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We present an effective reduced-order model (ROM) technique to couple an
incompressible flow with a transversely vibrating bluff body in a state-space format.
The ROM of the unsteady wake flow is based on the Navier–Stokes equations and is
constructed by means of an eigensystem realization algorithm (ERA). We investigate
the underlying mechanism of vortex-induced vibration (VIV) of a circular cylinder at
low Reynolds number via linear stability analysis. To understand the frequency lock-in
mechanism and self-sustained VIV phenomenon, a systematic analysis is performed by
examining the eigenvalue trajectories of the ERA-based ROM for a range of reduced
oscillation frequency (Fs), while maintaining fixed values of the Reynolds number (Re)
and mass ratio (m∗). The effects of the Reynolds number Re, the mass ratio m∗ and
the rounding of a square cylinder are examined to generalize the proposed ERA-based
ROM for the VIV lock-in analysis. The considered cylinder configurations are a basic
square with sharp corners, a circle and three intermediate rounded squares, which
are created by varying a single rounding parameter. The results show that the two
frequency lock-in regimes, the so-called resonance and flutter, only exist when certain
conditions are satisfied, and the regimes have a strong dependence on the shape of
the bluff body, the Reynolds number and the mass ratio. In addition, the frequency
lock-in during VIV of a square cylinder is found to be dominated by the resonance
regime, without any coupled-mode flutter at low Reynolds number. To further discern
the influence of geometry on the VIV lock-in mechanism, we consider the smooth
curve geometry of an ellipse and two sharp corner geometries of forward triangle
and diamond-shaped bluff bodies. While the ellipse and diamond geometries exhibit
the flutter and mixed resonance–flutter regimes, the forward triangle undergoes only
the flutter-induced lock-in for 30 6 Re 6 100 at m∗ = 10. In the case of the forward
triangle configuration, the ERA-based ROM accurately predicts the low-frequency
galloping instability. We observe a kink in the amplitude response associated with 1:3
synchronization, whereby the forward triangular body oscillates at a single dominant
frequency but the lift force has a frequency component at three times the body
oscillation frequency. Finally, we present a stability phase diagram to summarize the
VIV lock-in regimes of the five smooth-curve- and sharp-corner-based bluff bodies.
These findings attempt to generalize our understanding of the VIV lock-in mechanism
for bluff bodies at low Reynolds number. The proposed ERA-based ROM is found
to be accurate, efficient and easy to use for the linear stability analysis of VIV, and
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it can have a profound impact on the development of control strategies for nonlinear
vortex shedding and VIV.

Key words: flow–structure interactions, low-dimensional models, vortex dynamics

1. Introduction
1.1. Vortex-induced vibration

Vortex shedding from a bluff body and vortex-induced vibration (VIV) are ubiquitous
and have a broad range of applications in numerous fields such as offshore, wind and
aerospace engineering. Apart from their great practical importance, these phenomena
have a fundamental value in fluid mechanics due to the vast richness of their vorticity
dynamics and coupled nonlinear physics. Asymmetric vortex shedding from a bluff
body causes a large unsteady transverse load, which in turn may lead to structural
vibrations when the structure is free to vibrate in the transverse direction (Sarpkaya
2004; Williamson & Govardhan 2004; Bearman 2011). These large VIVs can lead
to damage and potential risk to structures, in particular for ocean structures such as
marine risers, subsea pipelines and cables. When the natural frequency of the structure
is close the vortex shedding frequency, the phenomenon of VIV results in a complex
evolution of the shedding frequency, which deviates from the Strouhal relation of its
stationary counterpart. In this frequency lock-in regime, the vortex formation locks
on to the natural frequency of the body within a range of the Strouhal frequency
and there exists a strong coupling between the fluid and the structure (Sarpkaya
2004). This frequency lock-in phenomenon leads to high-amplitude and self-sustained
vibrations; thus, there is a need to understand the origin and different regimes during
the lock-in process. The lock-in process is self-excited and is characterized by a
matching of the frequency of periodic vortex shedding and the oscillation frequency
of the body (Khalak & Williamson 1999).

The flow over a single elastically mounted two-dimensional bluff body has served
as a generic VIV model for both numerical and experimental investigations. In this
canonical configuration, it is often convenient to consider the elastically mounted
cylinder as two coupled oscillators, whereby one system is the oscillating body
and the other is the wake. Numerous studies have been conducted to understand
the frequency lock-in phenomenon for this simplified fluid–structure system. This
VIV model problem manifests a complex dynamical behaviour, which has still
been the subject of active research over the past decade (Williamson & Govardhan
2004; Bearman 2011). Apart from the fundamental physics of a single-cylinder VIV
(Blackburn & Henderson 1999; Shiels, Leonard & Roshko 2001; Singh & Mittal 2005;
Leontini, Thompson & Hourigan 2006), the topics for numerical investigations range
from the development of coupling procedures for the Navier–Stokes and structural
equations (He, Zhou & Bao 2012; Jaiman, Sen & Gurugubelli 2015; Jaiman, Guan
& Miyanawala 2016a; Jaiman, Pillalamarri & Guan 2016b) to the modelling of
near-wall proximity effects (Tham et al. 2015), multiple-cylinder arrangements (Liu
& Jaiman 2016; Mysa, Kaboudian & Jaiman 2016) and suppression devices (Yu
et al. 2015; Law & Jaiman 2017). High-fidelity computational fluid dynamics (CFD)
can reveal a vast amount of physical insight in terms of the vorticity distribution,
the force dynamics, the frequency characteristics and phase relations, and the shape

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.525


Model reduction and mechanism of vortex-induced vibrations 359

of the VIV trajectory. Despite improved algorithms and powerful supercomputers,
state-of-the-art CFD-based VIV simulation is less attractive with regard to parametric
optimization and the development of control strategies. The primary motivation behind
the present work is (i) to develop an efficient low-order model for the VIV lock-in
of a circular-shaped bluff body and (ii) to generalize the eigenvalue analysis of the
VIV lock-in mechanism for other two-dimensional bluff bodies.

1.2. The VIV mechanism and control
A simple interpretation of frequency lock-in during VIV is attributed to the classical
resonance or synchronization with a well-defined frequency. The structural response
amplitude should grow gradually as the natural frequency of the structure, fN ,
approaches the alternate vortex shedding frequency, fvs, and should attain its maximum
value when fN/fvs ≈ 1. However, VIV simulations (Singh & Mittal 2005; Tham
et al. 2015) at Re = 100 reveal that the circular cylinder acquires its maximum
amplitude at fN/fvs ≈ 1.3, or in the vicinity of VIV lock-in onset, which is not
consistent with the simple resonance interpretation. Therefore, the classical resonance
is not adequate to interpret the underlying VIV lock-in mechanism and the large
amplitude during the lock-in process. Through a linear global stability analysis of
the flow past an elastically mounted cylinder, Cossu & Morino (2000) identified two
modes in the fluid–structure system, namely a nearly structural mode and the von
Karman wake mode. De Langre (2006) investigated the mechanism of lock-in to a
coupled-mode flutter by using a simple linear wake-oscillator model for a transversely
vibrating circular cylinder. The VIV analysis by De Langre (2006) was performed
by considering an empirical wake-oscillator model while neglecting nonlinear and
viscous terms. Analogously to the plunging and pitching instability of an airfoil in
the classical aeroelasticity, De Langre (2006) attributed the root cause of VIV lock-in
to the mode coupling between the transverse periodic motion and the continuous
rotation of the separation point along the smooth contour of the circular cylinder.

Using a standard asymptotic analysis, Meliga & Chomaz (2011) confirmed the
existence of the two modes identified by Cossu & Morino (2000) and termed them
as the wake mode (WM) and the structure mode (SM). For weak fluid–structure
interaction in the limit of large solid-to-fluid mass ratio, the eigenvalue of the WM
was found to be similar to the leading eigenvalue computed for the flow past a fixed
cylinder, whereas the eigenvalue of the SM approached the natural eigenvalue of the
cylinder-only system. Inspired by the semi-analytical findings of De Langre (2006),
Zhang et al. (2015) recently employed a linear reduced-order model (ROM)-based
CFD method to provide further evidence of the frequency lock-in phenomenon of a
circular cylinder at Re = 60, and two regimes were confirmed in the VIV response,
namely resonance-induced lock-in and flutter-induced lock-in. The resonance regime
is related to the vorticity dynamics of the wake flow, whereas the flutter regime
may be interpreted as an inertial coupling between the structure and the global wake
flow. In another recent work by Navrose & Mittal (2016), the lock-in phenomenon
was investigated via a linear stability and direct time integration, and two leading
eigenmodes referred to as the fluid mode and the elastic mode were classified for a
transversely vibrating circular cylinder. These two leading modes were found to have
a strong coupling for low mass ratios, and a clear demarcation of the fluid (wake)
mode or elastic (structure) mode was found to be non-trivial. As opposed to the
decoupled modes (WM and SM) for high mass ratios, these modes were termed as
coupled modes for low mass ratios (Navrose & Mittal 2016).
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Due to the complexity of VIV with regard to fluid–structure interaction, a unified
description of the frequency lock-in still remains unclear for arbitrary shaped bluff
bodies and general physical conditions. It is of particular interest in this study
to understand some elementary aspects of the self-sustained VIV oscillations by
considering a linear aspect of the lock-in process. The linear instability plays a
key role in the origin of self-sustained VIV oscillation arising from a coupled
fluid–structure system. Once the fluid–structure system rises to a high-amplitude
VIV response, the nonlinearity begins to dominate and the system transforms into a
fully developed (self-limiting) limit-cycle state. Some key questions with regard to
the generality of the VIV lock-in process have remained unexplained, such as how
the geometry of the bluff body influences the frequency lock-in in VIV, why the
VIV behaviour of a square cylinder is different from its circular counterpart, and
whether the resonance and flutter regimes always exist or are actually influenced by
the Reynolds number and the geometry of the bluff body? In this article, we attempt
to answer these questions and understand more general aspects of the linear VIV
mechanism via our proposed eigensystem realization algorithm (ERA)-based ROM
procedure.

An understanding of the VIV mechanism can help in developing flow control
techniques based on both passive and active control schemes, whereby the passive
schemes require no energy input and the active schemes rely on continuous energy
input. Due to the complexity of VIV, the control schemes are generally ad hoc, and a
good understanding of the dynamical behaviour with respect to the flow and structure
parameters is required. Although a high-fidelity CFD model is able to resolve physical
features of interest, a linear model based on the model reduction provides a way to
perform stability analysis for the flow past a bluff body and to design active control
strategies (Marquet, Sipp & Jacquin 2008; Mettot, Renac & Sipp 2014; Thompson
et al. 2014; Flinois & Morgans 2016). Two ways exist to derive a linear model of
the original nonlinear system. While the first one is to derive a linear governing
equation and then discretize the system of equations, the second approach is to
discretize the nonlinear model first and then to obtain the linear model from it. The
latter method is widely used in the aeroelastic research community to construct the
linear model by the automatic differencing method. However, both types of method
are expensive and are not attractive for parametric study and the development of VIV
control strategies. A low-order model based on the minimal state-space dimension
has the potential to become a practical alternative to understand the VIV mechanism
and to design a proper control procedure. A model-based control design can help to
regulate and stabilize alternate vortex formation and the near-wake dynamics. Such
a model relies on the smallest state-space dimension of realized systems that have
similar input–output relations within a specified degree of precision. As shown in
Ho & Kalman (1966), the minimum problem represents the problem of identifying
the sequence of real matrices, also known as the Markov parameters, based on the
impulse response of a dynamic system.

1.3. Model order reduction
The model order reduction (MOR) technique consists of approximating the original
full-order (high-dimensional) system with a low-order model, which retains the
significant dynamics of the original system and provides order of magnitude
efficiency improvement for the construction of the essential dynamics of the
system. As discussed in Flinois & Morgans (2016), we can categorize previous
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Model reduction and mechanism of vortex-induced vibrations 361

studies on the linear MOR into two main approaches. The first ROM construction
approach is based on Galerkin projection of the full-order system onto a small
subspace spanned by mode vectors. The mode vector can be obtained by proper
orthogonal decomposition (POD), balanced truncation (Moore 1981) or dynamic mode
decomposition (DMD) (Rowley et al. 2009; Schmid 2010). One of the drawbacks
of conventional POD/Galerkin models is that while they capture the most energetic
modes based on a user-defined energy norm, low-energy features may be crucial to
the dynamics of the underlying problem. Compared with the POD method, which
only extracts modes from snapshots of the primary system, the balance truncation
method derives the modes by collecting snapshots of both the primary and the adjoint
systems. This feature of the balance truncation method allows identification of the
modes that are dynamically important. Based on the work of Moore (1981), Willcox
& Peraire (2002) and Rowley (2005) further extended the balance truncation concept
to a large system by approximating the system observable and controllable Gramians
via two sets of snapshots from a linearized forward simulation and a companion
adjoint simulation. This algorithm is usually referred to as the balanced proper
orthogonal decomposition (BPOD) and provides two sets of modes, namely primal
and adjoint modes.

The second approach is based on the system identification method, which only
requires input and output information and considers the original system as a black box
via the input–output dynamical relationship. From a time-domain formulation and the
realization of a state-space model, an ROM of the dynamic system can be constructed
on the basis of input–output data. One widely used system identification method is
the ERA introduced by Juang & Pappa (1985) for the model reduction using a
Hankel-matrix-based decomposition. The ERA essentially extends the well-known
algorithm of Ho & Kalman (1966) from control theory and creates a minimal
realization that follows the evolution of the system output when it is subjected to an
impulse input. In a recent theoretical study, Ma, Ahuja & Rowley (2011) proved that
the ERA constructs an ROM that is mathematically equivalent to the BPOD method.
With regard to recent fluid dynamics applications, the ERA has been considered for
unsteady problems by Yao & Marques (2015) and Flinois & Morgans (2016).

The aforementioned methods were originally developed for stable linear systems.
Extensions have been made to circumvent this restriction of the model reduction for
unstable systems by either partitioning the unstable and stable subspaces or inverting
the large linear system (Barbagallo, Sipp & Schmid 2009; Ahuja & Rowley 2010;
Dergham et al. 2011). In a recent work by Flinois, Morgans & Schmid (2015),
a theoretical analysis was presented to show that the unmodified balance truncation
(designed for stable systems) method can be applied to an unstable system. Following
this analysis and the work of Ma et al. (2011), the ERA was recently employed
for active control of the unstable wake behind a bluff body (Flinois & Morgans
2016). Compared with the ROM method used in Zhang et al. (2015), which lacks
mathematical rigour and is highly sensitive to the training trajectory, the ERA has
a theoretical foundation for unstable linear systems generated by the unsteady wake
dynamics and VIVs. Therefore, following Flinois et al. (2015) and the findings of
Ma et al. (2011), the ERA is adopted in this paper to construct the low-order fluid
model.

1.4. Contributions and organization
In this work, we present physical insight and the underlying mechanism of VIV by
exploiting a unified description of frequency lock-in for elastically mounted cylinders.
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We introduce the ERA-based ROM to capture just enough physics to extract the
stability properties of the fluid–structure systems of two-dimensional bluff bodies
consisting of sharp corners and smooth curves. It is of particular interest to provide a
generalized description of these frequency lock-in regimes at low Reynolds numbers
via a model reduction technique. Unlike the wake-oscillator model, the present
technique does not rely on any empirical formulation and captures the physical
effects related to the added-mass and damping forces naturally through solution of
the Navier–Stokes equations. We first employ the ERA-based ROM for unstable wake
flow over a stationary circular cylinder and predict the critical Reynolds number
Recr of vortex shedding. We then perform stability analysis of the fluid–structure
system via the ERA-based ROM to analyse the effects of the Reynolds number Re,
the mass ratio m∗ and the rounding of a square cylinder. To examine the accuracy
and reliability of the low-order model, we assess the ROM results against full-order
simulations performed by the variationally coupled Navier–Stokes and rigid-body
equations.

We will show in this paper that the two frequency lock-in regimes associated with
resonance and flutter characteristics only exist when certain conditions are satisfied.
These regimes have a strong dependence on the shape of the bluff body, the Reynolds
number and the mass ratio. The presence of sharp corners on a square cylinder greatly
alters the VIV lock-in characteristics compared with the circular counterpart with
smooth curves. We report that the frequency lock-in of a square cylinder is found
to be dominated by the resonance regime without any coupled-mode flutter at low
Reynolds number (Re 6 80). This indicates that the previous theoretical findings by
De Langre (2006) on the root cause of frequency lock-in due to the coupled flutter do
not hold for a transversely vibrating sharp-cornered square cylinder. Apart from the
frequency lock-in regimes, we qualitatively visualize the spatio-temporal evolution of
vortex shedding and leading eigenmodes to link the lock-in process with the intrinsic
wake dynamics. To understand the influence of geometry on the frequency lock-in
regimes, we present a stability phase diagram for five two-dimensional bluff bodies,
namely circle, square, ellipse, forward triangle and diamond. Compared with the
circular cylinder, we show that the flutter mode is more pronounced in the elliptical
cylinder, while the lock-in/synchronization is galloping-dominated for the forward
triangle configuration. The proposed ERA-based ROM is general and efficient for
fluid–structure systems without the need for a linearized flow or an adjoint solver,
which allows the method to be applicable even for physical experiments.

The paper is structured as follows. Section 2 introduces the full-order model, the
state-space formulation for the model reduction and the ERA for the wake flow and
VIV. Section 3 describes the VIV problem set-up and presents the convergence and
the numerical verification of the ERA-based ROM model. A systematic analysis of the
frequency lock-in mechanism as a function of the Reynolds number, and the effects of
rounding and geometry is provided in § 4. Concluding remarks are presented in § 5.

2. Numerical methodology

For the sake of completeness, we first summarize the formulation for the
high-dimensional full-order model (FOM) and describe the implementation of the
numerical schemes used for the coupled variational fluid–structure solver. Later, we
present the ERA for the construction of the ROM using the Navier–Stokes and
rigid-body equations.
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2.1. Full-order model formulation
To study the interaction of an elastically mounted cylinder with a fluid, we consider
a variational fluid formulation based on the arbitrary Lagrangian–Eulerian (ALE)
description and semi-discrete time stepping (Liu, Jaiman & Gurugubelli 2014; Jaiman
et al. 2015). We consider a fluid domain Ω f (t) with spatial and temporal coordinates
denoted by xf and t respectively. The Navier–Stokes (NS) equations governing an
incompressible flow in the ALE reference frame are

ρ f

(
∂uf

∂t

∣∣∣∣
χ

+ (uf
−w) · ∇uf

)
=∇ · σ f

+ b f on Ω f (t), (2.1)

∇ · uf
= 0 on Ω f (t), (2.2)

where ρ f , uf , w, σ f and bf are the fluid density, the fluid velocity, the ALE mesh
velocity, the Cauchy stress tensor and the body force per unit mass respectively. For
the partial time derivative in (2.1), the ALE referential coordinate χ is held fixed and
for a Newtonian fluid σ f is defined as

σ f
=−pI +µf (∇uf

+ (∇uf )T), (2.3)

where p, µf and I are the pressure, the dynamic viscosity of the fluid and an identity
tensor respectively. A rigid-body structure submerged in the fluid experiences unsteady
fluid forces and consequently may undergo flow-induced vibrations if the body is
mounted elastically. To simulate translational motion of a two-dimensional rigid body
about its centre of mass, the Lagrangian motion along the Cartesian axes is given by

m ·
dus

dt
+ c · us

+ k · (ϕs(t)− ϕs(0))=Fs, (2.4)

us(t)=
∂ϕs

∂t
, (2.5)

where us(t) represents the velocity of the immersed rigid body in the fluid domain,
ϕs(t) denotes the position of the centre of the rigid body at time t, and m, c, k are
mass, damping and stiffness coefficient matrices for the translational motions. Here,
Fs is the fluid force on the rigid body.

Let Γ (t) be the fluid–structure interface at time t. The coupled system needs to
satisfy the continuity of velocity and the force equilibrium at the fluid–body interface
Γ as follows:

uf (t)= us(t), (2.6)∫
Γ (t)

σ f (xf , t) · n dΓ +Fs
= 0, (2.7)

where n is the outer normal to the fluid–body interface. In (2.7), the first term
represents the force exerted by the fluid and the second term is the solid load vector
applied in (2.4). The ALE mesh nodes on the fluid domain Ω f (xf , t) can be updated
by solving a linear steady pseudo-elastic material model,

∇ · σm
= 0, σm

= (1+ km)[(∇η
f
+ (∇ηf )T)+ (∇ · ηf )I], (2.8a,b)

where σm is the stress experienced by the ALE mesh due to the strain induced by
the rigid-body movement, ηf represents the ALE mesh node displacement and km is a
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mesh stiffness variable chosen as a function of the element area to limit the distortion
of small elements located in the immediate vicinity of the fluid–body interface.

The weak variational form of (2.1) is discretized in space using Pn/Pn−1 iso-
parametric finite elements for the fluid velocity and pressure, where Pn denotes the
standard nth order Lagrange finite element space on the discretized fluid domain.
To satisfy the inf–sup condition, a P2/P1 finite element mesh is adopted and the
second-order backward scheme is used for the time discretization of the NS system
(Liu et al. 2014). In the present study, a partitioned staggered scheme is considered
for the full-order simulations of the fluid–structure interaction (Jaiman et al. 2011).
The motion of the structure is driven by the traction forces exerted by the flowing
fluid at the fluid–structure interface Γ , whereby the structural motion predicts the
new interface position and the geometry changes for the ALE fluid domain at each
time step. The movement of the internal ALE fluid nodes is accommodated such that
the mesh quality does not deteriorate as the motion of the solid structure becomes
large. The above coupled variational formulation completes the presentation of the
FOM for the direct numerical simulation of the fluid–structure interaction. We next
present a state-space formulation of the model reduction using a system identification
technique based on the input–output dynamics.

2.2. Basic state-space formulation and model reduction
The linear time-invariant (LTI) and multiple-input multiple-output (MIMO) model
represented in a state-space form at discrete times t = k1t, k = 0, 1, 2, . . . , with a
constant sampling time 1t reads as

x r(k+ 1)= Arx r(k)+ Bru(k),
y r(k)= Crx r(k)+ Dru(k),

}
(2.9)

where x r is an nr-dimensional state vector, u denotes a q-dimensional input vector
and y r is a p-dimensional output vector. The integer k is a sample index for the time
stepping. The system matrices are (Ar, Br, Cr, Dr), whereby the transition matrix Ar
characterizes the dynamics of the system. Here, Br, Cr and Dr denote the input, output
and feed-through matrices respectively. For the given output vector y r, the statement
of system realization is to construct the system matrices (Ar,Br,Cr,Dr) such that the
vector y r is reproduced by the state-space model. In a discrete-time setting, the state-
space realization matrices (Ar,Br,Cr,Dr) of the dynamical system are constructed by
the ERA, in which only the impulse response function (IRF) of the original full-order
system is required for the system realization. The impulse response of the full-order
linear system is first defined as y =[y1, y2, y3, . . . , yni

], where ni represents the length
of the impulse response and y i denotes the IRF with the dimension p× q. Based on
the impulse response, the generalized block Hankel matrices r× s can be constructed
as

H(k− 1)=


yk+1 yk+2 · · · yk+s
yk+2 yk+3 · · · yk+s+1
...

...
. . .

...
yk+r yk+r+1 · · · yk+(s+r−1)

 . (2.10)

From the partitioned singular value decomposition of the Hankel matrix H(0), we have

H(0)= UΣV ∗ =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V ∗1
V ∗2

]
, (2.11)
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where the diagonal matrices Σ are the Hankel singular values (HSVs) σi, which
represent the dynamical significance through sorting such that σ1 > · · · > σn > 0.
The block matrix Σ2 contains the zeros or negligible elements. By truncating the
dynamically less significant states, we estimate H(0)≈ U1Σ1V ∗1. The reduced system
matrices (Ar, Br, Cr, Dr) are then defined as

Ar =Σ
−1/2
1 U∗1H(1)V 1Σ

−1/2
1 ,

Br =Σ
1/2
1 V ∗1Em,

Cr = E∗t U1Σ
1/2
1 ,

Dr = y1.

 (2.12)

Here, E∗m = [Iq 0]q×N and E∗t = [Ip 0]p×M, where N = s × q, M = r × p, and Ip and
Iq are the identity matrices. We next present the ERA to construct the fluid ROM,
which relies on the incompressible NS equations to represent the dynamics of a small-
amplitude perturbation around the equilibrium base flow.

2.3. The ERA-based model reduction for VIV
In the present work, we only consider the transverse motion of a cylinder in a flowing
stream for the sake of simplicity. However, the formulation of the ERA-based ROM
is general for any fluid–structure system. The cylinder is mounted on a spring
system in the cross-flow direction, which allows the cylinder to vibrate through
unsteady lift comprising the pressure and shear stresses of the fluid. Due to the direct
solution of the NS equations, the effects of added-mass and added-damping forces
are implicitly captured in the present model. To perform linear stability analysis, the
fluid ROM constructed by the ERA is coupled with the linear structural model. The
non-dimensional structural equation for a transversely vibrating cylinder with one
degree of freedom can be written as

Ÿ + 4ζπFsẎ + (2πFs)
2Y =

as

m∗
Cl, (2.13)

where Y is the transverse displacement, Cl is the lift coefficient, m∗ and ζ are the
ratio of the mass of the vibrating structure to the mass of the displaced fluid and
the damping coefficient respectively and Fs is the reduced natural frequency of the
structure, defined as Fs = fND/U = 1/Ur, where Ur is the reduced velocity which is
an alternative parameter to describe the frequency lock-in phenomenon. The mass ratio
m∗ is a key parameter for VIV lock-in and it is defined as the ratio of the mass of the
vibrating structure to the mass of the displaced fluid. The characteristic length scale
factor as is related to the geometry of the body. For example, the values are as= 2/π
for a circular cylinder and as = 0.5 for a square cylinder. There exists a complex
dynamical relation between the transverse amplitude Y and the lift force Cl. One of
the main objectives of this work is to construct a state-space relationship between
the transverse force and the amplitude directly from the NS equations subject to an
impulse. We next proceed to the model reduction of the fluid–structure system.

The non-dimensional structural equation (2.13) can be cast into a state-space
formulation as

ẋs = Asxs + BsCl, (2.14)

where the state matrices and vectors are

As =

[
0 1

−(2πFs)
2
−4ζπFs

]
, Bs =

[
0
as

m∗

]
, xs =

[
Y
Ẏ

]
. (2.15a−c)
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It is straightforward to solve (2.14) using a standard time integrator (Yao & Jaiman
2016). In the present work, an exact state-space discretization of (2.14) is considered
as follows:

xs(k+ 1)= Asdxs(k)+ BsdCl(k),
Y(k)= Csdxs(k),

}
(2.16)

where the state matrices are Asd = eAs1t, Bsd = As
−1(eAs1t

− I)Bs at discrete times
t= k1t, k= 0, 1, 2, . . . , with a constant sampling time 1t, I is an identity matrix of
the same size as As, and Csd = [1 0]. Through the input–output dynamics, the fluid
ROM is derived by the ERA method as described in (2.9). The input for the ROM is
the transverse displacement Y , and the output is the lift coefficient Cl. The ERA-based
ROM with the single input and single output (SISO) can reformulated as

x r(k+ 1)= Arx r(k)+ BrY(k),
Cl(k)= Crx r(k)+ DrY(k).

}
(2.17)

By substituting (2.17) into (2.16), the resultant ROM can be expressed as

x f s(k+ 1)=
[

Asd + BsdDr Csd BsdCr

Br Csd Ar

]
x f s(k)= Af sx f s(k), (2.18)

where (Ar, Br, Cr, Dr) are the ROM matrices defined by the ERA method as given
in (2.9), Af s denotes the coupled fluid–structure matrix in the discrete state-space form
and x f s = [xs x r]

T.
The present ERA-based ROM reproduces the input–output dynamics of the

full-order system. The linear stability analysis of the VIV system can be expressed
as an eigenvalue problem of (2.18). The eigenvalue distribution of the coupled
fluid–structure matrix Af s characterizes the stability of the VIV system. Here, (λ, x̂)
correspond to continuous-time eigenvalue/eigenvectors of Af s, whereby the spatial
structure is characterized by the complex vector field x̂ and the temporal behaviour
by the complex scalar λ. The stability analysis can be easily accomplished by tracing
the trajectory of the complex eigenvalue λ in the complex plane, whereby x̂ provides
the spatial global modes of the ROM. Based on the leading global mode or least
damped eigenvalue of the ERA-based ROM, we define a growth (amplification) rate
σ = Re(λ) and frequency f = Im(λ/2π). The construction of the above ERA-based
ROM model is computationally efficient as it only relies on the impulse response
of the FOM. While the aforementioned formulation is presented for transverse-only
vibration of the structure, it is general for any coupled fluid–structure system. After
reviewing the mathematical formulation and ERA-based ROM technique, we next
present the numerical set-up and verification of our solver.

3. Numerical set-up and verification
3.1. Problem definition

Figure 1 shows a schematic diagram of the set-up used in our simulation study for
an elastically mounted bluff body with various cross-sections in a flowing stream.
The coordinate origin is located at the geometric centre of the bluff body. The
streamwise and transverse directions are denoted x and y respectively. A stream of
incompressible fluid enters into the domain from an inlet boundary Γin at a horizontal
velocity (u, v)= (U, 0), where u and v denote the streamwise and transverse velocities
respectively. The bluff body with mass m and characteristic diameter D is mounted
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x
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10D 30D
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30
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FIGURE 1. Schematic diagram of a representative bluff body of an elastically mounted
cylinder in a uniform horizontal flow. The computational domain and boundary conditions
are shown.

on a linear spring in the transverse direction. The damping coefficient ζ is set to
zero in the present work. The computational domain and the boundary conditions
are also illustrated in figure 1. A no-slip wall condition is implemented on the
surfaces of the bluff body and a traction-free boundary condition is implemented
along the outlet Γout, while a slip wall condition is implemented on the top Γtop and
bottom Γbottom boundaries. The numerical domain extends from −10D at the inlet to
30D at the outlet and from −15D to 15D in the transverse direction. Except when
stated otherwise, all positions and length scales are normalized by the characteristic
dimension D, velocities by the free-stream velocity U and frequencies by U/D. The
Reynolds number Re of the flow is based on the characteristic dimension D, the
kinematic viscosity of the fluid and the free-stream speed U.

3.2. Linear stability analysis
We verify the validity of our ERA-based ROM by investigating the stability of
the laminar wake behind a two-dimensional circular cylinder. To study the mesh
convergence for our simulation study, we consider three representative discretizations
M1, M2 and M3 consisting of 9517, 22 004 and 41 132 P2/P1 iso-parametric elements.
A representative M2 mesh is shown in figure 2, and the corresponding central square
represents the fine mesh region around the cylinder body. The mesh in the cylinder
wake is appropriately refined to resolve the alternate vortex shedding. The quality of
the mesh convergence is determined by the prediction of the growth rate σ and the
frequency f of the fluid ROM for the flow past a circular cylinder at Re = 60. The
non-dimensional time-step size is 1t= 0.05. Based on the procedure described in the
previous section, we next briefly describe the process of extracting ROMs from the
incompressible NS equations.

The ERA-based ROM is constructed in the neighbourhood of the base flow, which
is computed via fixed-point iteration without the time-dependent term in (2.1). At
Re = 60 with the M2 mesh, figure 3 shows the streamwise velocity contours of the
base flow with a symmetric recirculation bubble. The bubble length (measured from
the centre of the cylinder) is Lw = 4.1, which agrees reasonably well with literature
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FIGURE 2. A representative finite element mesh with P2/P1 discretization: (a) full domain
discretization and (b) close-up view of the finite element mesh in the vicinity of the
cylinder. All other meshes for different bluff-body geometries are similarly created.
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0 2 4 6 8
x

y

FIGURE 3. (Colour online) Base flow of a stationary circular cylinder at Re = 60; the
streamwise velocity contours are shown. The contour levels are from −0.1 to 1.2 in
increments of 0.1 and the flow is from left to right.

values (Lw = 4.2, Giannetti & Luchini (2007); Lw = 4.1, Mao & Blackburn (2014)).
The Hankel matrix shown in (2.10) is obtained from the output lift signal (Cl) subject
to the impulse input of the transverse displacement Y . A sufficiently small amplitude
(δ= 10−4) is considered such that the flow evolves linearly for a relatively large time.
To ensure that the unstable modes start to dominate the essential dynamics of the
input–output relationship, an adequate number of cycles is required to capture the
linear dynamics of the system. However, an excessively long simulation time should
be avoided before the nonlinearity appears via exponential growth of the unstable
modes.

The linearity of the unstable system is confirmed by comparing the response
subject to two impulse inputs with δ = 10−4 and δ = 10−3. A set of 1000 impulse
response outputs (Cl) is then stacked at each time step 1t = 0.05, resulting in
the final simulation time tU/D = 50. The adequate number of simulation cycles
is then determined by examining the convergence of the fluid unstable eigenvalues
computed from Hankel matrices with dimensions of 500 × 20, 500 × 50, 500 × 150
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FIGURE 4. (Colour online) The ERA-based ROM for the unstable wake behind a
stationary circular cylinder at Re = 60: (a) lift history of the FOM and the ROM
based on linearized dynamics subject to the impulse response and (b) HSV distribution
corresponding to a 500× 150 Hankel matrix.

and 500 × 200. It is found that the 500 × 150 Hankel matrix is sufficient, which
corresponds to 32.5 convective time units. The order of the ERA-based ROM is then
determined by examining the singular values (HSVs) of the Hankel 500× 150 matrix.
As shown in figure 4(a), the output lift signal Cl gradually diverges as a function of
the convective time tU/D at Re= 60. This asymptotic divergence behaviour indicates
that the wake flow begins to lose its stability via a Hopf bifurcation, which breaks
the symmetry of the flow field and gives rise to a periodic vortex street. The first
30 singular values are shown in figure 4(b). The rapidly decaying singular values
indicate that a low-order ROM can be constructed. To further confirm the accuracy,
the ERA-based ROM with a number of modes of nr = 25 is compared with the FOM
result in figure 4(a). A good match between the impulse responses of the ROM
and FOM can be seen in the figure. It is worth noting that it is not necessary for
the Hankel matrix to be a square matrix for the suitability of the ERA-based ROM
(Juang & Pappa 1985). As pointed by Juang & Pappa (1985), further consideration
is required to determine the optimal r and s in (2.10). Therefore, the Hankel matrix
can be tall (r> s), wide (r< s) or square (r= s). In the present study, the dimension
r is fixed while s is tuned to obtain a reasonably converged unstable eigenvalue for
a good match between the impulse response of the FOM and ROM.

Table 1 summarizes the comparison of the growth rate and frequency, which
shows that the difference between M2 and M3 is less than 1 %. Therefore, the
mesh M2 is adequate for the stability analysis of VIV. This study also confirms the
convergence properties of our ERA-based ROM procedure for unstable wake flow.
For further verification, we next show that the ERA-based ROM is able to accurately
predict the onset of the unstable wake state due to a Hopf bifurcation. The onset of
the unstable wake is commonly determined by the linearized NS equations in the
literature (Giannetti & Luchini 2007; Marquet et al. 2008; Mettot et al. 2014). The
growth rate σ and the frequency f are plotted as a function of the Reynolds number
in figure 5. Instability of the base flow occurs when the growth rate crosses the σ = 0
line at the critical Reynolds number Recr ≈ 46.8, which is in good agreement with
the numerical prediction of Giannetti & Luchini (2007) and Marquet et al. (2008)
and the experimental measurement of Williamson (1996). The frequency predicted by
the ERA-based ROM at this critical Reynolds number is f = 0.119, which matches
quite well with the results of Giannetti & Luchini (2007) and Marquet et al. (2008).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

52
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.525


370 W. Yao and R. K. Jaiman

 0

0.05

 0.10

 –0.05

 –0.10
50 75

Re
50 75

Re

 0.115

0.120

f

(a) (b)

FIGURE 5. (Colour online) Prediction of the critical Reynolds number via the ERA-based
ROM for the flow past a stationary circular cylinder: (a) growth rate σ and (b) frequency
f . The cylinder wake becomes unstable when the growth rate crosses the σ = 0 line at
the critical Recr ≈ 46.8 and vortex shedding emanates.
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FIGURE 6. (Colour online) The first POD mode at Recr ≈ 46.8: (a) streamwise velocity
and (b) cross-stream velocity. The flow is from left to right.

Mesh Nodes Elements σ f

M1 4834 9514 0.0479 0.1207
M2 11 119 22 004 0.0484 0.1207
M3 20 731 41 132 0.0483 0.1207

TABLE 1. Mesh convergence study: comparison of growth rate and frequency for meshes
M1, M2 and M3 for the flow past a stationary circular cylinder at Re= 60.

However, it is worth noting that the frequency given by the linear model is only valid
in the vicinity of the critical Reynolds number and fails to capture the frequency in
the region far away from the critical point, where nonlinear effects start to dominate
the wake dynamics.

To extract the most energetic structures via the POD method, snapshots of the flow
solutions are stored during the process of the ROM construction, i.e. the flow solution
is recorded at each physical time step subjected to the impulse response. For the
unstable wake case at Recr≈46.8, the first POD mode corresponding to the streamwise
and cross-flow velocity is shown in figure 6. The spatial structures are antisymmetric
and they travel downstream with the formation of Kelvin–Helmholtz instabilities.
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Reynolds number (Re) 60 80 100 120

Lift coefficient r.m.s. (Cl)
0.1 0.17 0.24 0.29 Present
0.1 0.16 0.25 0.31 Zhang et al. (1995)

Strouhal number (St)
0.137 0.156 0.166 0.176 Present
0.136 0.152 0.164 0.172 Williamson (1989)
0.142 0.159 0.172 0.182 Zhang et al. (1995)

TABLE 2. Comparison of the r.m.s. value of the lift coefficient (Cl) and the Strouhal
number (St) obtained with previous studies for a range of Reynolds numbers. A constant
time-step size 1t= 0.05 is employed for the present computations.

3.3. Unstable flow past a stationary cylinder
As discussed in § 3.2, the wake flow becomes unstable through a Hopf bifurcation
when Re > Recr and vortex shedding appears behind a stationary cylinder at the
frequency fvs. The unstable flow finally reaches a fully nonlinear state with the
alternate time-periodic vortex shedding. The flow field in the whole domain behaves
like a global oscillator, which causes unsteady lift and drag forces on the immersed
body. To further establish the validity of the numerical method and the desired
accuracy for the VIV simulation, the dimensionless vortex shedding frequency
St = fvsD/U and the root mean square (r.m.s.) value of the lift coefficient Cl

are compared with the works of Williamson (1989) and Zhang et al. (1995) for
the Reynolds number Re < 180. The results are summarized in table 2, which
demonstrates good agreement with the literature. This further confirms that the
numerical methodology and the mesh discretization are adequate to capture the vortex
dynamics and the stability characteristics of the VIV response.

4. Results and discussion
4.1. Assessment of the ERA-based ROM

In this section, the constructed ERA-based ROM is first applied to analyse the
stability properties of a transversely vibrating circular cylinder at (Re,m∗)= (60, 10).
Consistent with the previous literature of Meliga & Chomaz (2011) and Zhang
et al. (2015), we use the terminology of SM and WM to classify the distinct
eigenvalue trajectories of the linear fluid–structure system governed by (2.18). When
the eigenvalue of the fluid–structure system approaches that of the stationary cylinder,
the resulting mode is defined as a WM. The fluid–structure mode is considered as
an SM if the eigenvalue comes close to the natural frequency of the cylinder-alone
system.

As discussed in Zhang et al. (2015), VIV lock-in may result either from instability
of the WM alone or via simultaneous existence of unstable SM and WM. In the event
of the first scenario, the lock-in occurs due to the closeness of the frequencies of the
WM and SM. This type of VIV branch is termed as resonance-induced lock-in. For
the second scenario, the instability to sustain the VIV lock-in occurs via combined
mode instability of the SM and WM, which is referred to as flutter-induced lock-
in or coupled-mode flutter (De Langre 2006). In the present study, the WM is also
considered as the leading mode of the unstable fluid system.

We consider the continuous-time eigenvalues in the context of linear stability
analysis via the ERA-based ROM. Using the fluid–structure matrix (2.18), the
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FIGURE 7. (Colour online) Eigenspectrum of the ERA-based ROM for a circular cylinder
at (Re, m∗) = (60, 10): (a) root loci as a function of the reduced natural frequency Fs,
where the unstable right half-plane (Re(λ) > 0) is shaded in grey colour and the hollow
arrow indicates increasing Fs; (b) real and imaginary parts of the root loci, where the
lock-in region is shaded in grey colour. Two branches of lock-in, namely resonance and
flutter, can be seen in (b).

eigenvalue is obtained from λ = log(eig(Af s))/1t, where 1t = 0.05 is the time step.
To graphically depict the dynamical behaviour, we study the eigenvalue distribution of
the system in the complex plane via the root locus. The positions of the eigenvalues
provide the information about the stability of the fluid–structure system. For example,
the roots in the right half-plane depict the unstable modes of the system, whereas the
roots on the real axis characterize the asymptotic (non-oscillatory) behaviour. Roots
that are closest to the right half-plane are lightly damped oscillatory modes.

Figure 7(a) shows the eigenvalue trajectory of the fluid–structure system as a
function of the reduced natural frequency Fs with 0.056Fs 6 0.25 and the increment
is 1Fs = 0.025. In the figure, the WM branch originates in the vicinity of the
eigenvalue of the stationary cylinder (uncoupled WM) and loops back as the reduced
natural frequency Fs increases. It is expected that the WM will finally recover to the
eigenvalue of the stationary cylinder as Fs approaches infinity or the cylinder becomes
stationary (i.e. without elastic mounting). It is also evident that the WM remains
unstable (σ > 0) throughout the sweeping as Re= 60> Recr. On the other hand, the
SM branch rises from the bottom of the complex plane (low-frequency regime) to
the upper complex plane (high-frequency regime). As elucidated in figure 7(b), the
SM becomes unstable only when 0.147 < Fs 6 0.179, which is determined by the
real part of the eigenvalue. As mentioned earlier, the unstable SM phenomenon can
be considered as coupled-mode flutter or combined mode instability. As shown in
figure 7(b), the imaginary part of the eigenvalue as a function of Fs reveals that
two distinct frequencies (WM and SM frequencies) co-exist in the combined mode
instability. In addition, figure 7(b) also indicates that the frequencies of the WM
and SM come closer when 0.11 6 Fs 6 0.147, which is recognized as the resonance
mode. It should be noted that the lower left boundary of the resonance mode cannot
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FIGURE 8. (Colour online) The VIV results as a function of the reduced natural frequency
Fs using the FOM at (Re,m∗)= (60, 10): variation of (a) the normalized vortex shedding
frequency f and (b) the r.m.s. value of the lift coefficient (Cl) and the normalized
maximum amplitude (Ymax). The lock-in is shaded in grey colour.

be pinpointed precisely from the ROM due to the overlapping of the SM and WM
trajectories. Thus, we determine the frequency at the lower left boundary from the
FOM simulation, which is found to be Fs = 0.11.

To further verify the stability results predicted by the ERA-based ROM, the VIV
response is computed by direct numerical simulation using the FOM. As shown in
figure 8(a), the vortex shedding frequency begins to synchronize with the natural
frequency of the structure at Fs= 0.11 and recovers to the vortex shedding frequency
at Fs = 0.179. As the nonlinearity starts to dominate the VIV response, the two
distinct frequencies of the WM and SM corresponding to the flutter mode are
eventually synchronized with the natural frequency of the structure Fs. Figure 8(b)
suggests that the cylinder rises to the peak VIV amplitude at Fs = 0.179 (lock-in
onset Ur ≈ 5.59), which compares accurately with the upper boundary of the flutter
mode predicted by the present ERA-based ROM.

It is worth mentioning that the cylinder acquires the maximum amplitude at Fs =

0.179 or Fs/St = 1.31, which is not at Fs/St ≈ 1, as expected from the classical
resonance interpretation of VIV lock-in. This phenomenon suggests that the onset
of VIV lock-in results from the amplification of energy input as a consequence of
an unstable SM, in which the structure is able to optimally absorb energy from the
surrounding fluid system. This is analogous to the pitch and plunge flutter observed
in the aeroelastic airfoil configuration. The flutter mode of VIV lock-in results from
the coupling of periodic vortex shedding and the structural transverse displacement. In
the flutter regime (1.07<Fs/St6 1.31), the unstable SM and WM jointly sustain VIV
lock-in, whereas the WM dominates the resonance regime (0.8 6 Fs/St 6 1.07) until
the VIV goes into the lock-out region.

More quantitative insight into the VIV lock-in mechanism can be obtained from
figure 9(a), which shows the phase angle φ estimated by the ERA-based ROM (see
appendix A). The phase angle φ of the ROM is a function of (Fs, λ) and its sign is
determined by the real part of the eigenvalues. The instantaneous phase angle of the
FOM is obtained by the Hilbert transformation of lift and displacement, as described
in Tham et al. (2015). In figure 9(a), we present the phase angles of the FOM and
ROM as functions of Fs at (Re, m∗)= (60, 10). Compared with the FOM result, the
WM trajectory yields a continuous transition from 0◦ to 180◦ as Fs decreases in the
lock-in region. In contrast, the phase angle of the SM remains positive only within
the flutter mode (0.147< Fs 6 0.179).
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FIGURE 9. (Colour online) The VIV results as a function of the reduced natural frequency
Fs at (Re,m∗)= (60, 10): (a) comparison of phase angle difference φ between the ERA-
based ROM and the FOM, where the lock-in is shaded in grey colour; (b) lift Cl history
at two representative frequencies Fs= (0.14, 0.177). In (a), (– - – - –) represents Fs= 0.13.

It is also interesting to note from figure 8(b) that the lift coefficient is significantly
amplified in the vicinity of the VIV lock-in onset reduced velocity (Ur ≈ 5.59).
A gradual decrease and eventually recovery to the value of the stationary cylinder
counterpart as Ur increases (Fs decreases) can be seen in the figure. To further
assess the behaviour of the lift coefficient in the flutter and resonance regimes, the
lift histories for two representative reduced frequencies Fs = 0.177 and 0.140 are
compared in figure 9(b). The minimum r.m.s. value of the lift coefficient Cl occurs
at Fs ≈ 0.13 or Fs/St ≈ 0.95, which coincides with the phase angle jump, as shown
in figure 9(a). Therefore, we can infer that the reduction in the r.m.s. lift coefficient
has a direct relation with the phase angle. In § 4.2, we further confirm that the lift
reduction is not associated with the resonance mode.

Geometric and physical parameters such as the cross-sectional shape and mass
ratio play an important role with regard to the coupling strength of the fluid–structure
interaction. A classification of the fluid–structure eigenmodes as WM and SM is
suitable for weak fluid–structure interaction (e.g. very large mass ratio), which is
elucidated in figure 7 by two distinct eigenvalue branches of the WM and SM.
Owing to weaker fluid–structure coupling at large m∗ (i.e. in the limit of m∗→∞),
the eigenfrequency of the WM approaches that of the stationary cylinder wake
for all values of Fs and the frequency of the SM comes close to the natural
frequency of the cylinder-only system. However, the root loci of the WM and
SM can coalesce and form coupled modes in certain conditions, such as in the
limit of low mass ratio (Meliga & Chomaz 2011; Navrose & Mittal 2016) and for
different geometrical shapes, as demonstrated in § 4.4. These coupled modes do not
offer distinct characteristics of the WM and SM, since the two branches exchange
their roles when coalescence of eigenvalue occurs. Similarly to Navrose & Mittal
(2016), we term these mixed or coupled modes as wake–structure mode I (WSMI) and
wake–structure mode II (WSMII). For higher values of Fs, WSMI behaves as the WM
and WSMII recovers to the SM. On the other hand, for a smaller Fs range, WSMI
and WSMII represent the SM and WM respectively. A characteristic anticrossing
with a frequency splitting can be also observed at low mass ratios, which is one of
the traits of strongly coupled harmonic oscillators (Novotny 2010). To demonstrate
the effect of the mass ratio, further details on the coupled modes WSMI and WSMII
are discussed in appendix B.

In this section, the ERA-based ROM is successfully employed to perform linear
stability analysis of the VIV of a transversely vibrating circular cylinder. Consistent
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FIGURE 10. (Colour online) The effect of the Reynolds number on the eigenspectrum of
the ERA-based ROM at Re= (60, 70, 100) and m∗= 10: (a) root loci as a function of the
reduced natural frequency Fs, where the unstable right half-plane (Re(λ) > 0) is shaded
in grey colour and the hollow arrow indicates increasing Fs; (b) the real and imaginary
parts of the root loci. The SM data points are denoted by the filled symbols with the
same shape as the WM points in (a,b). The boundary of Re(λ) > 0 for SM at Re= 70 is
defined at Fs = 0.106 (– – –) and Fs = 0.187 (– - – - –) in the real parts of the root loci in
(b).

with the previous study of Zhang et al. (2015) on the mechanism of VIV, we
clearly observe two distinct lock-in patterns of the flutter and the resonance from our
eigenmode analysis. However, the regime classification of Zhang et al. (2015) was
only based on the VIV linear analysis at Re = 60. In the next section, we extend
the existence and dependence of the two distinct lock-in modes to a larger parameter
space of Reynolds number in the laminar flow regime.

4.2. Effect of Reynolds number
As shown in figure 5(a), the growth rate is amplified as Re increases, which indicates
that the coupling between the WM and the SM tends to become stronger for
higher Re. To further investigate the effect of Reynolds number, the VIV ROMs
for Re= (70, 100) and m∗= 10 are constructed and a stability analysis similar to that
for Re= 60 is carried out. The root loci as a function of the natural frequency Fs are
shown in figure 10(b). Compared with the root loci at Re=60, figure 10(b) shows that
the range of unstable SM or flutter mode increases slightly to 0.106 6 Fs 6 0.187 or
0.716Fs/St6 1.25 and covers the entire lock-in region. This is also evident from the
FOM results, as shown in figure 11, where the lock-in region is 0.116Fs 6 0.192 or
0.736Fs/St6 0.128. This new finding from the present work suggests that the extents
of the flutter and resonance modes are highly sensitive to the Reynolds number. This
can be further elucidated by looking into the stability region where the magnitude
of the velocity leading eigenmode is large (Giannetti & Luchini 2007). The complex
modal velocity components, the streamwise velocity û and the transverse velocity v̂,
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FIGURE 11. (Colour online) The VIV results as a function of the reduced natural
frequency Fs from the FOM at (Re,m∗)= (70, 10): variation of (a) the normalized vortex
shedding frequency f , (b) the r.m.s. value of the lift coefficient (Cl) and the maximum
amplitude (Ymax), and (c) the phase angle (φ). The lock-in is shaded in grey colour.

are computed from the linearized NS equations around the base flow. To visualize
the magnitude of the leading modal velocity, we first compute the amplitudes of the
complex modal velocity components (|û| and |v̂|) and then evaluate the pointwise
modal velocity magnitude as |Û| =

√
|û|2 + |v̂|2. As shown in figure 12, the stability

region shifts gradually to the bluff body, which indicates that the coupling effect
between the unstable wake and the bluff body is enhanced as Re increases.

Figure 10 shows that the unstable SM branch becomes gradually more pronounced
and covers the lock-in region as the Reynolds number increases, whereas the size
of the WM loop becomes smaller. The threshold Reynolds number is approximately
Re = 70 when the resonance mode ceases to exist for m∗ = 10. This result suggests
that the frequency lock-in VIV is pure flutter mode instability for Re > 70, which is
consistent with the theoretical analysis of De Langre (2006) using the wake-oscillator
model. However, due to the simplification in the wake-oscillator model and without
nonlinear and dissipative terms, a general statement on VIV lock-in as a coupled
flutter mode may not be valid for all flow conditions. On the other hand, the numerical
study of Zhang et al. (2015) is only valid for Recr <Re< 70. Table 3 summarizes the
existence of flutter and resonance modes at different Reynolds numbers for a vibrating
circular cylinder.

It is also interesting to note from figure 11(b) that a reduction in the r.m.s. value
of the lift coefficient also appears, although the resonance regime does not exist at
Re= 70. This observation suggests that the reduction of the r.m.s. lift force does not
interlink with the flutter or resonance regime, which is different from the conclusion
reached by Zhang et al. (2015) that the r.m.s. lift coefficient is attenuated in the
resonance regime but amplified in the flutter region. As shown in figure 11(b,c), the
minimum lift coefficient appears at Fs≈ 0.135 or Fs/St≈ 0.92, where the phase angle
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FIGURE 12. (Colour online) The influence of the Reynolds number on the stability regions
defined by the pointwise modal velocity magnitude |Û| of the leading eigenmodes for
Re= (a) 60 and (b) 70. The flow is from left to right.
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FIGURE 13. (Colour online) Full-order results for a circular cylinder at (Re,m∗)= (70,10).
Instantaneous vorticity contours at Fs = (a) 0.13, (b) 0.15, (c) 0.17 and (d) 0.19. The
contour levels are from −0.5 to 0.5 in increments of 0.077 and the flow is from left to
right.

VIV regime Flutter Resonance

Re 6 Recr X
Recr < Re< 70 X X
Re > 70 X

TABLE 3. The VIV lock-in regimes of a circular cylinder for Reynolds number in the
range 30 6 Re 6 100 and mass ratio m∗ = 10. For Re> Recr, the flutter regime comprises
both unstable eigenvalues (Re(λ) > 0) of the WM and SM, whereas the resonance regime
has only unstable WM.

changes from 0◦ to 180◦. This further confirms that the lift reduction phenomenon is
explicitly linked with the phase angle.

Furthermore, figure 13 shows the instantaneous patterns of vortex shedding
investigated for a broad range of reduced natural frequencies. We adopt the classical
terminology of Williamson & Roshko (1988) to identify the vortex shedding patterns.
In the 2S mode, a single vortex is alternately shed from each side of the cylinder
per shedding cycle, whereas the vortices start to coalesce in the far wake in the
C(2S) mode. As reported by Zhang et al. (2015), the 2S mode is observed in the
resonance regime, whereas the C(2S) mode appears in the flutter region. However,
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x
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FIGURE 14. Square-section bluff body with projected width D and rounding radius rs in
uniform flow. Rounding is introduced by inscribing a quarter circle with rs at each edge
of the square geometry. The square and circular cylinders correspond to rounding radii of
rs = 0 and rs = 0.5D respectively.

we argue that the vorticity topology changes gradually from the C(2S) to the 2S
mode as Fs decreases from 0.19 to 0.13, which indicates that the topology variation
is associated with the vibration amplitude. The C(2S) mode starts to appear at VIV
lock-in onset Ur ≈ 5.21 (Fs = 0.192) and gradually transits to the 2S mode as the
amplitude decreases. To further generalize our ERA-based ROM for the VIV lock-in
regime, we next investigate the influence of rounding in the VIV lock-in mechanism
of a square cylinder.

4.3. Effect of rounding
In the previous section, the effects of Reynolds number and mass ratio have been
considered for the transverse VIV of a circular cylinder. It is interesting to explore
whether the aforementioned VIV lock-in regimes of a circular cylinder still apply to
an elastically mounted square cylinder. It is known that the presence of sharp corners
on a square cylinder vastly alters the flow dynamics compared with the dynamics
for cylinders with circular/elliptical sections having smooth curves. Besides the angle
of incidence, the sharp corners are important contributing factors in the geometry of
bluff body, as they affect the flow separation points, which in turn dictate the wake
dynamics. By gradual removal of the sharp corners of a square cylinder, a circular
cross-section can be recovered. As reported in Jaiman et al. (2015), the VIV response
of a square cylinder is dramatically different in comparison with its circular cylinder
counterpart. For example, the lock-in region of a square cylinder is narrower and the
amplitude is smaller for similar VIV operational parameters (Re,m∗, ζ ), as extensively
discussed in Jaiman et al. (2016a,b). Recently, a rounded square was also numerically
studied in terms of primary and secondary instabilities (Park & Yang 2016); it was
shown that sharp corners alter the flow topology significantly, subsequently changing
the stability properties of the wake dynamics. It is therefore important to consider the
effect of rounding the corners of a square cylinder for the VIV mechanism. The VIV
stability properties of five different cross-sections including a circle and a square are
explored in the context of eigenvalue distributions.

Figure 14 schematically depicts a square cylinder with a rounding radius rs. The
edge length of the square with sharp corners is denoted by D. Rounding is introduced
by inscribing a quarter circle with rs at each edge of the square geometry, where rs=

0.5D corresponds to a circular shape and rs = 0 recovers to the basic square shape.
The characteristic dimension D of all of the cross-sections is identical, where D is the
maximum dimension of the cylinder normal to the flow. The origin of the Cartesian
coordinate system coincides with the centre of the square.
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FIGURE 15. (Colour online) The effect of the rounding rs on the eigenspectrum of the
ERA-based ROM at (Re,m∗)= (60, 10): (a) root loci as a function of the reduced natural
frequency Fs, where the unstable right half-plane (Re(λ) > 0) is shaded in grey and the
hollow arrow indicates increasing Fs, and (b) the real and imaginary parts of the root loci.
In (a), the unstable eigenvalues of the stationary square cylinder (uncoupled WM) with
different rounding values are connected by a black curve with a solid arrow indicating
increasing rs. The SM is denoted by filled symbols with the same shape as those for the
WM in (a,b).

To begin with, the VIV linear analysis is conducted for a square cylinder with sharp
corners at (Re, m∗) = (60, 10). It is evident from figure 15(a) that the SM is stable,
which suggests that the lock-in is entirely dominated by the resonance mode. Due
to the absence of lock-in via the flutter mode, the onset reduced velocity (Ur) for
a square cylinder may not be clearly recognized compared with its circular cylinder
counterpart. Furthermore, the region of the WM loop for the square cylinder is smaller
than its circular cylinder counterpart, implying that the coupling between the fluid
and the structure is reduced due to the sharp corners. In figure 15, the root loci
for the fluid–structure system of a square cylinder provide an explanation that the
lock-in only consists of the resonance mode and the flutter state disappears due to
the presence of sharp corners for (Re,m∗)= (60, 10). As expected, the sharp corners
suppress the continuous movement of separation points, whereby the smooth circular
cylinder promotes the movement of separation points. Figure 16 shows the frequency,
the VIV response and the lift coefficient from the FOM simulation for a vibrating
square cylinder. The extent of the lock-in region can be observed as 0.116Fs 6 0.154
or 0.87 6 Fs/St 6 1.21. The results illustrate that the maximum amplitude is also
acquired approximately at the lock-in onset (Ur≈ 6.49) even if no flutter regime exists.
It is notable that the maximum amplitude is smaller and the lock-in region is narrower
than its circular cylinder counterpart, which is observed earlier for the square cylinder
(Zhao, Cheng & Zhou 2013; Jaiman et al. 2016b).

Similarly to its circular counterpart, the lift coefficient for a square cylinder also
experiences an amplification in the vicinity of lock-in onset, Ur ≈ 6.49, and gradually
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FIGURE 16. (Colour online) The VIV results for a square cylinder with sharp corners
using the FOM at (Re, m∗) = (60, 10): variation of (a) the normalized vortex shedding
frequency f , (b) the r.m.s. value of the lift coefficient (Cl) and the maximum amplitude
(Ymax), and (c) the phase angle (φ). The lock-in is shaded in grey colour.

recovers to its stationary counterpart as Fs decreases (Ur increases). The maximum
value of the r.m.s. lift coefficient is Cl = 0.314, as shown in figure 16(b), which is
approximately 3.1 times larger than the stationary square cylinder value (Cl= 0.1). For
the VIV of the circular cylinder, on the other hand, the amplification of the r.m.s. lift
coefficient is approximately 5.9 times that of the stationary circular cylinder, as shown
in figure 8b. To understand the direction of energy transfer between the fluid and the
square cylinder, the phase angle is shown in figure 16(c). Similarly to the circular
cylinder, there is a sudden jump from 0◦ to 180◦ during the lock-in region around Fs≈

0.125 or Fs/St≈ 0.98, where the r.m.s. lift coefficient acquires the minimum value.
For the range of Fs considered, two counter-rotating vortices (2S mode) are released

every oscillation cycle from the rear of each cylinder, as shown in figure 17. From
the vorticity fields, separations along the front corners of lateral edges for the square
with sharp corners can be observed for the considered cases. While the C(2S) mode is
observed in the vicinity of lock-in onset for the circular cylinder, the classic 2S mode
is dominant for the square cylinder. This is consistent with our previous hypothesis
that the wake pattern is closely related to the vibration amplitude. We next elucidate
the influence of rounding on the distribution of the eigenspectrum and the unstable
global modes.

As shown in figure 15(a), the SM trajectory moves gradually towards the positive
real axis (Re(λ)> 0) as the rounding radius rs increases. Meanwhile, the flutter region
starts to appear and achieves its maximum extent for the rounding radius rs = 0.5D.
As expected, the rounding of the corners delays the onset of separation; hence, the
rounding aids in reducing the bluffness of the square cylinder. It is also worth noting
that the unstable SM and WM loops are both more pronounced, indicating that the
coupling effect between the fluid and the structure becomes stronger. However, the
growth rate of the uncoupled WM does not increase monotonically from the square
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FIGURE 17. (Colour online) Full-order results for the square cylinder at (Re, m∗) =
(60, 10). Instantaneous vorticity contours at Fs= (a) 0.12, (b) 0.13, (c) 0.14 and (d) 0.15.
The contour levels are from −0.5 to 0.5 in increments of 0.077 and the flow is from left
to right.
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FIGURE 18. (Colour online) Stability regions shown by the spatial distribution of the
pointwise modal velocity amplitude |Û| at Re= 60 for different rounding parameters rs=

(a) 0.0, (b) 0.1D, (c) 0.2D and (d) 0.4D. The flow is from left to right.

(rs = 0) to the circular (rs = 0.5D) configuration, as shown by a black curve with
a solid arrow in figure 15(a). The growth rate first decreases, then increases and
eventually recovers to the growth rate of the circular cylinder.

By examining the real parts of the root loci in figure 15(b), it can be seen that
the onset of lock-in starts to move towards the low reduced velocity (high Fs) as the
rounding radius rs increases. In figure 18, from the comparison of stability regions
through the contours of |Û|, we observe that the rounding has significant effects on
the wake topology, subsequently altering the stability properties. The separation point
can move widely as the rounding radius increases, indicating that the flutter mode is
more pronounced. It is also shown that the stability region gradually moves closer
to the rear of the bluff body as rs increases, which is similar to the effect of Re,
as discussed in § 4.2. Consequently, the level of fluid and structure interaction is
enhanced. This trend is monotonic compared with the growth rate, suggesting that
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FIGURE 19. Schematics of bluff-body geometries with relevant dimensions. The
representative elliptical cylinder (a) has aspect ratio AR= 0.5; the forward triangle (b) is
equilateral with angle 60◦; the diamond (c) represents a square cylinder with sharp corners
at 45◦ flow incidence.

the flutter mode becomes gradually more pronounced. This explains why the SM
trajectory moves towards the right half-plane monotonically. The WM branch, on the
other hand, moves towards the imaginary axis positive or higher-frequency direction,
monotonically. For similar VIV operating parameters, the circular cylinder is much
easier to perturb compared with its square counterpart at the same Reynolds number.

While the rounding generally stabilizes the wake flow for a stationary square
cylinder, it promotes the movement of separation points along the smooth rounded
surface of the vibrating cylinder. Analogously to the aeroelastic flutter with
plunge-torsion mode coupling for an airfoil configuration, as described by De Langre
(2006), the transverse periodic displacement and the movement of separation points
can form a similar dynamics for a transversely vibrating circular cylinder. The
square cylinder with sharp corners restricts the free motion of separation points
and is relatively stable in the sense that the lock-in onset reduced velocity Ur is
greater than its circular counterpart. Moreover, compared with the circular cylinder
at (Re,m∗)= (60, 10), the lock-in range of the square cylinder is narrower and only
a resonance regime exists. To further generalize our findings, we next examine the
lock-in regimes from the eigenvalue distributions for additional bluff bodies for the
smooth curve geometry of an elliptic cylinder and two sharp corner shapes of forward
triangle and diamond cylinders.

4.4. Effect of geometry
In this section, a set of three representative two-dimensional geometries is assessed to
elucidate the frequency lock-in regimes and to demonstrate the ability of the developed
ERA-based ROM. The three additional geometries, namely an ellipse as a smooth
curve and a forward triangle and a diamond with sharp corners, are shown in figure 19.
The major axis with length D of the elliptic cylinder is placed normal to the flow
direction and the aspect ratio AR = 0.5 is defined by the ratio of the minor, D/2,
to the major axis length. The forward triangle is equilateral and has an edge with
length D normal to the flow; the peak corner is on the leeward side. Similarly to
Zhao et al. (2013), the diamond geometry is considered as a square cylinder with
45◦ flow incidence and the Reynolds number is defined by the edge length D as
the characteristic length scale. Similarly to the circular and square cylinders, the new
geometries of the ellipse, forward triangle and diamond cylinders undergo unsteady
wake transition via a Hopf bifurcation at a critical Reynolds number Recr, which is
responsible for the onset of the time-periodic vortex shedding phenomenon. Table 4
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Ellipse Circular Square Forward triangle Diamond

Present Recr 38.0 46.8 44.7 35.5 38.9
Thompson et al. (2014) 38.8 47.2 — — —
Park & Yang (2016) — 46.7 44.7 — —
Lock-in onset Ur 4.18 5.59 6.49 5.43 4.63

TABLE 4. Comparison of critical Reynolds numbers Recr between the available literature
and the predicted values by the ERA-based ROM for different topologies of bluff bodies.
The onset reduced velocity Ur of VIV lock-in from the present study is also outlined in
the final row.

shows the critical Reynolds numbers Recr for the different geometries computed by
our ERA-based ROM, which match reasonably well with previous studies. It is worth
noting that the forward triangle has the lowest critical Reynolds number for the initial
wake transition from steady to unsteady flow. The unsteady transitions of the ellipse
with aspect ratio AR = 0.5 and the diamond with sharp corners occur lower than
their circular and square counterparts. Due to unsteady lift and drag forces, the three
geometries can undergo flow-induced vibration if mounted on elastic supports.

To further elucidate the lock-in mechanism, we plot the root loci and the real and
imaginary parts of the eigenvalues for the additional three bluff bodies in figure 20.
The figure clearly shows that the geometry of the bluff body has a significant impact
on the eigenvalue trajectory. The elliptical configuration has the lowest lock-in onset
Ur followed by the diamond and forward triangle configurations, as shown in table 4.
Compared with the circular cylinder at identical conditions of (Re, m∗) = (60, 10),
the root loci of the SM and WM coalesce for the diamond, ellipse and forward
triangle configurations. Similarly to the low mass ratio effect during the VIV of the
circular cylinder, the two branches exchange their roles and no distinction can be
made between the WM and the SM for the three geometries. Therefore, we consider
the coupled modes WSMI and WSMII to classify the stability characteristics for
these geometries. When the intersection of the growth rate curves corresponding
to WSMI and WSMII occurs in figure 20(b) (top), the stability roles of WSMI
and WSMII switch at a specific value of Fs for the three geometries. As shown in
figure 20(b) (bottom), the two curves of Im(λ) for the three geometries no longer
cross, in comparison to the circular cylinder counterpart in identical conditions. Due
to stronger coupling, there is a characteristic anticrossing with a frequency splitting
between WSMI and WSMII for the three geometries. In addition, the forward triangle
branch departs further away from the line f = 2πFs compared with the diamond and
elliptical cylinders.

In contrast to the square cylinder (0◦ degree flow incidence) at (Re,m∗)= (60, 10),
the diamond configuration has a flutter-dominated VIV lock-in. This difference in the
lock-in behaviour can be attributed to the boundary layer movement over the front
edges of the diamond cylinder, whereby the square cylinder has flow separations at
the upstream corners and inhibits the co-existence of flutter and resonance regimes.

For the forward triangle configuration, it is notable that WSMI and WSMII remain
unstable for Fs 6 0.184 or Ur > 5.43, as predicted by the ERA-based ROM, which
indicates that flutter-dominated VIV persists. Therefore, the forward triangle is of
particular interest for the present study. These linear stability results have been
confirmed by the FOM simulations, as shown in figure 21. The amplitude grows
continually for Fs 6 0.184 or Ur > 5.43 and the lift coefficient reaches its maximum
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FIGURE 20. (Colour online) Effect of geometry on the eigenspectrum of the ERA-based
ROM at (Re,m∗)= (60, 10): (a) root loci as a function of the reduced natural frequency
Fs, where the unstable right half-plane (Re(λ)>0) is shaded in grey colour and the hollow
arrow indicates increasing Fs; (b) real and imaginary parts of the root loci. The WSMI
data are denoted by filled symbols with the same shapes as those for WSMII in (a,b). The
onset Ur is computed on Fs=0.184 (forward triangle – - – - –, blue), Fs=0.216 (diamond –
- – - –, red) and Fs= 0.239 (ellipse – - – - –, green) in the real parts of the root loci in (b).
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FIGURE 21. (Colour online) The VIV results for the forward triangle configuration using
the FOM at (Re,m∗)= (60, 10): variation of (a) the normalized vortex shedding frequency
f and (b) the r.m.s. value of the lift coefficient (Cl) and the maximum amplitude (Ymax).
The lock-in is shaded in grey colour.

value at the lock-in onset Ur, which is similar to the circular and square cylinders.
The vortex shedding frequency starts to synchronize with the natural frequency of
the structure and there exists 1:1 frequency synchronization, whereby the body is
synchronized with the vortex shedding frequency. The transverse amplitude grows
continually as Fs decreases (Ur increases), which is referred to as galloping-dominated
flow-induced vibration. This galloping regime is characterized by a low-frequency
and high-amplitude vibration, whereas a circular cross-section is not susceptible
to galloping. For Fs < 0.085 (Ur > 11.76), the amplitude experiences a small but
distinct increase in amplitude, and 1:3 synchronization gradually appears, as shown
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FIGURE 22. Full-order VIV results for a forward triangle with 1:3 synchronization:
temporal variation of (a) the transverse amplitude and (c) the lift coefficient; normalized
power spectrum P versus f ∗ of (b) the transverse amplitude and (d) the lift coefficient at
Fs= 0.05, where f ∗= f /Fs is the frequency of lift and transverse displacement normalized
by the reduced natural frequency Fs. A third-harmonic frequency is evident in Cl.

in figure 22. In this regime, there is net energy transfer from the base flow with
the frequency component at three times the body oscillation frequency. During this
energy transfer, the fluid force performs work on the body, which stores the energy
in the form of kinetic energy as well as the potential energy in the spring. To further
elucidate the high harmonic response for the forward triangle, figure 22 depicts
motion and lift force traces with their corresponding spectra. In the figure, there is
a clear third-harmonic frequency in the lift force where the body oscillates with a
dominant frequency. Figure 23 shows the instantaneous vorticity contours at different
values of the reduced natural frequency Fs. The vortex shedding mode is 2S for
Fs = 0.17, and remains 2S for Fs = 0.15 with somewhat increased spacing between
the vortices shed alternately from each side of the cylinder. By further decreasing Fs
to 0.1, the strong SM and WM interactions result in a larger vibration amplitude and
the flow diverges to a wide vortex street.

The geometry of the bluff body alters the flow structures significantly in the
vicinity of the base flow, resulting in different root loci and subsequently changing
the stability properties. For example, as shown in figure 15, the sharp corner of the
square stabilizes the flow and the resonance mode dominates the entire lock-in for
(Re, m∗) = (60, 10). This can be further elucidated by looking into the magnitude
of the leading modal velocity |Û| for the different geometrical configurations. As
illustrated in figure 24, the stability regions of the ellipse, diamond and triangle
geometries shift upstream in comparison with the circular geometry, indicating that
the coupling effect is enhanced. The stationary configurations of the ellipse, diamond
and forward triangle have quite similar stability regions. The forward triangle is easier
to perturb from the flow unsteadiness, or by a Hopf bifurcation for alternate vortex
shedding. However, the sharp corners generally stabilize the fluid–structure system,
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FIGURE 23. (Colour online) Full-order results for the forward triangle cylinder at
(Re, m∗) = (60, 10). Instantaneous vorticity contours at Fs = (a) 0.05, (b) 0.1, (c) 0.15
and (d) 0.17. The contour levels are from −0.5 to 0.5 in increments of 0.077 and the
flow is from left to right.
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FIGURE 24. (Colour online) Stability regions shown by the spatial distribution of
pointwise modal velocity amplitude |Û| at Re = 60: contours of modal velocity for the
(a) circle, (b) ellipse, (c) diamond and (d) forward triangle configurations. The flow is
from left to right.

as the separation point is constrained and there is less freedom for the interaction of
flow and structural modes. Due to this attribute in the forward triangle configuration,
there is a delay in lock-in onset Ur with identical operating parameters (Re, m∗)
compared with the elliptical cylinder.

Figure 25 summarizes the stability regimes of transversely vibrating bluff bodies
for the Reynolds number range 30 6 Re 6 100. In this figure, the solid curve (——)
depicts the trend for the critical Reynolds number. The following observations can be
made from the stability phase diagram. The circle, ellipse and diamond geometries
exhibit the flutter and mixed resonance–flutter modes. In contrast to its square
counterpart, the diamond geometry has a movement of asymmetric boundary layers
on the front lateral edges which allows the co-existence of flutter and resonance
modes. For the elliptic cylinder, the mixed flutter–resonance regime occurs at a lower
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FIGURE 25. (Colour online) Stability phase diagram of VIV lock-in for transversely
vibrating two-dimensional bluff bodies with smooth curves and sharp corners for 30 6
Re 6 100, m∗ = 10 and 0.05 6 Fs 6 0.25. Here, the solid curve (——) represents the
critical Reynolds number (Recr) of the fixed bluff body, and flutter- and resonance-induced
regimes are demarcated, where @ represents the co-existence of flutter and resonance
regimes,E denotes the resonance regime andA represents the flutter regime. For Re>Recr,
the flutter regime comprises both unstable eigenvalues (Re(λ) > 0) of the WM and SM,
whereas the resonance regime has only unstable WM.

Reynolds number in comparison with the circular cylinder. Notably, the forward
triangle configuration only shows the flutter-induced lock-in regime for this range of
Reynolds number and the edges are on the leeward side with separated flow. Finally,
the square-section body shows a predominant resonance regime for approximately
30 6 Re 6 80, which turns into the flutter state for Re> 80.

The present ERA-based ROM study has been concerned with two-dimensional bluff-
body configurations for which only two directions in space are resolved. All of the
notions of the ROM, such as base flows and eigenvalue realization, can be easily
extended to full three-dimensional settings. Thus, the present method does not pose
any theoretical limitation except that there may be numerical ones with respect to
memory requirements and CPU time to solve the generalized eigenvalue problem.

5. Concluding remarks

In this study, we presented an ERA-based model reduction for coupled fluid–
structure analysis to investigate the stability characteristics of the VIVs of bluff
bodies. The ERA-based ROM relies on the singular value decomposition of a Hankel
matrix constructed from the impulse response of the NS equations. The present
study has remarkably demonstrated the effectiveness of the ERA-based ROM for
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predicting the unstable wake flow behind a stationary circular cylinder. The critical
Reynolds number and the flow dynamics were well predicted and excellent agreement
was found with the FOM and the available literature. We next employed the ROM
for a unified description of the lock-in phenomenon as a function of the Reynolds
number Re, the mass ratio m∗ and for the investigation of the effect of rounding
and various geometrical shapes. To investigate the VIV mechanism, the ERA-based
ROM was extended to construct the fluid ROM and coupled with a linear structure to
form a reduced fluid–structure system in the state-space format. Two distinct lock-in
patterns of flutter- and resonance-induced regimes were investigated by the ERA-based
ROM for a transversely vibrating circular cylinder at the baseline parameters of
(Re,m∗)= (60, 10). While the resonance state has the unstable WM together with the
stable SM in the range 0.11 6 Fs 6 0.147, the flutter regime has the co-existence of
the unstable SM and WM in the range 0.147 < Fs 6 0.179. In comparison with the
linear ROM used in Zhang et al. (2015), which is sensitive to the training trajectory,
the proposed ERA-based ROM is sufficiently accurate and only requires the impulse
response of the unstable fluid system. To generalize the proposed ERA-based ROM
for VIV linear stability analysis, the effects of the Reynolds number, the rounding of
a square cylinder and the geometry have been systematically examined and compared
against the full-order simulations. Based on the systematic parametric study, the
following conclusions can be drawn.

(i) The study on the effect of the Reynolds number demonstrates that the flutter
and resonance regimes do not always exist during the lock-in phenomenon.
For m∗ = 10, it was found that the flutter and resonance regimes co-exist for
Recr <Re< 70. The flutter-induced regime gradually dominates the entire lock-in
region when Re > 70. The finding is consistent with the theoretical analysis of
De Langre (2006) for high Reynolds numbers. The stability region provides an
explanation that it shifts upstream as Re increases, indicating that the coupling
between the unstable wake and the bluff body is enhanced. Another observation
is that the reduction of the r.m.s. value of lift force is not associated with either
the resonance or the flutter state, but is closely related to the phase angle jump
from 0◦ to 180◦, which is also demonstrated during the lock-in of the square
cylinder.

(ii) The analysis on the rounding effect of the square cylinder at (Re,m∗)= (60, 10)
shows that the rounding has a remarkable impact on the flutter and resonance
regimes. The flutter regime can be promoted by gradually removing the sharp
corners. The sharp corners suppress the continuous movement of separation
points, and the WM loop of the square cylinder is smaller than the circular
cylinder counterpart. As the rounding radius rs increases, the SM trajectory
moves gradually towards the positive real axis and the flutter region starts
to appear. From the comparison of leading modes, it can be seen that the
stability region shifts downstream as the rounding radius rs decreases. There is a
reduction in the coupling strength between the fluid and the structure due to the
presence of sharp corners, which inhibit the movement of separation points and
the susceptibility to inertial coupling. In comparison with the VIV of a circular
cylinder, this study also explains why the lock-in onset Ur is larger and the
lock-in region is narrower for a square cylinder.

(iii) The geometry study reveals that the cross-sectional shape significantly alters
the VIV and the galloping instability. The ERA-based ROM can effectively
capture the stability properties and the lock-in regimes for the elliptical, forward
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triangle and diamond-shaped configurations. It is found that the root loci of the
WM and SM coalesce and form coupled modes for these geometries. We have
provided further insights into the phenomena of flow-induced vibration by the
ERA-based ROM for these bluff-body geometries. The elliptical cylinder was
found to have the lowest Ur for the lock-in onset, followed by the diamond
and forward triangle configurations. It is of particular note that, for the forward
triangle VIV, the ROM predicts that the flutter-dominated VIV persists for
Fs 6 0.184 or Ur > 5.43. A low-frequency galloping instability and a kink in
the amplitude response associated with 1:3 synchronization were observed in
the forward triangle configuration. We presented a summary phase diagram to
characterize the effects of geometry on the VIV stability regimes based on the
eigenspectrum distribution. Such a phase diagram based on the linear dynamics
of the lock-in process provides insight to help in developing a unified description
of flow-induced vibration. The phase diagram shows that the resonance mode
only exists for a certain range of Reynolds number. The VIV lock-in mechanism
is eventually dominated by the flutter mode as the Reynolds number increases.

The proposed ERA-based ROM is demonstrated to be accurate and efficient for the
VIV linear stability analysis of bluff bodies, which has relevance in the development
of flow control strategies. By shifting the unstable eigenvalues of the WM and SM
to the stable left half-complex-plane, suppression of vortex streets and VIV can be
achieved by the model. The simplicity of the model permits investigation of a range of
geometries and parameters for the VIV mechanism and paves the way to a bottom-up
approach for the development of control devices. We would like to emphasize that
we have considered only linear dynamical systems in this study; a possible future
direction would include an extension of the system identification process to nonlinear
systems. In the future, there will also be a need for further investigation at high
Reynolds numbers to expand the proposed model reduction approach to a generalized
lock-in description with a wider parameter space of the mass-damping parameter.
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Appendix A. Derivation of the phase angle for VIV
By considering the cylinder motion and fluid forcing as sinusoidal functions, the

displacement and lift coefficient can be obtained for the VIV linear system as

Y = Ŷeλr t cos(λit),
Cl = Ĉleλr t cos(λit+ φ),

}
(A 1)

where λ= λr + iλi is the eigenvalue with real λr and imaginary λi components, and Ŷ
and Ĉl denote the magnitudes of the eigenmodes. The phase angle φ can be derived
by plugging (A 1) into the structural equation (2.13) as[

Ŷeλr t(λ2
r − λ

2
i + 4πζFsλr + (2πFs)

2)−
asĈleλr t cos φ

m∗

]
cos λit

+

[
Ŷeλr t(−2λrλi − 4πζFsλi)+

asĈleλr t sin φ
m∗

]
sin λit= 0. (A 2)
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By equating the coefficients of cos(λit) and sin(λit) to zero, we obtain the following
relations:

Ŷeλr t(λ2
r − λ

2
i + 4πζFsλr + (2πFs)

2)−
asĈleλr t cos φ

m∗
= 0, (A 3)

Ŷeλr t(−2λrλi − 4πζFsλi)+
asĈleλr t sin φ

m∗
= 0. (A 4)

By solving (A 4) and setting ζ = 0, sin φ and cos φ can be obtained as

sin φ =
2Ŷλiλrm∗

asĈl

, (A 5)

cos φ =
Ŷm∗(λ2

r − λ
2
i + (2πFs)

2)

asĈl

. (A 6)

Through the trigonometric identity cos2 φ + sin2 φ = 1, the term sin φ can be further
simplified in terms of (λ, Fs) as follows:

sin φ =
2λrλi√

(λ2
r + (2πFs)2 + λ

2
i )

2 − (4πλiFs)2
. (A 7)

Appendix B. Effect of mass ratio
For illustration of the ERA-based ROM, the effect of the mass ratio is shown in

figure 26 for m∗= (5, 7.6, 20) at Re= 60. Figure 26(b) shows the real and imaginary
parts of the root loci as a function of the reduced frequency Fs. It indicates that
the lock-in onset starts to move to the lower reduced velocity (Ur = 1/Fs) regime as
the mass ratio m∗ decreases. As expected, due to weaker fluid–structure coupling for
larger mass ratio m∗= 20, the eigenfrequency of the WM recovers to the frequency of
the stationary cylinder and the frequency of the SM approaches the natural frequency
of the cylinder-only system as Fs increases. As the mass ratio decreases further,
figure 26(a) shows that the root loci of the SM and WM gradually coalesce and form
a coupled mode due to the increased strength of the fluid–structure coupling. The
approximate threshold mass ratio is m∗ ≈ 7.6 for the coupled mode, which is very
close to the predicted m∗ = 7.3 in Zhang et al. (2015). The phenomenon is termed
as the mixed WM/SM (Meliga & Chomaz 2011) or the coupled fluid–elastic mode
(Navrose & Mittal 2016). As illustrated in figure 26(b), for the mass ratio m∗ = 5,
the coupled wake–structure modes WSMI and WSMII resemble the SM and WM
respectively for Fs 6 0.175, whereas WSMI and WSMII resemble the standard WM
and SM respectively for Fs > 0.175. This finding suggests that the stability roles of
the WM and the SM switch at a specific value of Fs, where the two growth rate
Re(λ) curves of WSMI and WSMII intersect. The flutter regime for m∗ = 5 is then
defined by 0.165 < Fs 6 0.197 (5.08 6 Ur < 6.07), as shown in figure 26(b), which
matches well with the results of Navrose & Mittal (2016) (5.06Ur < 6.0) in identical
conditions. In figure 26(b) (bottom), the two curves of Im(λ) for m∗ = (5, 7.6) no
longer cross and there is a characteristic anticrossing with a frequency splitting (1f )
between WSMI and WSMII. This phenomenon of anticrossing is an intrinsic property
of strong coupling at low mass ratio, as reported for generic coupled mechanical
oscillators in Novotny (2010).
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FIGURE 26. (Colour online) The effect of the mass ratio on the eigenspectrum of the
ERA-based ROM for a circular cylinder at m∗ = (5, 7.6, 20) and Re = 60: (a) the root
loci as a function of the reduced natural frequency Fs, where the unstable right half-plane
(Re(λ) > 0) is shaded in grey colour and the hollow arrow indicates increasing Fs; (b)
the real and imaginary parts of the root loci. In (b), the growth rate Re(λ) curves of
WSMI and WSMII intersect at Fs= 0.175 (– – –) and the flutter regime is defined between
Fs = 0.197 (– - – - –) and Fs = 0.165 (· · · · · ·) for m∗ = 5. The frequency anticrossing is
shown in the inset of the Im(λ) plot. The WSMI and SM branches are denoted by filled
symbols with the same shapes as the WSMII and WM symbols in (a,b).
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