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Abstract

Conventional longitudinal behavioral genetic models estimate the relative contribution of genetic and environmental factors to stability and
change of traits and behaviors. Longitudinal models rarely explain the processes that generate observed differences between genetically and
socially related individuals. We propose that exchanges between individuals and their environments (i.e., phenotype–environment effects)
can explain the emergence of observed differences over time. Phenotype–environment models, however, would require violation of the
independence assumption of standard behavioral genetic models; that is, uncorrelated genetic and environmental factors. We review
how specification of phenotype–environment effects contributes to understanding observed changes in genetic variability over time and
longitudinal correlations among nonshared environmental factors. We then provide an example using 30 days of positive and negative affect
scores from an all-female sample of twins. Results demonstrate that the phenotype–environment effects explain how heritability estimates
fluctuate as well as how nonshared environmental factors persist over time. We discuss possible mechanisms underlying change in
gene–environment correlation over time, the advantages and challenges of including gene–environment correlation in longitudinal twin
models, and recommendations for future research.
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In psychopathology research, developmental behavioral genetic
studies quantify relative contributions of heritable and environ-
mental factors to phenotypic variation but tend to remain agnos-
tic to underlying causal processes. The great majority of
longitudinal twin studies show that heritable factors account for
stability of phenotypes, such as traits, behaviors, and emotions,
whereas environmental factors account for change (Bartels
et al., 2004; Bartels, Rietveld, Van Baal, & Boomsma, 2002;
Briley et al., 2019; Bronfenbrenner & Ceci, 1994; Eaves, Long &
Health, 1986). These studies are largely descriptive, and do not
address causal processes that explain accrual of differences in phe-
notypic outcomes over time (for exceptions, see Dolan, De Kort,
Van Beijsterveldt, Bartels, & Boomsma, 2014; Neale & McArdle,
2000; van den Berg, Beem, & Boomsma, 2006). One limitation
of the often-used additive genetic models is that they rely on
the assumption that genetic and environmental factors are

uncorrelated (Polderman et al., 2015). As, in reality, genes and
environments do correlate and interact with one another, devel-
opmental behavioral genetic models should incorporate this inter-
dependence. While gene–environment interplay is accounted for
in models that assume independence of unmeasured genetic
and environmental components (e.g., Johnson, 2007; Neale &
Cardon, 1992; Scarr & McCartney, 1983), the covariance between
latent genetic and environmental factors is seldom incorporated
into developmental behavioral genetic models. Doing so would
improve our ability to investigate the processes that contribute
to variability in human complex traits.

The present study is not the first call to address this limitation.
In 1958, Anastasi commented, “as we proceed along the contin-
uum of indirectness, the range of variation of possible outcomes
of hereditary factors expands rapidly. At each step in the causal
chain, there is fresh opportunity for interaction with other hered-
itary factors as well as with environmental factors” (Anastasi,
1958, p. 199). The conventional assumption that genetic and envi-
ronmental factors are uncorrelated breaks an important link in
the causal chain of Anastasi’s continuum of indirectness: how
people interface with their environments. Individuals receive,
select, and evoke responses from their environments in systematic
ways. Known as gene–environment correlation (rGE), nonran-
dom exposure to environments based on genetically influenced
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characteristics is part of what it means to be a person embedded
within continuously changing social environments (Eaves,
Krystyna, Martin, & Jinks, 1977; Plomin, DeFries, & Loehlin,
1977; Scarr & McCartney, 1983). This phenomenon arises from
various processes (Plomin et al., 1977). Passive rGE occurs
when both genes and environments are provided to individuals
(e.g., parents pass along genes for affective dysregulation and pro-
vide chaotic home environments). Active (or selective) rGE
occurs when individuals nonrandomly select environments syn-
tonic with their genetically influenced characteristics (e.g., per-
sons with high risk of affective dysregulation select affectively
dysregulated peers). Evocative rGE occurs when environments
nonrandomly reinforce genetically influenced characteristics
(e.g., persons with high risk of affective dysregulation elicit greater
interpersonal conflict from their environments). Nonetheless,
rGE is conventionally unaccounted for in developmental and,
more generally, longitudinal twin studies. We note that longitudi-
nal co-twin control studies, however, do adjust for rGE while
examining how nonshared environmental factors contribute to
development (McGue, Osler, & Christensen, 2010; Røysamb &
Tambs, 2016). The current aim is to modify longitudinal twin
models to incorporate rGE processes that represent real-time pro-
cesses (Briley et al., 2019). By doing so, we improve our under-
standing of the role of rGE in accounting for various
phenotypic processes over time.

Longitudinal twin models miss an important feature of the
causal chain between genotype and environments: namely, per-
sons. As argued by Scarr and McCartney, “some genotypes are
more likely to receive and select certain environments than oth-
ers” (1983, p. 426). Yet genotypes do not receive and select envi-
ronments; people do (Turkheimer & Waldron, 2000). Numerous
intermediate and bidirectional processes connect genetic and
environmental predispositions with complex traits (Cole, 2009;
Gottlieb, 2003). Intermediary pathways that connect genetic fac-
tors to environments include, among others, cognition, personal-
ity, and affect (Cole, 2009; Gottlieb, 2003). In particular, genetic
influences underlying affective dysregulation are mediated by
processes “external” to individuals, such as changes in social
environments, as well as by processes “internal” to individuals,
such as hormones (e.g., cortisol) and other molecular processes
(e.g., methylation activity affecting RNA transcription).
Consequently, individuals are a critical node in the processes
underlying rGE.

Reciprocal Effects Models

Among the processes that best exemplify Phenotype-
Environment (P→E) associations is within-family diversification,
or “sibling drift”. Several efforts have been made to study this
phenomenon by incorporating rGE in longitudinal twin models
(e.g., Beam & Turkheimer, 2013; de Kort, Dolan, & Boomsma,
2012; Dolan et al., 2014; Neale & Cardon, 1992). In particular,
reciprocal effects models (REMs) have guided our thinking
about change processes (Bell, 1968; Scarr, 1992; Winship &
Korenman, 1999; Beam & Turkheimer, 2017). REMs summarize
how small phenotypic advantages (e.g., calm demeanor) translate
into superior abilities (e.g., affective stability). Individuals are
initially provided with supportive environments (e.g., quiet vs.
chaotic household), which in turn predispose them to seek out
novel correlated environments (e.g., organized vs. disorganized
peers). Further reinforcement of phenotypic advantages in these
novel environments may then lead to the provision of additional

support for affective stability (e.g., adults are more likely to men-
tor and model coping strategies). Over time, phenotypes become
increasingly correlated with environments via iterative person–
environment matching. To the extent that phenotypes are genet-
ically influenced, genetic influences will themselves become
increasingly correlated with environments with time.

In previous work, Dickens and Flynn’s (2001) version of REMs
has been invoked to explain how fleeting exogenous environmen-
tal experiences could explain time-limited rank order differences
in cognitive ability between genetically related individuals
(Dickens, Turkheimer, & Beam, 2011). REMs subsequently were
adapted to explain how P→E matching processes might cause
genetically related individuals to drift apart over time (Beam &
Turkheimer, 2013; Beam et al., 2015, 2016). Importantly, we
showed that the degree of genetic relatedness between individuals
influences the degree of similarity and difference between their
environments, which then underlies how different individuals
eventually become. In other words, the smaller the genetic related-
ness between individuals, the greater they will drift apart over time.

Figure 1 shows a multilevel REM, referred to here as the P→E
model, in which total genetic effects are divided into genetic and
environmental effects shared by twins in the same family (Ab and
Eb, respectively) and genetic and environmental effects unshared
by twins in the same family (Aw and Ew, respectively). At the
within-level only, there is an autoregressive parameter (bPE) pro-
jecting from individuals’ phenotypic scores at time t (Pt) to indi-
viduals’ unshared (nonshared) environments at time t+1 (Et+1

w ).
Although similar to a modified genetic simplex model, where
genetic and environmental factors unidirectionally influence phe-
notypes across repeated measurements (Boomsma & Molenaar,
1987; Eaves et al., 1986), this autoregressive parameter represents
the influence individuals have on their future environments. The
autoregressive parameter generates within-family rGE, that is,
person–specific correlations between genotype and environments.
Adding this parameter produces different model expectations for
monozygotic (MZ) twins and dizygotic (DZ) twins. Moreover, it
more accurately models how nongenetically identical siblings dif-
ferentiate over time compared to MZ twins. According to path
tracing rules (Boker & McArdle, 2014), the autoregressive param-
eter necessarily induces accumulation of rGE across time as well
as correlations among nonshared environmental components
(de Kort et al., 2012; Eaves et al., 1977).

Traditional longitudinal twin models adhere to the assumption
of independence between genetic and environmental factors. As a
result, they generate upwardly biased genetic variance estimates
(Beam & Turkheimer, 2013). In other words, such models
might erroneously conclude that heritability increases when it
does not (Purcell, 2002). At the same time, accumulation of
unmodeled rGE in genetic variance components might lead to
downwardly biased longitudinal correlations among nonshared
environmental components. Traditional longitudinal twin studies
tend to report uncorrelated structures of nonshared environmen-
tal factors over time, that is, age-specific influences on phenotypic
outcomes (for examples, see Bartels et al., 2004 [developmental
psychopathology]; Klump, Burt, Mcgue, & Iacono, 2007 [eating
disorders]; Nivard et al., 2015 [depressive symptomatology];
Petrill et al., 2004 [cognitive ability]). This is justified with the
notion that, within families, there is no rank-order stability
between twins over time, so that twins are re-sorted randomly
as time passes. However, since individuals are nonrandomly
exposed to environments due to genetic and environmental rea-
sons (Plomin et al., 1977; Scarr & McCartney, 1983), this notion
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appears unrealistic. It is unlikely, for instance, that the more tem-
peramental of two siblings would suddenly become the steadier
sibling, without ongoing selection and reinforcement of environ-
ments that stabilize affect. As life plods along, environmental
influences stabilize, suggesting that twins’ environments actually
become canalized (Dickens et al., 2011). Given that genes and
environments do correlate, P→E models might provide a more
accurate representation of longitudinal processes. Accordingly,
the P→E model depicted in Figure 1 accommodates violations
of the independence assumption, thereby permitting rGE to accu-
mulate over time.

As an example, affect is genetically and environmentally influ-
enced (Montag et al., 2016), and this has implications for how
individuals engage with their social environments. Two siblings
– one more affectively labile than the other – are likely to select
and evoke different environmental milieus. Compared to the
less affectively labile sibling, the more labile sibling may be
drawn to individuals who are more emotionally expressive and
engage in more argumentative and baiting behaviors. As a result,

this more affectively labile sibling may experience and contribute
to a social environment characterized by more conflict, leading to
still greater labile affect over time. However, while we have already
demonstrated that small within-family phenotypic differences put
genetically related siblings onto different cognitive (Beam et al.,
2015) and personality (Beam & Sharp, 2020) trajectories, no pre-
vious study has applied P→E models to affect.

One consequence of model estimated rGE is that the interpre-
tation of nonshared environmental components changes (Beam,
Turkheimer, Dickens, & Davis, 2015; de Kort et al., 2012). In
P→E models, each nonshared environmental component consists
of two components: a part that correlates with genotype (i.e., it
differs due to genotypic differences) and a part that is uncorre-
lated with genotype (i.e., occasion-specific residuals). In the for-
mer, genetic factors indirectly influence nonshared
environmental factors, by definition, and are therefore con-
founded with genotype. Comparisons of the longitudinal struc-
ture of nonshared environmental components between models
that accommodate rGE and models that assume independence

Figure 1. Phenotype–environment (P→E) model. Biometric components of phenotypic scores for Twin i at Time t, Pit, are estimated between- and within-families;
Abt = between-family genetic effect at time t; Ebt = between-family (common) environmental effect at time t; Awt = within-family genetic effect at time t; Ewt = within-
family (nonshared) environmental effect at time t; uAbt = unique between-family genetic effect at time t; uEbt = unique between-family environmental effect at time t;
uAwt = unique within-family genetic effect at time t; uEwt = unique within-family environmental effect at time t; aar, car, and ear = autoregressive coefficient between
adjacent components. The between-family and within-family genetic loadings for the monozygotic (MZ) twins are 1 and 0, respectively, to meet the assumption
that MZ twins share 100% of their genes. The between-family and within-family genetic loadings for the dizygotic (DZ) twins are both √.5 to meet the assumption
that and DZ twins share 50%, on average, of their segregating genes. The red line represents the P→E parameter, bPE, which was only estimated at the within-family
level in the DZ group.
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between genetic and environmental factors provide a straightfor-
ward empirical approach to determining whether accommodating
rGE alters the meaning of the nonshared environment. In one
previous report, we have shown that differences in nonshared
environmental structures between models that accommodate
rGE and models that do not are greater in DZ groups than MZ
groups, suggesting that accommodation of rGE helps to explain
why environmental factors might be more correlated over time
(Beam et al., 2015).

Quality of Environments and Measurement Density

Two conditions affect estimation of within-family rGE but have
not yet been considered: the assumption that individuals have a
wide range of environments available to them and the intervals
of time between measurements (e.g., days vs. weeks vs. years).
First, as posited by Fuller and Thompson (1960), enriched envi-
ronments allow individuals to utilize environments freely, which
support genetic expression of traits and allow individuals to
adapt differently from one another (Bronfenbrenner & Ceci,
1994; Fischbein, 1978). In contrast, restricted environments min-
imize behavioral options, leading individuals to behave more sim-
ilarly, irrespective of genotypic differences. Therefore, siblings
who are less genetically related (e.g., fraternal twins, full siblings,
half-siblings, and so forth), and who have the resources to select
from a range of environments, are expected to become less similar
to each other over time. Instead, genetically identical individuals
are more likely to select similar environments and, in turn, to
become more similar over time. Statistically, this would imply
that heritability increases over time, owing to the fact that within-
pair MZ correlations are predicted to remain stable over time
while non-MZ correlations are expected to decline. One implica-
tion of these expectations is that within-family rGE ought to
increase over time, as genetically dissimilar sibling pairs develop.
As within-family rGE can be tested statistically, these competing
hypotheses can be evaluated directly.

Second, intervals of time between measurements can affect
estimates of within-family rGE. As intervals of time between mea-
surements increase, estimated autocorrelation between measure-
ment occasions will decrease, as long as the process is
stationary and noncyclic. Because longitudinal twin studies are
laborious and expensive, dense measurement schedules of pheno-
types are rare, and the temporal dynamics of rGE remain poorly
understood. Shorter intervals between measurements, such as
daily measurement schedules, could lead to greater estimates of
the magnitude of the within-family rGE compared to longer
intervals between measurements, such as annual measurement
schedules. Developmentally, however, shorter divisions of time
might not allow enough time for persons to receive, select, and
evoke environments critical enough to make a difference for cer-
tain phenotypes, especially in view of evidence that effects of
twins’ unique measured environments on behavior are small
(Turkheimer & Waldron, 2000). Thus, to best understand how
environments guide change in genetically influenced characteris-
tics, intervals of measurement should be suitably matched to
expected change in phenotypes of interest.

The Current Study

In the present study, we explored the temporal dynamics of rGE
using daily measurements of affect in a young all-female sample
of twin pairs aged 16–25. Specifically, we investigated how

nonrandom matching between these participants and their envi-
ronments accounted for within-family differences in affect over
30 days. While some traits change slowly over a long period of
time (e.g., personality, see Roberts & Mroczek, 2008), affect has
been shown to fluctuate daily (Röcke, Li, & Smith, 2009). As a
result, genetic and environmental influences may, too, fluctuate.
Therefore, the 30-day study window is a circumscribed period
of time in which we can explore whether genetic and environmen-
tal influences underlying affect fluctuate. Using a P→E model, we
tested two hypotheses: (a) heritability tends to be over-estimated
for daily affect when rGE is unmodeled; and (b) within-family
rGE will generate greater correlations among nonshared en-
vironmental factors over time. With respect to the latter hypoth-
esis, we further expected environmental factors more proximally
situated in time to be more correlated than environmental factors
less proximally situated in time. Both hypotheses would suggest
that the extent to which individuals engage with their environ-
ments on a daily basis, based on genotypically influenced charac-
teristics, affects their nonrandom selection of environments,
causing them to gravitate toward more like environments from
day-to-day.

Of note, as the sample consists only of young women, changes
across the menstrual cycle in the levels of two ovarian steroid hor-
mones in the female body, estrogen and progesterone, may also
account for differences in daily affect. Whereas estrogen is the
predominant hormone produced in the first, proliferative half of
the cycle (follicular phase), progesterone predominates in the
secretory half of the cycle following ovulation (luteal phase), albeit
estrogen also remains somewhat elevated (Poromaa & Gingnell,
2014). This cyclical fluctuation in neuroendocrine levels has con-
sequences including variation in affect (Farage, Neill, & MacLean,
2009; Romans, Clarkson, Einstein, Petrovic, & Stewart, 2012). The
luteal phase, for example, may engender a high-risk phase for
increased negative and depressed affect as a result of higher pro-
gesterone levels (Bäckström et al., 2011; Halbreich et al., 2012).
Although changes in affect across the menstrual cycle are not
the primary focus of the current study, data collected over the
menstrual cycle raise two pertinent issues. First, the cyclic nature
of estrogen and progesterone implies that the correlation between
individuals and environments is non-stationary and may vary in
an oscillatory manner. Second, estrogen and progesterone direct
genomic actions (e.g., gene transcription) and have been found
to moderate genetic influences underlying behavioral phenotypes,
such as binge eating, independent of genetic influences underly-
ing ovarian hormones (Klump et al., 2015). Estrogen and proges-
terone, thus, may interact with genotype causing heritability to
fluctuate, possibly in addition to effects of rGE via hypothesized
person–environment matching. Therefore, to the extent that ovar-
ian hormones act upon genetic components that differ within
twins, they constitute an additional “environmental” source of
variance in the P→E system (Purcell, 2002), as our model cannot
distinguish between endogenous and exogenous environmental
factors that vary within twins.

Method

Participants

Participants were 441 individual same-sex female twins (age range
16–25 years) who participated in the Twin Study of Hormones
and Behavior across the Menstrual Cycle (HBMC) project
(Klump et al., 2013, 2014) within the Michigan State University

C. R. Beam et al.324

https://doi.org/10.1017/S0954579420001017 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579420001017


Twin Registry (MSUTR; Burt & Klump, 2013; Klump & Burt,
2006). There are 265 families in the current study, of which
there were 176 (66.42%) complete pairs (MZ = 105, DZ = 71)
and 89 (33.58%) incomplete pairs (MZ = 40, DZ = 49). Study
inclusion/exclusion criteria were: (a) menarche before the age of
15; (b) regular menstrual cycles every 22–32 days for the past 6
months; (c) no hormonal contraceptive use within the past 3
months; (d) no psychotropic or steroid medications within the
past 4 weeks; (e) no pregnancy or lactation within the past 6
months; and (f) no history of genetic or medical conditions
known to influence hormone functioning or appetite/weight.
Although twins could have provided up to 45 days of affect
data, data coverage beyond 30 days was low. All twins thus pro-
vided at least 17 consecutive days of data and a maximum of 30
consecutive days. The mean number of days of data contributed
was 27.31 (SD = 2.76). Approximately three-quarters of the sam-
ple (75.28%) had one complete cycle within the 30 days. MZ twins
contributed 0.72 days more than DZ twins (t = 2.64, df = 439, p
= .009). Sample demographics are provided in Supplementary
Table S1. Twins, on average, were in late adolescence (M =
17.62, SD = 1.75) and born to college-educated parents (modal
category was bachelor’s degree for both twins’ mother and father)
who combined make greater than $60,000 per year (59.80%). The
ethnic composition of the sample was White (84.09%), African
American (10.69%), Asian (0.24%), American Indian/Alaskan
Native (0.48%), and mixed ethnicity (4.51%).

Procedures

All study measures and procedures were approved by the
Michigan State University Institutional Review Board (IRB) and
the University of Southern California IRB (UP-19-00623).
Questionnaires were completed each evening (after 5:00 p.m.)
using an online data system or pre-printed Scantron cards.
Twins were instructed to submit their daily questionnaire
responses online and to use Scantrons only in the event that
they had issues with their computer or Internet connectivity. If
twins used Scantrons, they were asked to bring them to the lab
at their next in-person assessment so study staff could account
for the daily data. There were 315 twins who completed their
daily assessments on a Scantron card at least once during the
study and 126 who completed all of their assessments online.
Thus, 71.43% of the sample provided Positive and Negative
Affect Schedule (PANAS) scores via Scantron at least once during
the study. On days in which Scantrons were completed, negative
affect scores were 0.81 units greater than on days in which ratings
were submitted electronically (SE = 0.14, t = 5.62, p < .001). For
positive affect, scores were 1.02 units greater on days in which
Scantrons were used instead of electronic submission (SE = 0.19,
t = 5.29, p < .001).

Measures

Positive and Negative Affect Schedule
The PANAS (Watson, Clark, & Tellegen, 1988) was used to assess
daily levels of positive and negative affect. The positive affect scale
includes 10 items that assess a range of positive emotions (e.g.,
interested, excited, alert, inspired), while the negative affect scale
consists of 10 items that assess a range of negative emotions
(e.g., distress, nervousness, irritability, fear). The degree to
which each emotion was experienced on each day of data collec-
tion was rated on a 5-point scale, ranging from 1 = very slightly/

not at all to 5 = extremely. The positive and negative affect scales
have exhibited excellent internal consistency. McDonald’s omega
ranged from .85 to .90 for the 10 positive affect items over the 30
days (M = .89) and .80 to .85 (M = .83) for the 10 negative affect
items. For each day, the sums of the 10 positive and 10 negative
affect items were used.

Time scale
Selecting a time metric common to all twins was restricted to
aligning twins by a common day in the menstrual cycle. Twins’
PANAS scores were sorted so that all twins’ scores on Day 1 were
the first day of the follicular phase (the day following the final
day of bleeding in twins’ previous menstrual cycle). Menstrual
cycle phase was coded using daily reports and daily hormone values
from saliva samples. The first day of bleeding served as the graph
anchor, and subsequent days were coded based on this anchor, as
well as the overall length of each cycle (Klump et al., 2015).

Data analysis

We first estimated univariate MZ and DZ twin correlations of
positive and negative affect and plotted heritability and environ-
mental estimates based on these twin correlations across the 30
days. Conventional univariate twin modeling assumptions were
made in estimating heritability and environmental estimates
(Neale & Cardon, 1992). Additive genetic (A) components are
the cumulative additive effect of genotype and are estimated by
virtue of the fact that MZ twins share 100% of their genes and
DZ twins share 50% of their genes, on average. Shared environ-
mental (C) components are the cumulative effect of any environ-
ment that makes twins reared in the same family more similar to
one another and estimated under the assumption that shared
environmental influences affect twins similarly regardless of
genetic relatedness. Nonshared environmental (E) components
are any environmental factor that makes twins different from
one another, including measurement error. Conventional twin
models make further assumptions that A, C, and E components
are uncorrelated with one another, that they do not interact
with one another, and that genetic relatedness is the product of
parents’ random mating strategies. To illustrate how the heritabil-
ity of positive and negative affect fluctuates across days, we esti-
mated the proportion of variability attributable to heritability
(h2), shared environments (c2), and nonshared environments
(e2) for each of the 30 days.

Longitudinal structural models were then fit to the data using a
multilevel structural equation modeling approach, which is equiva-
lent to traditional structural equation modeling approaches
(ML-SEM; McArdle & Prescott, 2005). We structured the data so
that days were wide formatted while twin pairs remained in long
format and nested within each family. We estimated a genetic sim-
plex model (baseline model) and compared this model to a P→E
model (research model). In the genetic simplex model, twins’ affect
scores on each day were decomposed into random variance compo-
nents (subscript 1 for Twin 1 and subscript 2 for Twin 2):

P ft,1 = b0t + wabA
b
ft + Eb

ft + wawA
w
ft,1 + Ew

ft,1, and

P ft,2 = b0t + wabA
b
ft + Eb

ft + wawA
w
ft,2 + Ew

ft,2.

The phenotypic scores, P, of Twin 1 and Twin 2 in family, f, at
day, t, are decomposed into between-family and within-family
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genetic and environmental factors. All biometric variables (A and
E), have a mean of zero so that the expectation of the phenotypic
mean E[P]ft,i equals the intercept, b0t. At the between-family level,
phenotypic scores are decomposed into a genetic factor (Ab) and
an environmental factor (Eb) shared by both twins. At the within-
family level, twins’ scores are decomposed into a genetic factor
(Aw) and an environmental factor (Ew) unique to twins raised
in the same family. The total genetic effect, A, for each twin is
equal to:

Aft,1 = wabA
b
ft + wawA

w
ft,1, and

Aft,2 = wabA
b
ft + wawA

w
ft,2.

The variances of the Ab and Aw factors are constrained to be
equal. The weights, w, are fixed values that indicate the proportion
of genetic information shared by each twin pair. In MZ pairs, wab

equals 1 and waw equals 0 to satisfy the assumption that identical
twins share all of their genes. In DZ pairs, wab equals 0.5 and waw

equals 0.5 to satisfy the assumption that fraternal pairs of twins
share only half of their segregating genes, on average; the other
half varies between them. The weights of the genetic factors
between- and within-families were scaled so that w2

ab + w2
aw = 1,

with the expectation that Ab and Aw are uncorrelated,
E[Ab

ft , A
w
ft,i] = 0.

In order to present the P→E model, we begin by presenting the
conventional genetic simplex model (Eaves et al., 1986). Between-
and within-family genetic and environmental factors are corre-
lated via first-order autoregressions (t > 1) as follows:

Ab
ft = aARt,t−1A

b
ft−1 + uAb

ft , and

Eb
ft = cARt,t−1E

b
ft−1 + uEb

ft , and

Aw
ft,i = aARt,t−1A

w
ft−1,i + uAw

ft,i, and

Ew
ft,i = eARt,t−1E

w
ft−1,i + uEw

ft,i.

The autoregressive coefficients (aARt,t−1, cARt,t−1 and eARt,t−1)
of the genetic and environmental variables and their correspond-
ing disturbances (uAb

ft , uE
b
ft , uA

w
ft,i and uE

w
ft,i) were freely estimated.

The first-order autoregressive processes between the genetic and
environmental factors meet the independence assumption in con-
ventional twin models. Graphically, this model is identical to
Figure 1 without the bolded red pathways projecting from the
phenotypic scores to the nonshared environmental variables.
Pre-analysis demonstrated that the longitudinal genetic and
shared environmental structures could each be reduced to a single
common factor; in all of our models the aARt,t−1 and cARt,t−1 were
not estimated. Reduced models that included single common genetic
and shared environmental latent variables fit the data better than the
full genetic simplex model (positive affect: ΔLL = 85.10, df = 117,
p = .988; negative affect: ΔLL = 85.10, df = 117, p > .999).

In the P→E model, the autoregressive correlations of the Ew

components are re-specified as regressions of Ew
ft,i at Day t > 1

on the phenotype at Day t−1:

Ew
ft,i = bPEt,t−1P

w
t−1 + uEw

ft,i.

The nonshared environmental variables, Ew
ft,i, at Day t>1, are

regressed on the phenotype at Day t−1. The autoregressive coef-
ficients (bPEt,t−1) and disturbances (uEw

ft,i) were freely estimated.

By path tracing rules, in the DZ group the bPEt,t−1 parameters nec-
essarily transmit effects of the within-family genetic factor
(Aw

ft−1,i∗bPEt,t−1) and the nonshared environmental factor
(Ew

ft−1,i∗bPEt,t−1) at Day t−1 via the phenotype at Day t−1. As
there is no within-family genetic variation, Aw variables are
fixed to zero in the MZ group, thus making bPEt,t−1 effects
equal to the autoregressive effects of the nonshared environment,
eARt,t−1 in the MZ group. The baseline model, therefore, assumes
that bPEt,t−1 effects are different in the MZ group than the DZ
group, as the source variables for bPEt,t−1 effects include within-
family genetic differences in the DZ twins but not the MZ
twins. In the DZ group, significant bPEt,t−1 effects support the
hypothesis that pair differences in affect on previous days system-
atically expose twins to unique environments on subsequent days,
which causes unique environments to become correlated with
genetic factors and unique environments on previous days. In
the MZ group, significant bPEt,t−1 effects suggest that unique envi-
ronments at Day t correlate with unique environments at t−1.

The baseline model was compared to a restricted model that
constrains all bPEt,t−1 parameters to be equal between MZ and
DZ twins. If the more restricted model fits equally as well as
the baseline model, this means that bPEt,t−1 parameters cannot
be distinguished from the eARt,t−1. Under this more parsimonious
model, the null hypothesis is that environmental effects over time
are equivalent to person–environment effects over time.

The P→E parameter, bPEt,t−1, has three consequences in the
DZ group. First, it necessarily induces accumulating within-family
rGE over days. Second, bPEt,t−1 parameters change the meaning of
the nonshared environmental effects when t > 1 because the
parameters give rise to the correlations between Ew

ft,i and Aw
ft−1,i

(Dolan et al., 2014). Third, bPEt,t−1 parameters increase the stabil-
ity of nonshared environment over days as twins are matched to
temporally similar environments.

Since bPE parameters necessarily change the meaning of the
nonshared environment at all days but the first day via indirect
correlations between genetic and environmental components
(Beam et al., 2015), we empirically test the longitudinal structure
of the nonshared environment by statistically comparing model
implied nonshared environmental variances and covariances in
the DZ group against the MZ group.

Models were fit in Mplus 8.2 (Muthén & Muthén, 1998–2017)
using full information maximum likelihood (FIML) estimation
with robust standard errors to handle missing data, violations of
multivariate normality, and modest sample sizes. Missing data
analysis consisted of comparing participants who did not provide
affect scores for all 30 days to participants who did on the follow-
ing measures: first day of affect scores provided, Day 15 of affect
scores, final day of affect scores provided, age, body mass index,
highest education achieved, parental income, and ethnicity. No
significant group differences were observed, which lends support
for retaining the assumption that the missing data mechanism
was missing completely at random (Enders, 2010). Model com-
parisons were made with the Satorra–Bentler scaled chi-square
difference test of nested models (S-Bχ2), which corrects the
chi-square distributed test statistic in cases of multivariate nor-
mality assumption violations (Satorra & Bentler, 2001). Model
fit also was evaluated using the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) (Burnham
& Anderson, 2004). We also employed the sample size adjusted
Bayesian information criterion (SSABIC), which adjusts the
sample size penalty of the BIC to provide better model fit perfor-
mance than the BIC when sample sizes are small or there are a
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large number of parameters (Enders & Tofighi, 2007; Sclove,
1987). Models with lower AIC, BIC, and SSABIC values indicate
better model fit, because these indices take into account the trade-
off between model parsimony and model complexity.

Results

The means and standard deviations of positive and negative affect
across the 30 dayswere stable, with greater variance in positive affect
(range: 21.95–24.75) than negative affect (range: 14.55–15.56).

Figure 2 presents the twin correlations for positive affect and
negative affect on each day with locally estimated scatterplot
smoothing (LOESS) lines overlaid to illustrate trends in twin sim-
ilarity over days. Beginning at Day 1, MZ and DZ twin correla-
tions for positive affect (top panel) gradually diverge until
about Day 10, remain constant from Day 11 through Day 18,
diverge again from Day 18 through about Day 28, and then con-
verge the final two days. For negative affect (bottom panel), twin
correlations generally converge from Day 1 through Day 11, then
diverge until about Day 28, after which the correlations tend to
converge with DZ twins more similar than MZ twins in the
final days. Within-pair differences in person–environment
match, the basis for generating within-family rGE, are expected
to account for divergence of MZ and DZ twin correlations.

The above twin correlations were used to estimate the daily
heritability and environment estimates (Figure 3). Both MZ and
DZ correlations demonstrated variability in twin similarity in pos-
itive affect scores over the 30 days. Heritability estimates (red
lines) tended to increase slightly until about Day 14, were variable
from Day 15 through Day 19, increased dramatically from Day 19
through Day 25, and then declined. Shared environmental esti-
mates were generally around zero (or negative), although on
days where heritability declined, shared environmental estimates
tended to increase above zero (e.g., Days 6, 14, 29, and 30).
Nonshared environmental estimates over days were stable.

Twin correlations for negative affect also tended to vary across
days, suggesting variability in genetic and environmental

estimates. Heritability estimates generally declined from Day 1
through Day 12, increased through Day 25, and then slightly
declined. Shared environmental estimates tended to increase
across days where heritability declined and decreased on days
when heritability increased. Nonshared environmental estimates
slightly increased for the first 15 days and slightly declined for
the last 15 days. As increases in heritability suggest that DZ
twin similarity diverges from MZ twin similarity, we next tested
whether rGE accounts for daily fluctuations in heritability, partic-
ularly across days where heritability of positive and negative affect
increases.

Person�environment model results

Model fitting results (Table 1) indicate that the P→E model pro-
vided better fit to the data than a model that equates P→E and
nonshared environmental parameters for both positive affect
(likelihood ratio test (LRT) = 86.61, df = 29, p < .001) and negative
affect (LRT = 53.49, df = 29, p < .005). Further, AIC and SSABIC
values were lower for models that distinguish P→E parameters
than models that do not, further indicating better fit to the
data. Person–environment matching parameters (bPE), thus, sig-
nificantly improved model fit for both positive affect and negative
affect. Results did not change when ethnicity and age were
included in the models.

Figure 4 presents the line plots of model estimated within-
family rGE for positive affect and negative affect from the P→E
models. Within-family rGE was small and tended to fluctuate
from Day 1 through Day 15. From Day 15 through Day 25, rGE
increased but began to decline again from Day 26 through Day 30.

In order to evaluate whether rGE fluctuated systematically as a
function of daily effects of affect scores on subsequent environ-
mental exposure, we randomly ordered days within each twin
and fit the P→E model. This analysis, known as surrogate data

Figure 2. Daily twin correlations of positive and negative affect scores. LOESS lines
(in blue) are overlaid to illustrate general trends in twin similarity for each phenotype.
On average, differences between monozygotic (MZ) and dizygotic (DZ) twin correla-
tions are statistically significant across the 30 days (positive affect: t = 6.10, df = 58,
p < .001; negative affect: t = 4.04, df = 58, p < .001).

Figure 3. Heritability and environment estimates of positive affect (top panel) and
negative affect (bottom panel) by day. h2 = heritability, which is the proportion of
total variance in daily affect scores attributed to genetic variance; c2 = shared envi-
ronment, which is the proportion of total variance in daily affect scores attributed
to shared environmental variance; e2 = nonshared environment, which is the propor-
tion of total variance in daily affect scores attributed to nonshared (unique) environ-
mental variance. All estimates are based on classical univariate ACE models (genetic
[A], shared environmental [C], and nonshared environmental [E]).
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generation or “time scrambling” (Moulder, Boker, Ramseyer, &
Tschacher, 2018), tests dependency between time series and is
important for showing that the model-generated rGE depends
on the temporal ordering of P→E effects. Thus, the expectation
is that rGE would be essentially zero across the 30 days when
days were randomly ordered within twin. Within-family rGE
did not vary significantly from zero when days were randomly
ordered within twins (lines labeled "PA Random Days" and
"NA Random Days", respectively).

The P→E parameters affected heritability of daily affect scores
attributed to genetic effects alone, that is, estimates excluding rGE
generated via bPE paths (Figure 5). Heritability estimates under
the independence assumption (blue lines) for positive affect and
for negative affect are compared to heritability estimates under
accommodation of rGE (red lines). For both positive and negative
affect, estimating P→E effects in the DZ group reduced heritabil-
ity estimates by approximately 3% across days, on average, with
reductions as great as 7–8%. Heritability estimates, thus, were
attenuated when rGE was included in the model.

Finally, P→E effects that accommodate rGE also affected the
longitudinal correlations between nonshared environmental

components across the 30 days. Figure 6 presents the nonshared
environmental correlations in the MZ group (left column) and
the DZ group (right column) for positive affect (top row) and
negative affect (bottom row). As a reminder, longitudinal correla-
tions between nonshared environmental components in the MZ
group do not include rGE (because there are no within-family
genetic effects) whereas in the DZ group rGE is accommodated.
In the MZ group, longitudinal nonshared environmental correla-
tions persist up to 5 days, declining from a moderate correlation
of .40–.50 between adjacent days (e.g., Day 1 and Day 2) to essen-
tially zero 5 days later (e.g., between Day 1 and Day 6). Nonshared
environmental correlations decayed more rapidly when accom-
modating rGE by about 1–1.5 days earlier, but are systematically
correlated across days, although the correlations are small.
Differences in longitudinal correlations estimated with and with-
out accommodation of rGE are similar, suggesting that the inter-
pretation of nonshared environmental components may have
been affected minimally by allowing genetic and environmental
components to correlate. Differences in lag-1 correlations were
the largest (r range: .00–.20) while correlations among compo-
nents with greater lags never exceeded .10.

Table 1. Model fitting results

Positive affect models LL df ΔLL Δdf P AIC BIC SSABIC

1. P→E model −8,861.32 1,811 – – – 17,960.63 18,447.23 18,069.58

2. P→E = E model −8,947.93 1,840 86.61 29 0.000 18,075.85 18,443.87 18,158.25

Negative affect models LL df ΔLL Δdf P AIC BIC SSABIC

1. P→E model −5,540.21 1,811 – – – 11,318.41 11,805.01 11,427.36

2. P→E = E model −5,593.70 1,840 53.49 29 0.004 11,367.40 11,735.41 11,449.79

Notes. Model 1 is the P→E model, which is the less restricted model that distinguishes between person–environment match via bPE parameters and nonshared environmental effects over
days. Model 2 restricts bPE effects to be equal to nonshared environmental effects. LL = log likelihood value; ΔLL = likelihood ratio value; Δdf = differences in in degrees of freedom between
models 1 and 2; AIC = Akaike information criterion; BIC = Bayesian information criterion; SSABIC = sample size adjusted Bayesian information criterion. P→E models fit better than ACE
(genetic [A], shared environmental [C], and nonshared environmental [E]) Cholesky decomposition models. ACE Cholesky decomposition model fit for positive affect was: LL =−7,884.16 (df =
505), AIC = 18,618.33, BIC = 24,445.22, SSABIC = 19,922.94. For negative affect, model fit was: LL =−4,671.80 (df = 505), AIC = 12,193.61, BIC = 18,020.49, SSABIC = 13,498.22.

Figure 4. Model estimated within-family rGE over 30 days for positive affect (PA) and
negative affect (NA). rGE was re-estimated in P→E models where days were randomly
ordered within twins to illustrate that rGE systematically changes across the 30 days.

Figure 5. Heritability estimates of positive affect (top) and negative affect (bottom)
from phenotype–environment (P→E) model (red) and genetic simplex model (blue)
across the 30 days.
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Post-hoc power analysis
Given the small total sample size (NFamilies = 265), we estimated
power to detect significant P→E parameters, bPEt,t−1, across the
30 days. Power was estimated using the Markov Chain Monte
Carlo feature in in Mplus 8.2 (Muthén & Muthén, 1998–2017)
using the final values from the P→E models for positive and neg-
ative affect. Two thousand replications were specified for each
analysis. For positive affect, power to detect significant bPEt,t−1
parameters ranged from .39–1.00 (M = .86, SD = .16; Mdn = .94).
For negative affect, power to detect significant bPEt,t−1 parameters
ranged from .26–1.00 (M = .70, SD = .30, Mdn = .90).

Discussion

Plomin et al. (1977) recognized that “environmental and genetic
threads in the fabric of behavior are so tightly interwoven that
they are indistinguishable’’ (p. 309). The twin data presented
here and elsewhere (Beam et al., 2015; Dolan et al., 2014) suggest
that genetic and environmental influences covary across time (i.e.,
days and years) to support differentiation in psychological traits
and abilities over time. As matching between individuals and
their environments ebbs and flows, so does rGE. These results,
thus, address one process through which environments might
come to be correlated with outcomes and genotype (Plomin,
1986).

Modeling approaches for accommodating and testing rGE
(Beam & Turkheimer, 2013; de Kort et al., 2012; Dolan,
Huijskens, Minică, Neale, & Boomsma, 2019; Moscati, Verhulst,
McKee, Silberg, & Eaves, 2018) are finally catching up to discus-
sions over how genetic and environmental influences reciprocally
influence one another (Anastasi, 1958; Briley et al., 2019; Eaves
et al., 1977; Wachs, 1983). The REM approach taken in the cur-
rent study places the individual at the center of change processes
that drive observed phenotypic differences in positive and nega-
tive affect. Individuals are not passive recipients of their genotype
and environments, as is implied in conventional twin models
through specification of unidirectional pathways from genetic
and environmental variance components to phenotypic

outcomes. In this way, phenotypic stability not only depends on
the degree of genetic and environmental relatedness but also on
the consistency of similarity and differences of individuals’ envi-
ronmental systems (Lickliter & Harshaw, 2010; West & King,
1987). Siblings, for example, could increasingly differ if they are
exposed to different learning activities and environments (e.g.,
one child is read to daily while the other is not) yet converge if
their environments are highly similar (e.g., whatever one child
gets, so does the other). By including person–environment effects
in the current model that quantify the strength of the relation
between twins’ affective outcomes and unique environments, we
have shown real time selection and evocation of environments
that contribute to daily differences in twins’ affect.

Person–environment effects that induce within-family rGE
have implications for heritability estimates and longitudinal corre-
lations of nonshared environments. In the present study, we
found lower heritability estimates when allowing indirect relations
between twins’ unique genotype and their unique environments,
compared to models in which independence between genotype
and environment was assumed. Adaptation to one’s unique envi-
ronmental context, thus, might account for why affect scores
appeared to be highly heritable at first glance. Lower heritability
estimates when rGE is modeled are a well-known statistical con-
sequence due to rGE inflating genetic variance (Briley et al.,
2019; Purcell, 2002) and possibly heritability, at least under the
assumption of constant genetic variance across a range of
environments.

We found support for the hypothesis that genetic influences
on affect come to be correlated with environments because of
the correlation between phenotypes and subsequent environmen-
tal influences contributing to their phenotypes (Gottlieb, 2003).
Female twins in the sample may not have been selecting and
reacting to environments randomly; rather, the data are consistent
with our supposition that individuals select some environments
and react to others based on the suitability of those environments.
Further, given twins’ relatively stable affect scores across the 30
days, one possibility is that person–environment matching pro-
cesses rise and fall over time with the ultimate purpose of stabiliz-
ing positive and negative affect responses over time.

Nonshared environments are expected to correlate across days,
as environmental systems are not randomly distributed over time,
although they tend to decay quickly over time (Burt, Khlar, &
Klump, 2015). The content of environmental systems is worthy
of comment. As nonshared environmental components in twin
models comprise any nongenetic feature that contributes to
within pair differences, including measurement error, identifica-
tion of specific environmental factors that correlate with twins’
affect scores is beyond the scope of this study. Environmental sys-
tems probably comprise twins’ different interpretations of their
shared relationships (e.g., parents) or neighborhoods, their unique
peer networks, hormone levels (both stress and sex hormones),
and molecular environments such as differences in DNA methyl-
ation and RNA transcription (Gottlieb, 2003). Twins who prefer
quiet solitude compared to their co-twins, for example, probably
avoid loud and crowded venues no matter the situation, but espe-
cially if they are perceived as engendering stress that might
increase negative affect or lower positive affect. As Scarr (1992)
put it, environments are “largely the construction of individual
family members in the ways they evoke responses from others,
actively select or ignore opportunities, and construct their own
experiences” (p.14). Construction of and reaction to experiences,
broadly construed, should correlate with genotype, as genotype is

Figure 6. Longitudinal correlations among nonshared environmental correlations
across 30 days for positive affect (PA) and negative affect (NA). Model estimated
MZ and DZ correlations are taken from phenotype–environment (P→E) models.
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responsive to environmental experiences (Kendler & Baker, 2007).
Modeled rGE, thus, showed that twins’ total unique environments
are temporally linked for longer than expected under models that
assume genetic and environmental covariation.

Of note, rGE estimates fluctuated systematically over time, par-
ticularly between Days 15 and 30 – the latter “half” of the men-
strual cycle. As the current study is observational, we cannot
rule out these and other third variable confounds that account
for P→E effects (e.g., coping skills, distress, physical illness/dis-
ability). Although we could not identify specific biological or
environmental factors in twins’ lives that determine increases in
rGE underlying positive and negative affect, we can only speculate
about the reasons why. Stress vulnerability to daily hassles, possi-
bly because of hormonal factors, social environmental factors, or
both, might be greater in latter days of the cycle. Previous findings
suggest that the luteal phase – and particularly the late luteal
period – may represent a period of intensified daily hassles com-
pared to the follicular phase (Kiesner, Mendle, Eisenlohr-Moul, &
Pastore, 2016). Women may be more prone to select environ-
ments for stress management, as environmental factors such as
perceived stress and social support might exacerbate cycle-related
changes in affect (Romans et al., 2012). Accordingly, environmen-
tal context has been identified as an important contributor to
daily mood ratings (Stone, Marco, Cruise, Cox, & Neale, 1996).
A successful match between persons and environments, thus,
might be especially relevant during high-stress vulnerability
phases relative to low-stress vulnerability phases.

Environmental components in the within-family rGE esti-
mates likely consist of the correlation between genotype and hor-
mones. Estrogen and progesterone trigger changes in gene
expression (Cole, 2009; Östlund, Keller, & Hurd, 2003), and
genetic factors account for individual physiological and behavioral
responses to estrogen and progesterone levels (Klump et al., 2007;
Wall et al., 2014). Under this explanation, any influence ovarian
hormones have on genotype would not make much of a difference
for hypothesized P→E matching. Hormones, rather, are a source
variance that accounts for genetic variability that ultimately cor-
relates with nonshared environmental factors downstream.
Within-pair differences in estrogen and progesterone levels dur-
ing the luteal phase, however, might moderate (or mediate)
within-pair genetic effects on differences in affect, as was found
for binge eating in the same sample (Klump, Fowler, Mayhall,
Sisk, Culbert, & Burt, 2018). Significant P→E effects, thus, may
reflect Gene×Environment interaction (GxE) rather than rGE.
P→E models cannot rule out GxE processes as the P→E generat-
ing mechanism or whether the GxE processes are exogenous or
endogenous to individuals. In reality, we expect rGE and GxE
processes to contribute to observed P→E effects. In general, indi-
rect and bidirectional associations among molecular factors, like
ovarian and stress hormones, genotype, and environment are
more likely than direct genetic effects on affect, similar to most,
if not all, human complex traits (Anastasi, 1958; Gottlieb, 2003).

Future research implementing P→E parameters, thus, would
benefit from specifying measured biological (e.g., mRNA and hor-
mones) and environmental (e.g., peer relationships) factors, in
addition to nonspecific environmental factors (Wachs, 1983).
Future longitudinal twin modeling would also benefit from incor-
porating GxE in the presence of rGE (Johnson, 2007). P→E mod-
els that include intermediate variables in the causal chain and
GxE processes need to be developed.

Although accommodating rGE in longitudinal behavioral
genetic models has the advantage of explicating how

environments come to be correlated with psychological traits
and heredity, P→E parameters change the meaning of nonshared
environmental components (Dolan et al., 2014). Our empirical
test compared nonshared environmental components with and
without rGE and suggested that including P→E may do so only
minimally. While the theoretical meaning of the nonshared envi-
ronment does change by virtue of genetic components indirectly
predicting environmental components, the model-estimated non-
shared environment correlations did not differ appreciably, sug-
gesting overall similarity in the interpretation of the nonshared
environment. While twin studies do not clarify specific environ-
mental factors that contribute to any phenotype (Wachs, 1983),
the implication that differences in environmental exposure matter
for maintaining stability of affect seem to be preserved when
genetic and environmental components are allowed to correlate.

Accommodating rGE in longitudinal twin models explicitly
demonstrates how the mutual exchange between people and
their environments might cause highly heritable traits to increase
over time, as originally proposed by Dickens and Flynn (2001).
Meta-analyses of longitudinal findings have drawn on Dickens
and Flynn’s version of the REM to understand age trends in
genetic and environmental variance components, but only indi-
rectly (Briley & Tucker-Drob, 2013, 2014; Tucker-Drob &
Briley, 2014). These studies must assume the same independence
assumption and so postulate that twin correlations decrease with
age in DZ twins compared to MZ twins (see also McCartney,
Harris, & Bernieri, 1990), but never address the developmental
systems that explain how DZ twins diverge in similarity over time.

The temporal dynamics of phenotype–environment matching
might differ across traits and abilities. For traits that tend to be
highly stable and evolve slowly over time, like personality
(Roberts & Mroczek, 2008), within-family rGE is expected to
rise precipitously and to level off when persons are more or less
canalized into their adult environments. Research designs proba-
bly can include long intervals of time between measurements for
such phenotypes and still detect within-family rGE, as environ-
ments that support these traits are unlikely to change over short
intervals of time and are expected to be highly correlated and
decline slowly (e.g., jobs tend to consist of similar environmental
demands over long periods). For phenotypes that fluctuate daily,
such as affect, perceived stress, and psychiatric symptoms (e.g.,
depressive symptomatology), within-family rGE is expected to
increase and decrease over relatively short intervals of time
because of state dependence. Further, nonshared environmental
correlations would be expected to persist, but decline quickly
with the passage of time. Individuals prone to depression, for
example, are not continuously depressed nor do individuals
prone to seeing their world as stressful always feel stressed.
Minor arguments with a friend that influence depression and
stress symptoms one day may have short-term effects on environ-
ments the next day or the following day (e.g., distancing oneself to
calm down), but generally do not persist over many days (e.g.,
interpersonal differences are mended after a few days).

Consistent with the above expectations, etiological influences
on positive and negative affect, including rGE, fluctuated across
days rather than increased linearly. Detection of within-family
rGE for state-dependent phenotypes, thus, requires shorter divi-
sions of time that can capture day-to-day variability in rGE.
This is the first study to test rGE of a phenotype over days, and
demonstrates that the rGE underlying state-dependent pheno-
types are observed when lags between measurements are short.
In one previous study with depressive symptom measurements
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separated by years, person–environment effects that generate
within-family rGE were not found (Beam et al., 2016), possibly
because the intervals of time between measurements (approxi-
mately three years) were too long to capture meaningful per-
son–environment correlations underlying the temporal
dynamics of depressive symptoms. By comparison, in studies of
phenotypes that are relatively stable over years, like cognitive abil-
ity (Beam et al., 2015; de Kort et al., 2014) and personality (Beam
& Sharp, 2020), within-family rGE was observed and tended to
increase monotonically and stabilize over time.

Limitations & future directions

The most notable limitation in the current study is that processes
other than rGE (e.g., GxE interaction) might account for stability
of pair differences in affect over the 30 days of the menstrual cycle
studied here. Along this same theme, a second limitation is that
other biological processes that factor into pair differences remain
unaccounted for in the current study. Molecular environments,
like polygenic scores (Dolan et al., 2019), RNA transcription
and protein transcription, responsible for genetic expression
have a great deal to do with phenotypic expression (Cole, 2009;
Gottlieb, 2003). Intermediary pathways that lie between genotype,
behavior, and environments may help to clarify how heritability
changes over time.

A third limitation of the current study is the assumption that
all twins experienced functionally equivalent environments across
the 30 days, such that the roles of specific environments cannot be
made (Wachs, 1983). In other words, it remains unclear whether
one twin experienced a more extreme environment (e.g., trauma
exposure) compared to her co-twin. Likewise, nonshared environ-
mental variance and measurement error were not differentiated,
so we cannot conclude definitively that genetic variance correlates
with nonshared environmental sources of variance alone.

A fourth limitation is that we did not account for the possibil-
ity that genetic variance underlying affect at Day t might also cor-
relate with shared environmental variance underlying affect at
Day t+1. While it is possible to model between-family rGE
using a similar approach as the one taken in the current study,
such modeling is useful for testing how between-family rGE
causes both twins in a family to diverge from both twins in
another family. As our focus was on whether within-family rGE
partially explains how individuals diverge, modeling between-
family rGE fell outside our study goals.

A fifth limitation is that the P→E model assumes that the
autocorrelation structure between measurement occasions are sta-
tionary and that the process under scrutiny is noncyclic. The time
metric used in the current study, the menstrual cycle, however, is
nonstationary and cyclic. The P→E parameterization, thus, may
oversimplify the person–environment matching process hypothe-
sized to occur over time in these data. As there are no other daily
twin studies with as many repeated measurements as in the
MSUTR, this study offers a rare glimpse into person–environ-
ment processes that account for differences in daily affect scores.

A final limitation concerns the study design. First, the sample
size was relatively small with only 265 families. Yet, the repeated
measurement design increases measurement precision, which in
turn reduces the necessary sample size to achieve a given level
of power (Allison et al., 1998; Evans, 2002). This was reflected
in the adequate power to detect P→E effects, on average, observed
in our post-hoc power analysis. Second, we observed significant
within-person differences in positive and negative affect scores

between days in which affect scores were supplied online versus
supplied on Scantron cards, with slightly higher scores reported
on days using Scantron cards. This limitation, however, is offset
by the advantage of recording twins’ scores rather than not on
days when twins did not have online access.

There are a number of directions for future research that
would benefit the field of developmental behavioral genetics,
both of which are oriented toward understanding how heritability
changes with time and become correlated with nonshared envi-
ronments. First, daily twin studies with time scales that are both
stationary and noncyclic should be a priority, as this study design
would satisfy the P→E model assumptions. Second, the inclusion
of measured genotypic differences, like polygenic scores, would
permit tests of whether nonshared environmental differences cor-
relate with differences in measured causal variants. Work in this
area is underway (Dolan et al., 2019). A third direction involves
cohort sequential designs in longitudinal twin studies. This
approach would help clarify when P→E effects are greatest across
different developmental periods. Certain periods of development
might be more critical for person–environment matching than
others (e.g., looking for a first job vs. a lateral career move in mid-
life). The fourth direction we hope to see in future studies is the
integration of experimental designs with behavioral genetic
approaches, like the one recently taken by Burt, Plaisance, and
Hambrick (2019). Randomly assigning twins within pairs to dif-
ferent environmental exposures may offer insight into the ways
in which twins’ construction and reaction to initial random envi-
ronmental exposure influences developmental trajectories and
rGE. Random assignment to different environments may induce
twins to differentiate within brief windows of time because of
within-family rGE processes, provided that the trait, like affect,
can be manipulated over short periods of time. Although P→E
effect sizes might be small (see also Dolan et al., 2014), they
can have meaningful consequences for developmental outcomes
when repeated consistently over time (Funder & Ozer, 2019).

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0954579420001017.
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