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Self-similar coalescence of clean foams
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We consider the stability of a planar gas–liquid foam with low liquid fraction, in
the absence of surfactants and stabilizing particles. We adopt a network modelling
approach introduced by Stewart & Davis (J. Rheol., vol. 56, 2012, p. 543), treating
the gas bubbles as polygons, the accumulation of liquid at the bubble vertices (Plateau
borders) as dynamic nodes and the liquid bridges separating the bubbles as uniformly
thinning free films; these films can rupture due to van der Waals intermolecular
attractions. The system is initialized as a periodic array of equally pressurized bubbles,
with the initial film thicknesses sampled from a normal distribution. After an initial
transient, the first film rupture initiates a phase of dynamic rearrangement where the
bubbles rapidly coalesce, evolving toward a new quasi-equilibrium. We present Monte
Carlo simulations of this coalescence process, examining the time intervals over which
large-scale rearrangement occurs as a function of the model parameters. In addition,
we show that when this time interval is rescaled appropriately, the evolution of the
normalized number of bubbles is approximately self-similar.

Key words: complex fluids, foams, interfacial flows (free surface)

1. Introduction
Porous metallic solids can be manufactured to be strong yet exceedingly lightweight,

making them useful materials in many engineering applications. Batch processing
techniques for manufacturing such materials proceed by the rapid solidification of
the corresponding gas–liquid foam (Banhart 2001). However, there are no available
surfactants for molten metals and so these protocols typically insert particles (for
example, SiC for molten Al) to reduce the rate at which the foam breaks up, or
coarsens, in the time before it can be solidified. In the absence of these particles
the gas bubbles coalesce rapidly, with breakup typically observed on time scales of
milliseconds in experiments (Garcia-Moreno et al. 2008).

To understand the dynamics of coalescence in molten metallic foams with low
liquid fraction we formulated a network model, described by Stewart & Davis (2012)
(hereafter referred to as SD), for planar molten metallic foams; this model takes
advantage of observation that as the liquid fraction of the foam decreases, the
liquid flow field can be decomposed into two distinct regions: uniformly thinning
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646 P. S. Stewart and S. H. Davis

liquid lamellae separating the gas bubbles (L), which drain toward accumulations of
liquid around the bubble vertices known as Plateau borders (PBs). The asymptotic
decomposition for drainage flow in an individual lamella, constructed by Breward &
Howell (2002) (and extended by Brush & Davis (2005)), can then be employed to
produce reduced models for the hydrodynamics in each region. In addition, we employ
a criterion for film rupture driven by van der Waals intermolecular attractions derived
by Anderson, Brush & Davis (2010). In SD, we employed this network model to
elucidate the rate of bubble coalescence when the gas–liquid foam is confined within
a solid box, observing that coarsening of the foam occurs in a number of distinct
phases, influenced heavily by interactions with the solid boundaries. This network
model approach has many similarities to vertex models for aqueous foams in both
two (Bolton & Weaire 1992; Weaire et al. 1992) and three dimensions (Okuzono &
Kawasaki 1995).

Aqueous foams, where surfactant has adsorbed to the interfaces and substantially
slowed thinning rate of the liquid bridges, exhibit coarsening (or disproportionation
or Ostwald ripening) driven by gas diffusion processes when the foam is disordered
(Weaire & Hutzler 1999), facilitated by the T1 process where two PBs coalesce and
separate in a more energetically favourable configuration (so a PB can interchange
neighbouring bubbles) and the T2 process where a bubble disappears when all of
the gas diffuses out across its boundaries. In the absence of film rupture, coarsening
driven by gas diffusion (in both two-dimensional and three-dimensional dry foams)
results in the average bubble side length scaling with t1/2 for t � 1 where t is
time (which can be derived formally from von Neumann’s law (Weaire & Hutzler
1999)). Instability and coalescence can also be triggered by external perturbations
to an aqueous foam, such as heating to induce a sequence of film ruptures, which
triggers rapid coalescence through film breakage (Burnett et al. 1995); this coalescence
process is inhomogeneous, where the average length of a bubble side grows slowly
as a function of the increasing average bubble area compared with a foam coarsening
by gas diffusion (Burnett et al. 1995; Chae & Tabor 1997; Hamsy et al. 1999).
In addition, Vandewalle et al. (2001) produced acoustic measurements of popping
bubbles in a coarsening aqueous foam, showing that the foam evolves by a series
of intermittent avalanches which follow a power law for long times. Experiments
indicate that coarsening through gas diffusion (or Ostwald ripening) is not sufficiently
fast to account for breakup of molten metallic foams (Banhart et al. 2001). In
contrast, in clean foams coarsening proceeds by bubble coalescence, driven by film
thinning over two distinct phases. In the first phase, film rupture triggers a cascade
of rapid topological rearrangement, which proceeds until the remaining films sweep
up sufficient liquid to partially stabilize their interfaces, and where the foam reaches
a new quasi-equilibrium (SD). The second phase of coalescence then proceeds by
isolated rupture events, which occur intermittently over much longer time scales (SD).

Coarsening by coalescence is observed in a large number of other systems involving
gas and liquid phases, such as liquid droplets on a prewetted surface (Gratton &
Witelski 2008, 2009) or capillary drops on a conduit network (van Lengerich, Vogel &
Steen 2010).

In this paper we use the network modelling approach of SD to understand the
coarsening dynamics of molten metallic foams in periodic domains (where there
are no boundaries to interact with) and perform Monte Carlo simulations for foams
initially composed of a large numbers of bubbles. In § 2 we briefly summarize the
network model of SD and discuss the extension to a planar periodic domain. In § 3 we
describe large-scale statistical simulations over a range of parameter values, examining
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FIGURE 1. (Colour online) Schematic representation of a planar gas liquid foam with low
liquid fraction, for M = 3, N = 4 in a two-dimensional periodic domain: (a) decomposition of
the flow field into PBs and lamellae; (b) corresponding network of interconnected nodes and
lines.

in particular the onset of coarsening and the rate of bubble coalescence. Finally, in § 4
we compare to coalescence simulations for a foam confined within a prewetted rigid
box.

2. Summary of the network model
We consider the dynamics of a planar gas–liquid foam with constant liquid fraction

φ; in general 0 < φ 6 1, but here we restrict attention to low liquid fractions where
0< φ . 0.1. The liquid phase is an incompressible Newtonian fluid of constant density
ρ and viscosity µ, while the gas phase is assumed to be inviscid and compressible. We
assume that both phases and the interfaces are clean (no particles or surfactants) and
the temperature is held fixed everywhere; furthermore, the surface tension coefficient
along each interface, γ , is assumed constant.

In SD we described a reduction of the full governing equations in the limit of low
liquid fraction, starting from the Navier–Stokes equations for the liquid and an ideal
gas law; the reduced system is composed only of ordinary differential equations and
algebraic constraints, which forms a useful basis for conducting large-scale simulations
with a much reduced computational cost compared with the full model. For the sake of
brevity we do not repeat the derivation here, but simply highlight the key features of
the modelling and present the resulting system of governing equations.

For low liquid fraction φ we decompose the flow field in a manner similar
to models of dry aqueous foams (Weaire & Hutzler 1999): liquid accumulates in
regions around the bubble vertices known as PBs; these borders are interconnected
by very thin liquid films, known as lamellae, which form the edges of the bubbles.
A typical foam composed of approximately regular hexagonal bubbles is shown in
figure 1(a). Throughout this paper we restrict attention to foams initially composed
of regular hexagonal bubbles of side length 2L, arranged in a regular array (M × N)
confined within a rectangular periodic domain (illustrated in figure 1a). Other initial
configurations and polydispersity can easily be considered within this modelling
framework. In this paper we choose the periodic box so that one side is initially
parallel to two of the bubble edges; this choice is not unique but the initial orientation
of the foam within the box does not have any influence on the subsequent behaviour.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

14
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.145


648 P. S. Stewart and S. H. Davis

It should be noted that in this particular arrangement N must be even to ensure
periodicity. We define coordinate axes parallel to the sides of the periodic box, denoted
as x̂ and ŷ, respectively, and describe position vectors as x = xx̂ + yŷ (illustrated on
figure 1a). To ensure that the rectangular periodic domain is compatible with the
M × N array of bubbles we choose the side lengths of the box as lx = 3NL (along
x̂) and ly =

√
3ML (along ŷ), respectively. We further assume that the gas bubbles

are all initially equally pressurized to P̂0, to ensure the initial array is a quasi-static
equilibrium of the system (although the films will still be draining) and the nodes
remain stationary until the system is perturbed by a film rupture. This is a great
advantage in comparison to configurations in rectangular boxes (SD) where hexagonal
bubbles cannot tessellate the domain perfectly and nodes must equilibrate over short
time scales introducing a bias in the subsequent evolution.

The liquid fraction of the foam is assumed to be distributed equally among the
M × N PBs (ignoring the small contribution in the thin lamellae, as is common in
modelling dry foams), so the initial radius of curvature of each gas–liquid interface
follows directly from the choice of liquid fraction φ,

â0 = L

 3
√

3φ
√

3− π
2


1/2

. (2.1)

We denote the typical thickness of a liquid film as ĥ0, which we assume to be small
compared with the length of the film, allowing a systematic reduction of the film
dynamics to a one-dimensional system (Erneux & Davis 1993, § 2.2). This formulation
results in the initial film thickness and the initial radius of curvature of the PB
interfaces being independent.

We also incorporate the influence of van der Waals intermolecular attractions,
which can drive instability on the film interfaces and subsequently rupture the film.
The Hamaker constant describing the strength of these attractions between adjacent
gas–liquid interfaces is denoted as A?.

In a similar manner to SD, we scale all lengths on L, velocities on the scale of

lamellar drainage U0 = (γ /µ) (ĥ0/â0)
1/2

(see Brush & Davis 2005), time on L/U0 and
pressures on the capillary scale γ /L. This results in six dimensionless groups

C = µU0

γ
, R= ρU0L

µ
, S= A?

6πγL2
, h0 = ĥ0

L
, a0 = â0

L
, P0 = P̂0L

γ
, (2.2)

the capillary, Reynolds and Sheludko numbers, the typical film aspect ratio and
PB curvature and the initial bubble pressurization. Henceforth, all variables are
dimensionless, unless otherwise stated.

The gas phase is assumed to be passive, so that the current bubble pressures Pj are
spatially homogeneous and related to the area enclosed Ab,j by an ideal gas law,

PjAb,j = P0A0 (j= 1, . . . ,MN), (2.3)

where A0 is the initial area of each bubble. As in SD, we ignore diffusion of gas
between the bubbles. In aqueous foams the bubble pressure is typically much larger
than the Young–Laplace pressure (γ /L). Here we investigate P0 as a parameter in
our model because the baseline pressurization in metallic foams will depend on the
method used to produce the molten foam (e.g. blowing gas through a nozzle).
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(a) (b)

FIGURE 2. (Colour online) Schematic representation of a planar PB: (a) trijunction node; (b)
redundant node.

In our network model reduction of the full equations (SD), we assume that all of the
liquid in a PB acts through a single point, known as a node, which moves dynamically
(§ 2.1); the lamellae map to lines along their midline (§ 2.2). The network analogue of
the foam shown in figure 1(a) is shown in figure 1(b).

2.1. Plateau borders to nodes

The velocity scale U0 has been chosen to ensure that C = (h0/a0)
1/2 (Breward &

Howell 2002). We operate in the semi-arid limit, where a0 = O(1), h0 � 1 (Brush
& Davis 2005). Further assuming that the Reynolds number is R = O(h1/2

0 ), the PB
is capillary static at leading order with uniform pressure p and each compartment
interface is an arc of constant curvature, meeting the midlines to the adjoining lamellae
tangentially.

The total area of liquid in a PB in this outer model, where the surrounding films
reduce to lines, takes the simple form

Ap =
3∑

j=1

(Pj − p)−2

{
tan
[
π

2
− 1

2
βj

]
− 1

2
(π− βj)

}
+ O(C) (2.4)

where βj as the angle swept out between two neighbouring lamellae (figure 2a) and Pj

is the gas pressure in the surrounding bubble.
Conservation of liquid area in the PBs takes the form,

dAp

dt
=

m∑
j=1

Qj, (2.5)

where the Qm (m= 2, 3), the flux of liquid moving into/out of the PB, are constructed
below. Once the area of liquid in the PB is known, the algebraic constraint (2.4)
determines the liquid pressure p̄.

For a conventional PB with three surrounding films, the total surface-tension force
on interface j is proportional only to the angle swept out between the surrounding
films, denoted θj1 6 θj 6 θj2 (see figure 2a),

Fj =
[
x̂ sin θ − ŷ cos θ

]θj2
θj1
+ O(C) (j= 1, 2, 3). (2.6)
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However, when one of the three films surrounding a PB ruptures, that node becomes
redundant and will equilibrate under surface tension, where the force is proportional to
the difference in angle swept out on either side of the two surrounding films, denoted
as β1 and β2, respectively (see the derivation in SD and figure 2b),

Fj = (−1)j βjβ̂12 + O(C) (j= 1, 2), (2.7)

where β̂12 is a unit vector in the direction parallel to the line which originates at the
node and bisects the angle β1 (figure 2b)

Following SD, a force balance about the geometric centre of the PB leads to an
evolution equation for the position X and speed U of the nodes in the form

dX
dt
= U, (2.8a)

RC
d
dt
(ApU)=

m∑
j=1

Fj − Cg(U)Ap. (2.8b)

The source of each term is discussed in detail in SD, but we pay special attention to
the damping term with unknown functional g; we follow SD in assuming that this is
linearly proportional to the node speed, g = KU , similar to Kern et al. (2004), where
K is a constant.

2.2. Thinning lamellae

The liquid lamellae bend to accommodate a pressure drop between the bubbles on
either side and drain liquid into the surrounding PB interfaces due to capillary viscous
suction. We assume bending is instantaneous to accommodate a pressure drop between
two bubbles of pressures P1 and P2, so that the radius of curvature of the film
midline is given by the Young–Laplace equation r = 2/|P1 − P2| and the uniform
liquid pressure p0 is the average of the gas pressures on either side, p0 = (P1 + P2)/2.

We approximate the length of the lamella by the straight-line distance between the
two surrounding nodes, denoted as l. In SD, we highlighted two possible limits on how
liquid area is exchanged between the PBs and the films as the nodes move. We termed
these limits extrusion and elongation; in the former limit the film is extruded from
the ends with constant thickness (so the area in the PB is changed) whereas in the
latter the lamella will elongate or contract while conserving area. In SD, we allocated
a parameter, λ, which spanned these two limits. We found slight differences between
the foam evolution in these two limits at early times, but these were due mainly to
the short time scale adjustment necessary for foams confined within a solid box; in
this paper we focus on the elongation limit, but do not expect significant differences in
these periodic domains, especially in the first phase of coalescence which is of interest
below. From Brush & Davis (2005) the drainage rate of a film of uniform thickness hL

and length l can be written as

dhL

dt
=−hL

l

dl

dt
−

2∑
i=1

Qi

l
. (2.9)

The drainage flux from the film into a trijunction PB can be determined by matching
through a transition region (Breward & Howell 2002), and is determined by the
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pressure drop from the film

Q= 3
16

(
2a0(p0 − p̄k)h3

L

h0

)1/2

. (2.10a)

When a node becomes redundant, the flow then reverses and moves into the two
remaining films, at a rate we assume proportional to the current film thickness,

Q=−Q̂hL, (2.10b)

where Q̂ is a constant.

2.3. Rupture criterion
We omit van der Waals forces explicitly in the governing equations, but following
Anderson et al. (2010) we employ a rupture criterion for the films, which states that
van der Waals instabilities will begin to grow toward rupture when the instantaneous
film thickness satisfies

hL <

(
8αS

f (ā/α)

)
(2.11)

where α is the ratio of the current film length to its initial length and f is a function
computed numerically by Anderson et al. (2010) and incorporated directly into our
model.

Once the film has broken, we instantly allow the two broken lamellar arms to retract
into the surrounding PBs, which now become redundant, with only two surrounding
films. These nodes then evolve according to (2.8b) with the surface tension force given
by (2.7) and liquid drains into the surrounding films according to (2.10b). Once all of
the liquid has drained out of these nodes, they are then removed from the calculation
and the two surrounding films are merged into one new lamella.

2.4. T1 and T2 transitions
When any two nodes come within a distance D� 1 apart, we enforce a topological
rearrangement, known as a T1 transition, where the two PBs merge and separate in
a new configuration with a lower surface energy. Because we do account for surface
energy here, this transition proceeds by a simple rearrangement of the nodes (see the
schematic in figure 3), very similar to that in the vertex models described by Weaire &
Hutzler (1999) and the new film is approximately orthogonal to the engulfed film. Full
details of the numerical implementation are given in SD. However, in the simulations
below we observe that T1 events are exceeding rare in these clean foams.

Because gas diffusion across the liquid films is ignored, T2 transitions, where all of
the gas diffuses out of a bubble, cannot occur. This is consistent with the experimental
observations of Banhart et al. (2001), where breakup of the foam is observed to occur
on time scales much faster than Ostwald ripening.

2.5. Numerical procedure
A brief summary of the model structure is provided in table 1, listing the equations
used to solve for each dependent variable. Numerical simulations of this model are
conducted in MATLAB using the ode15s package. Topological changes to the system,
such as film rupture, T1 transition and node deletion are detected using the events
package. Absolute and relative error tolerances are chosen to ensure less than 0.1 %
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(a) (b)

D

FIGURE 3. Schematic representation of a T1 transition, where the new film after merger is
approximately perpendicular to the initial film.

Variable Symbol Equation Initial number

Node position X (2.8a) 4NM
Node speed U (2.8b) 4NM
PB pressure p̄ (2.4) 2NM
PB liquid area Ap (2.5) 2NM
Lamella and film thickness hL (2.9) 3NM
Bubble pressure P (2.3) NM

TABLE 1. Summary of the network model, where the number of equations refers to the
initial configuration for an NM array of equally sized hexagonal bubbles.

error in first rupture time. In addition, total liquid volume is conserved within 0.1 %
over each simulation.

In this study we ignore the extra bubble area introduced by the bending of the
lamellae. This can be easily included within our formulation and, indeed, was present
in the simulations of SD. However, including this effect significantly increases the
number of dependent variables in the system, as the bubble pressures cannot be
immediately deduced from the bubble area. In this paper, our primary interest is
in the first phase of coalescence, before the redundant nodes are absorbed into the
surrounding films, so the bubble shape is well approximated by the polynomial portion
of the bubble. This assumption will lead to significant errors when bubbles have less
than three sides (see the examples in SD), but in the simulations below this occurs
long after the first phase of coarsening has ended.

3. Foam coarsening in a periodic domain
To gain insight into the coarsening of the foam through film rupture and bubble

coalescence, we conduct large-scale simulations of the network model described in § 2.
We introduce stochastic effects by sampling the initial film thickness from a normal
distribution with mean h0 and standard deviation d,

hL(0)= N(h0, d2h2
0). (3.1)
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We initialize the foam as a regular array of hexagonal bubbles, equally pressurized
to P0. In molten metallic foams the pressurization of the bubbles depends on the
processing method, so we investigate the dependency on this parameter below.

As in SD, we set the Reynolds number R= C = (h0/a0)
1/2. The model then has four

independent dimensionless parameters, the initial film thickness h0, the foam liquid
fraction φ, the Sheludko number S and the baseline pressure in the bubbles, P0. In
addition, we are interested in the dependency on the standard deviation in the initial
film thicknesses, d. We also have two ‘lumped’ parameters for our model, which
we set to K = 10 and Q = 1 throughout the simulations. As in SD, node motion is
overdamped.

In particular, we consider foam geometries consisting of M = 4, N = 8 (32 bubbles),
M = 5, N = 10 (50 bubbles), M = 6, N = 12 (72 bubbles), M = 7, N = 14 (98 bubbles)
and M = 8, N = 16 (128 bubbles). In figure 4 we illustrate a benchmark example of
coarsening in a foam initially consisting of 72 bubbles. The first rupture (t = 21.632)
initiates a dramatic period of coarsening, with 57 ruptures occurring over a time
interval of 0.7095 time units. In these panels solid lines represent lamellae, filled
black circles represent trijunction nodes and open circles represent redundant nodes. A
movie of the foam dynamics is provided as online supplementary material available at
http://dx.doi.org/10.1017/jfm.2013.145. Furthermore, our model also allows us to trace
the liquid pressure in the nodes and the total area of liquid in each PB (see SD for an
example).

We measure the coalescence of the foam by examining the evolution of the total
number of bubbles for each simulation, denoted as Nb(t), and shown in figure 5(a)
corresponding to the stills shown in figure 4. It should be noted that this is a discrete
measure; in SD we also examined the root mean square (r.m.s.) node speed as
a continuous measure of coarsening through coalescence, but small discontinuities
introduced by film rupture make this measure highly irregular (see figure 5b). The
simulation saturates to a plateau number of bubbles, reaching a new quasi-equilibrium,
which corresponds to the end of the first phase of coalescence. The remaining films
have swept up large amounts of liquid from the redundant PBs and are thus partially
stabilized. Further ruptures occur over much longer time scales, when these films have
thinned sufficiently.

To account for the stochastic initial conditions we conduct a large number of
simulations of the model (32 in this case), using initial conditions sampled according
to (3.1), for each parameter combination of interest. Quantities denoted with an
overbar represent an ensemble average over these simulations. We define the inter-
rupture time, denoted δt, as the average time between subsequent ruptures over the
time taken for the foam to evolve to half the initial number of bubbles. For our
purposes, we define the first phase of coalescence as having ended when the gap
between subsequent ruptures is greater than 10δt time units. From each simulation we
document the first rupture time, denoted tR, the length of the first phase of coalescence,
denoted 1t, and the change in the number bubbles over the first phase of coalescence,
denoted 1N . Also, since the velocity scale of lamellar drainage depends implicitly
on the liquid fraction of the foam, we are also interested in the first rupture time,
tC, with respect to the capillary velocity scale Uc = γ /µ. In table 2 we list the mean
and standard deviation of these quantities over 32 runs for a variety of parameter
combinations.

We begin by considering the onset of instability (§ 3.1), followed by an
examination of the rate of coarsening, showing that the rescaled coarsening curves
are approximately self-similar (§ 3.2).
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FIGURE 4. A typical example of foam coalescence in a foam initially composed of 72
bubbles: (a–l) 12 snapshots of the foam structure over the first phase of coalescence. Here,
the parameters in the model are fixed as P0 = 1.0, S = 10−10, φ = 0.05 and h0 = 0.01:
(a) t = 21.6315; (b) t = 21.8779; (c) t = 21.9765; (d) t = 22.0241; (e) t = 22.0566;
(f ) t = 22.1069; (g) t = 22.1409; (h) t = 22.1854; (i) t = 22.2255.

3.1. The onset of bubble coalescence
We initialize the foam as a regular array of equally pressurized bubbles. Until the first
film breakage occurs, the foam is in static equilibrium and the bubble pressures remain
constant (unlike in SD, where there was a period of short scale rearrangement due to
confinement in a box) and the lamellae are essentially thinning independently; there is
modest coupling between the thinning films as the liquid pressure in the nodes will
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FIGURE 5. The stepwise coalescence of the foam, for the topological rearrangement shown
in figure 4: (a) the evolution of the total number of bubbles; (b) the r.m.s. node speed.

increase slightly as liquid drains from the surrounding lamellae (see SD), but this will
make only a small difference to the onset of rupture.

The instability criterion for a single foam lamella (2.11) (obtained by Anderson et al.
(2010)), indicates that rupture is promoted by decreasing the initial film thickness
or by increasing the Sheludko number of the flow. Also, as shown in table 2, the
time until the first film rupture increases as the liquid fraction of the foam increases
when measured on the capillary time scale. These deductions are consistent with
observations in SD.

We observe that changing the initial baseline pressure in the bubble makes no
appreciable change in the first rupture time (see table 2). This is to be expected, as
when the foam is arranged as equally sized bubbles in static equilibrium (figure 4a),
the system is dependent on the pressure drop between the films and the PBs which
drives the drainage flow, but independent of the absolute value of the baseline
pressure.

However, increasing the variability in the initial film thickness serves to reduce the
first rupture time significantly and, hence, promote coarsening by coalescence (see
table 2). This is also to be expected, as when the foam is regularly arranged the first
film to rupture is that which is assigned the least initial thickness, and on average
the minimum film thickness assigned will decrease as the variability in the initial
condition increases.

3.2. The rate of bubble coalescence

To examine the rate at which the bubbles coalesce for a variety of initial foam
sizes, we first normalize the current number of bubbles by the initial number for that
arrangement N =Nb/Nb(0), so that 0 6 N 6 1.

As a first method for comparing the data, we superimpose the plot of the current
number of bubbles against time for 32 runs of the model for four initial foam sizes:
Nb(0) = 50, 72, 98, 128 shown in figure 6(a), holding the system parameters fixed:
P0 = 1, S = 10−10, φ = 0.05, where an overbar represents an ensemble average over
these simulations (summary statistics for these runs are listed in table 2). These curves
trace out the change in the normalized number of bubbles over time and are similar in
shape, but since the first rupture time varies over an interval the rate of coalescence
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FIGURE 6. (Colour online) The dependency on the initial size of the foam: (a) the evolution
of the normalized number of bubbles over time, t; (b) the evolution of the normalized number
of bubbles over rescaled time T ; (c) histogram of the normalized number of bubbles at the
end of the first phase of coarsening; (d) histogram of the time interval for the first phase
of coarsening. Here, the other parameters in the model are fixed as P0 = 1.0, S = 10−10,
φ = 0.05 and h0 = 0.01.

estimated from the superimposed data is not an accurate reflection of the individual
simulations.

A more meaningful method for comparing the data is to rescale time according to

T = t − tR

1t
(t > tR), (3.2)

so that 0 6 T 6 1 and the length of the phase of coalescence becomes unity in this
new measure. Replotting the averaged number of bubbles against this rescaled time
is shown in figure 6(b). Because time is now normalized with respect to the first
rupture time, the normalized number of bubbles at T = 0 is a small amount less than
one, N (0) = (Nb(0) − 1)/Nb(0) < 1. However, N (0)→ 1 as Nb(0)→∞, so this
effect becomes less important as the initial number of bubbles increases. Figure 6(b)
suggests that these curves are now approximately self-similar. Another indication of
self-similarity is that normalized number of bubbles in the foam at the end of the
first phase of coarsening is approximately constant (see the histogram in figure 6c),
between 17 and 20 % of the initial number. However, the time interval over which
this coalescence occurs increases with the initial number of bubbles, but appears
to saturate as the Nb(0) becomes large (figure 6d), so the normalized coarsening
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FIGURE 7. (Colour online) The role of baseline bubble pressurization in a foam initially
composed of 72 bubbles, for 3 particular choices P0 = 1.0, P0 = 10.0 and P0 = 50.0: (a)
the change in the normalized number of bubbles against rescaled time; (b) histogram of the
number of ruptures in the first phase of coalescence; (c) histogram of the time interval for the
first phase of coalescence. Here, the other system parameters are fixed as φ = 0.05, h0 = 0.01,
S= 10−10 and d = 0.1.

curves become approximately independent of the initial number of bubbles. However,
it would require a larger number of simulations in larger foams to conclude this
self-similarity definitively.

3.3. Baseline bubble pressurization

Foams can be produced by a variety of techniques, which will result in different
baseline pressure in the bubbles, so we investigate the rate of bubble coalescence
as a function of this parameter. Time is once again normalized according to (3.2),
where the corresponding change in the number of bubbles is shown in figure 7(a) for
P0 = 1.0, P0 = 10.0 and P0 = 50.0 holding all other parameters fixed. Interestingly, we
again observe that the evolution of the normalized number of bubbles is approximately
self-similar and the mean number of bubbles remaining in the system after the
large-scale rearrangement is approximately constant (figure 7b). This is in contrast
to observations in SD, where we found that the number of ruptures in the first phase
was strongly dependent on the baseline bubble pressure, but we attribute this effect
to confinement within the rigid box. However, the baseline bubble pressure has a
dramatic effect on the time taken for this first phase of coalescence, with the mean
time taken for the first phase decreasing as P0 increases (figure 7c).

3.4. Foam liquid fraction

The liquid fraction of the foam remains constant throughout the simulations; initially
the bulk of the liquid is located within the PBs, but as coalescence progresses the
liquid gradually accumulates in the remaining films, which then stabilizes them to
further ruptures. We investigate the rate of coalescence as a function of the foam
liquid fraction, examining the change in the number of bubbles against time (rescaled
according to (3.2)), where the curves again appear to be approximately self-similar
(figure 8a,b), with the time interval for the first phase of coalescence decreasing as the
liquid fraction decreases (figure 8c). This trend is also evident when the comparisons
are made on the capillary time scale.
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FIGURE 8. (Colour online) The role of liquid fraction in a foam initially composed of 72
bubbles, for 3 particular choices φ = 0.01, φ = 0.025 and φ = 0.05: (a) the change in the
normalized number of bubbles against rescaled time; (b) histogram of the number of ruptures
in the first phase of coalescence; (c) histogram of the time interval for the first phase of
coalescence. Here, the other system parameters are fixed as P0 = 1.0, h0 = 0.01, S = 10−10

and d = 0.1.
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FIGURE 9. (Colour online) The standard deviation of the film thickness for d = 0.05, d = 0.1
and d = 0.2, for a foam initially composed of 72 bubbles: (a) the change in the normalized
number of bubbles against rescaled time; (b) histogram of the number of ruptures in the first
phase of coalescence; (c) histogram of the time interval for the first phase of coalescence.
Here, the other system parameters are fixed as P0 = 1.0, φ = 0.05, h0 = 0.01 and S= 10−10.

3.5. Standard deviation of the initial film thicknesses
We also examine the dependency on the imposed inhomogeneity in the initial film
thickness (sampled according to (3.1)). The change in the normalized number of
bubbles, when plotted against rescaled time (3.2), is shown in figure 9(a) highlighting
that again the evolution is approximately self-similar, with the number of bubbles
remaining in the foam at the end of the first phase of coarsening being approximately
constant (figure 9b). However, as might be expected, the width of the time interval
over which this rearrangement occurs becomes greater as the variance of the
distribution of film thicknesses increases (figure 9c).

3.6. Master curve for bubble coalescence
To gain further insight into the master curve of bubble coalescence, we conducted
another 144 simulations for periodic foams starting with 72 bubbles fixing P0 = 1.0,
φ = 0.05, d = 0.1, S = 10−10 and h0 = 0.01 to obtain a smoother approximation to the
master curve, shown in figure 10(a). The stepwise nature of this curve suggests fitting
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FIGURE 10. Master curve for coalescence in a periodic domain starting from 72 bubbles: (a)
mean number of bubbles computed from 144 simulations (solid line) plotted against rescaled
time; (b) absolute error between the master curve and the normalized number of bubbles for
other parameter choices with 72 bubbles, sampled at 10 equally spaced points. The fitted
curve M (T ) (3.3a) is shown as open circles on (a).

using a hyperbolic tangent function of T , with three parameters, k, T0 and M0 in the
form,

M (T )=M0 − 1
21N tanh(k(T −T0)). (3.3a)

Least squares fitting of the curve using 20 gridpoints (using fminsearch in
MATLAB), results in the choice

k ≈ 4.09608, T0 ≈ 0.53232, M0 ≈ 0.59545, (3.3b)

with a r.m.s. error of 0.735 %. The fitted curve is shown as open circles on
figure 10(a). The mean rate of coarsening can then be approximated as a function
of the current number of bubbles by taking the derivative of M with respect to T .

This large number of runs also provides a better estimate of the number of
bubbles in the quasi-equilibrium state compared with the initial number, with
N (1)≈ 0.19618.

For other parameter combinations with 72 bubbles initially (see table 2), we can
also estimate the error between the normalized number of bubbles and this master
curve, discretizing T into 20 equally spaced points and computing the absolute error
between the two curves at these points, illustrated on figure 10(b). We find that the
absolute error is bounded by 0.04 in all cases, so this master curve is reasonable
approximation to the rescaled data.

However, the rate of bubble coalescence in an individual simulation still depends
strongly on the system parameters through the time interval 1t. Assuming a power-law
dependency on each of the parameters of interest, we express this in the form

1t = f (S, h0)P
α
0φ

βdγ . (3.4a)

The simulations in § 3.2 suggest that α < 0, β > 0 and γ > 0. The dependency of
this time interval on the Sheludko number and initial film thickness has not been
considered, and is represented by the functional f (S, h0). Fitting the coefficients in
(3.4a) based on the three combinations considered for each parameter of interest
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FIGURE 11. (Colour online) Coalescence in a foam initially composed of 72 bubbles
confined within a prewetted box: (a) initial bubble arrangement; (b) bubble arrangement
during the static equilibrium phase; (c) snapshot of coalescence during the first phase; (d)
the change in the normalized number of bubbles against rescaled time; (e) histogram of
the number of ruptures in the first phase of coalescence; (f ) histogram of the time interval
for the first phase of coalescence. Here, the other system parameters are fixed as P0 = 1.0,
φ = 0.0783, h0 = 0.01 and S= 10−10, d = 0.1.

(holding everything else fixed), we calculate

α ≈−0.103, β ≈ 0.285, γ ≈ 1.321. (3.4b)

However, a much larger sweep of parameter space would be required to confirm
power-law behaviour and construct these coefficients definitively.

4. Coalescence in a foam confined within a solid box
We can use a similar approach to examine the evolution of a surfactant-free foam

evolving within a prewetted solid box. The set-up of this model is described in SD,
with further details on how the boundary PBs slide over the liquid lining on the walls;
the foam is assigned an initial structure shown in figure 11(a), with gas allocated to
each bubble to ensure bubbles are equally pressurized to P0. This configuration is not
a static equilibrium (some films do not meet walls tangentially) and the foam evolves
over short time scales to the arrangement shown in figure 11(b). A typical snapshot of
the foam structure at a much later time is given in figure 11(c). Several examples of
coalescence in a box are given in SD, as well as a movie of the dynamics.

We conduct simulations of the foam illustrated in figure 11(b), sampling the initial
film thicknesses according to (3.1). For consistency, the films lining the walls of the
box must be chosen to be thicker, hf ∼ a2/3

0 h1/3
0 (further details in SD). We choose a
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liquid fraction to ensure C is identical to the case with φ = 0.05 in a periodic domain,
and a summary of 32 simulations is given in table 2.

We again normalize the current number of bubbles by the initial number, and rescale
time according to (3.2). The corresponding change in the mean number of bubbles
(over 32 simulations) is shown in figure 11(d), compared with the master curve for
evolution in a periodic domain. These two curves compare very well for late times
(almost overlapping), but at early times the dynamics in the box appears to be faster,
attributed to the bias introduced in the system by the node rearrangement on short
time scales, which results in the foam preferentially rupturing films close to the walls.
Interestingly, the mean number of bubbles remaining in the system at the end of
the first phase of coalescence is almost identical to the periodic foam (figure 11e).
However, the mean time taken for this phase of rearrangement is now much longer
(figure 11f ), indicating that confinement can significantly reduce the rate of bubble
coalescence.

5. Discussion
We have constructed a large-scale network model for the dynamics of a clean

liquid foam in a two-dimensional periodic domain, based on an existing formulation
for a foam evolving within a prewetted box (Stewart & Davis 2012). This model
is essentially a new method for conducting numerical experiments on surfactant-free
foams, illuminating time scales not currently accessible to the experimentalist.

Our model has many similarities to the model discussed in Bolton & Weaire (1992)
(see also Weaire & Hutzler 1999) for aqueous foams in the dry limit. However, in
clean foams (in the absence of surfactant and stabilizing colloidal particles) liquid
dynamics must be included explicitly and the foam is never in equilibrium. The model
incorporates coupling between pressure and area in the gas bubbles, surface tension
on the gas–liquid interfaces, bending and elongational flows in the liquid films and
a criterion for film rupture. However, one drawback of this approach is that because
all of the area of liquid in a PB is reduced to a single point in space, the estimate
of the bubble side length 2(L + a0) becomes increasingly worse as the liquid fraction
increases.

We conducted Monte Carlo simulations of our model, showing that after a transient
(depending on the initial thickness of the films), the first film rupture triggers a
sequence of further breakages and induces a long phase of topological rearrangement.
Eventually, the remaining films sweep up sufficient liquid from redundant PBs to
restabilize the foam into a new quasi-equilibrium; the mean number of bubbles in this
structure (averaged over a large number of simulations) is approximately independent
of the system parameters, ∼19 % of the initial number. The time interval for this
phase of coalescence appears to saturate as the initial number of bubbles becomes
large (figure 6e), but decreases with the baseline pressure in the bubbles (figure 7c)
and increases with both the foam liquid fraction (figure 8c) and the variance in
the distribution of initial film thickness (figure 9c); we approximated this parametric
dependence by fitting with a simple power law (3.4). In addition, when the time
variable is rescaled to normalize the interval of coarsening to the unit interval, we
showed that the coalescence is approximately self-similar across a wide area of
parameter space (figures 6b, 7a, 8a, 9a) and this normalized curve can be well
approximated using a hyperbolic tangent function involving only three parameters
(3.3a). When this time rescaling is applied to simulations of bubble coalescence
in foams confined within a prewetted box, the change in the mean number of
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bubbles agrees well with the periodic domain (figure 11e), although there is a slight
discrepancy at early times due to bias introduced by short time scale rearrangement of
the nodes in the confined case (figure 11d).

Over longer time scales, the bubbles continue to coalesce until the system is
composed of only a small number of isolated gas bubbles (so all of the PBs have
been absorbed into the films). We expect the dynamics of this coalescence process
will be more akin to diffusion-driven coarsening in aqueous foams (Weaire & Hutzler
1999), with the number of bubbles remaining exhibiting a power-law dependency on
time for long times. In addition, it would be interesting to consider the dynamics of
coalescence in three-dimensional foams or those initiated from a polydisperse state.
However, investigation of these questions is deferred to future work.
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