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EXTENDING THE HEGSELMANN–KRAUSE MODEL III:
FROM SINGLE BELIEFS TO COMPLEX BELIEF STATES

A B S T R A C T

In recent years, various computational models have been developed for studying
the dynamics of belief formation in a population of epistemically interacting
agents that try to determine the numerical value of a given parameter. Whereas in
those models, agents’ belief states consist of single numerical beliefs, the present
paper describes a model that equips agents with richer belief states containing
many beliefs that, moreover, are logically interconnected. Correspondingly, the
truth the agents are after is a theory (a set of sentences of a given language) rather
than a numerical value. The agents epistemically interact with each other and
also receive evidence in varying degrees of informativeness about the truth. We
use computer simulations to study how fast and accurately such populations as
wholes are able to approach the truth under differing combinations of settings
of the key parameters of the model, such as the degree of informativeness of the
evidence and the weight the agents give to the evidence.

1. I N T R O D U C T I O N

In recent years, a variety of computational models have been developed
for studying the dynamics of some clearly circumscribed types of epistemic
interaction.1 In these so-called models of opinion dynamics, truth-seeking agents
interact with each other and revise their beliefs either purely on the basis of these
interactions or, in the more advanced models, on the basis of the interactions
plus independent evidence they receive concerning the truth they are after. The
presumably best known model of this sort is the Hegselmann-Krause (HK) model,
developed by Rainer Hegselmann and Ulrich Krause, in which agents repeatedly
revise their beliefs by averaging (in a specified way), on the one hand, the average
of the beliefs of those agents in the model whose beliefs are close to their own and,
on the other hand, the truth.
A commonality of the models of opinion dynamics that have been devised

so far is that the truth the agents in them are after is the numerical value of
some parameter (which is typically left unspecified); accordingly, the belief states
of the agents consist of single numerical beliefs. This not only helps to keep the
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computational complexity of the models within certain boundaries, it also suggests
straightforward ways in which an agent may revise its belief in light of other agents’
beliefs and the evidence it receives; for example, it could simply take the arithmetic
mean of those beliefs and the evidence (which, in the said models, also comes in
the form of a number). But while, as we argued elsewhere (Douven and Riegler
2009), these relatively simple models already help to answer, or at least elucidate,
issues directly relevant to social epistemology, their scope is obviously limited in
this respect: human agents tend to have numerous beliefs, many of them of a
nonnumerical nature, which, moreover, are typically interconnected in certain ways.
If we want to study types of epistemic interaction between agents capable

of having such richer belief states – belief states that cannot be adequately
characterized by a single numerical value –we will have to look for models that,
in all likelihood, are more complex than the ones that have been developed until
now. It is far from obvious what such a model should look like. For instance,
it is not immediately clear how someone who believes both � and � might
reasonably compromise with someone who believes only the disjunction of these
propositions (even supposing they have no further beliefs). Surely they cannot
“meet in the middle” – as an analogue of taking the arithmetic mean – in any
straightforward sense. A belief state dynamics that considers such belief states
is certainly less clearly a candidate for computational modelling than the current
models of opinion dynamics. Nevertheless, in this paper we aim to take some first
steps toward developing such a model, building on Hegselmann and Krause’s work
and on previous related work of our own. In particular, the model described in the
following is a further extension of the two-dimensional variant of the HK model
presented in Riegler and Douven (2009), in which agents move in a discrete two-
dimensional grid, where they meet with other agents and update their respective
(numerical) beliefs in response to these meetings.
In the new model, we study agents of epistemically interacting truth-seeking

agents, where the truth is now a theory (a set of sentences belonging to a given
language, satisfying certain closure conditions) rather than a numerical value, and
where the agents also receive evidence in varying degrees of informativeness
about the truth. Computer simulations will be used to determine how fast and
accurately such populations as wholes are able to approach the truth under differing
combinations of settings of the key parameters of the model, such as the degree of
informativeness of the evidence and the weight the agents attribute to the evidence.
We will point out parallels between the results obtained in the new model and
those obtained in our earlier extensions of the HK model. But we start by briefly
rehearsing the basics of the original HK model and of some earlier extensions.

2. T H E H E G S E L M A N N - K R A U S E M O D E L A N D B E Y O N D

The basic components of the HK model are, first, a set of discrete time points,
second, a population of agents, each of which holds a belief at any given time,
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and third, an update mechanism for revising the agents’ beliefs. The agents are
supposed to be looking for the value of a given parameter �, located in the interval
[0, 1]. They antecedently know that the parameter lies in this interval and their
beliefs are consistent with this knowledge, so that, where xi(t ) is agent x’s belief at
time t , xi(t ) ∈ [0, 1] for all i and t . Agents simultaneously revise their beliefs about
� at each time t , where for each i the new belief at time t + 1 is given by

xi(t + 1) = �

∑
j∈Xi (t ) xj (t )

|Xi (t )| + (1− �)�. (1)

Here, |Xi(t )| is the cardinality of what we shall refer to as i’s epistemic neighborhood

at t , that is, the set of agents whose beliefs at t are close to i’s own belief at
that time; more formally, Xi(t ) = {j : |xi(t )− xj (t )| ≤ �}, for some � ∈ [0, 1] (in
Hegselmann andKrause’s terminology, i’s epistemic neighbors at t are those agents
that are within i’s bounded confidence interval at t ). The global parameter � ∈ [0, 1]
determines how much weight an agent attributes to its epistemic neighbors relative
to the evidence it receives about �. A useful informal way of thinking about this
model is that in it an agent’s new belief results from a combination of talking
to its epistemic neighbors and performing experiments, where the results of the
experiments point in the direction of �.
In previous papers, we have highlighted various limitations of the above model.

For instance, the model assumes that the agents always receive accurate evidence
regarding � and also that the agents’ beliefs all weigh equally heavily in the updating
process. In Douven (2009) and Douven and Riegler (2009), it was noted that
neither assumption is particularly realistic. For instance, researchers have to live
with measurement errors and other factors that make their data noisy, and it should
also be uncontroversial that, both in daily life and in scientific practice, the beliefs
of some count for more than those of others. Douven and Riegler (2009) thus
proposed an extension of the HK model which has instead of (1) the following as
an update rule:

xi(t + 1) = �

∑
j∈Xi (t ) xj (t )wj∑

j∈Xi (t )wj

+ (1− �)(� + rnd(�)). (2)

In this equation, wj ≥ 0 denotes the fixed reputation of agent j , and rnd(�) is
a function returning a unique uniformly distributed random real number in the
interval [−�,+�], with � ∈ [0, 1], each time the function is invoked.
One main result concerning this model was that in situations in which the

evidence agents receive may be noisy, populations of agents that attribute more
weight to talking to each other end up on average being closer to the truth over
time than populations of agents that give more weight to the evidence, although
the latter populations get faster to a value that is at least moderately close to the
truth. Another main result was that variations in the assignment of reputations have
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Figure 1. Three neighborhood structures: von Neumann (left), Moore (center), and
Gaylord-Nishidate (right). In each case j and k are spatial neighbors of i, whereas l is not.

neither a significant influence on average speed of convergence nor on average
accuracy of convergence, and that this is so even if some subgroup of agents
receives evidence that is considerably less noisy than the evidence the rest of the
population receives.
In Riegler and Douven (2009), we drew attention to another limitation of the

HK model (shared by the above extension of it), to wit, that it assumes, again
quite unrealistically, that all agents know at each point in time the beliefs of all the
other agents.2 To do away with this idealization, we extended the HK model by
adding spatial dimensions to it. In the extended model, each agent inhabits a site
in a discrete two-dimensional toroidal grid, facing one of the four cardinal points
of the compass. The agents can move in the grid according to certain determinate
rules. Unlike in the original HK model, an agent in this two-dimensional model
does not interact with all its epistemic neighbors at each time step, but only with
those that are to be found in its spatial neighborhood, where this notion can be
given various different definitions. In the paper, we made use of the von Neumann,
Moore, and Gaylord-Nishidate neighborhood structures, as depicted in Figure 1,
which are common in the literature (see, e.g., Gaylord and D’Andria 1998). The
first was actually used in two different ways, one in which agents interact with all
epistemic neighbors in their spatial neighborhood, and one in which they interact
only with those epistemic neighbors that are in their spatial neighborhood and that
face the agent’s position.3

Corresponding to the distinction between epistemic and spatial neighborhoods,
we characterized the development of agents through time by both a belief update
rule and a migration rule. For the former, we proposed this:

xi(t + 1) =
{

�
∑

j∈Xi (t )
xj (t )

|Xi (t )| + (1− �)(� + rnd(�)) if |Xi (t )| > 1,

xi(t ) otherwise,
(3)

where Xi (t ) now designates the set of i’s epistemic neighbors at t that are also
within its spatial neighborhood at that time. (Note that since each agent counts
trivially as its own epistemic and spatial neighbor at each time, the upper clause of
equation (3) is invoked only when there is at least one epistemic neighbor present
in the spatial neighborhood besides the agent itself.) For the migration rule, we
proposed that after an agent has updated its belief, it moves one step to the adjacent
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site it faces if that is free and not faced by at least one other agent, or else it
randomly changes its orientation to any of the four directions.
The results of the computer experiments conducted using this model warranted

the same conclusion we had been able to draw from our studies carried out by
means of the simpler extension of the HK model described four paragraphs back:
on the positive side, assuming the evidence to be noisy, talking to others helps
the agents to get, on average, closer to the truth – closer, at any rate, than if they
disregard the beliefs of others and go purely by the evidence; on the negative side,
talking to others decelerates the convergence to the truth.
While the two-dimensional model is clearly less idealized than the HK model,

it still has important limitations. As remarked at the outset, people typically have
much richer belief states than those the agents considered in the above models
are equipped with; they have belief states containing multitudinous beliefs, which
are not all numerical in nature and which tend to, or at least are hoped to, obey
certain logical principles (such as consistency). While the first of these issues – the
number of beliefs – has to some extent been addressed in the work of Lorenz
(2003, 2007, 2008), Jacobmeier (2004), and Pluchino, Latora, and Rapisarda (2006),
the agents in the models these papers present still only possess numerical beliefs,
which, moreover, fail to be interconnected in any interesting sense. In Section 3, we
aim to go beyond this by putting forward a two-dimensional model populated by
agents equipped with belief states containing not just numerous but also logically
related beliefs. In Section 4, we then investigate the basic properties of this model
by means of computer experiments.

3. C O M P L E X B E L I E F S T A T E D Y N A M I C S

We take from the two-dimensional extension of the HKmodel the idea that agents
can move in a two-dimensional space and epistemically interact only with those
agents that are both their epistemic and their spatial neighbors. However, the
belief states of the agents in the new model no longer consist of single numerical
beliefs but of theories formulated in a particular language. This requires both a
new definition of “epistemic neighbor” and a new belief update algorithm. The
definition, or rather definitions, of “spatial neighbor” remain unchanged, as does
the migration rule.
The belief states of the agents can be represented in a finitary propositional

language, Lm, for some m ∈ N+, built up from m atomic sentences {�i}i≤ m and
the usual logical connectives. We think of these languages as interpreted languages,
and we assume that for each of them the classical consequence relation (designated
by the symbol �) holds.
Let Tm be the set of theories that can be formulated in Lm. Then, where Bi(t )

is the belief state of agent i at time t , we have throughout the remainder that
Bi(t ) ∈ Tm, for all i and t . In the following, all theories – including belief states
and the truth – are implicitly assumed to be closed under the consequence relation.
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Note that there are only finitely many different theories that can be formulated in
each language – to be precise, 22

m

; in particular, there are 216 = 65, 536 different
theories that can be formulated in L4, which is the language we will work with in
our later computer experiments.
To give the new definition of “epistemic neighbor” and state the corresponding

belief update mechanism, we first introduce some notational conventions. By
elementary logic, each theory in Tm (for any m) can be stated as an Lm-sentence
in disjunctive normal form (DNF) that contains as disjuncts exclusively what
(following Carnap) we shall refer to as the state descriptions of Lm, that is, instances
of the schema ±�1 ∧ · · · ∧ ±�m, which are the logically strongest consistent
sentences of the language; we call this DNF the theory’s canonical DNF, or CDNF
for short. The state descriptions can be ordered so that each theory in CDNF
can be represented by a vector of 0’s and 1’s, where a 1 (respectively, 0) at the
n-th place of the vector indicates that the n-th state description occurs (does not
occur) in the CDNF. For example, assuming the following ordering of the state
descriptions of L2: 〈�1 ∧ �2,�1 ∧ ¬�2,¬�1 ∧ �2,¬�1 ∧ ¬�2〉, we can repre-
sent ¬�1 as the vector 〈0, 0, 1, 1〉, given that the CDNF representation of ¬�1 is
(¬�1 ∧ �2) ∨ (¬�1 ∧ ¬�2), that is, its disjuncts are the third and fourth elements
of the designated ordering; similarly, �1 → ¬�2 can be represented as the vector
〈0, 1, 1, 1〉 and �1 ∨ �2 as 〈1, 1, 1, 0〉. Note that, given this way of representing
theories, the inconsistent theory is represented by the vector 〈0, 0, 0, 0〉 and the
tautology by 〈1, 1, 1, 1〉; more generally, supposing the same type of coding, the
inconsistent theory in Lm is represented by a vector of 2m 0’s and the tautology
by one of just as many 1’s. Instead of introducing special notation for the vector
representation of theories in CDNF, we simply stipulate that, from now on,
whenever we speak of theories (or belief states, or the truth, or evidence), we mean
the vector notations of these theories’ CDNF’s. Also, in the following we shall use
T [k] to refer to the k-th element of (the vector notation of the CDNF of) theory T .
We can now define the notion of epistemic neighborhood for this new model

in terms of a metric on binary strings known in the literature as the Hamming

distance.4 Formally, the Hamming distance �(s1, s2) between binary sequences s1
and s2 is defined as the number of digits in which they differ. Clearly, given
the above convention of coding theories as binary vectors, we can speak of the
Hamming distance between two theories. Thus, for example, still assuming L2, if
agent i’s belief state at t is (the logical closure of) ¬�1 and agent j ’s is (the logical
closure of) �1 → ¬�2, then �(Bi(t ),Bj (t )) = 1 (because Bi(t ) and Bj (t ) differ
just with respect to �1 ∧ ¬�2). In these terms, we can define agent i’s epistemic
neighborhood at t as

Ei(t ) := {j : �(Bi(t ),Bj (t )) ≤ �}, with � ∈ N.
To give a concrete example in L2, if Bi(t ) = �1 ↔ �2 and � = 1, then Ei(t )
consists of agents j (if any) such that Bj (t ) ∈ {�1 ∧ �2,¬�1 ∧ ¬�2,�1 →
�2,�2 → �1,�1 ↔ �2}.
150 E P I S T E M E 2009

https://doi.org/10.3366/E1742360009000616 Published online by Cambridge University Press

https://doi.org/10.3366/E1742360009000616


EXTENDING THE HEGSELMANN–KRAUSE MODEL III

From the foregoing definition and the fact that � is a metric, we can derive
some important properties of epistemic neighborhoods. First, by the definition of
a metric, � is reflexive – that is, �(Bi(t ),Bi(t )) = 0 for all i and t – and so i ∈ Ei(t )
for all i, t , and �. Second, by the same definition, � is symmetric, so that j ∈ Ei(t )
iff i ∈ Ej (t ) for all i, j , t , and �. However, we do not generally have that if i ∈ Ej (t )
and j ∈ Ek(t ), then also i ∈ Ek(t ).
Agents interact with other agents who are in both their epistemic and spatial

neighborhoods, where, as intimated, the latter is understood in one of the ways
defined in Section 2. Thus, where Si(t ) designates i’s spatial neighborhood at t (for
some given neighborhood structure), we say that i at t interacts with all agents in
Ni(t ) = {j : j ∈ Ei(t ) ∩ j ∈ Si (t )}.
The agents’ goal is to determine the truth, which again we designate by �. This

time, however, the truth is not the numerical value of a given parameter, but rather
a contingent theory formulated in the agents’ language. It is not necessarily the case
that � is one of the state descriptions ofLm; consider that scientists are not typically
after a complete description of the actual world, but rather after a nomological
characterization of it, that is, roughly, a characterization of the laws our world obeys
or, what amounts to the same, a characterization of the set of possible worlds
obeying the laws that the actual world obeys (see, e.g., Kuipers (2000, ch. 7) for
more on this).
Also, as in the previous models, the agents receive evidence about �, which

this time consists of theories in the agents’ language that are entailed by �. More
precisely, if at t agent i meets with one or more epistemic neighbors, then it
gets access to a piece of evidence Ei(t ) ∈ Tm such that � � Ei(t ). What we shall
call the “informativeness” of a given piece of evidence (how much weaker than
� is it?) is constrained by � = 〈�min, �range〉, such that �min ≤ �(�,Ei(t )) ≤ �min +
�range < 2m. So, assuming L2, � = �1 ∧ ¬�2, �min = 0, and �range = 2, an agent
could for instance receive the evidence (�1 ∧ ¬�2) ∨ (¬�1 ∧ ¬�2) (≡ ¬�2), or
the weaker evidence (¬�1 ∧ �2) ∨ (¬�1 ∧ ¬�2) ∨ (�1 ∧ ¬�2) ∨ (¬�1 ∧ ¬�2)
(≡ ¬�1 ∨ ¬�2), or also the very strong evidence �1 ∧ ¬�2 (i.e., �).
To come to the belief update procedure, assume again some ordering of the 2m

state descriptions of Lm, and define

Ai(t ) :=
∑

j∈Ni (t )

Bj (t ) + � · |Ni(t )| · Ei(t ). (4)

Then agent i at t determines its new belief state Bi(t + 1) as follows:

Bi(t + 1)[n] =


1 if Ai(t )[n] > �,
0 if Ai(t )[n] < �,
f (0, 1) otherwise,

(5)

where � is a threshold value defined as (� + 1)|Ni(t )|/2, and f (0, 1) a function that
randomly outputs either a 0 or a 1, with equal probability. A bit less formally, the
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agent first aggregates into a vector Ai(t ) the belief states of his neighbors plus the
evidence, weighted in a certain way. Then it compares each elementAi(t )[n] of this
vector against a threshold � and it adopts the corresponding state description as
a disjunct of the CDNF characterizing its new belief state iff either the element is
above the threshold or it is equal to it and a flip with a fair coin turns out in favor
of the element. Putting the last part a bit differently again, if Ai(t )[n] is above �,
then the n-th element of the assumed ordering of state descriptions of Lm will be
a disjunct of the CDNF of Bi(t + 1); if it is below the threshold, then it will not

be among those disjuncts; and if it is equal to the threshold, it will be a disjunct
of that CDNF depending on the outcome of a coin flip. As may be noticed, the
foregoing leaves open the possibility that Bi(t + 1) is the inconsistent theory. But
we may assume that an agent would notice if it is about to end up with inconsistent
beliefs, and would want to avoid this. We thus add to the belief update mechanism
the clause that if, according to (5), Bi(t + 1)[n] = 0 for all n ∈ {1, . . . , 2m}, then
the agent at t + 1 randomly adopts a contingent theory in its language. Figure 2
presents the pseudo code of the belief update mechanism.
The parameter � determines the weight the evidence has in the belief update

relative to the belief states of the agents that are both epistemic and spatial
neighbors; it thereby plays a role in the current belief update mechanism that is in a
way analogous to the role the parameter of the same name plays in the HK model
(which is, of course, why we have chosen the same name). As a further parallel
with that model, we note that while, in the new model, the agents do not literally
adopt as their new belief state some (weighted) average of the average belief states
of their neighbors and the evidence – as the agents in the earlier models do – they
could still be said to average in a more metaphorical sense, by pooling the belief
states of their neighbors and the weighted evidence and then distilling something
like a majority belief state from this. To make the idea clearer, think of the belief
update as a kind of voting procedure in which the agent’s neighbors vote about
each state description of the language, with the evidence also having a vote – in
fact, � times the number of neighbors votes – and where a state description will
end up as a disjunct in the CDNF representation of the agent’s new belief state
if, among these votes, there is a majority of yea’s for it. It is not too unnatural, it
seems to us, to think of the outcome of this procedure as a sort of average of the
individual belief states plus the weighted evidence.
To illustrate the belief update mechanism, still assume L2, and assume some

ordering of its state descriptions. Furthermore, suppose that Ni(t ) = {i, j , k},
and let Bi(t ) = 〈1, 0, 0, 0〉, Bj (t ) = 〈1, 0, 0, 1〉, and Bk(t ) = 〈1, 1, 0, 1〉. Let Ei(t ) =
〈0, 1, 0, 1〉, and let � = 1. Then

Ai(t ) = 〈1, 0, 0, 0〉 + 〈1, 0, 0, 1〉 + 〈1, 1, 0, 1〉 + 1 · 3 · 〈0, 1, 0, 1〉
= 〈1, 0, 0, 0〉 + 〈1, 0, 0, 1〉 + 〈1, 1, 0, 1〉 + 〈0, 3, 0, 3〉
= 〈3, 4, 0, 5〉.

152 E P I S T E M E 2009

https://doi.org/10.3366/E1742360009000616 Published online by Cambridge University Press

https://doi.org/10.3366/E1742360009000616


EXTENDING THE HEGSELMANN–KRAUSE MODEL III

foreach agent of population {
foreach state-description {

aggregated-belief-states[state-description] = 0
}

# loop through spatial neighbors including oneself

foreach neighbor in spatial-neighborhood(agent) {
if hamming-distance(belief-state[agent], belief-state[neighbor]) <= epsilon {

num-neighbors ++
foreach state-description of belief-state[neighbor] {

aggregated-belief-states[state-description] ++
}

}
}

# include evidence

evidence = add random-num(zeta) state-descriptions as disjuncts to tau
foreach state-description of evidence {

aggregated-belief-states[state-description] =+ alpha * num-neighbors
}

num-neighbors =+ alpha * num-neighbors

# calculation new belief state

threshold = num-neighbors / 2
new-belief-state = [ ]
foreach state-description {

if aggregated-belief-states[state-description] > threshold {
add state-description to new-belief-state
}

else if aggregated-belief-states[state-description] = threshold {
if flip-coin = heads {

add state-description to new-belief-state
}

}
}

if new-belief-state = [ ] {
new-belief-state = contingent theory of random length
}

}

Figure 2. Pseudo code of belief update algorithm.

The threshold � = (1+ 1) · 3/2 = 3. So, applying (5) yields either Bi(t + 1) =
〈1, 1, 0, 1〉 or Bi(t + 1) = 〈0, 1, 0, 1〉, depending on how the coin flip turns out for
the first state description. Notice that if agent i’s evidence at t had been, in vector
notation, 〈0, 0, 1, 0〉 instead of 〈0, 1, 0, 1〉, the agent might have ended up with the
inconsistent theory at t + 1, were it not for the additional clause that it would then
randomly pick a contingent theory.
We have two comments on the foregoing. First, it may have been noticed that (5)

leaves open the possibility that an agent’s belief state at t + 1 is inconsistent with
the evidence it received at t . Imagine, in the above example, that instead of the
theory 〈0, 1, 0, 1〉, agent i had received 〈0, 0, 1, 0〉 as evidence at t and that � = .5.
Then, as one easily calculates, we would have had Bi(t + 1) = 〈1, 0, 0, 0〉, which
is inconsistent with the evidence 〈0, 0, 1, 0〉. This may appear strange, as it would
seem to amount to ignoring the evidence – the information that comes directly
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from the world, so to speak – in favor of the beliefs of the neighbors. However,
we should warn here against too literal an interpretation of the phrase “receiving
evidence.” We think of (4), and of the part the second summand plays in it, exactly
as Hegselmann and Krause think of (1), and of the part this equation’s second
summand plays (see, e.g., their (2006, sect. 1)). Together the summands capture

how the agents revise their beliefs, partly based on the beliefs of others, partly on
evidence they get. But the equations do not state the belief update rules the agents
use to update their beliefs (these rules are left unspecified). Just as in the HKmodel,
where the agents do not directly perceive the value of �, in our model the agents do
not directly perceive the evidence; that an agent receives a certain piece of evidence
is to be interpreted as meaning that that piece of evidence influences the agent’s
belief update in a way captured by (5).
Second, while the belief update mechanism stated above was motivated by a

desire to stay conceptually as close as possible to the belief update mechanism of
the HKmodel, it is not too hard to think of, and it seems worthwhile investigating,
variant mechanisms. For instance, one can easily think of different ways of weighing
the evidence relative to the belief states of the neighbors, or of differently defined
thresholds, or of having the agents resolve tie situations (i.e., situations in which
the number of yea’s for a given state description is equal to �) in ways different
from flipping a coin. And the Hamming distance is certainly not the only metric
that can be defined on the set of theories. Furthermore, we took the evidence to be
always entailed by the truth. One could extend the model by allowing for evidence
that is, while consistent with, not entailed by the truth, or even for evidence that
is inconsistent with the truth (misleading evidence). We experimented with some
of the possible variants and extensions, but these yielded results that were not
interestingly different from those to be presented below.5

4. C O M P U T E R S I M U L A T I O N S

This section presents selected results from the computer experiments we
performed in order to explore the above model of complex belief state dynamics.
As intimated earlier, we used in all experiments the language L4. An experiment
invariably starts with randomly selecting an element of T4 the value of �, with
the restriction that the CDNF of � was to have at least one disjunct and at most
eight (that is, half of 2 to the number of state descriptions of the language; we
wanted to avoid truths that were exceedingly weak, though the exact number was
chosen arbitrarily). Then agents are randomly placed on the 25×25 toroidal grid
(see Section 2) and equipped with randomly generated theories whose CDNF’s
were to have at least as many disjuncts as the CDNF of � (thus, the agents’
initial belief states were never logically stronger than �). Running the experiment
meant applying repeatedly for a fixed number of time steps the belief update
and migration algorithms to all agents. Each simulation was iterated a number of
times with varying seeds for the random generator to ensure a sufficiently high
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Figure 3. Convergence to � for various neighborhood structures. The x-axis represents
time steps, the y-axis is the average distance from �.

variation of randomly generated truths, belief states, and evidence sentences. We
were interested in the impact the model’s core parameters – specifically, �, �, and
� –would have on the population’s ability to track the truth, in particular on speed
and accuracy of convergence to �. In the experiments, we calculated averages over
the different iterations of the average distance from the truth of the agents’ belief
states at each time. The average distance from the truth at t was simply defined as
(1/n)

∑
i≤n �(Bi(t ), �) for a population of n agents.

If not indicated otherwise, the following parameter settings were assumed.
Number of time steps: 100; number of iterations: 100; type of neighborhood:
Gaylord-Nishidate; number of agents: 100; � = .1; � = 6; and � = 〈0, 3〉.

4.1. Spatial neighborhoods and population density

Before focusing on the impact of the core parameters, we did some tests in order
to determine, first, which of the various spatial neighborhood structures defined in
Section 2 yields the best results in terms of speed and accuracy of convergence to
�, and second, whether population density is a factor in the same regard.
Based on the results obtained in the simpler two-dimensional model, we

expected a more extensive neighborhood to do better in the said respects than
a smaller one, which would favor the Gaylord-Nishidate neighborhood structure
(comprising 13 sites) over Moore (9 sites) and the two von Neumann ones
(each 5 sites). This was confirmed by the results of experiments, which are
shown in Figure 3: the fastest convergence is achieved by the Gaylord-Nishidate
neighborhood (solid), followed by Moore (dashed), von Neumann simpliciter
(dotted), and von Neumann facing (dash-dotted). Even after 300 time steps,
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Figure 4. Convergence to � for different population densities (in percent).

Gaylord-Nishidate keeps the lead in an increasingly decelerated approach toward
�. Because of this, we used the Gaylord-Nishidate neighborhood in all our
experiments.
In order to determine the impact of the population density on convergence

behavior, we systematically varied the population density between 10% and 70%
in steps of 10%. As the environment is a 25×25 grid, thus consisting of 625
sites, this amounts to a spectrum ranging from 62 to 437 agents. As can be seen
from Figure 4, this made very little difference in terms of accuracy and speed of
convergence. We thus felt justified in keeping the number of agents fixed at 100 in
all further experiments.

4.2. Informativeness of the evidence

To what extent does the informativeness of the evidence, as determined by
the parameter �, influence the convergence behavior of populations of truth-
seeking agents? To answer this question, we performed experiments in which
we systematically varied �min and �range as discrete numerical values between 0
and 8.
In the experiments concerning �min, we kept �range at 3. The results, which are

visualized by the left-hand graph in Figure 5, indicate that for small values of �min
there is a speedy and accurate convergence to �, for middle values of �min there is
still convergence, albeit not quite as speedy and accurate, and for larger values of
�min there is no convergence to � at all, but even a slight moving away from �. These
findings turned out to be largely insensitive to the value of �, at least as long as this
remained between 0 and 1. The right graph compares the situation after t = 100
for � = .1 with the situation after t = 100 for � = 1.1.
The results clearly suggest that as long as �min is relatively low, epistemic

interaction helps populations of truth-seeking agents to get closer to the truth
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Figure 5. Left: Variation of �min from 0 to 8, with �range = 3. Right: the situation after
t = 100 for � = .1 (squares) and � = 1.1 (circles); the x-axis represents �min, the y-axis
distance from �.

than one would expect them to get purely on the basis of the evidence, given
the informativeness of the evidence. For instance, even with �min = 0, the
evidence the agents get will still be at a Hamming distance of, on average,∑2

i=0 i

(
16
i

)
/
∑2

i=0

(
16
i

)
≈ 1.87 from � (given that �range = 3). Nevertheless,

after 100 time steps, the agents are only at an average distance of approximately .7
from �. Even more remarkably, with �min = 3, the evidence the agents get will be
at a Hamming distance of, on average,

∑5
i=3 i

(
16
i

)
/
∑5

i=3

(
16
i

)
≈ 4.56 from

�, and still the agents end up, after 100 time steps, at an average distance of only
approximately .96 from �. However, from the right-hand graph in Figure 5, it
emerges that for �min > 3, interaction is actually counterproductive: by purely going
by the evidence –which is what happens if � > 1 (see Section 4.4) – the agents do
better in terms of accuracy of convergence.
We strongly suspect that the positive effect of interaction for lower values of �min

is due to a parallel of the “averaging effect” pointed to in Douven (2009) for the case
where agents receive noisy data about the numerical value of a given parameter.
The noise is, in the variant of the HKmodel considered there, spread out randomly
but evenly around that value. By epistemically interacting and thereby adapting
their beliefs to a middle value, the agents to a large extent annihilate the random
noise – the randomness gets “averaged out,” so to speak. The present results give
reason to believe that even though for sets of sentences there can be no averaging
in the literal sense of the word, something very much like an averaging mechanism
is operative in the new model. Evidently, this requires further investigation, which
must await another time, however.
As for why at around �min = 4 the convergence gets so much worse, the best

explanation would seem to involve the fact that not only will the Hamming distance
between � and the pieces of evidence the agents receive, on average, increase as
�min goes up, the average Hamming distance between these pieces of evidence
themselves will, up to �min = 7, also increase.6 For thereby the evidence may fail
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Figure 6. Variation of �range from 0 to 8, with �min = 0; � = .1.

to bring the agents sufficiently close to each other for them to count as epistemic
neighbors, so that the (hypothesized analogue of the) averaging effect peters out.
Something similar may explain why for �min ≥ 6, there is a slight moving away
from �. Agents with belief states that are initially closer than 6 to � may gradually
be pulled away from the truth by the evidence –which from �min ≥ 6 onward is
on average at a distance of at least (approximately) 7.15 from � –without this being
sufficiently counteracted by the averaging effect of epistemic interaction, as too few
spatial neighbors will also be epistemic neighbors; thereby the population’s average
distance from � comes to exceed its average initial distance from �.7

Whereas a high �min keeps all agents at a certain distance from �, a high �max =
�min + �range is compatible with agents’ receiving evidence very close to � (they may
even receive evidence identical to �, if �min = 0), such that at any time there may
remain sufficiently many agents close to � to guarantee that subsequent interaction
pulls the unfortunate agents who got highly uninformative evidence back toward
�, or in any event that it pulls enough of such agents back to keep the population’s
average distance from � low. One might thus expect that, provided �min is low, even
with �range = 8, the convergence behavior should not be as drastically impaired
as in situations in which �min is high. The experiments in which we varied �range
while keeping �min at 0 confirmed this expectation. In fact, while the speed of
convergence decreases slightly with higher �range, in all settings for �range, after 100
time steps the agents end up with belief states quite close to � (see Figure 6 for the
results).
The upshot of these experiments is that whereas a higher maximal deviation

of the evidence from � delays the convergence but does not make it less
accurate in the end, a higher minimal value for the deviation (as determined by
�min) has a dramatic impact on the population’s ability to converge toward the
truth.
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Figure 7. Varying �; � = .1.

4.3. Varying the value of �

People may embrace a more closed-minded or a more open-minded approach in
interacting with others, in the sense that they may be more or less ready to also
take into account belief states that are at greater variance with their own. In the
HK model, the parameter � determines how open-minded (or closed-minded) the
agents are; in our model of complex belief state dynamics, this is determined by
the parameter of the same name. Hegselmann and Krause’s work on the former
model shows that even small differences in the size of (their parameter) � can
have a significant effect on the long-run development of the agents’ beliefs (e.g.,
on whether these beliefs converge to a common value, or whether they polarize,
or whether they group together into various clusters). As Figure 7 suggests, our
model is also very sensitive to the size of (our parameter) �. Populations in which
agents interact only with their closest epistemic neighbors (� = 3) show little or
no convergence, whereas populations of more open-minded agents (� = 6) greatly
benefit from interacting. (The Figure shows results only for � = .1, but further
experiments revealed that the impact of the size of � is relatively independent of
the value for �.)

4.4. Varying the value of �

The value of � determines the weight the agents attribute to the evidence they
receive relative to the weight they attach to the beliefs of the epistemic neighbors
they happen to meet. We investigated the influence of this parameter on the speed
and accuracy of convergence.
Given that the evidence is unable to exert any force on the agents’ belief states

when � = 0, we cannot expect any convergence in this situation; unsurprisingly,
that is also what computer experiments show. As for � < 1, it is easy to see that

E P I S T E M E 2009 159

https://doi.org/10.3366/E1742360009000616 Published online by Cambridge University Press

https://doi.org/10.3366/E1742360009000616


Alexander Riegler and Igor Douven

0 20 40 60 80 100
0

2

4

6

8

10

Figure 8. Selected values of �: 0 (gray), .1 (black), .6 (dashed), 1 (dotted).

Bi(t + 1) = Ei(t ) for all i and t . We would thus expect a rapid convergence to the
average distance of the evidence from �. This was, in effect, already confirmed by
the outcomes of the experiments we performed to produce the right-hand graph
in Figure 5. For � = 1, we would expect something at least very similar. This, too,
was confirmed.
It is more interesting (for not quite as obvious) to see that for intermediate

values of �, there is a slow but ultimately very accurate convergence – consistently
more accurate than for � ≥ 1 –where the convergence occurs at a slower pace,
but is also more accurate (even though here the differences are small), the lower
� is. Figure 8 shows the results for some selected values of �. Again, the key to
explaining these results may be the presumption that in the present model too,
some sort of “averaging out” of the random deviations of the evidence from � takes
place through interaction. In the models studied in earlier papers, the averaging
effect proved to be stronger – in the sense that it brings about the most accurate
convergence – the more weight the agents, in updating, attribute to the belief states
of their neighbors relative to the weight they attribute to the evidence. However, it
was also shown that in these models, the more relative weight the agents attribute
to the belief states of their neighbors, the slower the convergence occurs. That here
we see exactly the same happening – convergence is slower but also more accurate
the more relative weight the agents attribute to their neighbors’ belief states – is a
further strong reason to suspect the presence of an averaging effect.

5. C O N C L U S I O N

The model described in this paper is the outcome of an attempt to generalize the
popular approach to opinion dynamics of Hegselmann and Krause to richer and
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more interesting belief states. We believe that developing and exploring such a
model is, to a large extent, a project that is valuable in its own right. Nevertheless,
the results so far obtained about the new model also highlight its philosophical
relevance. In particular, a major lesson that can be learned from these results, and
that should be of immediate concern to social epistemologists, is the following.
Whilst being open to interaction with other agents and giving some weight to their
beliefs helps agents, at least on average, to track the truth more accurately, it also
slows them down in getting within a moderately close distance from the truth
as compared to when they go purely by the evidence. Consequently, no general
conclusion can be drawn about whether, say, it is a good epistemic strategy to
attribute, in updating, relatively much weight to the belief states of one’s respected
colleagues. It all depends, our studies seem to suggest. After all, whereas sometimes
it can be important to come very close to the truth, even if this should take longer,
at other times it may be more important to get somewhat close to the truth relatively
quickly, but it would be of little or no further advantage to get still closer to the
truth. This was one of the main conclusions we reached in our earlier papers, on
the basis of the simpler models described in Section 2. It is encouraging to see
that it could be reconfirmed by studies using a model that in various seemingly
important ways is more realistic than the aforementioned ones.8

R E F E R E N C E S

Deffuant, G., D. Neau, F. Amblard, and G. Weisbuch. 2000. “Mixing Beliefs among
Interacting Agents.” Advances in Complex Systems 3: 87–98.

Dittmer, J. C. 2001. “Consensus Formation under Bounded Confidence.” Nonlinear

Analysis 7: 4615–21.
Douven, I. 2009. “Simulating Peer Disagreements.” Manuscript.
Douven, I. and A. Riegler. 2009. “Extending the Hegselmann-Krause Model I.” Logic

Journal of the IGPL, in press.
Fortunato, S. 2005. “On the Consensus Threshold for the Opinion Dynamics of Krause-
Hegselmann.” International Journal of Modern Physics C 16: 259–70.

Gaylord, R. J. and L. J. D’Andria. 1998. Simulating Society. New York: Springer.
Hegselmann, R. and U. Krause. 2002. “Opinion Dynamics and Bounded Confidence:
Models, Analysis, and Simulations.” Journal of Artificial Societies and Social Simulation 5.
http://jasss.soc.surrey.ac.uk/5/3/2.html

Hegselmann, R. and U. Krause. 2005. “Opinion Dynamics Driven by Various Ways of
Averaging.” Computational Economics 25: 381–405.

Hegselmann, R. and U. Krause. 2006. “Truth and Cognitive Division of Labor: First
Steps towards a Computer Aided Social Epistemology.” Journal of Artificial Societies and

Social Simulation 9. http://jasss.soc.surrey.ac.uk/9/3/10.html
Jacobmeier, D. 2004. “Multidimensional Consensus Model on a Barabási-Albert
Network.” International Journal of Modern Physics C 16: 633–46.

Kuipers, T. A. F. 2000. From Instrumentalism to Constructive Realism. Dordrecht: Kluwer.

E P I S T E M E 2009 161

https://doi.org/10.3366/E1742360009000616 Published online by Cambridge University Press

https://doi.org/10.3366/E1742360009000616


Alexander Riegler and Igor Douven

Lorenz, J. 2003. Mehrdimensionale Meinungsdynamik bei wechselndem Vertrauen. Diploma thesis,
University of Bremen. http://nbn-resolving.de/urn:nbn:de:gbv:46-dipl000000564

Lorenz, J. 2007. “Continuous Opinion Dynamics under Bounded Confidence: A Survey.”
International Journal of Modern Physics C 18: 1819–38.

Lorenz, J. 2008. “Fostering Consensus in Multidimensional Continuous Opinion
Dynamics under Bounded Confidence.” In D. Helbing (ed.), Managing Complexity,
pp. 321–34. Berlin: Springer.

Pluchino, A., V. Latora, and A. Rapisarda. 2006. “Compromise and Synchronization in
Opinion Dynamics.” European Physical Journal B 50: 169–76.

Ramirez-Cano, D. and J. Pitt. 2006. “Follow the Leader: Profiling Agents in an Opinion
Formation Model of Dynamic Confidence and Individual Mind-Sets.” Proceedings of the

2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 660–7.
Riegler, A. and I. Douven. 2009. “Extending the Hegselmann–Krause Model II.” In K.
Kijania-Placek (ed.), Proceedings of ECAP6. London: College Publications, in press.

Weisbuch, G., G. Deffuant, F. Amblard, and J. P. Nadal. 2002. “Meet, Discuss and
Segregate!” Complexity 7: 55–63.

NOTES

1 See, e.g., Deffuant et al. (2000); Dittmer (2001); Hegselmann and Krause (2002, 2005,
2006); Weisbuch et al. (2002); and Ramirez-Cano and Pitt (2006). For an excellent
overview of the main technical results in this area, see Lorenz (2007).

2 Not all extant models of opinion dynamics are idealized in this way. For instance,
Deffuant, Weisbuch, and colleagues (Deffuant et al. 2000; Weisbuch et al. 2002) have
formulated a model in which agents meet only pairwise in a random manner and then
compromise their beliefs if they happen to be (in our terminology) epistemic neighbors.
Fortunato (2005) implements a static social network that defines whomay talk to whom.

3 For the other two neighborhood structures, this extra “facing” condition obviously
makes no sense.

4 This metric is also used by Deffuant et al. (2000) in their model of opinion dynamics.
5 This is, for instance, true of the variant model that adds a clause to (5) similar to the
lower clause of (3), that is, the belief update mechanism is invoked only if there are
epistemic neighbors in the agent’s spatial neighborhood other than the agent itself.

6 Supposing L4 and �range= 3, for �min= n the average distance between theories that
can be generated as evidence is
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For n = 0, this yields (approximately) 2.6; for �min= 7 the function reaches it maximum,
which is 8.

7 Here, of course, only the average distance from � after 100 time steps is of real
significance. That this exceeds the average distance of the agents’ initial belief states
from � is an artifact of our working in the language L4. After all, this initial average
depends on the number of atomic sentences.

8 We are greatly indebted to Christopher von Bülow for very helpful comments on a
previous version of this paper.
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