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Two-dimensional (2-D) gravity–capillary solitary waves are generated using a moving
pressure jet from a 2-D narrow slit as a forcing onto the surface of deep water. The
forcing moves horizontally over the surface of the deep water at speeds close to the
minimum phase speed cmin = 23 cm s−1. Four different states are observed according
to the forcing speed. At relatively low speeds below cmin, small-amplitude depressions
are observed and they move steadily just below the moving forcing. As the forcing
speed increases towards cmin, nonlinear 2-D gravity–capillary solitary waves are
observed, and they move steadily behind the moving forcing. When the forcing speed
is very close to cmin, periodic shedding of a 2-D local depression is observed behind
the moving forcing. Finally, at relatively high speeds above cmin, a pair of short and
long linear waves is observed, respectively ahead of and behind the moving forcing.
In addition, we observe the transverse instability of free 2-D gravity–capillary solitary
waves and, further, the resultant formation of three-dimensional gravity–capillary
solitary waves. These experimental observations are compared with numerical results
based on a model equation that admits gravity–capillary solitary wave solutions
near cmin. They agree with each other very well. In particular, based on a linear
stability analysis, we give a theoretical proof for the transverse instability of the 2-D
gravity–capillary solitary waves on deep water.

Key words: solitary waves, waves/free-surface flows

1. Introduction
The phase speed of two-dimensional (2-D) plane linear gravity–capillary waves

on deep water features its minimum cmin = 23 cm s−1 at a finite wavelength
λmin = 1.71 cm. Then, nonlinear 2-D gravity–capillary solitary waves on deep
water can theoretically exist with propagation speeds that are less than cmin. Many
previous theoretical and numerical works have dealt with the existence and steady
profiles of 2-D gravity–capillary solitary waves on deep water (Longuet-Higgins
1989; Vanden-Broeck & Dias 1992; Akylas 1993; Longuet-Higgins 1993; Parau &
Vanden-Broeck 2002). At low speeds below cmin, they are fully localized disturbances
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Two-dimensional gravity–capillary solitary waves 93

with steep depressions. At speeds close to cmin, they are wavepacket-type disturbances
with small amplitudes. In contrast to the progress made in theoretical and numerical
studies on the existence and steady profiles of 2-D gravity–capillary solitary waves
on deep water, there have been few experimental studies on these topics. One such
example is the work by Longuet-Higgins & Zhang (1997). In a laboratory, they
generated 2-D gravity–capillary solitary waves by impinging a pressure jet from a
fixed narrow slit onto the surface of a deep-water stream moving to the left with
speeds below cmin. For a certain streaming speed below and close to cmin, they
observed a localized and symmetric wave depression, the location of which was a
little left-shifted (downstream) compared with the horizontal position of the fixed
jet forcing. The overall shape was two-dimensional, but, in the transverse direction,
persistent instabilities were observed, taking the form of progressive or standing
capillary waves of short wavelength propagating across the channel. Although not
definitive, what they observed is probably the precursor of the transverse instability
of 2-D gravity–capillary solitary waves. When the forcing is removed, the waves are
shown to propagate as 2-D free solitary waves damped by viscosity.

Related to the transverse instability, there have been numerous theoretical and
numerical studies based on full water-wave equations or model equations. Based on
the three-dimensional (3-D) full water-wave equations, Bridges (2001) theoretically
proved that 2-D gravity or gravity–capillary solitary waves on deep water would be
transversely unstable if ∂I/∂c < 0, where I =

∫
∞

−∞

∫ η
−∞

u dz dx is the total horizontal
momentum, c is the wave propagation speed, u is the horizontal velocity of a fluid
particle and η is the wave elevation. Using the numerical results of Longuet-Higgins
(1974), he showed that the transverse instability condition is satisfied for the gravity
solitary waves, and therefore they are unstable to a transverse perturbation. For the
gravity–capillary solitary waves, however, no definite conclusion was reached. Kim &
Akylas (2007) showed that, based on the 2-D full water-wave equation, the transverse
instability condition is theoretically equivalent to ∂E/∂c< 0, where E=

∫
∞

−∞
η2(x, c) dx

is the energy of the solitary wave. To see whether the instability condition is met by
the gravity–capillary solitary wave solutions, they numerically obtained the solitary
wave solutions to the 2-D full water-wave equations according to the wave propagation
speed c. Then, from the numerically obtained E–c (energy–speed) diagram, they
concluded that those waves are unstable; their method of proof was a numerically
inductive one. Correspondingly, the same results (∂E/∂c< 0) have also been obtained
based on a model equation (Akers & Milewski 2008; Wang & Vanden-Broeck 2015),
a 2-D full water-wave equation (Milewski & Wang 2010) and a 2-D weakly nonlinear
cubic-order truncation model equation (Kim 2012), mostly in a numerically inductive
way except for Wang & Vanden-Broeck’s work (2015). Akers & Milewski (2009)
numerically computed 2-D steady wave solutions to the aforementioned 2-D model
equation (Akers & Milewski 2009) and investigated their stability in the presence
of initial transverse perturbations based on the time-dependent simulation. They
numerically found that 2-D gravity–capillary solitary waves are unstable and finally
evolve into 3-D gravity–capillary solitary waves. These numerically proven stable
3-D gravity–capillary solitary waves were actually identified in recent experiments
using a 3-D moving air-pressure forcing (Diorio et al. 2009, 2011; Masnadi &
Duncan 2017a,b) and a 3-D moving air-suction forcing (Park & Cho 2016). Based
on the aforementioned existing studies, to the best of present authors’ knowledge,
there have been no definitive experiments on both the generation and the transverse
instability of the 2-D gravity–capillary solitary waves and the resultant formation of
3-D gravity–capillary solitary waves on deep water. Moreover, there have been few
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94 B. Park and Y. Cho

theoretical proofs for the transverse instability of the 2-D gravity–capillary solitary
waves on deep water (∂E/∂c< 0) based on the full water-wave equation or a model
equation. Therefore, these are the subjects of this paper.

In § 2, the experimental set-up for the generation of 2-D gravity–capillary solitary
waves using 2-D compressed air is described. In § 3, the resultant forced 2-D
gravity–capillary solitary wave profiles are shown according to their propagation
speeds. In § 4, for a forced 2-D gravity–capillary solitary wave with a certain initial
propagation speed, after the forcing is removed, its decaying behaviour is shown. In
§ 5, for a forced 2-D gravity–capillary solitary wave with a certain initial propagation
speed, after the translational motion of the forcing is stopped and shortly after the
forcing is removed, its transverse instability and the resultant formation of a 3-D
gravity–capillary solitary wave are shown. All of these experimental results are
compared with numerical results based on a theoretical model equation (Akers &
Milewski 2009; Diorio et al. 2009; Cho et al. 2011; Cho 2014, 2015). Finally, in
§ 6, based on a linear stability analysis using the same model equation, we provide
a theoretical proof for the observed transverse instability of 2-D gravity–capillary
solitary waves, i.e. ∂E/∂c< 0.

2. Experimental set-up

The present 2-D blowing experiment is very similar to our earlier 3-D air-suction
experiment (Park & Cho 2016) and previous 3-D air-blowing experiments (Diorio
et al. 2009, 2011; the present corresponding author is one of the co-authors of
this work). The overall experimental set-up and observation techniques are very
similar to each other except for a new 2-D forcing mechanism. Therefore, we
describe the main features of the present experimental set-up only, including our new
2-D forcing mechanism. For more details about relevant experimental set-ups and
observation techniques, see Diorio et al. (2009, 2011) and Park & Cho (2016). The
present experiments were carried out in a water tank with dimensions of 4 m in
length, 0.1 m in width and 0.6 m in height (figure 1). The tank wall was made of
transparent glass through which side-view observation was possible using a high-speed
camera (figure 1b). The water depth was fixed to be 0.3 m such that any possible
wavelength of linear gravity–capillary waves near 1.71 cm was less than two times
the water depth (the so-called deep-water condition). For purification of the water,
we used a commercial water skimmer-filtration device (EHEIM skim350) and the
surface tension was measured to be approximately 0.073 N m−1 at 25 ◦C by a Du
Nöuy ring-type tensiometer. A carriage was fixed to a belt–pulley system which was
installed on top of the water tank. This belt–pulley system was servomotor controlled
to move with a target constant speed U near cmin = 23 cm s−1 from right to left. A
2-D forcing mechanism through which compressed air was blown above the water
surface was vertically attached to the moving carriage. As shown in figure 2, the
main parts of the 2-D forcing mechanism were nine pipes (2 mm in diameter) which
were equally spaced from one another (0.5 mm), a silicon mesh net (circular-pore
number density of 13 cm−2, pore diameter of 2 mm, thickness of 1 mm) and a
140◦ converging chamber with a narrow-slit (1.3 mm) exit. The nine pipes were
connected to a primary pipe (2 mm in diameter) using elastic polyurethane tubes
and a manifold-type air-fitting connector (TPC Mechatronics SQU-08). The silicon
mesh net was used to make the airflow uniform in the transverse direction, i.e.
two-dimensional. Compressed air flowed through these main parts in the following
order: the primary pipe, the air-fitting connector, the nine tubes, the nine secondary
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Air hose

2-D air jet

4 m

0.3 m

Servomotor

Water

Belt–pulley
system U

0.6 m

(a)

High-speed
camera

0.1 m

(c)

(b)

FIGURE 1. Experimental set-up. (a) Side view, (b) front view and (c) top view.

pipes, the mesh net and the 2-D slit. This 2-D air-blowing onto the water surface
made 2-D surface waves.

When the air-blowing forcing is stationary, the degree of the air-blowing is
represented by the slope of a 2-D depression on the water surface, i.e. the
dimensionless parameter ε = D/W, where D is the depth of the depression and
W is the width of the depression, which is the distance between two points where
the depression profile meets the horizontal free surface. In figure 3, four different
forcing magnitudes (ε = 0.04, 0.057, 0.08, 0.1) are shown.

Surface-wave patterns were observed by a high-speed digital camera (Phantom
9.1, Vision Research) equipped with a lens (AF-S VR Micro Nikkor ED 105 mm
f/2.8F (IF)). The resolution of the camera was 1632 × 800 pixels, where one pixel
size corresponded to physical dimensions of 0.06 mm × 0.06 mm. The shadowgraph
technique was adopted for the purpose of visualization of surface-wave patterns, and
they were recorded on the carriage-attached high-speed camera which moved with
the same speed (U) as the 2-D air-blowing forcing. When necessary, the camera was
positioned on a tripod which was fixed on the laboratory floor. With this experimental
set-up, surface-wave patterns were observed according to the air-blowing forcing speed
(α =U/cmin) for several forcing magnitudes (ε =D/W).

In the preliminary test, the uniformity of the 2-D air-blowing forcing was checked
by the resultant steady-state wave profiles on the water surface at several transverse
locations. Figure 4(a–c) shows the observed wave profiles at three equally spaced
positions in the transverse direction (1/4 line, centreline, 3/4 line) for a forcing
magnitude of ε = 0.08 when the carriage was stationary (α = 0). The downward
arrows in the figure denote the positions of the air-blowing forcings. As shown,
small-amplitude depressions were observed below the stationary forcings and each
depression was almost the same. Figure 4(d–f ) shows the wave profiles at the same
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4 mm
Air

chamber

1.3 mm

Air chamber

2-D air blowing

10 cm

1.5 cm

1.4 cm

1 mmSilicon mesh net

2 mm0.5 mm(a) (b) (c)

FIGURE 2. The main parts of the 2-D forcing mechanism: nine pipes, a silicon mesh
net and a converging chamber with a narrow-slit exit. (a) Front view, (b) side view and
(c) silicon mesh net (circular-pore number density of 13 cm−2, pore diameter of 2 mm,
thickness of 1 mm).
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FIGURE 3. Slopes of 2-D depressions, i.e. dimensionless parameter ε=D/W, where D is
the depth of the depression and W is the width of the depression, when the air-blowing
forcing is stationary, for (a) ε = 0.04, (b) ε = 0.057, (c) ε = 0.08 and (d) ε = 0.1.
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FIGURE 4. Uniformity of the 2-D air-blowing forcing checked by the resultant steady-state
wave profiles on the water surface at several transverse locations. (a–c) Side-view
observations of steady-state wave profiles at three equally spaced positions in the
transverse direction ((a) 1/4 line, (b) centreline, (c) 3/4 line) for a forcing magnitude
of ε = 0.08 when the carriage is stationary (α = 0). (d–f ) Side-view observations of
steady-state wave profiles at three equally spaced positions in the transverse direction ((d)
1/4 line, (e) centreline, ( f ) 3/4 line) for a forcing magnitude of ε=0.08 when the carriage
is moving from right to left with a speed of α = 0.913.

positions as those of figure 4(a–c) for a forcing magnitude of ε = 0.08 when the
carriage was moving from right to left with a speed of α = 0.913. In this exemplary
non-stationary case, the resultant steady-state wave profiles were observed behind the
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Two-dimensional gravity–capillary solitary waves 97

moving forcing. These are actually 2-D gravity–capillary solitary waves which will
be described in more detail in the next section. As shown, the three wave profiles
were almost identical to one another.

3. Generation of 2-D gravity–capillary solitary waves
Figure 5 shows side-view observations of steady-state surface-wave profiles

according to the forcing speed (α = 0.87–1.1) when the forcing magnitude was fixed
to be ε = 0.08. Like in figure 4, the downward arrow denotes the position of the
moving forcing. At the lowest forcing speed α = 0.87, a small-amplitude depression
was observed just below the left-moving forcing (figure 5a), which resembled the
small-amplitude depression when the carriage was stationary (figure 4a–c). Then, as
the forcing speed was increased (0.896 < α < 0.995), solitary-wave-like depressions
were observed behind the left-moving forcing (figure 5b–f ). In this speed range, as
the forcing speed α increased, the depths of these solitary-wave-like depressions
decreased and their positions became farther away from the forcing. As the forcing
speed further increased close to the minimum phase speed, for example α = 0.995,
the steady surface-wave profile (figure 5g) changed little compared with that of
α = 0.97 (figure 5f ). When the forcing speed was larger than the minimum phase
speed, for example α= 1.1, a pair of short and long linear waves was observed ahead
of and behind the left-moving forcing, the wavelengths of which were 10 mm and
30 mm respectively (figure 5h). Figures 6–9 show time histories of 2-D surface-wave
profiles at different times at forcing speeds of α = 0.87, 0.93, 0.995, 1.1 for the
fixed forcing magnitude ε = 0.08, until steady states are reached. Compared with
the just-mentioned steady surface-wave profiles, unsteady patterns of surface-wave
profiles were also observed within a certain narrow forcing speed range near α = 1
(α = 1–1.1). Figure 10(a–f ) shows a series of temporal snapshots of surface-wave
profiles for a forcing speed of α = 1.02, with a time difference of 0.59 s between
each snapshot. Figure 10(a, f ) is the same, and thus periodic, and the period of this
unsteady wave pattern is approximately 3 s. In the figures, what is repeated looks
like continuous shedding of a local depression behind the left-moving forcing. For
higher forcing speeds α < 1.1, similar periodic surface-wave patterns are observed,
but with shorter shedding periods.

All of these experimentally observed wave profiles are compared with those from
the following 2-D model equation which admits deep-water gravity–capillary solitary
wave solutions near the minimum phase speed cmin, in the presence of viscous
damping and forcing (Cho et al. 2011):

ηt + (α −
1
2)ηx − β(η

2)x −
1
4H {ηxx − η} − ν̃ηxx = Apx, (3.1)

where η(x, y) is the dimensionless wave elevation, t is the dimensionless time, x
is the dimensionless streamwise coordinate in the left-moving reference frame with
speed α, the nonlinear coefficient β =

√
11/2/8, the operator H is the spatial Hilbert

transform, such that H {f } =F−1
{−isgn(k)F ( f )}, with F {f } = 1/2π

∫
∞

−∞
f (x)e−ikx dx

(k is the wavenumber), A is the forcing magnitude, p(x) is the forcing function and
the subscript means partial differentiation. In addition, the dimensionless kinematic
viscosity is ν̃ = Cν(4g)1/4(ρ/σ)3/4, where ν is the kinematic viscosity of water, C
is the tuning parameter (C = 1 for linear sinusoidal waves, C > 1 for nonlinear
solitary waves), g is the gravitational acceleration, ρ is the water density and σ
is the surface tension. The detailed derivation of (3.1) is shown in appendix A.
In the present work, we choose C = 2.4, p(x) = exp(−2x2), A = 0.048, by trial
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FIGURE 5. Side-view observation of steady-state surface-wave profiles according to the
forcing speed α, for the fixed forcing magnitude ε= 0.08, for (a) α= 0.87, (b) α= 0.896,
(c) α = 0.913, (d) α = 0.93, (e) α = 0.956, ( f ) α = 0.97, (g) α = 0.995 and (h) α = 1.1.

and error, to find the computational results that agree with the experimental results
in terms of speed-dependent behaviour both qualitatively and quantitatively. The
computational domain size is −94 < x < 94 with a spatial resolution of dx = 0.18.
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FIGURE 6. Time history of side-view observation of 2-D surface-wave profiles at a forcing
speed of α= 0.87, for the fixed forcing magnitude ε=0.08, until a steady state is reached.

We adopt the spectral method for the spatial computation and the predictor–corrector
scheme for the temporal computation. For dimensional results, the characteristic
length L = (σ/ρg)1/2 = 2.73 mm and the characteristic time T = L/cmin = 0.0118 s
are used. Figures 11–16 show the model-based numerical results which are overlaid
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FIGURE 7. Time history of side-view observation of 2-D surface-wave profiles at a forcing
speed of α= 0.93, for the fixed forcing magnitude ε=0.08, until a steady state is reached.

on the observed surface-wave profiles (figures 5–10) from the experiment. As shown,
they agree with each other very well. In addition, to check that the solitary-wave-like
depressions observed behind the left-moving forcing (figures 5b–g or 11b–g) are
indeed solitary waves, we solve the following inviscid forcing-free steady model
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FIGURE 8. Time history of side-view observation of 2-D surface-wave profiles at a forcing
speed of α = 0.995, for the fixed forcing magnitude ε = 0.08, until a steady state is
reached.

equation which adopts a solitary wave solution with a propagation speed α:

(α − 1
2)ηx − β(η

2)x −
1
4H {ηxx − η} = 0. (3.2)

Equation (3.2) is solved by a modified Petviashvili method (Cho 2015) or the pseudo-
arclength continuation method (Cho 2014). In figure 17, for forcing speeds in the
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FIGURE 9. Time history of side-view observation of 2-D surface-wave profiles at a forcing
speed of α= 1.1, for the fixed forcing magnitude ε= 0.08, until a steady state is reached.

range 0.896 < α < 0.995, the computed forcing-free inviscid solitary wave solutions
are compared with the solitary-wave-like depressions behind the left-moving forcing
in figure 5(b–g). As shown in figure 17(a–e), for moving speeds in the range 0.896<
α < 0.97, they agree with each other very well, and, therefore, they are indeed 2-D
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FIGURE 10. Side-view observation of unsteady surface-wave profiles when the forcing
speed is α = 1.02, for the fixed forcing magnitude ε = 0.08. The time interval between
each snapshot is 0.59 s.

gravity–capillary solitary waves. However, for the case α = 0.995, the depression in
figure 17( f ) does not agree with the solitary wave solution with a propagation speed
of α = 0.995, and, therefore, the depression is not a solitary wave. The results are
summarized in figure 18, which shows the relationship between the forcing speed
α and the maximum surface depression hmax, depending on the forcing magnitude.
For a fixed magnitude of forcing, there exists a critical speed αcrit just after which
nonlinear solitary waves are observed behind the moving forcing. As the speed below
αcrit increases, the depth of the simple depressions below the forcing increases. As the
speed above αcrit increases, the depth of depression of the solitary wave decreases. In
addition, regardless of the forcing magnitude, the same solitary waves are observed if
the forcing speeds are the same; that is, in the α–hmax diagram (figure 18), they fall
on the same negative-slope curve as is predicted by the model equation (3.2) for the
free inviscid solitary waves.
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FIGURE 11. Comparison between the experimentally observed surface-wave profiles
(figure 5) and the model-based (3.1) numerically obtained wave profiles (dashed curves)
for the fixed forcing magnitude ε = 0.08, for (a) α = 0.87, (b) α = 0.896, (c) α = 0.913,
(d) α = 0.93, (e) α = 0.956, ( f ) α = 0.97, (g) α = 0.995 and (h) α = 1.1.

4. Decaying behaviour of 2-D gravity–capillary solitary waves

In the previous section, we observed that 2-D gravity–capillary solitary waves are
generated behind the moving forcing (ε = 0.08) for the speed range 0.896<α < 0.97.
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FIGURE 12. Time history: comparison between the experimentally observed surface-wave
profiles (figure 6) and the model-based (3.1) numerically obtained wave profiles (dashed
curves) at a forcing speed of α = 0.87, for the fixed forcing magnitude ε = 0.08, until a
steady state is reached.

To see the decaying behaviour of free gravity–capillary solitary waves, for example
for the speed α = 0.93, we turned off the airflow after the steady-state solitary wave
was formed behind the forcing. Then, the solitary wave disappeared almost instantly.
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FIGURE 13. Time history: comparison between the experimentally observed surface-wave
profiles (figure 7) and the model-based (3.1) numerically obtained wave profiles (dashed
curves) at a forcing speed of α = 0.93, for the fixed forcing magnitude ε = 0.08, until a
steady state is reached.

Figures 19(a–d), 20(a–d) and 21(a–d) show the observed decaying behaviour of the
initial forced 2-D gravity–capillary solitary wave for α = 0.93 at t = 0.35 s, 0.47 s,
0.59 s and 0.71 s after the forcing was turned off, in 3-D slanted view, side view and
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FIGURE 14. Time history: comparison between the experimentally observed surface-wave
profiles (figure 8) and the model-based (3.1) numerically obtained wave profiles (dashed
curves) at a forcing speed of α= 0.995, for the fixed forcing magnitude ε = 0.08, until a
steady state is reached.

rear view respectively. These images were taken from fixed cameras on the laboratory
floor. Also shown are the corresponding computational results (figure 19e–h, dashed
curves in figures 20e–h, 21e–h), which are expressed in the fixed reference frame at
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FIGURE 15. Time history: comparison between the experimentally observed surface-wave
profiles (figure 9) and the model-based (3.1) numerically obtained wave profiles (dashed
curves) at a forcing speed of α = 1.1, for the fixed forcing magnitude ε = 0.08, until a
steady state is reached.

t = 0.35 s, 0.47 s, 0.59 s and 0.71 s. These are obtained by solving the following
forcing-free viscous 3-D model equation with C= 2.4 extended from the 2-D model
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FIGURE 16. Comparison between the experimentally observed surface-wave profiles
(figure 10) and the model-based (3.1) computationally obtained wave profiles (dashed
curves) when the forcing speed α = 1.02 for the fixed forcing magnitude ε = 0.08. The
time interval between each snapshot is 0.59 s.

equation (3.1) (Cho et al. 2011):

ηt + (α −
1
2)ηx − β(η

2)x −
1
4H

{
ηxx + 2ηyy − η

}
− ν̃(ηxx + ηyy)= 0. (4.1)

The initial condition in solving the above equation is the 2-D surface-wave profile
for α = 0.93 obtained from the forced model equation (3.1) with C= 2.4. As shown
in figures 19–21, the experimental results and computational results (dashed curves)
agree with each other very well.

5. Transverse instability of 2-D gravity–capillary solitary waves
In the previous section, we turned off the airflow (ε = 0.08) when the 2-D steady-

state solitary wave had already formed behind the moving forcing with a speed of
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FIGURE 17. Comparison among the experimentally observed solitary-wave-like
depressions behind the left-moving forcing (figure 5b–g), the model-based (3.1) forced
viscous wave profiles (dashed curves, figure 11b–g) and the model-based (3.2) forcing-free
inviscid solitary wave profiles (solid curves), for (a) α= 0.896, (b) α= 0.913, (c) α= 0.93,
(d) α = 0.956, (e) α = 0.97 and ( f ) α = 0.995.

α = 0.93. Then, in a very short time, the solitary wave shows a decaying behaviour
with no variation in the transverse direction. Comparatively, in the present section,
instead of turning off the airflow, we stop the translational motion of the forcing when
the 2-D steady-state solitary wave has already formed behind the moving forcing with
a speed of α= 0.93. Then, shortly afterwards, we turn off the airflow. As a result of
this successive operation, we can observe the transverse instability of a forcing-free
solitary wave. In the present experiment, the cause of the transverse instability is
the existence of sidewalls. Figure 22(a–d) shows a 3-D slanted view of the observed
behaviour of the initial 2-D gravity–capillary solitary wave for α= 0.93 at t= 0.35 s,
0.47 s, 0.59 s and 0.71 s, after the forcing motion was stopped and, very shortly
afterwards, the airflow was turned off. These images were taken from fixed cameras
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FIGURE 18. Maximum surface depression hmax of the observed 2-D waves according to
the forcing speed α for different magnitudes of the 2-D air-blowing forcing: ε= 0.04 (6),
ε = 0.057 (A), ε = 0.08 (@), ε = 0.1 (E). The negative-slope solid curve is predicted by
the model (3.2) for inviscid solitary waves.
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FIGURE 19. Slanted 3-D view of the decaying behaviour of an initial 2-D gravity–
capillary solitary wave for α= 0.93 at t= 0.35 s, 0.47 s, 0.59 s and 0.71 s after turning
off the forcing. (a–d) Experiment. (e–h) Computation (4.1). All of the results are taken
from the fixed reference frame.
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FIGURE 20. Side view of the decaying behaviour of an initial 2-D gravity–capillary
solitary wave for α = 0.93 at t = 0.35 s, 0.47 s, 0.59 s and 0.71 s after turning off the
forcing. (a–d) Experiment. (e–h) Computation (equation (4.1), dashed curves). All of the
results are taken from the fixed reference frame.

on the laboratory floor. In figure 22(a) (t = 0.35 s), near the centreline, one can
see the starting formation of a 3-D solitary-wave-like depression. Between near the
centreline and the walls, the surface profiles are 2-D depressions which are remnants
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FIGURE 21. Rear view of the decaying behaviour of an initial 2-D gravity–capillary
solitary wave for α = 0.93 at t = 0.35 s, 0.47 s, 0.59 s and 0.71 s after turning off the
forcing. (a–d) Experiment. (e–h) Computation (equation (4.1), dashed curves). All of the
results are taken from the fixed reference frame.

from the initial 2-D gravity–capillary solitary wave. Then, in figure 22(b–d) (t=0.47 s,
0.59 s, 0.71 s), the 3-D solitary-wave-like depression near the centreline becomes
more prominent and propagates stably to the left while the remaining 2-D depressions
disappear due to viscous dissipation. Corresponding to figure 22(a–d) (3-D slanted
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FIGURE 22. Three-dimensional slanted view of the observed behaviour of an initial 2-
D gravity–capillary solitary wave for α = 0.93 at t = 0.35 s, 0.47 s, 0.59 s and 0.71 s,
after the forcing motion is stopped and, very shortly afterwards, the airflow is turned off.
(a–d) Experiment. (e–h) Computation (4.1) and (5.1). All of the results are taken from
the fixed reference frame.

view), figures 23(a–d) and 24(a–d) show the side view at the centreline and the rear
view of the observed behaviour at the same instants. Also shown are corresponding
computational results (figure 22e–h, dashed curves in figures 23e–h, 24e–h), which are
expressed in the fixed reference frame at t= 0.35 s, 0.47 s, 0.59 s and 0.71 s. These
are obtained by solving (4.1) with C = 2.4. The initial condition is the transversely
perturbed 2-D surface-wave profile η̃(x) for α= 0.93 obtained from the forced model
equation (3.1) with C= 2.4,

η(x, y, t= 0)= η̃(x)(1+ δ cos(y/ylim)), (5.1)

where the dimensionless computational domain size in the y direction is −πylim <

y < πylim. From the experiments, we see that the perturbations from sidewalls are
symmetric. Thus, in the computation, we take the perturbation to be symmetric and,
further, the fundamental-mode cosine function. Considering that the physical domain
size in the transverse y direction is 100 mm, we take ylim = 6, such that 2πylimL =
100 mm, where L = 2.73 mm. The amount of the transverse perturbation δ is taken
to be 0.15 (15 %), by trial and error, for a good agreement between experiments and
computations. As shown in figures 22–24, the experimental results and computational
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FIGURE 23. Centreline side view of the observed behaviour of an initial 2-D
gravity–capillary solitary wave for α = 0.93 at t = 0.35 s, 0.47 s, 0.59 s and 0.71 s,
after the forcing motion is stopped and, very shortly afterwards, the airflow is turned
off. (a–d) Experiment. (e–h) Computation (4.1) and (5.1). In (e–h), centreline side-view
profiles of forcing-free 3-D inviscid solitary waves ((5.2), solid curves) with propagation
speeds of α= 0.977, 0.968, 0.968 and 0.974 are overlaid. All of the results are taken from
the fixed reference frame.

results (dashed curves) agree with each other very well. In particular, in figures 23(e–
h) and 24(e–h) respectively, side-view centreline and rear-view profiles of forcing-free
inviscid 3-D solitary waves with certain propagation speeds (solid curves) are
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FIGURE 24. Centreline rear view of the observed behaviour of an initial 2-D
gravity–capillary solitary wave for α = 0.93 at t = 0.35 s, 0.47 s, 0.59 s and 0.71 s,
after the forcing motion is stopped and, very shortly afterwards, the airflow is turned off.
(a–d) Experiment. (e–h) Computation (4.1) and (5.1). In (e–h), centreline rear-view profiles
of forcing-free 3-D inviscid solitary waves ((5.2), solid curves) with propagation speeds
of α = 0.977, 0.968, 0.968 and 0.974 are overlaid. All of the results are taken from the
fixed reference frame.

overlaid on the dashed surface depressions. The forcing-free inviscid 3-D solitary
waves are obtained from the following model equation (Cho et al. 2011) using
the modified Petviashvili method (Cho 2015) or the pseudo-arclength continuation
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method (Cho 2014):

(α − 1
2)ηx − β(η

2)x −
1
4H

{
ηxx + 2ηyy − η

}
= 0. (5.2)

We see that, at each instant t= 0.35 s, 0.47 s, 0.59 s, 0.71 s, the 3-D solitary-wave-
like depressions are indeed forcing-free inviscid 3-D gravity–capillary solitary waves
propagating with speeds of α = 0.977, 0.968, 0.968 and 0.974 respectively under the
influence of viscosity. Here, in the 3-D forcing-free viscous computation, we take C=
2.4, by trial and error, for a good agreement between experiments and computations.

6. Theoretical proof of the transverse instability of 2-D gravity–capillary
solitary waves
In § 5, the transverse instability of 2-D gravity–capillary solitary waves on deep

water was observed in an experiment and was confirmed numerically using a
theoretical model equation that admits gravity–capillary solitary wave solutions
near cmin. In the present section, based on a linear stability analysis using the same
model equation without viscosity, we will give a theoretical proof of the transverse
instability of the 2-D gravity–capillary solitary waves on deep water (∂E/∂α < 0),
where E =

∫
∞

−∞
η2(x; α) dx is the energy of the solitary wave. First, let us consider

a solution η(x) to the following model equation (the same as (3.2)), which is a 2-D
gravity–capillary solitary wave on deep water,

(α − 1
2)ηx − β(η

2)x −
1
4H {ηxx − η} = 0, (6.1)

where η(x) satisfies the following constraints:

η(x)= η(−x), (6.2)∫
∞

−∞

η dx= 0, (6.3)

η→ 0 (x→±∞). (6.4)

Equation (6.2) means that the wave is symmetric, (6.3) means that the mass is
conserved and (6.4) means that the wave is locally confined. Assuming a general
form of the perturbation of η′(x, y, t) to the undisturbed 2-D solitary waves η(x), the
overall wave elevation η(x, y, t) can be written as follows:

η(x, y, t)= η(x)+ η′(x, y, t), (6.5)∣∣η′/η∣∣� 1. (6.6)

By substituting (6.5) into the following equation ((4.1) without viscous terms),

ηt + (α −
1
2)ηx − β(η

2)x −
1
4H

{
ηxx + 2ηyy − η

}
= 0, (6.7)

and with consideration of (6.6), one obtains the following evolution equation for the
perturbation η′:

η′t + (α −
1
2)η
′

x − 2β(ηη′)x − 1
4H

{
η′xx + 2η′yy − η

′
}
= 0. (6.8)

In the derivation of (6.8), terms of the order of O(η′2) and higher are neglected. Next,
let us further assume that the perturbation is a transverse type as follows:

η′ (x, y, t)= η̂(x)eλt+iµy, (6.9)
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η̂→ 0 (x→±∞) , (6.10)

where µ is the wavenumber in the transverse (y) direction and λ is the temporal
growth rate of the perturbation. Moreover, the function η̂ is assumed to be locally
confined. By substituting (6.9) into (6.8), one obtains the following equation in terms
of η̂:

λη̂+ (α − 1
2)η̂x − 2β(ηη̂)x − 1

4H
{
η̂xx − 2µ2η̂− η̂

}
= 0. (6.11)

In the long-wave perturbation limit (µ�1) as is observed in the experiment (µ=1/6),
upon expanding η̂ and λ in ascending powers of µ,

η̂= η̂(0) +µη̂(1) +µ2η̂(2) + · · · , (6.12)
λ= λ(0) +µλ(1) +µ2λ(2) + · · · , (6.13)

and substituting (6.12) and (6.13) into (6.11), one obtains the following series of
equations according to the order of magnitude O(1), O(µ), O(µ2) etc.,

O(1) :Lη̂(0) =−λ(0)η̂(0), (6.14)
O(µ) :Lη̂(1) =−λ(1)η̂(0) − λ(0)η̂(1), (6.15)

O(µ2) :Lη̂(2) =−λ(2)η̂(0) − λ(1)η̂(1) − λ(0)η̂(2) − 1
2H {η̂

(0)
}, (6.16)

where L denotes the linear operator as follows:

L≡
(
α −

1
2

)
∂

∂x
− 2βη

∂

∂x
− 2β

∂η

∂x
−

1
4
H

{
∂2

∂x2
− 1
}
. (6.17)

At zeroth order, O(1), the solution to the eigenvalue problem (6.14) is

λ(0) = 0, (6.18)
η̂(0) = ηx. (6.19)

Proceeding to O(µ), from (6.15), (6.18) and (6.19), the equation to be solved is

Lη̂(1) =−λ(1)ηx. (6.20)

Appealing to the usual solvability argument, it is possible to assess whether this non-
homogeneous equation has a solution or not. The adjoint operator LA to the operator
L is

LA
=

(
α −

1
2

)
∂

∂x
− 2βη

∂

∂x
−

1
4
H

{
∂2

∂x2
− 1
}
. (6.21)

The solution to the equation LAyA
= 0 is yA

= η, which is the steady wave solution
to (6.1). Therefore, for (6.20) to be solvable, the right-hand side of (6.20) must be
orthogonal to the solution to the homogeneous adjoint problem LAyA

= 0,∫
∞

−∞

(−λ(1)ηx)η dx= 0. (6.22)

This is always true since the left-hand side is −λ(1)1/2
∫
∞

−∞
(η2)x dx = 0 from (6.1).

Therefore, (6.20) is solvable, and, indeed, the solution to this equation is

η̂(1) = λ(1)ηα, (6.23)
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Two-dimensional gravity–capillary solitary waves 119

where the subscript in (6.23) denotes partial differentiation with respect to α.
Proceeding next to O(µ2), from (6.16), (6.18), (6.19) and (6.23), the equation to
be solved is

Lη̂(2) =−λ(2)ηx − λ
(1)2ηα −

1
2H {ηx}. (6.24)

Again, from the solvability condition,∫
∞

−∞

(−λ(1)
2
ηα − λ

(2)ηx −
1
2H {ηx})η dx= 0 (6.25)

or

λ(1)
2
∫
∞

−∞

(
η2
)
α

dx+ λ(2)
∫
∞

−∞

(
η2
)

x dx+
∫
∞

−∞

ηH {ηx} dx= 0, (6.26)

where the second term becomes zero due to (6.1). Therefore, (6.26) is reduced to

λ(1)
2
=−

1
∂E/∂α

∫
∞

−∞

ηH {ηx} dx, (6.27)

where E (α)=
∫
∞

−∞
η2 dx. There is instability for λ(1)2 > 0. Turning our attention to the

integral on the right-hand side, let the Fourier transform of η(x) be

F {η(x)} =
1

2π

∫
∞

−∞

η(x)e−ikx dx= Y(k). (6.28)

Then, the Fourier transform of H
{
ηx

}
is expressed as follows:

F
{
H {ηx}

}
=−isgn(k)F

{
ηx

}
=−isgn(k)(ik)F {η} = |k|Y(k). (6.29)

Then, using the following Parseval or Plancherel theorem,∫
∞

−∞

f (x)g(x) dx=
1

2π

∫
∞

−∞

F(−k)G(k) dk. (6.30)

The integral on the right-hand side in (6.27) becomes∫
∞

−∞

ηH {ηx} dx=
1

2π

∫
∞

−∞

Y(−k)|k|Y(k) dk. (6.31)

Since η(x) is real and even (6.2), the Fourier transform of it is also real and even,

Y(k)= Y(−k). (6.32)

Then, (6.31) becomes∫
∞

−∞

ηH {ηx} dx=
1

2π

∫
∞

−∞

|k|Y2(k) dk> 0. (6.33)

Finally, from (6.27) and (6.33), there is instability if

∂E
∂α

< 0. (6.34)
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FIGURE 25. The numerically obtained dimensionless energy (E=
∫
∞

−∞
η2 dx) of the 2-D

gravity–capillary solitary waves according to the wave speed α from (6.1).

This is the transverse instability condition, which is mentioned in the introduction.
Therefore, we have proved that 2-D gravity–capillary solitary waves on deep
water are unstable to transverse perturbations. Equation (6.34) is also numerically
verified by solving (6.1), and the results are shown in figure 25. The present
linear stability analysis is used to show the onset of the observed transverse
instability of the present experiment with a long-wave perturbation with dimensionless
wavenumber µ= 1/6� 1, or dimensionally µ/Lchar = 2π/w= 0.06 (1 mm−1), where
Lchar = 2.73 mm. What happens really (nonlinearly) after the onset of instability
was shown using a full numerical simulation in § 5. The sinusoidal perturbation is
triggered as a single-wavelength mode of the natural transverse modes (mπ/w, m= 2)
due to the existence of sidewalls in the present box-shaped experimental setting
(width w= 100 mm). Physically, this sinusoidal perturbation with a long wavelength
(100 mm� 2.73 mm) will be a standing gravity wave in a potential flow. Therefore,
the wall boundary conditions will be zero normal velocity components as are usually
adopted in potential-flow analysis. In the above linear stability analysis and nonlinear
numerical simulation in § 5, we assumed that, initially, the transverse perturbation
exists due to the existence of sidewalls. Therefore, we did not explicitly use the
velocity-related boundary conditions, and, instead, a periodic boundary condition for
the existence of a sinusoidal perturbation was adopted. Similar kinds of long-wave
transverse instability analysis and relevant simulations using a single-wavelength
perturbation have been carried out for gravity–capillary interfacial waves between
two fluids (Kim & Akylas 2006) and gravity–capillary surface waves on deep water
(Akers & Milewski 2009; Wang & Vanden-Broeck (2015)). We also would like to
mention that the stability/instability in the present work (and other referenced works)
means stable/unstable behaviour of a gravity–capillary wave after a perturbation is
uncontrollably generated internally (like a long-time experiment or simulation) or
given externally (like the present experiment or simulation). In addition, the stability
analysis here focuses on one mode of instability (µ= 1/6� 1) and not on the whole
spectrum.
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7. Summary
The generation of two-dimensional (2-D) gravity–capillary solitary waves on deep

water and their transverse instability were investigated experimentally and confirmed
numerically using a theoretical model equation that admits gravity–capillary solitary
wave solutions near the minimum of the phase speed cmin of linear gravity–capillary
waves on deep water. In the experiment, we generated 2-D depression gravity–capillary
solitary waves using a moving pressure jet from a narrow slit as a forcing onto the
free surface of deep water, and observed the transverse instability of 2-D depression
gravity–capillary solitary waves and the resultant formation of 3-D depression
gravity–capillary solitary waves. These experimental observations were compared
with numerical results based on a model equation and they agree with each other
very well. Based on a linear stability analysis using the same model equation, we
also provided a theoretically complete proof for the observed transverse instability of
2-D depression gravity–capillary solitary waves, i.e. ∂E/∂c< 0.
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Appendix A. Derivation of (3.1) (Cho et al. 2011; Cho 2014; Park & Cho 2016)
From the inviscid dispersion relation of the potential-flow theory for linear

sinusoidal gravity–capillary waves on deep water,

ω2
= gκ +

σ

ρ
κ3, (A 1)

where ω is the angular frequency, g is the gravitational acceleration, κ is the
magnitude of the wavenumber vector κ =

√
k2 + l2, k is the wavenumber in the

x direction, l is the wavenumber in the y direction, σ is the coefficient of surface
tension and ρ is the fluid density. Assuming a linear wave propagating in the positive
or negative x direction, the phase speed c=±sgn(k)ω/κ features a minimum cmin at
a non-zero finite wavenumber (k, l) = (±

√
ρg/σ , 0). Using the length scale

√
σ/ρg

and the time scale
√
σ/ρg/cmin, the dispersion relation (A 1) becomes dimensionless,

ω2
=

1
2(κ + κ3), (A 2)

and the phase-speed minimum becomes cmin = 1 at (k, l) = (km, lm) = (±1, 0). To
capture the essential wave phenomena near the minimum phase speed cmin, (A 2) is
Taylor-expanded around (k, l)= (km, lm) (Akers & Milewski 2009; Diorio et al. 2009;
Cho et al. 2011; Cho 2014),

ω(k, l) = ±sgn(k)

√
1
2
(κ + κ3)=± sgn(k)

√
1
2

√
(k2 + l2)1/2 + (k2 + l2)3/2

≈ ±sgn(k)
{
ω(km, lm)+

∂ω

∂k

∣∣∣∣
m

(k− km)+
∂ω

∂l

∣∣∣∣
m

(l− lm)

+
∂2ω

∂k2

∣∣∣∣
m

(k− km)
2
+ 2

∂2ω

∂k∂l

∣∣∣∣
m

(k− km)(l− lm)+
∂2ω

∂l2

∣∣∣∣
m

(l− lm)
2

}
= ±

1
4

sgn(k)(1+ 2|k| + k2
+ 2l2). (A 3)
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Assuming a left-going wave, the linear dispersion relation is

ω=− 1
4 sgn(k)(1+ 2|k| + k2

+ 2l2). (A 4)

The viscous effect can be reflected in the inviscid dispersion relation as follows:

ω=− 1
4 sgn(k)(1+ 2|k| + k2

+ 2l2)− iν̃|k|2. (A 5)

Here, ν̃ = Cν(4g)1/4(ρ/σ)3/4 is the dimensionless kinematic viscosity, where
ν = 10−6 (m2 s−1) is the kinematic viscosity of water and C is the parameter (C= 1
for linear sinusoidal waves, C > 1 for nonlinear solitary waves) that determines the
decay rate of waves (Longuet-Higgins 1997).

Now, from (A 5), one can replace variables (ω, k, l) in the temporal and spatial
frequency domains with those (t, x, y) in the physical domain,

ω→ i
∂

∂t
, k→−i

∂

∂x
, l→−i

∂

∂y
, sgn(k)→−iH , (A 6a−d)

where H {f } =F−1
{−isgn(k)F {f }} stands for the Hilbert transform, with

F {f } =
1
2

∫
∞

−∞

f (x)e−ikx dx (A 7)

being the Fourier transform. Consequently, one obtains the following model equation
for linear gravity–capillary waves on deep water:

ηt − ν̃(ηxx + ηyy)−
1
2ηx −

1
4H

{
ηxx + 2ηyy − η

}
= 0, (A 8)

where η = η(x, y, t) is the wave elevation and the subscript denotes partial
differentiation. To account for the nonlinearity and the left-moving forcing, one
can add a quadratic nonlinearity term β(η2)x and the forcing Ap(x + αt) in the
equation,

ηt − ν̃(ηxx + ηyy)−
1
2ηx − β(η

2)x −
1
4H

{
ηxx + 2ηyy − η

}
= Apx(x+ αt). (A 9)

By replacing x with x + αt in (A 9), the wave equation, which is expressed in the
left-moving frame of reference with a dimensionless speed α=U/cmin, is obtained as
follows:

ηt − ν̃(ηxx + ηyy)+ (α −
1
2)ηx − β(η

2)x −
1
4H

{
ηxx + 2ηyy − η

}
= Apx(x). (A 10)

To determine the nonlinear coefficient β, one can consider the following inviscid
forcing-free model equation from (A 10):

ηt + (α −
1
2)ηx − β(η

2)x −
1
4H {ηxx + 2ηyy − η} = 0. (A 11)

In the weakly nonlinear small-amplitude limit near α = 1, the solution to (A 11) can
be expressed as

η= 1
2ε{S(X, Y)eix

+ c.c.} + 1
2ε

2
{S2(X, Y)e2ix

+ c.c.} + · · · , (A 12)
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where α= 1− ε2(0<ε� 1) and (X, Y)= ε(x, y). Substituting (A 12) into (A 11), one
obtains the following nonlinear Schrödinger (NLS) equation:

−S+ 1
4 SXX +

1
2 SYY + 4β2

|S|2S= 0. (A 13)

On the other hand, from the full water-wave or Euler equations on deep water, the
NLS equation is derived as (Hogan 1985)

−S+ 1
4 SXX +

1
2 SYY +

11
32 |S|

2S= 0. (A 14)

Finally, by equating (A 13) and (A 14), the nonlinear coefficient is determined as β =
√

11/2/8.
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