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There is an enormous literature on the so-called Grenander estimator, which is
merely the nonparametric maximum likelihood estimator of a nonincreasing
probability density on [0, 1] (see, for instance, Grenander (1981)), but unfortunately,
there is no nonasymptotic (i.e. for arbitrary finite sample size n) explicit upper
bound for the quadratic risk of the Grenander estimator readily applicable in
practice by statisticians. In this paper, we establish, for the first time, a simple
explicit upper bound 2n−1/2 for the latter quadratic risk. It turns out to be a
straightforward consequence of an inequality valid with probability one and
bounding from above the integrated squared error of the Grenander estimator by the
Kolmogorov–Smirnov statistic.
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1. Introduction and the formulation of main results

Nonparametric density estimation has mainly been devoted for a long time, to esti-
mation of smooth densities using linear methods such as kernel estimators with fixed
bandwidth or projection estimators (truncated series expansions, with estimated
coefficients).

Suppose we know only that f(x), 0 � x � 1, is a nonincreasing probability den-
sity, unbounded and discontinuous, in general. It can very well be steep at some
places and flat elsewhere. In this case, a special estimator f̂n(x), 0 � x � 1, has
been known for a long time. It has been introduced by Grenander [4] as the left
derivative of the least concave majorant F̂n(x), 0 � x � 1, of the empirical distribu-
tion function Fn(x), 0 � x � 1, and which is exactly the nonparametric maximum
likelihood estimator of f(x), 0 � x � 1, restricted to the class F of all nonincreasing
densities on [0, 1] (for a proof see, for instance, Grenander [5]).

There is an enormous literature on the Grenander estimator and its asymptotic
properties, in particular, Prakasa Rao [10], Kiefer and Wolfowitz [9], Groeneboom
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and Pyke [7], Groeneboom [6] and van der Vaart [11]. These studies give very deep
asymptotic analysis of the Grenander estimator and the corresponding limiting
probability distributions.

Contrary to the latter, our point of view is nonasymptotic, that is, for arbitrary
sample size n, moderate or even big, our objective consists in establishing the
explicit and simply computable upper bound for the quadratic risk of the Grenander
estimator of the type

Ef

∫ 1

0

(
f̂n(x) − f(x)

)2 dx � c · n−δ, (1.1)

where δ > 0 and the constant c, c > 0, should depend on the entire class F of
all nonincreasing densities and, by no means, on the individual representative f ,
f ∈ F .

Bound (1.1) should be readily applicable in practice by a statistician in the
following pragmatic situation:

Suppose, we know that the unknown probability density f(x), 0 � x � 1, is non-
increasing, but nothing can be assumed about its smoothness. How small will be
the quadratic risk of the Grenander estimator f̂n(x), 0 � x � 1, if we decide to use
it as an estimator of the unknown density f(x), 0 � x � 1?

Unfortunately, the class F contains densities which are not square integrable, in
particular, the following ones

fβ(x) = (1 − β)x−β , 0 � x � 1, with
1
2

< β < 1, (1.2)

hence for these types of densities classical quadratic risk (1.1) cannot be defined.
It turns out, surprisingly enough, that adjusting a bit definition of the quadratic

risk by introducing a weight function h(x) = x, 0 � x � 1, all nonincreasing
densities become square integrable, i.e.

∫ 1

0

f2(x)xdx < ∞ for any f ∈ F . (1.3)

Let X1,X2, . . . , Xn be i.i.d. random variables with values in [0, 1] and the
nonincreasing density function f(x), 0 � x � 1, and let F (x), 0 � x � 1, be the
corresponding cumulative distribution function with F (0) = 0 and

F (x) =
∫ x

0

f(y) dy, 0 � x � 1. (1.4)

We shall assume that f(x), 0 � x � 1, is a right-continuous version of the density
function. Then it is evident that f(x), 0 � x � 1, is a right derivative of the concave
function F (x), 0 � x � 1, and its left limit f(x−), 0 < x � 1, coincides with the
left derivative of F (x), 0 � x � 1. It is a well-known mathematical fact that f(x) =
f(x−) everywhere except a countable set of points x, 0 � x � 1.

Let Fn(x), 0 � x � 1, be the empirical distribution function, constructed from
i.i.d. random variables X1,X2, . . . , Xn. As the corresponding distribution function
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F (x) is absolutely continuous with F (0) = 0, with probability one we have that the
random variable

Xmin = min(X1,X2, . . . , Xn)

is strictly positive and hence

Fn(x) = 0 if 0 � x < Xmin (P -a.s.). (1.5)

Let F̂n(x), 0 � x � 1, be the least concave majorant of Fn(x), 0 � x � 1, and let
f̂n(x), 0 � x � 1, denote the right derivative of the latter concave majorant.

Evidently, we have

F̂n(x) =
∫ x

0

f̂n(y) dy, 0 � x � 1, F̂n(0) = 0 (P -a.s.). (1.6)

As Fn(x), 0 � x � 1, is a nondecreasing function, the same property holds for its
least concave majorant F̂n(x), 0 � x � 1, and hence f̂n(x), 0 � x � 1, is a nonneg-
ative function. Moreover, the latter function is nonincreasing as the right derivative
of the concave function. By its construction the function F̂n(x), 0 � x � 1, is
piecewise linear concave function and as a result we get that the function f̂n(x),
0 � x � 1, is right-continuous step function, nonnegative and nonincreasing. The
left limit f̂n(x−), 0 < x � 1, of the function f̂n(x), 0 � x � 1, coincides with the left
derivative of the least concave majorant F̂n(x), 0 � x � 1, and hence it is the cel-
ebrated Grenander estimator of the unknown nonincreasing density function f(x),
0 � x � 1.

Lemma 1.1. We have for arbitrary nonincreasing density f(x), 0 � x � 1

0 � f(x)x � F (x), lim
x↓0

(f(x)x) = 0, (1.7)

∫ 1

0

f2(x)xdx � 1
2
. (1.8)

Proof. As the density f(x), 0 � x � 1, is nonincreasing, we get

F (x) =
∫ x

0

f(y) dy �
∫ x

0

f(x) dy = f(x)x, 0 � x � 1.

As limx↓0 F (x) = F (0) = 0, we come to relations (1.7). We use inequality (1.7) and
write ∫ 1

0

f(x)(f(x)x) dx �
∫ 1

0

f(x)F (x) dx =
∫ 1

0

1
2

d(F 2(x)) =
1
2
.

From now on we introduce the weighted quadratic risk of the Grenander estimator
f̂n(x−), 0 < x � 1,

Ef

∫ 1

0

(
f̂n(x−) − f(x)

)2
xdx = Ef

∫ 1

0

(
f̂n(x) − f(x)

)2
xdx. (1.9)
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Our objective is to establish simple explicit upper bound for the following weighted
quadratic risk

sup
f∈F

Ef

∫ 1

0

(
f̂n(x) − f(x)

)2
xdx. (1.10)

�

In § 2, we shall prove the following main result of this paper.

Theorem 1.2 Main result. (a) The weighted integrated squared error of the
Grenander estimator f̂n(x−), 0 < x � 1, is bounded from above with prob-
ability one by the Kolmogorov–Smirnov statistic∫ 1

0

(
f̂n(x) − f(x)

)2
xdx � 2 sup

0�x�1
|Fn(x) − F (x)| (P -a.s.). (1.11)

(b) The weighted quadratic risk of the Grenander estimator f̂n(x−), 0 < x � 1,
admits the following simple upper bound for arbitrary finite sample size n

sup
f∈F

Ef

∫ 1

0

(
f̂n(x) − f(x)

)2
xdx � 2n−1/2. (1.12)

Nonasymptotic L1-risk bounds of the Grenander estimator were obtained by
Birge [1,2]. His upper bound is of the following type

Ef

∫ 1

0

|f̂n(x) − f(x)|dx � c(f)n−1/3 (1.13)

which is well-adapted to the well-known ‘cube-root’ asymptotic convergence of the
Grenander estimator. Unfortunately Birge’s constant factor c(f) depends on the
supremum of the unknown nonincreasing density function f(x), 0 � x � 1, and
hence is not directly applicable in practice.

Theorem 24.6 in van der Vaart [11] states that the integrated squared error of the
Grenander estimator is asymptotically of order n−2/3 for bounded nonincreasing
densities. This suggests that the following stronger than (1.12) nonasymptotic upper
bound might be true

sup
f∈F

Ef

∫ 1

0

(
f̂n(x) − f(x)

)2
xdx � cn−2/3 (1.14)

with a ‘reasonable’ constant factor c. We were unable to prove the hypothetical
upper bound (1.14) and it is worth here to make an important remark: from the
asymptotic point of view bound (1.14) is superior over bound (1.12) even for
constants c being too large. But what is asymptotically justified can be far from
reasonable with an ordinary (even large) amount of observations.

Indeed, let us take c = 20 in (1.14). If we equate the right-hand sides of (1.12) and
(1.14), we shall have n = 106. Hence for the sample sizes n < 1 million bound (1.12)
is better than bound (1.14). The conclusion is that in pragmatic cases the smaller
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value of constant factor c is crucial and the direct application of the asymptotical
estimates of nonparametric statistics can be quite misleading.

It was noticed long ago (see, e.g. Groeneboom and Pyke [7]) that for the uniform
distribution with density f(x) = 1, 0 � x � 1, the following asymptotic result does
hold

E

∫ 1

0

(f̂n(x) − 1)2 dx ≈ (log n)n−1, (1.15)

that is for flat density the order of approximation is almost classical n−1.
A result similar to bound (1.15) holds for arbitrary finite sample size n and

for nonincreasing piecewise constant densities on the subset U of [0, 1]. This is the
subject of theorem 1.3 stated below. Its proof is deferred to § 2.

Theorem 1.3. Let f(x), 0 � x � 1, be the nonincreasing density, which is known
to be flat, that is, piecewise constant on the union U of the subintervals

U =
m⋃

i=1

[ai, bi), (1.16)

where 0 � a1 < b1 � a2 < b2 � · · · � ai < bi � · · · � am < bm � 1. Then

(a) the weighted integrated squared error of the Grenander estimator f̂n(x−), 0 <
x � 1, is bounded from above with probability one by the squared Kolmogorov–
Smirnov statistic

m∑
i=1

∫ bi

ai

(
f̂n(x) − f(x)

)2(x − ai)(bi − x) dx

� 4
(

sup
0�x�1

|Fn(x) − F (x)|
)2

(P -a.s.) (1.17)

(b) the weighted quadratic risk of the Grenander estimator f̂n(x−), 0 < x � 1,
admits the following simple upper bound for arbitrary finite sample size n

Ef

m∑
i=1

∫ bi

ai

(
f̂n(x) − f(x)

)2(x − ai)(bi − x) dx � 4n−1. (1.18)

2. Proof of theorems 1.2 and 1.3

We prove at first our main result.

Proof of theorem 1.2. Introduce the following notations

Ĝn(x) = F̂n(x) − F (x), 0 � x � 1, (2.1)

ĝn(x) = f̂n(x) − f(x), ĝn(x−) = f̂n(x−) − f(x−), 0 � x � 1. (2.2)

Note that

Ĝn(x) =
∫ x

0

ĝn(y) dy =
∫ x

0

ĝn(y−) dy, 0 � x � 1, (2.3)
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Take δ > 0 arbitrary small, 0 < δ < 1. The functions Ĝn(x) and ĝn(x), 0 � x � 1,
are right-continuous functions of bounded variation on the interval [δ, 1] (we remind
that the limx↓0 f(x) can be equal to +∞).

The important formula of the integration by parts is valid for the functions of
bounded variation Ĝn(x) and ĝn(x) on the interval [δ, 1] and has the following form
(see Hewitt and Stromberg [8, theorem 21.67])

d(Ĝn · ĝn) = Ĝn dĝn + ĝn(−) dĜn, or ĝn(−) dĜn = d(Ĝn · ĝn) − Ĝn dĝn, (2.4)

which after multiplication by x, and the subsequent integration, becomes∫ 1

δ

xĝn(x−) dĜn(x) =
∫ 1

δ

x d
(
Ĝn(x)ĝn(x)

) − ∫ 1

δ

xĜn(x) dĝn(x). (2.5)

We have ∫ 1

δ

xĝn(x−) dĜn(x) =
∫ 1

δ

(ĝn(x−))2xdx. (2.6)

We have also∫ 1

δ

x d
(
Ĝn(x)ĝn(x)

)
= xĜn(x)ĝn(x)

∣∣∣1
δ
−

∫ 1

δ

Ĝn(x)ĝn(x) dx

= −δĜn(δ)ĝn(δ) −
∫ 1

δ

1
2

d(Ĝn(x))2

= −δĜn(δ)ĝn(δ) +
1
2

(Ĝn(δ))2, as Ĝn(1) = 0.

We should note that here and throughout the paper the integral
∫ b

a
stands for∫

(a,b]
, that is, including only right end point.

Thus we get∫ 1

δ

(ĝn(x−))2xdx = −δĜn(δ)ĝn(δ) +
1
2

(Ĝn(δ))2 −
∫ 1

δ

xĜn(x) dĝn(x). (2.7)

Let us bound the last term of the latter equality (2.7)∣∣∣∣ −
∫ 1

δ

xĜn(x) dĝn(x)
∣∣∣∣ �

∫ 1

δ

x|Ĝn(x)| d(var ĝn(x))

� sup
0�x�1

|Ĝn(x)|
∫ 1

δ

x d
(
(−f̂n(x)) + (−f(x))

)
.

We have∫ 1

δ

x d
(
(−f̂n(x)) + (−f(x))

)
= x

(
(−f̂n(x)) + (−f(x))

)∣∣∣1
δ

+
∫ 1

δ

(
f̂n(x) + f(x)

)
dx

� δ
(
f̂n(δ)) + f(δ)

)
+

∫ 1

δ

(
f̂n(x) + f(x)

)
dx,
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hence we get the bound∣∣∣∣ −
∫ 1

δ

xĜn(x) dĝn(x)
∣∣∣∣ � sup

0�x�1
|Ĝn(x)|

[
δ
(
f̂n(δ) + f(δ)

)
+

∫ 1

δ

(
f̂n(x) + f(x)

)
dx

]
.

(2.8)
From equality (2.7) and bound (2.8) we come to the inequality∫ 1

δ

(ĝn(x−))2xdx

� δ
(
f̂n(δ) + f(δ)

)|Ĝn(δ)| + 1
2

(Ĝn(δ))2

+ sup
0�x�1

|Fn(x) − F (x)|
[
δ
(
f̂n(δ) + f(δ)

)
+

∫ 1

δ

(
f̂n(x) + f(x)

)
dx

]
, (2.9)

where we have used the well-known Marshall’s inequality

sup
0�x�1

|F̂n(x) − F (x)| � sup
0�x�1

|Fn(x) − F (x)|. (2.10)

Now we pass to limit δ ↓ 0 in inequality (2.9) taking into account limit relation
(1.7) of lemma 1.1 and get bound (1.11) of theorem 1.2.

Denote

zn = sup
0�x�1

|Fn(x) − F (x)|. (2.11)

Then from theorem 3.3 in Devroye and Lugosi [3] we know that

Efz2
n � 1

n
, Efzn � 1√

n
. (2.12)

Let us take the expectation in both sides of inequality (1.11), then from the
latter estimate (2.12) we come easily to the desired bound (1.12). �

Next we prove theorem 1.3.

Proof of theorem 1.3. Let us introduce the following notation

h(x; ai, bi) =
{

(x − ai)(bi − x), if ai � x � bi,
0, elsewhere, (2.13)

0 � x � 1, i = 1, . . . ,m.

We have from Marshall’s inequality (2.10) and (2.11)

Ĝn(x) − zn � 0, 0 � x � 1, (2.14)

where

Ĝn(x) = F̂n(x) − F (x) =
∫ x

0

ĝn(y) dy, 0 � x � 1. (2.15)
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The integration by parts formula (2.4) gives us

ĝn(−) d(Ĝn − zn) = d
[
(Ĝn − zn)ĝn

] − (Ĝn − zn) dĝn. (2.16)

Multiplying the latter equality by h(x; ai, bi) and integrating it we get

∫ bi

ai

h(x; ai, bi)ĝn(−) d(Ĝn − zn)

=
∫ bi

ai

h(x; ai, bi) d
[
(Ĝn − zn)ĝn

] − ∫ bi

ai

h(x; ai, bi)(Ĝn − zn) dĝn. (2.17)

We have ∫ bi

ai

h(x; ai, bi)ĝn(−) d(Ĝn − zn) =
∫ bi

ai

(ĝn)2h(x; ai, bi) dx. (2.18)

From the definition of the Lebesgue–Stieltjes integral we can write∫ bi

ai

h(x; ai, bi)(Ĝn − zn) dĝn =
∫

(ai,bi)

h(x; ai, bi)(Ĝn − zn) dĝn

+ h(bi; ai, bi)(Ĝn(bi) − zn)
(
ĝn(bi) − ĝn(bi−)

)
.

(2.19)

But h(bi; ai, bi) = 0, Ĝn(x) − zn � 0, and as the density f(x) is constant on
[ai, bi), then ĝn(x) = f̂n(x) − f(x) is nonincreasing on [ai, bi), hence we come to
the crucial inequality ∫ bi

ai

h(x; ai, bi)(Ĝn − zn) dĝn � 0. (2.20)

Thus from equality (2.17) taking into account the latter inequality (2.20) we get

∫ bi

ai

(ĝn(x))2h(x; ai, bi) dx �
∫ bi

ai

h(x; ai, bi) d
[
(Ĝn − zn)ĝn

]
. (2.21)

Let us bound the right-hand side of (2.21). We have

∫ bi

ai

h(x; ai, bi) d
[
(Ĝn − zn)ĝn

]

= h(x; ai, bi)(Ĝn − zn)ĝn

∣∣∣bi

ai

−
∫ bi

ai

(Ĝn − zn)ĝnh′
x(x; ai, bi) dx

= −
∫ bi

ai

h′
x(x; ai, bi) d

(
1
2

(Ĝn − zn)2
)

= −h′
x(x; ai, bi)

1
2

(Ĝn − zn)2
∣∣∣bi

ai

+
∫ bi

ai

1
2

(Ĝn − zn)2h′′
xx(x; ai, bi) dx
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= (bi − ai) · 1
2

(Ĝn(bi) − zn)2 + (bi − ai) · 1
2

(Ĝn(ai) − an)2

−
∫ bi

ai

(Ĝn − zn)2 dx � 4(bi − ai)z2
n.

Hence we get the estimate∫ bi

ai

(ĝn(x))2h(x; ai, bi) dx � 4(bi − ai)z2
n, i = 1, . . . ,m. (2.22)

Summing up the latter estimate through i, i = 1, . . . ,m, we come to the inequality
m∑

i=1

∫ bi

ai

(
f̂n(x) − f(x)

)2(x − ai)(bi − x) dx � 4z2
n. (2.23)

Taking the expectation in both sides of inequality (2.23) together with the
well-known estimate (2.12) we get the bound

Ef

m∑
i=1

∫ bi

ai

(
f̂n(x) − f(x)

)2(x − ai)(bi − x) dx � 4n−1. (2.24)

�
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