2

t1

∫
V ′
〈Γ ,−g(x+ d)×Σ〉 ρ da dt+

∫ t2

t1

〈
Γ ,−

d
dt

(
I fΩ
)
+ I fΩ ×Ω

〉
dt

+

∫ t2

t1

〈
Γ ,−

d
dt

(
mvxv ×Q−1q̇

)
+mvxv ×

(
Q−1q̇×Ω

)〉
dt

+

∫ t2

t1

〈
Γ ,−IvΩ̇ + IvΩ ×Ω

〉
dt+

∫ t2

t1

〈Γ ,−mvgxv ×Σ〉 dt= 0. (3.13)

Therefore, since the variational principle (3.13) holds for any curve Γ (t) in so(3)
such that Γ (t1)= Γ (t2)= 0, we find that the body angular velocity of the rigid body
containing fluid is governed by the equation:∫

V ′

(
d
dt
(ẋ× (x+ d))+Ω × (ẋ× (x+ d))+ ẋ×Q−1q̇

)
ρ da

+

∫
V ′

(
d
dt

(
Q−1q̇× (x+ d)

)
+ (x+ d)×

(
Q−1q̇×Ω

))
ρ da

−

∫
V ′

g(x+ d)×Σρ da−
d
dt

(
I fΩ
)
+ I fΩ ×Ω −

d
dt

(
mvxv ×Q−1q̇

)
+mvxv ×

(
Q−1q̇×Ω

)
− IvΩ̇ + IvΩ ×Ω −mvgxv ×Σ = 0, (3.14)
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which is the Euler–Poincaré equation for Ω(t). Equation (3.14) after differentiating
with respect to time and simplifying using (3.5b) and the hat map (2.6) reduces to∫

V ′

(
ẍ× (x+ d)+Ω × (ẋ× (x+ d))+Q−1q̈× (x+ d)

− g(x+ d)×Σ) ρ da− İ fΩ −
(
I f + Iv

)
Ω̇

+ (I f + Iv)Ω ×Ω −mvxv ×Q−1q̈−mvgxv ×Σ = 0. (3.15)

Now set the mass moment of inertia of the coupled system (body + fluid) as

I t = I f + Iv, (3.16)

and note that
mf xf =

∫
V
(x+ d)ρ dx=

∫
V ′
(x+ d)ρ da, (3.17)

where xf (t) is the centre of mass of the fluid relative to the body frame, and

mf =

∫
V
ρ dx=

∫
V ′
ρ da, (3.18)

is the mass of the fluid which is time independent. Also by setting

m=mf +mv, (3.19)

which is the total mass of the coupled system, we have

mx(t)=mf xf +mvxv, (3.20)

where x is the centre of mass of the coupled system which is time dependent. Now
the Ω-equation (3.15) simplifies to∫

V ′
(ẍ× (x+ d)+Ω × (ẋ× (x+ d))) ρ da

−mx×Q−1q̈− İ fΩ − I tΩ̇ + I tΩ ×Ω −mgx×Σ = 0. (3.21)

Now, transforming this equation from the Lagrangian particle-path setting to Eulerian
coordinates, replacing the Lagrangian variables ẋ and ẍ by their respective Eulerian
quantities u and Du/Dt respectively, the Euler–Poincaré equation (3.21) takes the
form ∫

V

(
Du
Dt
× (x+ d)+Ω × (u× (x+ d))

)
ρ dx

−mx×Q−1q̈− İ fΩ − I tΩ̇ + I tΩ ×Ω −mgx×Σ = 0. (3.22)

Note that q̈(t) in this equation is relative to the spatial frame X.
The Euler–Poincaré equation (3.22) for Ω(t) can be written in a form where q(t)

is relative to the body frame xb, i.e. qb(t)=Q−1q. It can be proved that

Q−1q̈= q̈b + Ω̇ × qb +Ω × (Ω × qb)+ 2Ω × q̇b. (3.23)
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Hence substitution of (3.23) into (3.22) gives∫
V

(
Du
Dt
× (x+ d)+Ω × (u× (x+ d))

)
ρ dx

−mx×
(
q̈b + Ω̇ × qb +Ω ×

(
Ω × qb

)
+ 2Ω × q̇b

)
− İ fΩ − I tΩ̇ + I tΩ ×Ω −mgx×Σ = 0, (3.24)

which is the Euler–Poincaré equation for Ω(t) with both Ω and qb relative to the body
frame xb.

Gerrits & Veldman (2003) and Veldman et al. (2007) studied dynamics of a liquid-
filled spacecraft and presented the equation governing the rotational motion of a rigid
body containing fluid based on the balance of angular momentum. Their Ω-equation
is equation (1.2). To compare the derived Euler–Poincaré equation for Ω(t) with the
equation for angular momentum of the rigid body (1.2) given by Gerrits & Veldman
(2003) and Veldman et al. (2007), we rewrite equation (3.22) in the following form∫

V
−(x+ d)×

(
Du
Dt
+Ω × u

)
ρ dx−mgx×Σ =mx×Q−1q̈

+ I tΩ̇ +Ω × I tΩ + İ fΩ +

∫
V

u× ((x+ d)×Ω)ρ dx, (3.25)

using the vector identity

Ω × (u× (x+ d))+ (x+ d)× (Ω × u)+ u× ((x+ d)×Ω)= 0. (3.26)

Differentiating the mass moment of inertia of the fluid (2.13) with respect to time
gives

İ f =

∫
V ′
(2ẋ · (x+ d)I − (ẋ⊗ (x+ d)+ (x+ d)⊗ ẋ))ρ da

=

∫
V
(2u · (x+ d)I − (u⊗ (x+ d)+ (x+ d)⊗ u))ρ dx, (3.27)

and so

İ fΩ =

∫
V
(2u · (x+ d)I − (u⊗ (x+ d)+ (x+ d)⊗ u))Ωρ dx. (3.28)

The summation of the last two terms on the right-hand side of (3.25) gives∫
V
((2u · (x+ d)I − (u⊗ (x+ d)+ (x+ d)⊗ u))Ω

+u× ((x+ d)×Ω)) ρ dx=
∫
V
(x+ d)× (Ω × u) ρ dx. (3.29)

Substitution of (3.29) into (3.25) gives∫
V
−(x+ d)×

(
Du
Dt
+ 2Ω × u

)
ρ dx−mgx×Σ

=mx×Q−1q̈+ I tΩ̇ +Ω × I tΩ, (3.30)
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which recovers equation (1.2), neglecting the torque due to viscosity of the fluid in
(1.2). However, it should be noted that in the works by Gerrits & Veldman (2003)
and Veldman et al. (2007) it is stated that q̇ in (1.2) is the acceleration of the moving
origin with respect to an inertial reference frame, but our calculations show precisely
that q̇ is actually Q−1q̈ which is relative to the body frame (see (3.23)). Also it should
be noted that the terms involving F in (1.2) are gathered in (3.30) as −mgx×Σ with
a precise definition for Σ in the body coordinate system. Using (3.23) equation (3.30)
can be written in terms of qb as∫

V
−(x+ d)×

(
Du
Dt
+ 2Ω × u

)
ρ dx−mgx×Σ

=mx× (q̈b + Ω̇ × qb +Ω × (Ω × qb)+ 2Ω × q̇b)+ I tΩ̇ +Ω × I tΩ. (3.31)

3.2. The Euler–Poincaré equation for q(t)
The governing equation for the translational motion of the rigid body q(t) is provided
by Hamilton’s variational principle (3.1) by taking the variations δq and δq̇ of the
Lagrangian action (2.24) with fixed endpoints δq(t1)= δq(t2)= 0, and assuming that
Ω , Q, x and ẋ are constants. Applying similar calculations to the calculus of variations
presented in § 3.1, it can be proved that Hamilton’s principle leads to∫

V ′

(
−ẍ−Ω × ẋ−

d
dt
(Ω × (x+ d))−Ω × (Ω × (x+ d))−Q−1q̈− gΣ

)
ρ da

−mvQ
−1q̈−

d
dt
(Ω ×mvxv)−Ω × (Ω ×mvxv)−mvgΣ = 0, (3.32)

which is the Euler–Poincaré equation for the translational motion q(t) of the rigid body
in the spatial frame X. This equation, after differentiating with respect to time and
applying (3.17), (3.18) and (3.20), simplifies to∫

V ′
(−ẍ− 2Ω × ẋ) ρ da−mQ−1q̈− Ω̇ ×mx−Ω × (Ω ×mx)−mgΣ = 0. (3.33)

Transforming this equation from the Lagrangian particle-path setting to Eulerian
coordinates, replacing the Lagrangian variables ẋ and ẍ by their respective Eulerian
quantities u and Du/Dt respectively, the Euler–Poincaré equation (3.33) reduces to∫

V

(
−

Du
Dt
− 2Ω × u

)
ρ dx−mQ−1q̈− Ω̇ ×mx

−Ω × (Ω ×mx)−mgΣ = 0. (3.34)

The q-equation (3.34) can be written in terms of the translational acceleration in the
body frame q̈b using (3.23) as∫

V

(
−

Du
Dt
− 2Ω × u

)
ρ dx−m

(
q̈b + Ω̇ × qb +Ω ×

(
Ω × qb

)
+ 2Ω × q̇b

)
− Ω̇ ×mx−Ω × (Ω ×mx)−mgΣ = 0, (3.35)

or in the form∫
V

(
−

Du
Dt
− 2Ω × u

)
ρ dx−m

(
q̈b + 2Ω × q̇b

)
−mΩ̇ ×

(
x+ qb

)
−mΩ × (Ω × (x+ qb))−mgΣ = 0. (3.36)
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646 H. Alemi Ardakani

The final form of the Euler–Poincaré equation for the linear momentum of the rigid
body is (3.34) in the spatial frame X or (3.36) in the body frame xb.

The Euler–Poincaré equation (3.34) for q(t) recovers equation (1.1) for linear
momentum of the rigid body, neglecting the force due to the viscosity of the fluid
in (1.1), given by Gerrits & Veldman (2003) and Veldman et al. (2007). However,
it should be noted that in the works by Gerrits & Veldman (2003) and Veldman
et al. (2007) it is stated that q̇ in (1.1) is the acceleration of the moving origin with
respect to an inertial reference frame, but from our calculations it is obvious that q̇
is actually Q−1q̈ which is relative to the body frame. The terms involving F in (1.1)
are gathered in (3.34) as −mgΣ with Σ defined in (3.8).

3.3. Reconstruction of Q(t) ∈ SO(3)
The Euler–Poincaré equations (3.30) and (3.34) determine the body angular velocity
Ω(t) and translational motion q(t) of the rigid body, respectively. The tangent vectors
Q̇(t) ∈ TSO(3) along the integral curve in the rotation group Q(t) ∈ SO(3) may be
retrieved via the reconstruction formula (Holm et al. 2009)

Q̇=QΩ̂. (3.37)

The solution of (3.37) yields the integral curve Q(t)∈ SO(3) for the orientation of the
rigid body.

Finally, differentiating the constraint equation Σ(t)=Q−1(t)ẑ gives

Σ̇(t)=Σ(t)×Ω(t) with Σ (0)=Q−1(0)ẑ. (3.38)

So the evolutionary system for the rigid body motion (3.30) and (3.34) is completed
by (3.37) and (3.38).

4. The Euler–Poincaré equation for the interior fluid motion
In Eulerian coordinates, the interior fluid occupies the region V

0 6 x 6 L1, 0 6 y 6 L2, 0 6 z 6 h(x, y, t), (4.1)

where L1 and L2 are given positive constants, and z= h(x, y, t) is the position of the
free surface. The boundary conditions are

u= 0 at x= 0 and x= L1,

v = 0 at y= 0 and y= L2,
w= 0 at z= 0,

 (4.2)

which are the no-flow boundary condition on the rigid walls, and at the free surface,
the kinematic and dynamic boundary conditions are respectively

w= ht + uhx + vhy and p= 0 at z= h(x, y, t), (4.3a,b)

where the surface tension is neglected in the boundary condition for the pressure p.
The Euler–Poincaré equation for the position x(t) of fluid particles in the body

frame x can be provided by Hamilton’s variational principle (3.1) by taking the
variations δx and δẋ of the Lagrangian action (2.24), in Lagrangian coordinates,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.107


The Euler–Poincaré equations for wave–body–slosh interactions 647

with fixed endpoints δx(t1)= δx(t2)= 0, assuming that Ω , Q, q and q̇ are constants.
However, a constraint term should be added to the Lagrangian functional (2.24)
to enforce incompressibility of the fluid ∇ · u = 0. The action functional (2.24) is
modified to

Lt =L (Ω,Q, q, q̇, x, ẋ)+Lc with Lc =

∫ t2

t1

∫
V ′

p(a, t)(J − 1) da dt, (4.4)

where p(a, t) is the pressure field of the interior fluid and Lc enforces incompressibility
of the fluid in the Lagrangian particle-path formulation. Hence

δLt = δL (Ω,Q, q, q̇, x, ẋ)+ δLc = δL + δ

∫ t2

t1

∫
V ′

p(a, t)(J − 1) da dt= 0, (4.5)

where the integral is over the volume V ′ of the reference space

0 6 a 6 L1, 0 6 b 6 L2, 0 6 c 6 L3, (4.6)

where L1, L2 and L3 are given positive constants. The free surface z= h(x, y, t) is the
map of the boundary surface {(a, b, c) : c= L3}.

After some calculations, presented in appendix B, it is proved that taking the
variations δx and δẋ of the first component of the Lagrangian functional Lt, in the
Lagrangian particle-path setting, leads to

δL =

∫ t2

t1

∫
V ′

〈
δx,−ẍ− Ω̇ × (x+ d)− 2Ω × ẋ−Q−1q̈

−Ω × (Ω × (x+ d))− gΣ〉 ρ da dt. (4.7)

Taking the variations δp and δx of the constraint component of Lt in (4.4b) gives

δLc = δ

∫ t2

t1

∫
V ′

p(J − 1) da dt=
∫ t2

t1

∫
V ′
δp(J − 1) da dt

+

∫ t2

t1

∫
V ′

p(δxa(ybzc − yczb)+ δxb(ycza − yazc)+ δxc(yazb − ybza)) da dt

+

∫ t2

t1

∫
V ′

p(δya(xczb − xbzc)+ δyb(xazc − xcza)+ δyc(xbza − xazb)) da dt

+

∫ t2

t1

∫
V ′

p(δza(xbyc − xcyb)+ δzb(xcya − xayc)+ δzc(xayb − xbya)) da dt. (4.8)

After integrating by parts and imposing the no-flow boundary conditions in the
Lagrangian particle-path setting

xb = xc = 0 at a= 0 and a= L1,

ya = yc = 0 at b= 0 and b= L2,

za = zb = 0 at c= 0,

 (4.9)

and the free-surface pressure boundary condition p = 0 at c = L3, δLc in (4.8)
reduces to
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δLc =

∫ t2

t1

∫
V ′
δp(J − 1) da dt

+

∫ t2

t1

∫
V ′

〈
δx,

=−∇p in Eulerian coordinates "︷ ︸︸ ︷ (yczb − ybzc)pa + (yazc − ycza)pb + (ybza − yazb)pc
(xbzc − xczb)pa + (xcza − xazc)pb + (xazb − xbza)pc
(xcyb − xbyc)pa + (xayc − xcya)pb + (xbya − xayb)pc

〉 da dt.

(4.10)

Therefore, since δx and δp are arbitrary, from the variations (4.7) and (4.10) and
Hamilton’s principle (4.5) we conclude that

ẍ+
1
ρ

 (ybzc − yczb)pa + (ycza − yazc)pb + (yazb − ybza)pc
(xczb − xbzc)pa + (xazc − xcza)pb + (xbza − xazb)pc
(xbyc − xcyb)pa + (xcya − xayc)pb + (xayb − xbya)pc


=−Ω̇ × (x+ d)− 2Ω × ẋ−Ω × (Ω × (x+ d))−Q−1q̈− gΣ, J − 1= 0.

(4.11)

Now, transforming the equations of motion (4.11) from Lagrangian coordinates to
Eulerian coordinates we obtain

Du
Dt
+

1
ρ
∇p=−Ω̇ × (x+ d)− 2Ω × u−Ω × (Ω × (x+ d))−Q−1q̈− gΣ,

∇ · u= 0,


(4.12)

which are the Euler–Poincaré equations for the interior fluid motion relative to
the body frame x. The Euler equations in rotating coordinates are presented by
Alemi Ardakani & Bridges (2011). Here we have recovered these equations using a
variational principle in the Lagrangian particle-path formulation.

The momentum equation in (4.12) can be written in terms of the translational
acceleration in the body frame q̈b as

Du
Dt
+

1
ρ
∇p = −Ω̇ × (x+ d+ qb)− 2Ω × (u+ q̇b)

−Ω ×
(
Ω ×

(
x+ d+ qb

))
− q̈b − gΣ . (4.13)

Having developed a variational principle for rigid body dynamics with interior
fluid motion in three-dimensional rotating and translating coordinates, this variational
principle can be extended to the problem of interactions between water waves and a
floating rigid body with interior inviscid fluid motion.

5. A variational principle for interactions between water waves and a floating
rigid body containing fluid

Van Daalen et al. (1993) extended Luke’s variational principle for the classical
water-wave problem to the hydrodynamic interaction with a freely floating empty rigid
body, i.e. without interior fluid, in three dimensions. However, they did not present
the exact differential equations for the rigid body motion, due to the approximation
used for the angular velocity in the kinetic energy of the rigid body. Alemi Ardakani
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(2017) derived a coupled variational principle for the two-dimensional interactions
between ocean waves and a freely floating rigid body with interior fluid sloshing
with uniform vorticity. The complete set of equations of motion for the exterior water
waves, the exact hydrodynamic equations for the planar rigid body motion and the
full set of equations of motion for the interior potential flow of the body are derived.

The classical water-wave problem in three dimensions is described by the equations

1Φ :=ΦXX +ΦYY +ΦZZ = 0 for −H (X, Y) < Z <η(X, Y, t),
Φt +

1
2∇Φ · ∇Φ + gZ = 0 on Z = η(X, Y, t),

ΦZ = ηt +ΦXηX +ΦYηY on Z = η(X, Y, t),
ΦZ +ΦXHX +ΦYHY = 0 on Z =−H (X, Y) ,

 (5.1)

where (X, Y, Z) is the spatial coordinate system, Φ(X, Y, Z, t) is the velocity potential
of an irrotational fluid lying between Z=−H (X, Y) and Z=η(X,Y, t) with the gravity
acceleration g acting in the negative Z direction. In the horizontal directions X and Y ,
the fluid domain is cut off by a cylindrical vertical surface S of infinite radius which
extends from the bottom to the free surface. Then an extension of Luke’s variational
principle, for 3-D water waves, as reported by Van Daalen et al. (1993) reads

δLw(Φ, η)= δ

∫ t2

t1

∫
V(t)
−ρ

(
Φt +

1
2
∇Φ · ∇Φ + gZ

)
dV dt= 0, (5.2)

where the Bernoulli pressure, playing the role of the Lagrangian density, is integrated
over the transient fluid domain V(t), with variations in Φ(X, Y, Z, t) and η(X, Y, t)
subject to the restrictions δΦ = 0 at the endpoints of the time interval, t1 and t2.
In (5.2) the gradient vector field is denoted by ∇, and ρ is the water density. The
variational principle (5.2) recovers the complete set of equations of motion for the
water-wave problem described by (5.1).

In §§ 3 and 4, a variational principle is developed for dynamic coupling between
rigid body motion and its interior inviscid and incompressible fluid sloshing in
three-dimensional rotating and translating coordinates. This variational principle can
be extended to the problem of 3-D water waves in hydrodynamic interaction with a
freely floating rigid body containing fluid by the addition of the extended version of
Luke’s variational principle (5.2) to Hamilton’s variational principle (4.5) as

δL (Φ, η,Ω,Q, q, q̇, x, ẋ,p)= δ
∫ t2

t1

∫
V(t)
−ρ

(
Φt +

1
2
∇Φ · ∇Φ + gZ

)
dV dt

+ δ

∫ t2

t1

(∫
V ′

(
1
2
‖ẋ‖2
+ ẋ ·

(
Ω × (x+ d)+QTq̇

)
+QTq̇ · (Ω × (x+ d))

+
1
2
‖q̇‖2
− g(Q(x+ d)+ q) · ẑ

)
ρ da+

1
2
Ω · I fΩ

+
1
2

mv‖q̇‖2
+ (Ω ×mvxv) ·QTq̇+

1
2
Ω · IvΩ −mvg(Qxv + q) · ẑ

)
dt

+ δ

∫ t2

t1

∫
V ′

p(a, t)(J − 1) da dt= 0, (5.3)

where V(t) consists of a fluid bounded by the impermeable bottom Sb defined by the
equation Z=−H(X,Y), the free surface Sη defined by the equation Z= η(X,Y, t), the
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FIGURE 2. (Colour online) Schematic showing a floating structure containing fluid in
hydrodynamic interaction with exterior ocean waves.

vertical surface S and the wetted surface Sw of the rigid body interacting with exterior
water waves. The configuration of the fluid in a rotating–translating floating structure
interacting with exterior water waves is schematically shown in figure 2.

In order to take the variations δΦ and δη in (5.3), the variational Reynold’s
transport theorem should be used, since the domain of integration V is time dependent.
The background mathematics on the variational analogue of Reynold’s transport
theorem can be found in Flanders (1973), Daniliuk (1976) and Gagarina, van der
Vegt & Bokhove (2013). Then, according to the usual procedure in the calculus of
variations, the variational principle (5.3) for the variations δΦ, δη, δΩ , δQ, δq, δq̇,
δx, δẋ and δp becomes

δL (Φ, η,Ω,Q, q, q̇, x, ẋ, p)=
∫ t2

t1

∫
Sη

−

(
Φt +

1
2
∇Φ · ∇Φ + gZ

)∣∣∣∣Z=η ρ δη`−1 dS dt

+

∫ t2

t1

∫
Sw

P(X, Y, Z, t)(δXw · n) dS dt−
∫ t2

t1

∫
V(t)
(δΦt +∇Φ · ∇δΦ)ρ dV dt

+

∫ t2

t1

∫
V

〈
Γ ,−(x+ d)×

(
Du
Dt
+ 2Ω × u

)〉
ρ dx dt

+

∫ t2

t1

〈
Γ ,−mx×Q−1q̈− I tΩ̇ −Ω × I tΩ −mgx×Σ

〉
dt

+

∫ t2

t1

∫
V

〈
Q−1δq,−

Du
Dt
− 2Ω × u

〉
ρ dx dt

+

∫ t2

t1

〈
Q−1δq,−mQ−1q̈− Ω̇ ×mx−Ω × (Ω ×mx)−mgΣ

〉
dt

+

∫ t2

t1

∫
V

〈
δx,−

Du
Dt
− ρ−1

∇p− Ω̇ × (x+ d)− 2Ω × u−Q−1q̈

− Ω × (Ω × (x+ d))− gΣ
〉
ρ dx dt+

∫ t2

t1

∫
V
δp∇ · u dx dt= 0, (5.4)

where the results of §§ 3 and 4 are applied in taking the variations of the second
and third components of the variational principle (5.3). Note that in (5.4) after taking
the variations δΩ , δQ, δq, δq̇, δx, δẋ and δp of the coupled (interior fluid + body)
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system in the Lagrangian particle-path setting, the results are transformed to Eulerian
coordinates. In (5.4), Xw denotes the position of a point on the wetted body surface
Sw relative to the spatial frame X, n is the unit normal vector along ∂V ⊃ Sw in the
spatial frame, `= (1+ η2

X + η
2
Y)

1/2 giving dS= ` dXdY , and P is the pressure field of
the exterior water waves defined by

P(X, Y, Z, t)=−ρ
(
Φt +

1
2∇Φ · ∇Φ + gZ

)
on Sw. (5.5)

These variations are subject to the restrictions that they vanish at the endpoints of the
time interval. Moreover, the variations in η and Φ vanish on the vertical boundary at
infinity, i.e. on S .

The change in Xw due to the variations in Q and q is given by

δXw = δQxw + δq, (5.6)

where xw is the position of a point on the wetted rigid body surface Sw relative to the
body frame xb. Using the variations (5.6), the second integral on the right-hand side
of (5.4) simplifies to∫ t2

t1

∫
Sw

P〈δXw, n〉 dS dt =
∫ t2

t1

∫
Sw

P〈Q−1δXw,Q−1n〉 dS dt

=

∫ t2

t1

∫
Sw

P〈Q−1δQxw +Q−1δq,Q−1n〉 dS dt

=

∫ t2

t1

∫
Sw

P〈Γ̂ xw +Q−1δq,Q−1n〉 dS dt

=

∫ t2

t1

∫
Sw

P〈Γ × xw +Q−1δq,Q−1n〉 dS dt

=

∫ t2

t1

∫
Sw

P〈Γ ,−Q−1n× xw〉 + P〈Q−1δq,Q−1n〉 dS dt

=

∫ t2

t1

∫
Sw

P〈Γ , xw × nb〉 + P〈Q−1δq, nb〉 dS dt, (5.7)

where
nb =Q−1n, (5.8)

is the unit normal vector along Sw in the body frame xb. Taking into account the
motion of V(t), we may write

−
d
dt

∫ t2

t1

∫
V(t)
δΦρ dV dt= −

∫ t2

t1

∫
Sη

ηtδΦ

∣∣∣∣∣
Z=η

ρ`−1 dS dt

−

∫ t2

t1

∫
Sw

(Ẋw · n)δΦρ dS dt−
∫ t2

t1

∫
V(t)
δΦtρ dV dt. (5.9)

This is the same as the variational Reynold’s transport theorem but with variational
derivatives replaced by time derivatives. Noting that the left-hand side vanishes due
to the restriction δΦ = 0 at times t= t1 and t= t2, this expression simplifies to

−

∫ t2

t1

∫
V(t)
δΦtρ dV dt=

∫ t2

t1

∫
Sη

ηtδΦ

∣∣∣∣∣
Z=η

ρ`−1 dS dt+
∫ t2

t1

∫
Sw

(Ẋw · n)δΦρ dS dt.

(5.10)
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With Green’s first identity, we may write∫ t2

t1

∫
V(t)
∇Φ · ∇δΦρ dVdt=−

∫ t2

t1

∫
V(t)
1ΦδΦρ dVdt+

∫ t2

t1

∫
∂V
(∇Φ · n) δΦρ dS dt

=−

∫ t2

t1

∫
V(t)
1ΦδΦρ dVdt+

∫ t2

t1

∫
Sη

(−ηXΦX − ηYΦY +ΦZ) δΦ

∣∣∣∣Z=ηρ`−1 dS dt

+

∫ t2

t1

∫
Sb

(ΦXHX +ΦYHY +ΦZ)δΦ

∣∣∣∣
Z=−H

ρ dSdt+
∫ t2

t1

∫
Sw

∂Φ

∂n
δΦρ dS dt.

(5.11)

Now, using the expressions (5.7), (5.10) and (5.11), the variational principle (5.4)
simplifies to

δL (Φ, η,Ω,Q, q, x, p)=
∫ t2

t1

∫
Sη

−

(
Φt +

1
2
∇Φ · ∇Φ + gZ

) ∣∣∣∣Z=ηρδη`−1 dS dt

+

∫ t2

t1

∫
Sw

P(X, Y, Z, t) 〈Γ , xw × nb〉 + P(X, Y, Z, t)
〈
Q−1δq, nb

〉
dS dt

+

∫ t2

t1

∫
Sη

(ηt + ηXΦX + ηYΦY −ΦZ)δΦ

∣∣∣∣∣
Z=η

ρ`−1 dS dt

+

∫ t2

t1

∫
Sw

(
Ẋw · n−

∂Φ

∂n

)
δΦρ dS dt+

∫ t2

t1

∫
V(t)
1ΦδΦρ dV dt

−

∫ t2

t1

∫
Sb

(ΦXHX +ΦYHY +ΦZ)δΦ

∣∣∣∣
Z=−H

ρ dS dt

+

∫ t2

t1

∫
V

〈
Γ ,−(x+ d)×

(
Du
Dt
+ 2Ω × u

)〉
ρ dx dt

+

∫ t2

t1

〈
Γ ,−mx×Q−1q̈− I tΩ̇ −Ω × I tΩ −mgx×Σ

〉
dt

+

∫ t2

t1

∫
V

〈
Q−1δq,−

Du
Dt
− 2Ω × u

〉
ρ dx dt

+

∫ t2

t1

〈
Q−1δq,−mQ−1q̈− Ω̇ ×mx−Ω × (Ω ×mx)−mgΣ

〉
dt

+

∫ t2

t1

∫
V

〈
δx,−

Du
Dt
− ρ−1

∇p− Ω̇ × (x+ d)− 2Ω × u−Q−1q̈

− Ω × (Ω × (x+ d))− gΣ
〉
ρ dx dt+

∫ t2

t1

∫
V
δp∇ · u dx dt= 0. (5.12)

From (5.12), we conclude that invariance of L with respect to a variation in the
free-surface elevation η yields the dynamic free-surface boundary condition in (5.1),
invariance of L with respect to a variation in the velocity potential Φ yields the field
equation in (5.1) in the domain V(t), invariance of L with respect to a variation in the
velocity potential Φ at Z = −H(X, Y) gives the bottom boundary condition in (5.1),
invariance of L with respect to a variation in the velocity potential Φ at Z=η(X,Y, t)
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gives the kinematic free-surface boundary condition in (5.1) and invariance of L with
respect to a variation in the velocity potential Φ on Sw gives the contact condition on
the wetted surface of the rigid body,

∂Φ

∂n
= Ẋw · n on Sw. (5.13)

Invariance of L with respect to Γ gives the hydrodynamic equation of motion for the
rotational motion Ω(t) of the floating rigid body interacting with exterior water waves
and dynamically coupled to its interior fluid motion∫

V
−(x+ d)×

(
Du
Dt
+ 2Ω × u

)
ρ dx−mgx×Σ −mx×Q−1q̈

− I tΩ̇ −Ω × I tΩ +

∫
Sw

P(X, Y, Z, t)(xw × nb) dS= 0. (5.14)

Invariance of L with respect to Q−1δq gives the hydrodynamic equation of motion for
the translational motion q(t) of the floating rigid body containing fluid and interacting
with exterior water waves∫

V

(
Du
Dt
+ 2Ω × u

)
ρ dx+mQ−1q̈+ Ω̇ ×mx

+Ω × (Ω ×mx)+mgΣ −
∫

Sw

P(X, Y, Z, t)nb dS= 0. (5.15)

Finally, the invariance of L with respect to δx and δp gives the Euler equations
and continuity equation for the interior inviscid and incompressible fluid of the rigid
body in (4.12), respectively. The terms including the pressure field P(X, Y, Z, t) in
the hydrodynamic equations of motion (5.14) and (5.15) are the moments and forces
respectively acting on the rigid body due to interactions with exterior water waves.

In summary, the equations of motion for the exterior water waves in V(t) are (5.1)
with the contact boundary condition (5.13). The equations of motion for the interior
fluid of the rigid body are (4.12) which are dynamically coupled to the hydrodynamic
equations of motion for the floating rigid body (5.14) and (5.15). The evolutionary
system for the rigid body motion is completed by (3.37) and (3.38).

6. Concluding remarks
The paper is devoted to the derivation of a variational principle for dynamic

coupling between a rigid body undergoing three-dimensional rotational and translational
motions and its interior inviscid and incompressible fluid motion. The Euler–Poincaré
reduction framework of rigid body dynamics is used to derive the exact differential
equations for the linear momentum and angular momentum of the rigid body
containing fluid, and the Euler equations for the motion of the interior fluid of
the body relative to the rotating–translating coordinate system attached to the moving
rigid body. The variational principle is extended to the problem of three-dimensional
interactions between gravity-driven water waves and a freely floating rigid body
dynamically coupled to its interior fluid motion. The exact nonlinear hydrodynamic
equations of motion for the angular momentum and linear momentum of the floating
body are derived.
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The presented variational principle (4.5) for the coupled fluid–body dynamics and
the variational principle (5.3) for wave–structure–slosh interactions can be a starting
point for further analytical and numerical analysis of the dynamics of a liquid-filled
spacecraft, fluid sloshing dynamics in moving tanks, a freely floating ship with fluid-
filled tanks in hydrodynamic interaction with exterior water waves and the dynamics
of floating structures such as ducted wave energy converters (Leybourne et al. 2014)
and offshore wind turbines (Calderer et al. 2018) interacting with ocean waves. The
proposed variational principle (4.5) and the corresponding Euler–Poincaré equations
can be reduced for mathematical modelling of a suspended container with interior fluid
sloshing undergoing pendular oscillations and constrained to rotate on the surface of
sphere.

Variational principles are useful in constructing structure-preserving numerical
schemes. Instead of discretising the Euler–Lagrange or Euler–Poincaré equations, a
discretisation of the Lagrangian formulation allows for the derivation of integrators
that are symplectic, preserve energy over long-time integration and respect a discrete
version of Kelvin–Noether theorem which holds for solutions of the Euler–Poincaré
equations. Gagarina et al. (2014) developed a variational finite element method for
nonlinear free-surface gravity water waves using the potential-flow approximation
for an inviscid and incompressible fluid with an irrotational velocity field. Their
formulation stems from Luke’s and Miles’ variational principle (Luke 1967; Miles
1977) together with a space-plus-time approach for finite element discretisations that
are continuous in space and discontinuous in time. Pavlov et al. (2011) developed
variational Lie group integrators for incompressible perfect fluids based on the
Hamilton–d’Alembert’s principle, which are structure-preserving, exhibit long-time
energy behaviour and give rise to a discrete form of Kelvin’s circulation theorem.
Desbrun et al. (2014) proposed structure-preserving Euler–Poincaré variational
discretisations for rotating Euler equations and 2-D stratified flow in the Boussinesq
approximation, based on a finite-dimensional approximation of the group of
volume-preserving diffeomorphisms. A direction of great interest is to extend the
variational symplectic methods of Gagarina et al. (2014, 2016) and Kalogirou
& Bokhove (2016), for the exterior potential water waves, and the geometric
structure-preserving discretisations of continuum theories by Gawlik et al. (2011),
Pavlov et al. (2011) and Desbrun et al. (2014), for the interior rotating Euler
equations, to develop hybrid numerical discretisations for the proposed variational
principle (5.3) for 3-D interactions between exterior surface waves and a floating
structure with interior fluid sloshing.
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Appendix A. Proof of equation (3.7)

For the variations δΩ and δQ of the third term in the action functional (2.24) we
have
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δ

∫ t2

t1

∫
V ′

〈
QTq̇,Ω × (x+ d)

〉
ρ da dt

=

∫ t2

t1

∫
V ′

(〈
δQ−1q̇,Ω × (x+ d)

〉
+
〈
Q−1q̇, δΩ × (x+ d)

〉)
ρ da dt

=

∫ t2

t1

∫
V ′

(〈
−Q−1δQQ−1q̇,Ω × (x+ d)

〉
+
〈
Q−1q̇,

(
Γ̇ + (Ω × Γ )

)
× (x+ d)

〉)
ρ da dt

=

∫ t2

t1

∫
V ′
(〈−Γ̂Q−1q̇,Ω × (x+ d)〉

+ 〈Q−1q̇, (Γ̇ + (Ω × Γ ))× (x+ d)〉) ρ da dt

=

∫ t2

t1

∫
V ′

(〈
Q−1q̇× Γ ,Ω × (x+ d)

〉
+
〈
Γ̇ ,−Q−1q̇× (x+ d)

〉
+
〈
Ω × Γ ,−Q−1q̇× (x+ d)

〉)
ρ da dt

=

∫ t2

t1

∫
V ′

(〈
Γ , (Ω × (x+ d))×Q−1q̇

〉
−

〈
Γ ,−

d
dt

(
Q−1q̇× (x+ d)

)〉
+
〈
Γ ,−(Q−1q̇× (x+ d))×Ω

〉)
ρ da dt

=

∫ t2

t1

∫
V ′

(〈
Γ ,

d
dt

(
Q−1q̇× (x+ d)

)
+ (Ω × (x+ d))×Q−1q̇

〉
+
〈
Γ ,
(
(x+ d)×Q−1q̇

)
×Ω

〉)
ρ da dt

=

∫ t2

t1

∫
V ′

〈
Γ ,

d
dt
(Q−1q̇× (x+ d))+ (x+ d)× (Q−1q̇×Ω)

〉
ρ da dt, (A 1)

where the Jacobi identity is used in the last line. In integration by parts we used that
Γ (t) vanishes at the endpoints, i.e. Γ (t1)= Γ (t2)= 0.

Appendix B. Derivation of equation (4.7)

For the variations δẋ of the first term in (2.24) we have

δ

∫ t2

t1

∫
V ′

1
2
〈ẋ, ẋ〉ρ da dt=

∫ t2

t1

∫
V ′
〈δx,−ẍ〉ρ da dt. (B 1)

For the variations δx and δẋ of the second term in (2.24), assuming that Ω , Q and q̇
are constants, we have

δ

∫ t2

t1

∫
V ′

〈
ẋ,Ω × (x+ d)+QTq̇

〉
ρ da dt

=

∫ t2

t1

∫
V ′

(〈
δẋ,Ω × (x+ d)+Q−1q̇

〉
+ 〈ẋ,Ω × δx〉

)
ρ da dt

=

∫ t2

t1

∫
V ′

〈
δx,−

d
dt

(
Ω × (x+ d)+Q−1q̇

)
+ ẋ×Ω

〉
ρ da dt
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=

∫ t2

t1

∫
V ′

〈
δx,−

(
Ω̇ × (x+ d)+Ω × ẋ−Q−1Q̇Q−1q̇+Q−1q̈

)
+ ẋ×Ω

〉
ρ da dt

=

∫ t2

t1

∫
V ′
〈δx,−(Ω̇ × (x+ d)+Ω × ẋ− Ω̂Q−1q̇+Q−1q̈)+ ẋ×Ω〉ρ da dt

=

∫ t2

t1

∫
V ′

〈
δx,−Ω̇ × (x+ d)− 2Ω × ẋ+Ω ×Q−1q̇−Q−1q̈

〉
ρ da dt, (B 2)

where, when integrating by parts, we used the condition that the variations vanish at
the endpoints in time. Similarly, for the variations δx of the third term and also the
potential energy of the fluid in (2.24), assuming that Ω , Q, q and q̇ are constants, we
have respectively

δ

∫ t2

t1

∫
V ′

〈
QTq̇,Ω × (x+ d)

〉
ρ da dt =

∫ t2

t1

∫
V ′

〈
Q−1q̇,Ω × δx

〉
ρ da dt

=

∫ t2

t1

∫
V ′

〈
δx,−Ω ×Q−1q̇

〉
ρ da dt, (B 3)

and

δ

∫ t2

t1

∫
V ′
−g
〈
Q(x+ d)+ q, ẑ

〉
ρ da dt

= δ

∫ t2

t1

∫
V ′
−g
〈
(x+ d)+Q−1q,Σ

〉
ρ da dt=

∫ t2

t1

∫
V ′
〈δx,−gΣ〉 ρ da dt.

(B 4)

Taking the variations δx of the mass moment of inertia of the fluid in (2.24), assuming
that Ω is constant, gives

δ

∫ t2

t1

1
2
〈Ω, I fΩ〉 dt =

∫ t2

t1

1
2
〈Ω, δI fΩ〉 dt

=

∫ t2

t1

(〈
Ω,

(∫
V ′
〈δx, x+ d〉 Iρ da

)
Ω

〉
−

〈
Ω,

(∫
V ′

1
2
(δx⊗ (x+ d)+ (x+ d)⊗ δx) ρ da

)
Ω

〉)
dt

=

∫ t2

t1

∫
V ′
(〈Ω,Ω〉 〈δx, x+ d〉 − 〈Ω, δx〉 〈Ω, x+ d〉) ρ da dt

=

∫ t2

t1

∫
V ′
〈δx, 〈Ω,Ω〉 (x+ d)− 〈Ω, x+ d〉Ω〉 ρ da dt

=

∫ t2

t1

∫
V ′
〈δx,−Ω × (Ω × (x+ d))〉 ρ da dt, (B 5)

where the vector identity a × (b × c) = 〈a, c〉b − 〈a, b〉c is applied in the last line.
Now from (B 1), (B 2), (B 3), (B 4) and (B 5), it can be concluded that δL , for the
variations δx and δẋ, takes the form (4.7).
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